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Abstract 

We propose a new network decomposition method to systematically identify protein 

interaction modules in the protein interaction network. Our method incorporates both a 

global metric and a local metric for balance and consistency. We have compared the 

performance of our method with several earlier approaches on both simulated and real 

datasets using different criteria, and show that our method is more robust to network 

alterations and more effective at discovering functional protein modules. 

Background 

Protein complexes are building blocks of cellular components and pathways. A 

comprehensive understanding of a biological system requires knowledge about how 

protein complexes are assembled, regulated, and organized to form cellular components 

and perform cellular functions. The emergence of a variety of genomic and proteomic 

techniques to systematically obtain such information has generated an enormous amount 

of data [1-11]. However, interpretation and analysis of such data in terms of biological 

function has not kept pace with data acquisition, mainly due to the complexity of the 

problem and the limitation of current techniques to handle the data.  

In this paper, we address the issue of constructing protein interaction modules from the 

protein interaction data. Highly connected protein modules are mostly found to be protein 

complexes performing a specific biological function. The concept of protein interaction 

modules as fundamental functional units was first outlined by Hartwell et al [12]. Protein 

interaction modules are composed of a variable number of proteins, with discrete 

functions arising from their individual constituents and their synergistic interactions. A 
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multi-protein complex, such as the ribosome, is one common form of interaction module; 

other examples of protein functional modules include proteins working collectively in a 

pathway, such as signal transduction, that do not necessarily form a tightly associated, 

stable protein complex. 

To detect protein interaction modules from protein interaction data, we use a graph theory 

approach. Protein interaction networks are routinely represented as graphs, with proteins 

as nodes and interactions as edges. In a graphical representation of a protein interaction 

network, a functional unit, or a group of functionally related proteins, is tightly connected 

as a community, while proteins from different functional units are more loosely 

connected. In the past few years, new algorithms have been developed to extract 

communities from a generic network. Girvan & Newman [13] proposed a decomposition 

algorithm (GN algorithm) to analyze community structure in networks. Their algorithm 

iteratively removes edges based on betweenness values -- the number of shortest paths 

between all pairs of nodes in the network running through an edge, in contrast to the 

traditional hierarchical clustering algorithm where closely connected nodes are iteratively 

joined together into larger and larger communities. In a different approach, Radicchi et al. 

[14] replaced the edge betweenness metric with an edge clustering coefficient -- the 

number of triangles to which a given edge belongs, divided by the number of triangles 

that might potentially include it, given the degrees of the adjacent nodes. The edge 

clustering coefficient is a local topology-based metric and a candidate edge with the 

lowest clustering coefficient is removed one at a time in the algorithm of Radicchi et al 

(‘edge clustering coefficient’ algorithm, ECC algorithm for short). 
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When applied to a large network, these two algorithms give substantially different results. 

The reason is that an individual edge with larger betweenness does not necessarily have a 

lower clustering coefficient, although on average it will. Ultimately, the global metric in 

the GN algorithm behaves differently from the local metric in the ECC algorithm. In this 

paper, we propose to resolve this conflict by combining the global and local metrics to 

form a consistent and robust algorithm. We make three additional significant 

contributions: (1) a new metric (commonality) that takes into account the effects of 

random edge distributions; (2) a new definition of a protein interaction module; and (3) a 

novel filtering procedure to remove false-positive interactions based on a random graph 

model analysis. We demonstrate that our new algorithm is more effective and robust in 

terms of discovering protein interaction modules in protein interaction networks than 

either the global or local algorithm by application to the large yeast protein interaction 

network.  

Results and Discussion 

The principal result of this paper is the development of a new algorithm for extracting 

protein interaction modules from a protein interaction network. We first present the new 

methodology developments and then compare the performance of different algorithms, 

including the MCL algorithm [15], on simulated networks where protein complexes were 

known. The MCL algorithm is a fast and scalable unsupervised cluster algorithm for 

graphs based on simulation of stochastic flow in graphs [15] and was found to be overall 

the best performing one by the van Helden study [16]. Note that our proposed new 

algorithm, the GN algorithm, and the ECC algorithm are divisive partitioning-type 
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algorithms, while the MCL algorithm is a non-partitioning algorithm. Both the 

modularity [17] measure and productive cuts in the following sections  are not applicable 

to the MCL algorithm. Second, we compare the results of different algorithms on a small 

protein interaction network where protein complexes are largely known. Lastly, we apply 

our new algorithm, the GN algorithm, the ECC algorithm, and the MCL algorithm 

whenever applicable, on two large yeast protein interaction networks and evaluated the 

performance of each algorithm based on the value of modularity [17], overlap with MIPS 

complexes [18] and Gene Ontology (GO, http://www.geneontology.org) term enrichment 

of each cluster.  

A new commonality metric 

Consider two proteins A and B. Let k be the number of common interacting partners (or 

neighbors) between A and B. If A and B belong to the same protein complex, they likely 

share many common interaction partners, i.e., have a large k. On the other hand, if A and 

B do not belong to the same protein complex, they likely have few common interaction 

partners, i.e., have a small k. However, randomness also enters the equation. Let n, m be 

the number of total interacting partners for protein A and B respectively (n and m are also 

called degrees of A and B). A standard model of a protein interaction type network is the 

fixed-degree-sequence random graph [19] where the interactions follow the 

hypergeometric distribution. From this model, the average number of common interacting 

partners between proteins A and B in a random graph is given by 
k =

n ⋅ m

N  (N is the 

total number of nodes). To offset this random effect that a large k results from large n and 
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m, we propose a new commonality index as: 

k +1

n ⋅m . The square root of n ⋅ m  makes it a 

scale invariant. We note that in [14], the authors define a similar metric as: 

k +1

min(n −1, m −1) .  

BCD algorithm 

Our goal is to discover protein interaction modules. Intuitively, when two protein 

functional modules are sparsely connected, edges between them should have higher edge-

betweenness values and lower commonality, whereas edges within a module should have 

high commonality and low edge-betweeness. Thus for sparsely connected functional 

modules, edge-betweenness highly correlates with edge-commonality. When protein 

functional modules overlap, the correlation between the global metric and local metric 

becomes less clear. For this reason, we combine these two metrics to build a more 

consistent and robust metric. The new BCD (Betweenness-Commonality Decomposition) 

algorithm is summarized as follows: 

1. Calculate the edge commonality (C) for each edge in the network. 

2. Calculate the edge-betweenness (B) for each edge in the current subnetwork. 

3. Remove the edge with the maximal ratio B/C.  

4. Repeat steps 2 and 3 until no edges remain. 

Like the edge clustering coefficient in the ECC algorithm, the edge commonality is a 

static property of an edge in context of the entire network, telling how strong the affinity 
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is between two nodes it connects. The edge commonality is calculated only once at the 

beginning of a decomposition process, while the edge-betweenness is updated each time 

an edge is removed to achieve best results [13]. This algorithm runs with O(M 2N )  

computational complexity, where M is the number of edges and N is the number of nodes 

in a network. As a practical matter, we calculate the betweenness using the fast algorithm 

of Brandes [20] where the edge-betweenness value can be obtained by summing pair-

dependencies over all traversals [21], so that we can easily parallelize the 

computationally costly betweenness calculation.  

A new definition of protein interaction module 

Intuitively, a protein interaction module is a subnetwork in the protein interaction 

network with more internal interactions than external interactions. A precise definition of 

the interaction module is not trivial. A number of definitions of community (or protein 

interaction module in terms of the protein interaction network) have been proposed with 

different criteria [14, 17, 22]. No clear consensus of module definition exists.  

All three algorithms (BCD, GN, ECC) in this study transform a network into a 

decomposition tree (Figure 1). In this tree (called a dendrogram in the social sciences), 

the leaves are the nodes, whereas the branches join nodes or (at higher level) groups of 

nodes, thus identifying a hierarchical structure of communities nested within each other. 

When inspecting the resultant tree from either one of the tree algorithms on a small yeast 

transcription network with 225 proteins and 1,792 interactions, where known protein 

interaction modules can be inferred from the annotations of well-studied proteins, we 

found most, if not all, protein complexes, within which proteins are tightly grouped as 
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subtrees in the decomposition tree with uniform structure similar to those shadowed 

subtrees in Figure 1. Similar results were seen in much larger networks. Based on those 

observations, we propose a precise definition of a protein interaction module utilizing the 

decomposition tree structure. We first note that on the decomposition tree, all leaf nodes 

are single proteins, while non-leaf nodes are collections of proteins. We define a special 

parent as a non-leaf node with at least one child being a leaf (Figure 1). A protein 

interaction module is then defined as the nodes of a maximal sub-tree where all non-leaf 

nodes are special parents. Further, when two modules share the same parent, we merge 

them (see Figure 1, subtrees in solid boxes) when the maximal commonality of edges 

connecting these two modules is larger than a pre-defined cutoff. Currently, the cutoff is 

set at 0.1 to avoid merging two modules with very limited connections between them. 

Results on actual protein interaction networks indicate that proteins within a module as 

defined above have very similar GO (Genome Ontology) terms and perform similar 

functions (see Figure 3 for examples). The dangling nodes outside modules (in dashed 

boxes in Figure 1) are simply categorized as singletons. 

Filtering false-positive interactions 

Most yeast protein interaction data were obtained from large-scale, high-throughput 

experiments, which generally contain false positives [23]. To minimize the number of 

false positive interactions, we apply a statistical test to measure the reliability of an 

interaction (edge). We rigorously calculate the statistical significance of each interaction 

between two proteins as the random probability (P-value) that the number of common 

interacting partners occurs at or above the observed number. Previous work has shown 
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that the statistical significance based on the number of common interacting partners 

highly correlates with the functional association of two proteins [24, 25]. 

In a species with N proteins, the number of distinct ways in which two interacting 

proteins A and B with n and m interaction partners have k partners in common is given 

by Ck

N −2 ⋅Cn− k−1

N −2− k ⋅Cm− k−1

N −n−1 . The first factor ( Ck

N −2 ) is the number of ways to choose the k 

common partners from all N proteins except proteins A and B. The second term ( Cn−k−1

N −2−k ) 

counts the number of ways of choosing dangling partners of protein A (Note that the 

common partners and protein A, B are excluded). Similarly, the third term ( Cm− k−1

N −n−1 ) is for 

choosing dangling partners of protein B. The total number of ways for the two interacting 

proteins to have n and m interaction partners, regardless of how many are in common, is 

given by Cn−1

N −2 ⋅Cm−1

N −2 . Therefore, the probability to randomly see two interacting proteins 

with n and m partners, sharing k common partners in a species with N proteins is given 

by: p(k | −,n,m, N ) =
Ck

N −2 ⋅Cn−k−1

N −2−k ⋅Cm−k−1

N −n−1

Cn−1

N −2 ⋅Cm−1

N −2
. The statistical significance is then 

calculated by P = p(k | −,n,m, N )
k=k0

min(n−1,m−1)

∑ where k0 is the observed number of common 

partners shared by two interacting proteins. An interaction with P-value greater than 0.01 

is considered to be a ‘false-positive’ and is discarded. We remove the edge with the 

highest P-value and recalculate the P-value for affected edges. The process is repeated 

until no edge has a P-value > 0.01. We found in analysis of yeast data, this filtering 

always improves the quality of discovered protein interaction modules. 
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Application to simulated yeast protein interaction networks  

To compare the performance of our BCD algorithm, the GN algorithm, the ECC 

algorithm with the original edge clustering coefficient definition (ECC1), and the ECC 

algorithm with our commonality metric (ECC2), and the MCL algorithm [15], in which 

the inflation parameter was set to the optimal value 1.8 according to the study [16], we 

built a test graph on the basis of 198 complexes manually annotated in the MIPS database 

[18] in a way similar to that used in Brohee and van Helden’s study [16]. Briefly, for 

each manually annotated MIPS complex, an edge was created between each pair of 

proteins within that complex. The resulting graph (referred to as test graph) contains 1078 

proteins and 9919 interactions. To evaluate the robustness to false positives and false 

negatives, we derived 16 altered networks by randomly removing edges from or adding 

edges to the test graph in various proportions. We then assessed the quality of clustering 

results on each derived network by different algorithms with each annotated complex. As 

done in Brohee and van Helden’s study [16], we computed a geometric accuracy value 

and a separation value to estimate the overall correspondence between a clustering result 

(a set of clusters) and the collection of annotated complexes, where both a high geometric 

accuracy value and a high separation value indicate good clustering (please check the 

reference [16] by Brohee and van Helden for more details). 

Figure 2A displays the impact of edge addition on geometric accuracy and Figure 2B 

show the impact on separation. Clearly, the ECC2 algorithm with our new commonality 

metric greatly outperforms the ECC1 algorithm with the older edge clustering coefficient 

measure when the graph is altered with adding edges. In Figure 2C and 2D, increasing 

proportions (0%, 20% 40%, 60%, and 80%) of edges are randomly removed from the test 
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graph with prior 100% edge addition. Figure 2E and 2F show the effect of edge addition 

on graphs from which 40% of the edges had previously been removed. All curves show 

similar trends and that BCD and MCL outperform the other three algorithms. The 

performance of our BCD algorithm is better than that of the MCL algorithm when the 

graph is more dramatically altered with both edge removal and addition (Figure 2C-F).  

Application to the yeast protein interaction network 

We used the yeast protein interaction network from the BioGrid database (version 2.0.24) 

[26], from which we extracted 36,238 unique interactions among 5,273 yeast proteins. 

We applied the filtering process to the data and the resulting dataset retained 3,030 yeast 

proteins and 17,242 high-confidence interactions, which we call the filtered dataset. On 

both the original and filtered datasets, we tested five algorithms: (1) our BCD algorithm, 

(2) the GN algorithm, (3) the ECC1 algorithm with its original edge clustering 

coefficient, (4) the ECC2 algorithm with our commonality metric and (5) the MCL 

algorithm whenever applicable. 

Results on a small yeast protein interaction network. Before diving into the entire 

complex network, we first decomposed a small yeast transcription network with 225 

proteins and 1,792 interactions, where known protein interaction modules can be inferred 

from the annotations of well-studied proteins (Figure 3A). Figure 3B displays a 

hierarchical decomposition tree by the BCD algorithm (decomposition trees constructed 

by the other three algorithms are provided in Supplementary materials). Note that there is 

no decomposition tree for the MCL algorithm.  
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The proposed definition of protein interaction module works well for both the GN and 

BCD algorithms because almost all proteins within the same computed protein module do 

indeed belong to the same known protein complex. Decomposition trees obtained using 

the ECC1 algorithm and the ECC2 algorithm with our commonality metric are shown in 

Figure 1 of the Supplementary material. They produce irregularly large modules and an 

excess number of singletons (shown in Supplementary material). This suggests that the 

purely local metric used in the ECC algorithm is not effective. Figure. 1 in the 

Supplementary material also shows good results for both the GN and BCD algorithms 

that combine global and local metrics. They clearly produce more consistent and robust 

results.  

The BCD algorithm revealed 21 functional modules (see Figure 3); all proteins within 

known protein complexes are also located within the same module, suggesting that the 

BCD algorithm is superior at unveiling fine structure buried in complex protein 

interaction networks. The MCL algorithm predicts only 11 clusters from this small yeast 

transcription network. Several functional modules are grouped together: 1) the three RNA 

dependent RNA polymerases (A, B, C) and the RNA polymerase II mediator complex are 

merged into one cluster; 2) the NuA4 histone acetyltransferase complex, the SWR1 

complex, and the INO80 chromatin remodeling complex are grouped into one cluster; 3) 

the TFIIA complex, the Elongator complex, the SAGA histone acetyltransferase 

complex, and the TFIID complex are grouped into one cluster; and 4) the COMPASS 

complex and the mRNA cleavage and polyadenylation specificity complex (CPF) are 

grouped into one cluster. Apparently, the MCL algorithm is inefficient in discovering 

boundaries between functionally related protein complexes and tends to group them 
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together. The quality of modules obtained using the GN algorithm is not as good; 

members of four functional modules, transcription factor IIA (TFIIA) [TOA1, TOA2], 

TFIID [TAF2, TAF3, TAF4, TAF7, TAF8, TAF11, TAF13], nuclear pore-associated 

[SAC3, CDC31, THP1], and a new one [ABD1, SPT6] predicted by the BCD algorithm, 

are misplaced. The ECC algorithm has the same tendency to separate peripheral members 

of the same known protein complex into incorrect protein modules. For instance, in the 

transcription network, the ECC algorithm disjoins peripheral proteins such as FOB1, 

RPC10, RRP8 and RPL6B in a very early phase of the decomposition process, causing 

those derived singletons to be separated from most functional modules. Singletons don’t 

provide useful information for inferring the function of any module. Therefore, the 

number of singletons generated by an algorithm is an additional indicator of that 

algorithm’s performance: an excess number of singletons indicates poor performance of a 

particular algorithm. On this small network, the ECC algorithm produces 13 singletons, 

while the BCD and GN algorithms produce 9 and 3 singletons, respectively. While the 

difference between the ECC algorithm and the BCD algorithm is only 4 singletons, those 

ECC singletons lose their connections with other modules as they are isolated at a much 

earlier stage of the decomposition process. Although the GN algorithm produces the least 

number of singletons in the example network, it is at the expense of generating mosaic 

modules. Similar trends are seen in following experiments of large networks.   

We also note that the original ECC1 algorithm performs more poorly than the ECC2 

algorithm with our commonality index (see Figure 1 in Supplementary material). From 

now on, we will not discuss the original ECC1 algorithm. When we refer to the ECC 

algorithm, we mean the ECC algorithm using our commonality index. 
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Results on the global yeast network. In this section, we discuss the results of BCD 

decomposition of a specific network (yeast), the quality of computed modules, and 

comparison to MIPS hand-curated protein complex data. 

We first studied the decomposition processes by the three algorithms as curves in Figure 

4. Each curve displays the size of the current network on which an algorithm acts versus 

the number of productive cuts thus far. We consider the tendency of network 

fragmentation due to different algorithms, as measured by the number of productive cuts. 

Note that most module (complex) finding algorithms are typically applied on connected 

components of network. A productive cut is defined as a removal of an edge resulting in 

two separate subnetworks. On the original dataset, the BCD, GN and ECC algorithms 

require 674, 2,779, and 2,304 productive cuts to split the largest connected component of 

5,257 nodes into smaller pieces, which means, on average, the algorithms separate 7.8, 

1.9 and 2.3 nodes, respectively, from the largest connected component in each productive 

cut. On the filtered dataset, the respective algorithms require 80, 107 and 710 productive 

cuts, to split the largest connected component of 2,924 nodes into smaller pieces, which 

means, on average, the algorithms separate 36.5, 27.3 and 4.1 nodes, respectively, from 

the largest connected component in each productive cut. The more productive cuts made, 

the more fragmented the network and the more singletons generated as shown in Table 1. 

As stated earlier, a large number of singletons is an indicator of poor performance by a 

particular algorithm. For both datasets, the BCD algorithm produces the fewest singletons 

of the three partitioning-type algorithms. The size distributions of predicted protein 

complexes for each algorithm including the MCL algorithm on both datasets are shown 

in Figure 5. The pattern of predicted complexes generated by all three methods is similar 
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to that of hand-curated MIPS complexes [18], suggesting that the proposed protein 

module definition is effective.  

Modularity. As a measure of the quality of the protein modules computed, we use 

modularity (Q) [17], which is a measure of a community structure in a network, 

measuring the difference between the number of edges falling within groups and the 

expected number in an equivalent network with edges placed at random. Basically, the 

higher the modularity, the better the separation. The best clusters are given at the point 

when the modularity is maximal. Previous studies stopped the decomposition process 

when the modularity reached its peak value and treated all resulting clusters as 

communities [17, 21]. Applying the modularity criteria on protein interaction networks in 

this study, however, we found that protein modules obtained in this way tend to be 

dominated by several very large examples. Nonetheless, the maximal modularity is an 

objective measure, which is useful for comparing the performance of different 

algorithms. Table 2 lists the maximal modularities obtained by three algorithms on three 

networks of different size. The BCD algorithm has the highest Q values for both the 

transcription network and the unfiltered global network and is very close to the highest Q 

value of the GN algorithm on the filtered data, suggesting that the BCD algorithm is best 

in terms of maximal modularity. In particular, on the noisy original data, the maximal 

modularity Q value by the BCD algorithm is significantly higher than the Q values by the 

other two algorithms, suggesting the tolerance of data noise by the BCD algorithm is 

much better than the other algorithms.  

Overlap with MIPS complexes. We validated the biological significance of our 

predicted protein modules by comparing the hand-curated protein complexes in the MIPS 
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[27] database with the predicted modules. For each predicted module, we found a best-

matching MIPS complex using Spirin’s method [22], which finds two complexes with the 

least probability of random overlap using the hypergeometric distribution: 

Poverlap =

n

k







N − n

m − k







N

m







, where N is the total number in the protein interaction network, n 

and m are the sizes of two complexes, and k is the number of common nodes. Table 3 

presents the overlap (the number of common proteins divided by the number of proteins 

in the best-matching MIPS complexes) between predicted and MIPS complexes. In terms 

of the absolute number of clusters that overlap 100% with MIPS complexes, the BCD is 

the best one on the unfiltered dataset, while the MCL algorithm is the best on the filtered 

dataset. In terms of the percentage of clusters that overlap 100% with MIPS complexes, 

the MCL algorithm always performs better than the other three. However, we found the 

size of predicted clusters might affect the number. The larger a cluster is, the more likely 

it contains all members of an overlapping MIPS complex. From both Table 1 and Figure 

5, the MCL algorithm produces a greater number of larger clusters than the other three 

algorithms, which was seen previously in the small yeast transcription network.  

Therefore, to estimate the overall correspondence between a resulting cluster by one 

approach and the collection of annotated complexes, we computed the geometric 

accuracy and separation as done in the described study [16]. The results are shown in 

Table 3. Clearly, the BCD algorithm achieves better accuracy than the other three 

algorithms on both unfiltered and filtered datasets. In term of separation, it is the MCL 

algorithm that performs best among the four algorithms on both datasets (Table 3).  
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GO term enrichment. In addition to the MIPS protein complex dataset we also evaluated 

the biological significance of predicted protein modules by quantifying GO term co-

occurrences using the SGD GO Term Finder [28]. The GO Term Finder calculates a P-

value that reflects the probability of observing by chance the co-occurrence of proteins 

with a given GO annotation in a certain complex based on a binomial distribution. The 

lower the P-value of a GO term, the more statistically significant a complex is enriched in 

the GO term. Table 4 lists the percentage of predicted protein modules, whose P-value 

falls within P < e-15, [e-15, e-10], [e-10, e-5] and [e-5, 1]. There are more BCD 

complexes in terms of absolute number, with P-value less than 1e-15 on both the 

unfiltered and filtered datasets.  

Prediction of possible novel protein complexes. The number of predicted protein 

complexes is larger than the number of known protein complexes compiled in the MIPS 

complexes dataset, and many predicted protein complexes don’t overlap with MIPS 

complexes. Among these unmatched predicted protein complexes, some are likely to be 

true functional protein modules because the GO terms in these complexes are greatly 

enriched as indicated by low P-values. Figure 6 presents two such modules: a five-

member module (P=1.9e-12) of a spindle-assembly checkpoint complex that is crucial in 

the checkpoint mechanism required to prevent cell cycle progression into anaphase in the 

presence of spindle damage [29] (Figure 6A), and a thirteen-member module (P=9.8e-17) 

including members (Set3, Hos2, Snt1, Hos4, Hst1, Sif2) from the Set3 histone 

deacetylase complex [30], proteins (Zds1, Zds2 and Skg6) involved in telomeric 

silencing [31], proteins (Spr6 and Bem3) related to sporulation [32, 33] and two other 
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proteins (YIL055C and Cpr1) (Figure 6B). A complete list of complexes and modules 

with functional annotation is provided in the Supplementary Material. 

Table 5 provides the number of predicted protein modules (4 algorithms, 2 datasets) 

where either the GO terms are greatly enriched (P<1e-15) or they overlap with MIPS 

complexes (overlap=100%). Generally, the protein modules falling within the above two 

categories can be viewed as functional modules. The BCD algorithm outperforms the 

other three algorithms in terms of identifying more functional protein modules on the 

unfiltered dataset. The MCL algorithm predicts more functional protein modules than our 

BCD algorithm does on the filtered dataset. In addition, all four algorithms predict a 

substantial number of complexes that don’t overlap with MIPS or in which GO term co-

occurrences are insignificant. However, these are potentially novel functional complexes 

for biologists to further explore. 

The effects of filtering false-positive interactions. In all experiments, the results on 

the filtered data are consistently better than the results on the original data. For example 

in Table 3, the non-overlap between computed protein modules by the BCD algorithm 

and known protein complexes was reduced from 601 for the original data to 209 on the 

filtered data. In Table 4, the percentage of GO terms with probability < e-10 is always 

higher in the filtered data than in the original data. 

Discussion 

Protein interaction networks are examples of complex systems that are difficult to 

understand from raw experimental data alone. Methods to organize, filter, extract 

significant features and display these data are critical to understanding these systems. A 
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number of network partition algorithms have been proposed to find modular structures in 

protein interaction networks [22, 34-39]. Our work is a further development along the 

network decomposition approach [13, 14]. Our main contribution is to combine the 

global metric with a local metric in the decomposition procedure. We also resolved 

several critical technical issues. We propose (1) a new commonality metric based on 

random graph analysis, (2) a clear definition of protein modules utilizing the 

decomposition tree structure, and (3) a noise filtering algorithm based on random graph 

analysis. These advances in methodology result in an effective, consistent, and robust 

algorithm, as demonstrated on both simulated datasets and the experimental yeast 

interaction data. The protein modules obtained have clear biological functions, as shown 

in Table 5. Our approach to recover protein interaction modules is fully self-contained, 

i.e., it does not need other input or parameters to identify protein module boundaries. Our 

test experiments on yeast show that this method can effectively predict protein interaction 

modules from a complex interaction network. We plan to further automate this algorithm 

to compute protein interaction modules for a large number of organisms. 

 

Materials and methods 

Computing geometric accuracy and separation 

We computed the geometric accuracy and separation by following the approach 

described in the study by Brohee and van Helden [16]. Briefly, each clustering result was 

compared with the annotated complexes by building a contingency table T, where row i 

corresponds to the i
th

 annotated complex and column j to the j
th

 cluster and the value of a 
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cell Tij indicates the number of proteins found in common between complex i and cluster 

j. The contingency table has n rows (complexes) and m columns (clusters).  

Accuracy. First, we define complex-wise sensitivity 
Sncoi  as the maximal fraction of 

protein of complex i which could be found in one cluster by the formula 

Sncoi
= max j=1

m Ti j / N i( )
, where Ni is the number of proteins belonging to complex i. To 

characterize the general sensitivity of a clustering result, we compute a clustering-wise 

sensitivity as the weighted average of 
Sncoi over all complexes by the formula 

Sn =
NiSncoii=1

n∑
Nii=1

n∑ . 

Second, we calculate a cluster-wise positive predictive value 
PPVcl j as the maximal 

fraction of proteins of cluster j found in the best-matching complex by the formula 

PPVcl j
= maxi=1

n Tij

T. j







, where 
T. j  is the marginal sum of a column j by 

T. j = Tij

i=1

n∑
. To 

characterize the general PPV of a clustering result as a whole, we compute a clustering-

wise PPV as the weighted average of 
PPVcl j over all clusters by 

PPV =
T. jPPVcl jj=1

m∑
T. jj=1

m∑
. 

The geometric accuracy (Acc) indicates the tradeoff between sensitivity and predictive 

value. It is obtained by computing the geometric mean of the Sn and the PPV by 

Acc = Sn ⋅PPV . 

Separation. From the contingency table, we derive relative frequencies with respect to 

the marginal sums, either per row (

Frowi j
=

Tij

Tijj=1

m∑
) or per column (

Fcoli j
=

Tij

Tiji=1

n∑ ).  
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We then define the separation as the product of column-wise and row-wise frequencies 

by 
Sepij = Fcolij

⋅Frowij . The complex-wise separation 
Sepcoi is calculated as the sum of 

separation values for a given complex i by
Sepcoi

= Sepijj=1

m∑
and the cluster-wise 

separation 
Sepcl j for cluster j by 

Sepcl j
= Sepiji=1

n∑
. To estimate a clustering result as a 

whole, complex-wise Sepco and clustering-wise Sepcl  values are computed as the average 

of 
Sepcoi  over all complexes, and of 

Sepcl j over all clusters, respectively.  

Sepco =
Sepco ii=1

n∑
n  

Sepcl =
Sepcl jj=1

m∑
m  

We then compute the geometric separation (Sep) as the geometric mean of Sepco and 

Sepcl  by 
Sep = Sepco ⋅Sepcl . 
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Figure legends 

Figure 1 - A sample decomposition tree showing protein interaction modules 

Special parents are marked with triangles. Modules as defined in the text are shaded 

subtrees. Two modules with the same parent are merged if the edge commonality 

between the two modules is above a threshold (shown as boxes). Dashed lines outline 

singletons. 

Figure 2 - Robustness of the algorithms to random edge addition and removal 

Each curve represents the value of accuracy (left panels) or separation (right panels). (A-

B) edge addition to the test graph. (C-D) edge removal from an altered graph with 100% 

of randomly added edges. (E-F) edge addition to an altered graph with 40% of randomly 

removed edges. Color code: red: BCD, blue: GN, cyan: MCL, orange: ECC with the 

original edge clustering coefficient, green: ECC with our commonality index. 

Figure 3 - A yeast transcriptional sub-network (upper) and the decomposition tree 

constructed by the BCD algorithm (lower) 

Predicted protein modules are highlighted with colored bars (lower panel) and protein 

nodes in the network (upper panel) are colored accordingly. The module names in the 

upper panel are inferred from their members’ annotation information. Singletons are 

colored red. 

Figure 4 - Decomposition curves for the largest sub-networks of two datasets on 

unfiltered data (A) and filtered data (B) by the three algorithms  

During the decomposition process, the larger connected component and the larger one of 

its derived sub-networks are always decomposed earlier. The y-axis shows the size of the 
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sub-network under decomposition and the x-axis shows the number of productive cuts so 

far. A productive cut means the removal of an edge splitting one network into two 

disconnected parts.  

 

Figure 5 - Size distribution of predicted and MIPS protein complexes 

 

Figure 6 - Examples of modules where the GO terms are greatly enriched  

(A) A five-member module of the spindle-assembly checkpoint complex that is crucial in 

the checkpoint mechanism required to prevent cell cycle progression into anaphase in the 

presence of spindle damage. (B) A thirteen-member module including members (Set3, 

Hos2, Snt1, Hos4, Hst1, Sif2) from the Set3 histone deacetylase complex, proteins (Zds1, 

Zds2 and Skg6) involved in telomere silencing, proteins (Spr6 and Bem3) related to 

sporulation, and two other proteins (YIL055C and Cpr1). 
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Tables 

Table 1 - Number of predicted complexes and singletons  

Unfiltered Filtered 

Algorithm 

Complex Singleton Complex Singleton 

BCD 850(5.0) 991 391(6.8) 361 

GN 614(4.6) 2477 297(8.9) 379 

ECC 875(3.5) 2214 491(4.1) 1021 

MCL 703(7.3) 168 232(13.0) 3 

The average size of complexes is shown in parentheses. 

Table 2 - Comparison of modularity coefficients for network decomposition on 

three networks of varying sizes 

Modularity Q 

Network Size n 

BCD GN ECC 

Transcription network 225 0.692 0.690 0.637 

Filtered global data 3030 0.701 0.717 0.550 

Unfiltered global data 5273 0.423 0.340 0.284 
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Table 3 - Comparison of predicted protein complexes with known MIPS complexes  

Algorithm BCD GN ECC MCL 

100%a 59(6.9b) 27(4.4) 56(6.4) 53(7.5) 

>50% 65(7.6) 51(8.3) 56(6.4) 63(9.0) 

>0% 125(14.7) 92(15.0) 122(13.9) 153(21.8) 

No overlap 601(70.7) 444(72.3) 641(73.3) 434(61.7) 

Accuracyc 0.70 0.64 0.62 0.65 

U
n

fi
lt

er
ed

 

Separationc 0.21 0.16 0.20 0.27 

100% 53(13.6) 45(15.2) 50(10.2) 67(28.9) 

>50% 46(11.8) 38(12.8) 49(10.0) 24(10.3) 

>0% 83(21.2) 66(22.2) 120(24.4) 50(21.6) 

No overlap 209(53.5) 148(49.8) 272(55.4) 91(39.2) 

Accuracy 0.73 0.71 0.61 0.67 

F
il

te
re

d
 

Separation 0.29 0.28 0.26 0.38 

a
The overlap is defined as the percentage of proteins in the best-matching MIPS 

complexes in a predicted cluster. Complexes with only one protein are excluded in this 

analysis. 
b
The percentage of total predicted protein complexes. 

c
The geometric accuracy 

and separation according to the study[16].  

Table 4 - Predicted protein complexes of size ≥ 3 enriched in GO terms 

 Unfiltered  Filtered 

P <e-15 e-15 – e-10 e-10 -  e-5 e-5 - 1 <e-15 e-15 – e-10 e-10 – e-5 e-5 - 1 

BCD 58(10.4) 41(7.4) 118(21.2) 339(61.0) 62(21.1) 38(13.0) 86(29.3) 108(36.7) 

GN 47(24.1) 23(11.8) 43(22.1) 82(42.1) 60(24.4) 32(13.0) 66(26.8) 88(35.8) 

ECC 47(10.1) 48(10.3) 120(25.9) 249(53.7) 45(13.7) 55(16.7) 114(34.7) 115(35.0) 

MCL 55(11.2) 31(6.3) 96(19.6) 309(62.9) 55(24.1) 33(14.5) 62(27.2) 78(34.2) 
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The number in parentheses indicates the percentage of total complexes in that category. 

Table 5 - Predicted protein modules where either GO terms are greatly enriched (P 

< 1e-15) or all members of a best-matching MIPS complex are found (overlap 

=100%) 

Algorithm Unfiltered(Percentage)  Filtered(Percentage) 

BCD 95(11.2b) 90(23.0) 

GN 58(9.4) 80(27.0) 

ECC 87(9.9) 83(16.9) 

MCL 84(11.9) 91(39.2) 

 

Additional files 

Additional file 1 – Hierarchical decomposition trees of a yeast transcriptional sub-

network by different algorithms 

A PDF file (Sfigure1.pdf) of size 316KB 

Additional file 2 – A list of predicted protein interaction modules by the BCD 

algorithm on the unfiltered dataset  

A PDF file (Stable1.pdf) of size 1.8MB 

Additional file 3 – A list of predicted protein interaction modules by the BCD 

algorithm on the filtered dataset 

A PDF file (Stable2.pdf) of size 1.3MB 



F
ig

u
re

 1



0 20 40 60 80 100

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

% of added edges

G
e

o
m

e
tr

ic
 a

c
c
u

ra
c
y

0 20 40 60 80 100

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

% of added edges

S
e

p
a

ra
ti
o

n

0 20 40 60 80

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

% of removed edges

G
e

o
m

e
tr

ic
 a

c
c
u

ra
c
y

0 20 40 60 80

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

% of removed edges

S
e

p
a

ra
ti
o

n

0 20 40 60 80 100

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

% of added edges

G
e

o
m

e
tr

ic
 a

c
c
u

ra
c
y

0 20 40 60 80 100

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

% of added edges

S
e

p
a

ra
ti
o

n

(A) (B)

(C) (D)

(E) (F)Figure 2



IKI3

SWC5

CDC39

RPA14

SGF29

SWR1

RXT2

IES4

SWC7

NGG1SIN3

MED4

MED6

TFC6

RXT3

RRP42

SYC1

MAF1

SWC4

TFC7

RPC37

IWS1

CDC36

RPA135

MED1

IKI1

SSN2

SRB5

IES5

MLP1

UME6

SPT15

CSE2

RPC31

SWD1

SPP1

ABD1

IES3

SET1

RRP46

ESA1
TFC8

CLP1

SSN8

SPT7 PTI1

SET2

FOB1

SDS3

YAF9

RPO31

SIN4

PAP1

SWD2

BTT1

NHP10

VID21

ELP3

UME1

MTR3

CCR4

RPA12
RPC19

RNA15

RPC25

SOH1

THP1

MTR2

SWD3

CTI6

IES1

SSU72

RET1

GCN5

RVB2

DIS3

CSL4

NUT2
GAL11

RPB5

RGR1

TAF6SPT3

SPT6

CDC31

MED2
CHL1

PCF11

RPA190

RPB2

IES2

LRP1

RPB7

VPS72

SAC3

ROX3

RVB1

MEX67

SAP30

RPA34

TOA1

SRB4

SPT5

CHD1

ADA2

GCN4

TOA2

VPS71

RPD3

YTH1SRB6

HFI1

RPL6B
CFT1

REF2

SPT4

MED7

TAF7

ELP4

MED8

RPA49

RRP4

RPC82

ELP2

TFG2

EAF5

TAF8

TAF5

INO80

RPC53

TAF3

FIP1

CFT2

RPB4 ASR1

YNG2

TAF9

TFG1

RRP6

ARP4

DEP1

YJR011C

PHO23

PFS2

SHG1

RPC10

MPE1

SKI6

TAF13

RPB3

SKI7

TAF14

NUT1

ARP8

RRP8

RPB8

EAF7

PGD1

ASH1

SSN3

BRE2
SDC1

HCA4

TAF2

ELP6

PTA1

EAF6

SRB7

TAF4

EAF3

TFC4

RNA14

RPA43

IES6

YSH1

EGD1

TFC3

MOT2

EGD2

IWR1

SUS1

RPB9

ACT1

RRP45

RPO26

RRP40

SPT8

HTZ1

RPB10

UBP8

RCO1

NOT5

RPC34

SRB8

NET1

DST1

CAF130

GLC7

RPO21

RPC17

TRA1

CAF40

POP2

SGF11

EPL1

TAF12

NOT3

SWC3

TAF10

ARP6

RPC40

RPC11

YNR024W

RPB11

TAF11

TFC1

MED11

TAF1

ARP5

GAL4

RRP43

KTI12

SGF73

SRB2

SPT20

Rpd3-Sin3 deacetylase
TFIIIC
COMPASS
CPF
Exosome
NuA4
Swr1
IN80
mRNA export
Nuclear pore

RNAPII
RNAPIII
RNAPI
NAC
CCR4-NOT
RNAPII mediator
TFIIA
TFIID
SAGA

New*
Elongator

Singleton

Figure 3



5
0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

1
0

0
2

0
0

3
0

0
4

0
0

5
0
0

6
0

0
7

0
0

500 1500 2500 1000 2500 5000
AB

B
C

D
G

N
E

C
C

B
C

D
G

N
E

C
C

P
ro

d
u

c
tiv

e
 C

u
t

Size of Large Acting Subnetwork

F
ig

u
re

 4



2 4 6 8 101214

≥15

2 4 6 8 101214

≥15

2 4 6 8 101214

≥15

2 4 6 8 101214

≥15

2 4 6 8 101214

≥15

2 4 6 8 101214

≥15

2 4 6 8 101214

≥15

2 4 6 8 101214

≥15

2 4 6 8 101214

≥15

Un ltered data Filtered data

BCD GN ECC MCL BCD GN ECC MCL MIPS

Figure 5



Y
IL
0
5
5
C

S
if2

S
n
t1

S
e
t3

C
p
r1

B
e
m
3

H
s
t1

Z
d
s
2

H
o
s
4

M
a
d
2

Z
d
s
1

B
u
b
1

S
k
g
6

B
u
b
3

M
a
d
1

S
p
r6

H
o
s
2

M
a
d
3

B
A

F
ig

u
re

 6



Additional files provided with this submission:

Additional file 1: sfigure1.pdf, 300K
http://genomebiology.com/imedia/6832297591595134/supp1.pdf
Additional file 2: stable1.pdf, 1854K
http://genomebiology.com/imedia/1333514678149147/supp2.pdf
Additional file 3: stable2.pdf, 1327K
http://genomebiology.com/imedia/1502490411491474/supp3.pdf


	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Additional files

