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1. INTRODUCTION 

THE present paper contains general definitions and some results re- 
lating to a category of problems that appear to be very frequent and 
important in many fields of applications, but that thus far have es- 
caped systematic study. 

The problems that we have in mind may be labeled as the problems 
of consistent estimates based on partially consistent observations. Let xi 
stand for a (possibly multivariate) random variable and assume that 
the variables of the sequence xi, x2, . . ., xn, * . . are mutually inde- 
pendent. Assume further that the probability laws of the xi contain 
some unknown parameters O1, 02, - * * and consider the problem of 
consistent estimates of these parameters, that is to say, the problem 
of determining such functions Tk(x1, * - * , Xn) of the random variables 
that, whatever be e>0, the probability that 

(1) I Tk - 0k I > e 

tends to zero as n is indefinitely increased. 
The recent book of H. Cram6r [1]' summarizes and gives some 

very elegant developments relating to the important case where the 

* Paper presented at the Annual Meeting of the Institute of Mathematical 
Statistics in Atlantic City, N. J., Jan. 25, 1947. 

1 Numbers in square brackets refer to list of references at the end. 
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number of unknown parameters involved in the probability laws of the 
observable random variables is finite and where each parameter appears 
in all (or at least an infinite number) of the probability laws. In this 
case it could be said roughly that the observable variables {xi are 
"consistent." In fact, the knowledge of any one of them tends to con- 
tribute something to our knowledge of the totality of the unknown 
parameters 01, 02, * - - . This case is obviously very important and for 
this reason has attracted attention since Gauss. In particular, we have 
the almost universal method of obtaining estimates that are not only 
consistent but also asymptotically efficient, in the sense that (1) they 
tend to be normally distributed as the number of observations grows 
and (2) their variances tend to zero at least as fast as those of any other 
estimates. Of course, the method in question is that of maximum likeli- 
hood. 

Although cases of consistent variables are very important, it is inter- 
esting that other cases occur frequently in applications. Of these we 
will consider especially cases of variables that we shall describe as 
partially consistent. This is the situation where the set of unknown 
parameters involved in the totality of probability laws of the random 
variables {xi } is infinite and can be split into two parts. The first part 
is composed of a finite number of parameters, say O1, 02, - - - , 0,, 
each of which appears in the probability laws of an infinity of random 
variables of the sequence {x1}. In respect to these parameters 01, 
02, * * *, 0. the sequence Xix4 is, then, consistent. The second part of 
the set of unknown parameters is infinite and is composed of parame- 
ters (m each of which appears in the probability law of only a finite 
number of the random variables considered. Thus, in the simplest case, 
Sm may appear only in the probability law of Xm, for m= 1, 2, 

Alternatively 4i may appear in the probability laws of xi, x2, 
Xmj,; 62 in the probability laws of xm,l, . .. , xm1+m2; etc. Since the ran- 
dom variables Xk are allowed to be multivariate, it will be seen that 
this particular case does not differ essentially from the first. 

Really more complicated cases occur when the parameters ti, 

. * * appear in several probability laws in varying combinations, 
for example, ti and 62 in the probability law of xi; t2 and t3 in the prob- 
ability law of x2; etc. 

Since it is convenient to have labels for the conceptions studied, the 
parameters, 01, 02, . . . , 0, each appearing in an infinity of probability 
laws of the observable random variables will be called structural. All 
the other parameters, 4, t2, , an infinity of them, will be called 
incidental. 

This first study will be limited to the case where there is a one-to-one 
correspondence between the observable random variables xi and the 
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incidental parameters (i so that the probability law of xi depends on 
(i but not on any other incidental parameter. 

As to the structural parameters, it will be assumed that the prob- 
ability law of each xi depends on some of these parameters, but not 
necessarily on all of them. Nevertheless, for convenience in formulae, 
whenever necessary the probability law of xi will be written with all 
the O's appearing as its arguments. To be definite, we will assume that 
the observable random variables are all continuous and denote by 
Pi(Xi| Ih)1, . , )o ti) the probability density function of xi. 

2. EXAMPLES 

Before proceeding to results, it may be useful to indicate the gen- 
erality of the problem by presenting a few examples. 

EXAMPLE (1). Let a be some physical constant such as the radial 
velocity of a star or the velocity of light.2 Assume that s series of meas- 
urements are to be made and let xij stand for the result of the jth 
measurement of the ith series (i= 1, 2, . . . I s; j= 1, 2, * * * I n n). We 
will assume that the measurements follow the normal law with the 
same mean a and an unknown standard error as which may and prob- 
ably does vary from one series of observations to another. Thus the 
probability density function of xi, is 

(2) pij(xij Ia, ai)= e-(xii-a)212i2 
oai\/27r 

This is exactly the case when a stands for the radial velocity of a 
star and the xij are its measurements obtained from ni different spec- 
tral lines on the ith plate. With the velocity of light the situation is 
similar. This is also the situation in all cases where it is desired to com- 
bine measurements of physical quantities, made in different labora- 
tories, by different experimenters, etc. 

In order to bring this example into correspondence with the above 
description of the general situation, notice that the unknown parame- 
ter a appears in all the probability laws of the observable variables. 
This, then, is the structural parameter with respect to which the ob- 
servable random variables are consistent. 

In addition to the structural parameter a, each of the probability 
laws (2) depends on another unknown parameter o-a. However, there 
are only ni probability laws depending on a particular ai. Thus each 

i(i1=, 2, * * ) is an incidental parameter. If we use the letter xi 
with just one subscript to denote the whole ith series of measurements 

(3) xi = { xi, xi2, , Xini II 

2 Here we presume that the velocity of light is a constant. 
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then the correspondence between the example and the general descrip- 
tion will be established completely. 

EXAMPLE (2). Consider again an increasing sequence of s series of 
measurements x,j(i= 1, 2, * - *, s-c> o; j= 1, 2, - - *, ni). Assume again 
that all the measurements are mutually independent and follow a nor- 
mal law. However, this time it will be assumed as given that the pre- 
cision of measurements does not change from one series to another and 
is characterized by a single unknown standard error c-. On the other 
hand, it will be assumed that the quantity measured in the ith series, 
say at, is unknown and does not necessarily equal aA;, that correspond- 
ing to the kth series. Thus the probability law of the xij can be written 
as 

1 ~~2 2 
(4) pjj(xij I a-) - /2u 

Here we have a partially consistent system of observable random 
variables with just one structural parameter and the incidental param- 
eters ai. Situations of this kind occur when the same apparatus is 
used to make limited amounts of measurements of different quantities 
and it is desired to combine all those measurements to obtain a single 
estimate of the standard error v-. 

Essentially, Example (2) is very similar to Example (1). The reason 
for quoting both will be apparent at a later stage when we will discuss 
certain phenomena relating to some current methods of obtaining 
estimates. Needless to say, both the above examples are of a very 
common and familiar type. 

EXAMPLE (3). This example will be considered in some detail in a 
separate paper by one of the authors. Let t and 77 be two physical quan- 
tities assuming varying values and known to be connected by an 
equation of some specified type with a few unknown parameters. For 
example, it may be known that -j is a linear function of t 

(5) 71 = a + 

where a and ,B are unknown. 
Suppose that in some increasing series of s instances, measurements 

of the corresponding values of t and 7 are made. The true unknown 
values of t and 77 in the ith instance will be denoted by t} and -qi and the 
corresponding measurements respectively by 

Xil, Xi2, . . Ximi 

yilt yi2s t h 2 Yinir 

It is further assumed that the measurements are normally dis- 
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tributed about the true means ti and 77j respectively and that the pre- 
cision of measurement of t is always the same o-, and that of 7 is also 
always the same O2, both constants o-, and a2 being unknown. The prob- 
ability density function relating to the ith series of observations will 
be written as, say 

/ mi m _1 ni sn 

(7) Pi = ) (zzi_E)2/20.12 e( 1)(yij-a-ftE)2/20f2 

for i=l, 2, *-, s, . It frequently happens that each of the 
series of measurements is very short, so that both mi and ni are small 
numbers. On the other hand, the number s of independent series is 
large and, in principle, can be increased without limit. 

Situations of the above kind relate to the familiar problem of "fitting 
a straight line when both variables are subject to errors." The problem 
is old and was studied by a number of authors from Adcock in 1877 
to Abraham Wald [2] who gives an extensive bibliography. Recently, 
the problem also was studied by F. H. Seares [3], [4], [5]. 

Needless to say, the situation described in Example (3) is the 
simplest of a broad category of similar situations. The more compli- 
cated ones may involve a third variable ti (or more). Also the precision 
of measurements may vary from one series to another. 

As things stand, the sequence of series of observations (6) is con- 
sistent with respect to the parameters, a, A, o, and 2 which are struc- 
tural. Besides, there is a system of incidental parameters 1, t, , 

each corresponding to a separate series of observations. 
Situations of the kind just described occur frequently in physics 

and astronomy where, for example (, and 7i= a+f3ti may stand for 
some characteristics of the ith star. It is our impression, however, that 
the same theoretical model, perhaps with several more structural and 
incidental parameters, is likely to be applicable to some economic 
problems. Some sentences in the paper of Wald just quoted seem to 
indicate that this would be his opinion also. Similar suggestions were 
made by Ragnar Frisch [6]. 

In this respect two questions seem to be particularly interesting. 
First there is the question whether it is reasonable to distinguish be- 
tween, say, the "true demand" (or some other economic conception) 
whose measure at a given moment is given by an incidental parameter 
(i, and the "measured demand," expressed by some random variable 
xij. Another, probably less important, question is whether more than 
one indlependent measurement xij(j= 1, 2, * *, n1) of the same "true 
demand" ti is possible. This latter question is connected with the 
known fact that, apart from the situation considered by Wald which 
may not be of general occurrence, the presence of at least two measure- 
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ments in each series appears to be necessary for the possibility of con- 
sistent estimates of all the structural parameters. 

A paper by W. G. Cochran suggests that a similar set-up may have 
interesting applications in treating agricultural experiments [7]. 

EXAMPLE (4). The examples above have a certain common feature. 
In each case we have a sequence { xi } of possibly multivariate inde- 
pendent variables with the probability laws pi(Xi Il&, e2, ..., i 

which depend on all of the structural parameters i1, 2, * , in- 
volved in the problem. Example (4) is intended to exhibit a practical 
problem in which this is not necessarily the case. Certain important 
problems of astronomy, connected with the study of the dynamics of 
the galaxy, lead to the following set-up. 

With the ith star of a sequence there are connected several, say 
three, numbers ai, bi, ci which may be taken as known without error. 
For example, they may be known functions of the angular coordinates 
of the star which are determined with great accuracy. Next, there are 
two quantities ti and r,i which are not measurable with anything like 
the precision of the numbers ai, bi, ci. 

For example, (i may mean the distance from the star to the sun and 
,, the expectation of the radial velocity of the same star when the 
component of the sun's motion has been removed. It may be taken as 
given that the above quantities are related by the equation 

(8) -qi = (i(aai + Abh; + yci), 

where a, g, and -y are unknown coefficients, independent of the par- 
ticular star and relevant to the theory of the dynamics of the galaxy. 

Now, instead of the true value of ti we have its measurements 
Xily Xi2, *, Ximi which are subject to large errors. The quantity w7 is 
not directly measurable either. Instead, we have measurements y,j of 
the quantity, say Yi, representing tlhe true radial velocity of the ith 
star. The variability of the yij, caused by the errors of measurement, is 
appreciable. Moreover, Y, is itself considered as a normal random 
variable with its true mean equal to r,i and standard error a- independ- 
ent of i. It is seen that, in this example, each additional star brings in 
several new observable random variables depending on a new parame- 
ter (i. Furthermore, the probability law of these additional variables is 
generally somewhat different from the previous laws, owing to the 
changes in the constants ai, bi, and ci. For example, ai may be equal to 
zero for some stars so that these will contribute little to the estimation 
of a. 

Modern work by the econometric school suggests that similar set-ups 
may be applicable in studies of economic phenomena. 
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3. METHOD OF MAXIMUM LIKELIHOOD APPLIED TO PARTIALLY 

CONSISTENT OBSERVATIONS 

The method of maximum likelihood appears so strong-ly appealing 
that, when confronted with a new problem, one tends to apply maxi- 
mum likelihood almost automatically. It must be remembered, how- 
ever, that the various attractive properties of the method were proved 
only for consistent series of observations and that, therefore, an auto- 
matic extension to other cases may lead to erroneous results. These are 
illustrated by the following examples. Naturally, if consistent es- 
timates based on partially consistent observations are possible at all, 
we may expect them only for structural parameters, because the 
incidental parameters appear in the probability law-s of only a finite 
number of observable variables. Therefore, the problem of consistency 
will be considered in relation to the structural parameters only. 

(1) Maximum-likelihood estimates of the str-uctural parameters relating 
to a partially consistent series of observations need not be consistent. 

To prove this proposition consider the above Example (2). Easy 
algebra shows that the maximum-likelihood estimates of all the pa- 
rameters involved are 

1n 

(9) = = x. (say) 
ni j.= 

and 

s ni 

Z (Xij -Xi.)2 

(10) 2 =i= j== 

Eni 

or, if we put for simplicity n =n=const., 

I s 
(11) 62 = - >Zn 

S ji= 

where 

1ni 

( 1 2) S2 = -E (xij - Xi.)2. 
ni j=-I 

As is well known, the expectation 

n-1 
(13) 6(8X2) = __ o-2. 

n 
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Since for every i= 1, 2, - * , s, - - the sample variance Si2 follows the 
same law, the arithmetic mean representing 6`2 tends in probability to 
the common expectation (13) and thus the maximum-likelihood es- 
timate 62 is not consistent as s-> co, 

n-i 
(14) P lim A2 = a2 

S-*Oo n 

If n is very small, say n = 2, the underestimate of the parameter a2 iS 

considerable. 
It may be said that the situation is trivial and the bias in the es- 

timate could easily be corrected by using, say 

8 ni 
Z Z (Xj -Xi.)2 

_ i=l1 j=l 
-2 - _ _ _ _ _ _ _ _ _ _ _ _ _ (15) v 

(ni 

This is undoubtedly true but beside the point. It will be observed that 
(15) is not the nmaximum-likelihood estimate of U2 and that the bias in 
the latter, given by (10), does not tend to zero as the series of partially 
consistent observation is increased. This is just the circumstance wvhich 
the example is meant to illustrate. 

(2) Even if the maximum-likelihood estimate of a structural parameter 
is consistent, if the series of observations is only partially consistent, the 
maximum-likelilhood estimate need not possess the property of asymptotic 
efficiency. 

To illustrate this point we will consider Example (1) in more detail 
[7]. The probability density function of the totality of observable 
variables is the product of expressions (2) for j = 1, 2, , ni and 
i= 1, 2, , s. Taking the logarithm of this product and differentiat- 
ing with respect to a and with respect to vi we get, say 

(16) E ni(xi. - a) 
1a i=l (i 

and 

dLnt n1v, 
(17) 

L 
+ 3 

(90t O'i O't 

where 

1 ni 

(18) xi. - XiE , 
ni j=l 
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n i 

(19) nivi- E (xi j- a)2 = n; [S2 + (X. - a) 21, 

(20) nikSi2 = X E Xx$j-x )2 
j-1 

The maximum-likelihood equations are then 

(21) 0f 2 = S12 + (X,.- 6)2 

and, say, 

8 8 n,n(xi. a-) 
(22) F(x , cx) - 0. 

i= 52 + (Xj.~ )2 

We will be primarily interested in equation (22) or, rather in a little 
more general equation (23) obtained from (22) by substituting an 
arbitrary number wi instead of ni. Thus, we will consider the estimate 
a, of a obtained from the equation, say, 

(23) >E bi(x1., a,) w ( i. as) =0. 
1 -a.,i=l Si 4 (i.-a) 

It is easy to see that the estimate a8 tends in probability to a provided 
some mild conditions are satisfied. To prove this, one has only to follow 
the reasoning of Cram6r ( [1], p. 500) leading to the proof of the con- 
sistency of the maximum-likelihood estimates when the observable 
variables are consistent. To establish the consistency of a8 as s-* oo it 
is sufficient to show 

(a) That 

(24) E[44(xi., a)] 0 fori = 1, 2,** 
a 

(b) That the variance aD 2 of 

1 8 
(25) - i(xZ., a) 

S , 

tends to zero as s-> oo; 
(c) That there exists a number A >0 such that, as s-- cc, 

(1 8 

(26) lim P - 4E ?'(xj., a) > A} = 1, 
8-oo S 00= 

where 4?/ denotes the derivative of Ii with respect to a; 
(d) Finally, that there exist some function Hi(x,) independent of a, 

such that, say 
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(27) ?i"(xi., a) < Hi(xi) 
09a2 

and such that 

(28) lim P E[H1(xj.)] <M} = 1, 

the number M being independent of all the parameters involved. 
We have 

+ 

(i 

a)2) 

(29) 4i'(xi., a) = wi -1 +2(x 2 
Vi V2 

(30) ?1~j"(xj., a) = 6(xi. - a) 8(x. - a)3} 

vi2 Vi3 

Denote by Mk,m(t) the expectation of the product [(xi.-a)kVm]. 
We find by easy algebra 

(31) Mkmi) = 0 for all odd values of k = 1, 3, 5, ... 

and 

r-+ k + mA 
(= (1 + k) \2 + k 20i2)k+m 

(r() (ni ) ni 

for all values of the constants k and m for which the symbols on the 
right-hand side make sense. 

By use of (31) it follows that condition (a) is satisfied. The variance 
aPy2 is found to be 

1 8 1 8 1 
(33) o"D82 = wi2M2,2 (1) = - E Wi2 

.2i1 S2i=1 (nli -2)04 

It is seen that as s-* o, the variance oP82 will tend to zero provided 
that wi and the r,2 satisfy but very mild conditions. For example, it 
would be sufficient to assume that the expressions 

Wi2 

(34) (n - 2)o-2 

remain bounded or that they do not increase too fast. Really this re- 
striction would apply to the ratios W12/0fX2. 

Proceeding to condition (c), we find the expectation of ?1'(xi, a) 
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W. 

(35) 6[Di'(x ., a)] = w{ - Mo,-1 + 2M2,2} = - 2 
_ 

Similarly, the variance of the arithmetic mean 

say o',s is found to be 

(s 8 52 i 2{Mo2 -4M2,-3 + 4M44 _-- 

(36) 
1 2(n)2 + 4n-8) 

= - w 

si== (n2 - 4)(n i-4)4 

If the terms of the sum in the right-hand side do not increase too 

fast [condition similar to that already assumed in connection with 

(34) ], then the variance (36) will tend to zero as s- o and the average 

(37) 2 

will tend in probability to zero. Thus if the average 

1 8 wi 

(38) E- 
1 t ji2 

is bounded from zero as s-> oo, then condition (c) will be satisfied. 

As to condition (d), we notice that the two terms in brackets (30) 
are necessarily of different signs. Thus the absolute value of the total 

does not exceed the greater of the absolute values of the particular 
terms. Further 

Ixi. -aI 1i 
(39) 2 - 

al _ _ _x. __ 
1 

i2 I{S +2 (X. - a)2}1/2 {S,2 + (X. -a)2}312 
= S*3 

and similarly 

IX,. -aj13_1 
(40) 3 - S3 

Thus 

8wi 
(41) I "(x i., a)I 

~ 
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Since 
00 

6(S5k) = cf Sini+k-2e-niSi2I2ai2dSi 

/ni + k-1\ 
(42) 

\ 2 /2a 2ik /(nt+k-l)<nt 

(i -1) 

thus 

2 J / ni 
3/2 

(43) (S,- 3) (ni 1) 
(2o2) 

r-) 

(ni - 

ni3 

(ni - 3)(n1 - 5)(n1 -7)a6 

provided ni 8.3 

If the numbers w;/Oa2 do not increase too fast, the ni's being bounded, 
then the arithmetic mean 

1 8 

(45) _ E (S,-3) 
Si= 

will remain bounded. Moreover, under the same conditions the vari- 
ance of the mean 

(46) Hi(xi) = - 
s i1s S= 3 

will tend to zero. This is sufficient to assert the existence of the number 
M satisfying condition (28) with Hi = 8w;/Ss3. 

Thus, the solution a. of equation (23) is a consistent estimate of a. 
It will be noticed that all the assumptions made reduce to the state- 
ment that the precision of measurements, as measured by the reciprocal 

3This condition can be relaxed but, since the example considered is meant for 
illustrative purposes only, we thought it useful to treat it in the simplest possible 
way. 
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of vi, is not negligible, at least in sufficiently many of the series of ob- 
servations, and that the weights wi are properly adjusted. 

Under the same general conditions, exactly following the reasoning 
applicable to maximum-likelihood estimates in the case of consistent 
observations, we can prove that as s-? oo 

(47) (a8- a) 

aa 

tends to be normally distributed about zero with unit variance, where 

E ?[ ob2(xi, a)] E - 2 

(48) as2= _,,,i=_ i=1 
(n i-2) 

0 E ?@it(i ,]2 0 E f2] 

is the asymptotic variance of a8. 
By straightforward algebra it is easy to verify that (48) can be put 

into the following form which exhibits the dependence of ra on the 
choice of the weights 

(49) 0a2 = 1 n= - ?2(wtn -2 ) 

with 
fnni-2 wi 8 2 

E~~~= 2-i nE 2 

(50) U = i n+-2 i=1 a 

n2 -2 2 

,==1 c,2=1 ?2 

representing a weighted mean of the ratios w,/ (n, -2). 
It is obvious now that the precision of the estimate a8 is greatest 

when the weights w, are chosen to be 

(51) ww=in-2 

in which case the estimate as may be denoted as A with the asympto- 
tiC variance, say 

(52) A2 = 
8 nni-2 
_ 

92 

t_= 0'2 j 
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As to the maximum-likelihood estimate a, its asymptotic variance is 
obtained from (48) by putting wi = ni, say, 

ni2 

(53) 0'a2 
i=i (n1i - 2)2 

(s .2 

Formula (53) can also be written in another way which exhibits its 
relation to (52), namely 

rni -2 ni 2 

i-1 0i2 Vni - 2 
(54) aa2 = CA 2 + I 8=1 

(8 .2 

where V stands for the weighted average of the ratios nj/(n1-2), 

8 n-2 ni 

i=1 T2 n, -2 
(55) V =- 8 ni- 2 

i=1 0*i2 

It follows from (54) that unless, for every i = 1, 2, 

ni 

=-2 
(56) 2V 

n= - = const., 

then the variance ca2 of the maximum-likelihood estimate is always 
greater than the variance TA 2. The two coincide when the numbers ni 
of observations in particular series are all equal. Leaving aside this 
latter case, it is interesting to consider the ratio of the two asymptotic 
variances 

(57) -=- 
0-'2 

8 ni.- 2 ni )2 E n- 2 ni 

+ i-1 0'2 ni - 2 i=1 ni 0'i2 

1 + -~~~~~~~ 

8 ni 8 ni 

i=1 a,i i=1 asi 
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It is easily seen from (57) that, as s-* c, the ratio fTA.2/Taa2 need not tend 
to unity so that, using a familiar phrase, the maximum-likelihood 
estimate need not tend to "exhaust all the information supplied by the 
sample" and, in fact, may exhaust less of this information than the 
alternative consistent estimate A. 

Some further facts are interesting to notice. The inequality 

(58) aa2 > CA,T2 

holds good wherever not all the numbers ni are equal and irrespective 
of the values of the ci2. Thus, it may be said that the estimate A8 is 
uniformly more efficient than the maximum-likelihood estimate a8. 

However, there exist estimates of a which for some particular systems 
of values of the U,2 are even more efficient than As,. One such estimate 
is given by the simple formula 

8 

nixi 
i=l 

(59) 

Eni 
i=l 

It is easy to see that the variance cX2 is equal to 

8 

E: njoj2 

(60) al2 = 8 - (8)2 

whatever be ai2. Assume for a moment that ni = n = constant and 
at 

= a = constant. Then 

22 22 (61) Aa and O2 -< <A82. 
s(n-2) sn 

On the other hand, if all the ni = n but the a,2 differ, then 

(62) c,2 = _ _ _ and a 2 = _ -E a 2 
2\ sn s j=1 

sn Q ) 

where 0H2 is the harmonic mean of the oi2, defined by the equation 

1 18s 1 
(63) 2 E j= 

T' 2r .R :1 O': 
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Since the harmonic mean of any numbers that are not all equal is al- 
ways less than the arithmetic mean, it follows that, provided n is 
sufficiently large, 

(64) 'A 82 < ax2. 

Thus, depending on the numbers ni and a,, the variance (60) of the 
estimate x may be either smaller or greater than the variance OA,2. 

The application of the elegant inequality of Cram6r-Rao [1], [8 ] 
shows that, whatever be an unbiased estimate of a, its variance cannot 
be less than the limit 

1 
(65) 

8 n . 

However, the question of whether any unbiased estimate of a or, even, 
whether any asymptotically consistent estimate of a whose asymptotic 
variance attains the minimum (55) exists, remains open. 

To those accustomed to the working of maximum-likelihood es- 
timates both statements (i) and (ii) must appear striking. The authors 
must confess that, to their mind, the possible lack of asymptotic ef- 
ficiency of the maximum-likelihood estimates when they are consistent 
appears to be more surprising than the possibility of bias. 

4. SEARCH FOR A SYSTEMATIC METHOD OF OBTAINING 

CONSISTENT ESTIMATES 

Consider the case of some v structural parameters 81, 02, * * , 

where the probability law of each of the successive observable multi- 
variate variables xi depends on just one incidental parameter {i which 
does not appear in the other laws. 

The possibility, or, at least, one of the possibilities, of obtaining 
consistent estimates ti(x1, X2, . , x8) of the parameters Es, i = 1, 
2, * , v, depends upon the possibility of determining v sequences of 
functions, say 

(66) F8i = Fi(xi, x2, * *, x8 | 21 2 E)v) for s = 1, 2,** 

each depending on Xi, X2, *, Xe and on 81, 02, - * I , 0(, but not 
on the incidental parameters, and having the following properties. Let 
tl, t2, ..., t, stand for continuous sure variables. Let one letter X8 
stand for xi, x2, * , x8, one letter T stand for t1, t2, * * *, t, and, finally, 
a single letter E3 stand for 01, 02, . - - 

I 0,. 
(a) As s-* o, each function F,i tends in probability to zero, irrespec- 

tive of the valtes of the parametrs e and (, 

(67) P lim FA$(X I 0) --. 
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To formulate the next conditions, substitute T for (3 and expand 
the function F,i(X, T) in a Taylor series about the point T = -, 

v 

(68) F,i(Xs I T) - Fss(Xs 8) + >3 (tk- Ek)Faik + R,i, 
k=1 

where 

(69) F8dk aF,j(X,, 8) 

Further, assume the following notation, 

v 

(70) p2 = E (tk - 0k)2, 
k=I 

F,11, F,12, , F,lv 

(71) A 
F 

= s2l, Fs22, , 

I 
F2v. 

Fgvtl FBv21 ...* Fsvv 

Finally, let A,Hi be the cofactor of F,ki in A,. Obviously, A, and the 
A,ki will be functions of X. and 8) but are independent of tk. 

(b) There exists a number M such that the probability of the simul- 
taneous inequalities I Aki I / JA, I <M tends to unity as s--> oc, that is, 

(72) lim 
P( 

I < 
) s-- ?? k=l1 i=l 'A 

(c) There exists a number Po>0 such that, whatever be E>0, the 
probability of the v simultaneous inequalities I Ri| I/lp < (i = 1, 2 , 
v) tends to unity: 

(73) lim P II( -<4 =C 1 

uniformly in ti, t2, - * *, tv within the region 0< p <pO. 
The familiar reasoning that leads to the conclusion that the maxi- 

mum-likelihood estimates are consistent in the case of consistent ob- 
servations shows that, if the functions F,i satisfy conditions (a), (b), 
and (c), then there will be a system of solutions t , *, t,, of the equa- 
tions 

(74) F,i(Xs I ts,i ts2, .* * t,,) =0 for i = 1, 2, , v 

and that each implicit function t,k(X.) will be a consistent estimate of 
the structural parameter Ek. Pursuing the same analogy we may con- 
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sider the case where, in addition to (a), (b), and (c), the functions 
F8i possess the properties: 

(d) The expectations 6(F8i2) exist and, as s-* >o, each ratio 
F8i(X8, I 0)\/ )V[F8i2] tends to be normally distributed about zero. 

(e) For each combination of numbers k, j = 1, 2, * * *, v, there 
exists a sequence of numbers { B8kj } (s = 1, 2, ) such that all the 
differences 

(75) 
A8kj 

- B8 I;, j 
A8 

tend in probability to zero. 
Under conditions (a) through (e) the solutions tsk of the system of v 

equations (68) will have the property that, as s- cc, the joint distribu- 
tion of 

(76) (t8k-) (k = 1,1 2, .. * * v) 
08k 

with 

v v 

(77) Oak = iE E B8kiB8kJ6(F8iF8j) 
i=1 j=1 

will tend to the v-variate normal law with unit variances. In other 
words, O8k2 of (77) will represent the asymptotic variance of t8k. 

Should it be possible to determine effectively a class C of groups of 
functions F8i, satisfying conditions (a) through (e), then the next prob- 
lem to consider would be that of finding that particular system of func- 
tions of class C for which the variances (77) are the smallest. 

Unfortunately, thus far there is no systematic method known to the 
authors to determine a broad class of functions satisfying condition (a). 

In these circumstances, one might consider abandoning a consider- 
able amount of generality and limiting oneself to special forms of the 
functions F8i to which a sufficiently general theorem guaranteeing 
that each F8i tends to zero in probability may be applicable. The 
theorem in question is, of course, the central limit theorem. lhus we 
may consider v systems of functions 4 ij(x0, 0), for j= 1, 2, * * , vI 
each system depending on just one variable xi of the sequence {x'I 
and on the structural parameters e), but independent of the incidental 
parameters, such that the expectation 

(78) ?[ij(xi, 0) _ (i = 1, 2, * * sy ... j = 12 2 v), 

the identity relating to all parameters E) and t. Then the weighted 
mean of s functions 4ij may be considered as defining one function 
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1 8 

(79) F8k = Wik ik(Xi ) 

Z? Ws k 
i=k 

A proper selection of the weights W,k may assure compliance with 
conditions (a) through (e) and, even, reduce the asymptotic variance of 
the estimate to a minimum. 

Unfortunately, there are cases where this particular method does not 
work. Consider the distribution pi(xi I@, t;) of one variable xi of the 
sequence { x, }, and let ui1, ti2j , * * ,n ... be a denumerable se- 
quence of particular values of the incidental parameter ti. For example, 
these may be all rational values of the particular parameter. Condition 
(72) implies that 

(80) f cik(Xi, 0)pi(Xil (9, 1ij)dxi = 0 
_00 

f or all values of j = 1, 2, n, n, . In other words, the function 
bIsk(Xi, )) must be orthogonal to each function of the infinite sequence 
{p(x^J I, ij} (j= 1, 2, * * * ). Usually the function (jk will be sought 
within some particular class of functions, such as continuous functions, 
functions integrable with their squares, etc. It is known that certain 
sequences of functions pi may be "closed" within a given class, meaning 
that every function of the class that is orthogonal to every function of 
the sequence is necessarily equal to zero. It follows that cases are possi- 
ble, and indeed there are examples known, where the only function 
satisfying (78) is zero and, of course, could not be used for estimating 
the O's. 

The difficulty and, at the same time, the particular interest of the 
situation is emphasized by the fact that, thus far, there does not seem 
to exist a systematic method of solving the following problem under- 
lying the method under consideration: 

Given a function p(x I) defined and nonnegative for every point x in 
the n-dimenszional Euclidean space Rn and for a < t < b such that 

(81) J ~~~~~p(x I t)dx _1, 
Rn 

determine all such functions 4(x), independent of t (and probably subject 
to some reasonable limitations), for which 

(82) f 1(x) p(x I t)dx 0. 
tn t 

It is interesting to note that, f or certain categories of distributions 
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p(xx I), the existence of functions 4)(x) satisfying (82) (that is, apart 
from the trivial 4_= 0) depends on the number of dimensions n. For 
example, if x stands for a system of n independent normal variables all 
having the same expectation t and the same variance a=const., it is 
known that if n= 1, the only function 4) satisfying (82) is equal to zero 
for almost all x. This was proved by Wald [9]. On the other hand, if 
n > 2, there is a great variety of functions 4) satisfying (82). 

In the absence of a systematic method of determining functions 4) 
satisfying (80) the authors can offer the following procedure, which 
appears to work in a number of important cases. 

5. MODIFIED EQUATIONS OF MAXIMUM LIKELIHOOD 

Let pi(xi IO0, () stand for the probability density of the ith multi- 
variate random variable of the sequence. Let v be the number of struc- 
tural parameters 1i, @2, * 0 * , and let pi depend on just one inci- 
dental parameter ti that does not appear in pk if k,-?i. 

We will assume that the probability density functions pi possess 
continuous partial derivatives with respect to all the parameters up to 
the second order and allow differentiation under the integral taken over 
the whole space of the corresponding multivariate random variable x,. 
Write 

(83) Oik(Xi E ), {i o = (k = 1, 2, ,v) 

and 

(84) E) (x1 = - 
a log= p (i= 1, 2, , s). 

Substitute real variables tk for Ok and Xi for {i and write the equa- 
tions 

(85) x I T, X$) = 0, 

where T stands for ti, t2, * * *, 1,. Solve each equation (85) for Xi and 

substitute the solution, say 

(86) Xi-= f(x, T) 

into (83), obtaining 

(87) kik[Xi T, f(xi, T)]- 

The function thus obtained depends on xi and on T but not on ti or X;. 
Let 

(88) E, = {ik [Xi I T, fi(xi, T)]} 

be the expectation of (87). There is no guarantee that Eik will be in- 
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dependent of {i. However, in a number of important cases Eik is either 
a constant or else depends on the structural parameters only. In this 
latter case write Eik(E) for (88) and build the function, say 

(89) I:ik(xi, T) = q5ik(Xi I T, fi(xi, T)) - Eik(T). 

Next, taking arbitrary weights Wik, consider the weighted mean 
8 

EWik4)ik(xi, T) 
(90) Fsk= 

8 

E Wik 

ial 

and see whether or not, by a judicious selection of the weights Wik, it 

is possible to satisfy the conditions (a) through (e) of the preceding 
section. The whole procedure was illustrated when we dealt in detail 
with Example (1). If the functions F8k satisfy the conditions stated, 
then the system of equations 

(91) F8k=0 (k= 1,2,2 ,v) 

will define a set of consistent estimates t8k of the structural parameters 
Ek, which will be asymptotically normal and will have asymptotic 
variances given by (77). However, as already mentioned, an investiga- 
tion may reveal that Eik depends on (i and, indeed, that no desirable 
function exists for which the expectation is independent of (i. 

In the favorable case, i.e., when Eik is independent of tj, the v 
equations (91) may be called the modified maximum-likelihood equa- 
tions for estimating the E)'s. In fact, equations (91) reduce to ordinary 
maximum-likelihood equations when we put Wik-1 and substitute 
zero for each Eik. Should the expectations Eik be different from zero, 
then their omission in (91) may lead to inconsistencies in the estimates 
obtained from these equations. This possibility was illustrated above. 
Also, one of the examples already discussed shows that the inclusion 
and appropriate adjustments of the weights Wik may occasionally lead 
to a decrease in the asymptotic variances of the estimates. 

6. LOWER BOUND OF THE ASYMPTOTIC VARIANCE 

Assume that the consistent estimate, tsk, of Ek, obtained from the 
system of equations (91) is unbiased, i.e., such that its expectation 
is identically equal to ek. In this case the Cram6r-Rao inequality [1], 
[81, [10], gives the lower bound, u02(s, k), of the variance Us8k2 of t8k. 

Let 
Xijk = Xikj = E(q5jq5ik) 

(92) plij = 

c, 
01 
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8 8 8 

E Xill, E XM,** Xilv) J111) 121) . . . 
X ilal 

i=1 i=l=1 

8 8 8 

E Xi2l) E M ... *** Xi2;,) /112) J122) .. * * 4U2 
i=l i=1 sl4 

(93) A/= 8 8 s 

E X , Xiv22 E Xivv) *lv) *1 2v, . . 
., /lay 

i=1 i=1 i31 

11, /112, . . * Il1ly Vi, 02 
. . . 2 0 

/121, /122, * * * 2v, 0, V22 . . . 0 

s1431 /4s2, * * tsv, 0 0, , V8 

Finally, let A'8k1 be the cofactor of the (k, 1) term of A,8'. With this no- 
tation the lower bound a-02 of the variance of t8k is given by 

(94) a2(S k) = 8kk. 

As' 

Easy algebra gives 

(95) A/- As Vi) 
is=1 

8 

(96) A8kk' = A8kkJH vi for k < v, 
i=-1 

where A8 is a determinant of vth order whose (kl) element is 

- I2ik/ii) 

(97) E (ikl - )~ 
t=l ~~~Vi 

and A8kk its appropriate minor. Thus, finally, the variance cT8k2 of any 
unbiased estimated of ok must satisfy the inequality 

(98) 08k2 > a-.2(, k) - A8k,/A8. 

Generally, the estimates obtained from equations (91) will not be 
unbiased, but subject to a milder restriction of consistency. However 
their asymptotic variance given by (77) ordinarily remains bounded 
from below by (98). 

This is a direct consequence of the following Lemma which gen- 
eralizes somewhat the Cramer-Rao inequality. The proof applies to 
random variables satisfying the conditions enumerated in the Lemma 
and is not restricted to partially consistent systems. 
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Let one letter X stand for a system of random variables whose prob- 
ability density function is 

(99) p(X, 0, t) = p(XI 01, * E, , **, 

depending on vz+ s parameters, O H, * , 0 . ,, Ory*1, * Although X 
stands for a system of several random variables the integral of p(X, 
Ey, t) taken over the whole space, with respect to all the variables 
will be indicated by 

(100) f p(X, H, t)dX. 

Obviously the value of this integral is identically equal to one. 
Let Fi = Fi(X, O) (i = 1, 2, - - *, v) be a system of functions of X 

and (,, 0E2, - - *, 0, independent of (, 42, * * and differentiable 
wvith respect to the O's. Let 

aF 
10) Fik = '(i, k = 1, 2, .. * , ) 

LEMMA. (1). If p(X, 0), t) is differentiable with respect to O1j, , 

(2) If the integral (100) admits of differentiation under the integral 
sign; 

(3) If the expectations of the squares of logarithmic derivatives, say 

a log p 
(102) = (i=1, 2, ... ,v) 

and, say 

a log p 
(103) = (j = 1, 2, ,s) 

all exist, so that 

(104) xj= f iof,jp(X, E', t)dX 

has meaning for i, j =1, 2, ,v+s; 
(4) If the expectations of the functions Fi exist and are all equal to 

zero, identically in the e's and i's, so that 

(IOaI) f Fip(X, e, t)dX= 0, (i = 1, 2, ,v); 

(5) If (105) can be differentiated under the sign of the integral with 
respect to the O's and h's; 
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(6) If the expectations of the derivatives Ftk exist 

(106) Fikp(X, 0(, )dX = 9ik, (say); 

(7) If the determinant 

(107) G = gik |i,k=1,2,- ,v 7? 0; 

Then for every k= 1, 2, v 

1 v v Akk 
(108) L(k) = - , GYGj6(FiF,) > 

G i1 j==1 A 

where Gik denotes the (ik) minor of G, where A denotes the determinant 

(109) A = 
I X i, j=1,2, ... 

and Akk denotes the (kk) minor of A. 

Remark. In order to perceive the connection between this Lemma and 
the problem of the lower bound 0o2 of the variance of a consistent es- 
timate t8k of a structural parameter Ok, notice that, in cases described 
in the previous section, the asymptotic variance of tak, formula (77), 
has exactly the form of the left-hand side of (108). If, as frequently 
occurs, the functions F8, in the equation (74) are arithmetic means of 
type (90), then as s-> , the derivatives F,ik will tend in probability 
to these expectations and then the quantity B8kj of (75) and (77) will 
correspond to the ratio Gkj/G of (108). Of course, the determinant A 
of (109) is perfectly analogous to A' of (95). 

PROOF OF LEMMA. Write, for simplicity, 

(110) ui = Gik/G, 

and notice that 

(111) E ~~~uigij = l *f Fk 
0if j 'k. 

The proof of the Lemma is based on the obvious remark that what- 
ever be vi, V2, . . ., v+8, the expectation, say 

I = I(v1, v2, V,+,) 

(112) f V v +8)2 

(112) =jF ( EuiFi - E vjoj) p(X, 0, t)dX _ O. 
i=1 j=i 

The equality I = 0 holds only when 

V V?8 

(113) EuiF = Evj 
i==1 1=1 
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for almost all X. Thus (112) will remain nonnegative even when we 
substitute for v1, v2, , v,+8 the values v10, v20, , vV+80 that mini- 
mize I. 

I may be written in the form 

I=1 ( pUFi)p(X, 0, t)dX 

(114) - 2fj ( 2 E uiFi) E vj0,)p(X, 03 t)dX 
V+8 \2 

+ E vjoj p(X, 02 t)dX ? 0. 
j=l 

The first term in (114) is equal to L(k) in (108). Now we use assump- 
tions (4), (5), and (6) to simplify the second term in (114). Differentiat- 
ing (105) with respect to 0j we obtain 

(115) f (Ftj + Fioj)p(X, 0, t)dX_ 0. 

Hence 

(116) f Fi4jp(X, (), t)dX = -gi for i, j = 1, 2, , v. 

Also, differentiating (105) with respect to tj, we obtain 

(117) Fijp(X) E), t)dX -0 for ={ 
V) 

F~~~cf.~~~~pjvX, ,v 2=v =s 

Using (111) we may now write (114) as 

V+8 V+8 

(118) I = L(k) + 2Vk + E E ViViXij _ 0. 
i=1 j=1 

The minimizing values vj? are obtained by setting the derivatives of 
(118) with respect to vj equal to zero. The system of linear equations 
obtained in this way can be written as 

E v0XNij = -1 for j = k, 
(119) 

i_1 
V+8 

Evioxii = 0 for j7# k. 

Multiplying (119) by v j? and summing for j= 1, 2, , v+s, we ob- 
tain 
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V-f8 V+8 

(120) E E vi0vjXij = - Vko 
j=1 

and it follows that the minimum, say I of I can be written 

(121) IO = L+ vko > 0. 

But the equations (119) imply 

(122) vi0 = _ (i = 1, 2, , v + s). 
A 

Therefore L(k) - Akk/A > 0 which proves the Lemma. 
Usingr the above Lemma, we may now formulate a theorem relating 

to variances of consistent estimates t8k of structural parameters as 
described in the previous section. 

THEOREM 1. If the functiions F8,(X8 GI) of (66) satisfy the conditions 
(a), (b), (c), (d) and if, as s- co, the differences [F8sk(X8 I3) -E6(F8k) I 
tend to zero in probability, then the asymptotic variance of the estimate 
t8k obtained from (74) of the parameter Gk ((k = 1, 2, * , v) is at least 
equal (o the ratio oo2(s, k) = Akk/A. 

7. CASES OF IMPAIRED AND UNIMPAIRED ASYMPTOTIC EFFICIENCY 

As is well known, if the observable random variables are consistent 
and certain mild restrictions are satisfied, then the lower bound pro- 
vided by the Cramer-Rao inequality is always attained by the asymp- 
totic variances of the consistent estimates of the parameters. For ex- 
ample, the maximum-likelihood estimates possess this property. 

It is interesting to note that in cases of partial consistency of the 
observable variables, this need not be so and, whatever the functions 
F8k used to compute the consistent estimates, the asymptotic variances 
Usk2 may always be greater than the limit (98). Here we have to dis- 
tinguish three cases. First it may happen that not only 08k2> 0O2(s, k) 
but also the upper limit as s-* cc of the ratio U8k2/rO2(s,; k) may be 
greater than unity. In cases of this kind we shall say that the asymp- 
totic efficiency is essentially impaired by the presence of the incidental 
parameters. The second case is that where the inequality s8k2 > a02(s, k) 
is combined wXith the equality 

0' 
2 

(123) lim =1. 
s-*- ao2(s k) 

Here we shall say that the asymptotic efficiency is impaired inessen- 
tially. Finally, it may happen that for all values of s =1, 2, * * we 
have U8k2 = U02(s I k). This will be the case of unimpaired efficiency. 

THEOREM 2. If the consistent estimates t8k of structural parameters 
Ek (k = 1, 2, * * * , v) are obtained from equations F,k(XI T) =0, where 
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the functions F8k satisfy the conditions of Theorem 1, then for t8k to have 
unimpaired efficiency, it is necessary and sufficient that 

1 V 1v+8 
(124) GkF8i = - -E Ajl 

for almost all systems of values of the observable random variables. 

The proof of Theorem 2 follows immediately from the remark made 
in the course of proving the Lemma of the preceding section. This is 
to the effect that, for the value of I of (112) to be equal to zero it is 
both necessary and sufficient that the equality (113) be satisfied almost 
everywhere. 

THEOREM 3. For the existence of a system of v equations F8,(XI T) = 0 
(i = 1, 2, ., ) satisfying the conditions of Theorem 1, whose solutions 
with. respect to T yield the consistent estimate tBm of the parameter e)m of 
unimpaired efficiency, ztt is necessary and suficient (a) that for almost 
all X, it is possTble to represent the expression 

v+s 

(125) E Ajm'?j 
j=l 

by a sum of v' < v terms 

(126) E A jmi*j = Z Ai'J(X8, 0) 
j=l i=l1 

where the Ai are independent of X8 and where the 'i are functions of the 
observable variables and the structural parameters but are independent of 
the incidental parameters and (b) that v-v' functions v,+j(X?X8, 0) can 
be found such that the system of Tj (j= 1, 2, * * *, I) satisfies the condi- 
tions of Theorem 1. Then the unimpaired estimate of (m will be obtained 
from the system of equations 'j(XX, T) =0 (j= 1, 2, * , ). 

The necessity of the conditions enumerated follows directly from 
Theorem 2. In fact, if the system of equations FOi(XJ| T) =0 (i= 1, 
2, *., ) satisfying the conditions of Theorem 1 and yielding an un- 
impaired estimate of e)m exists, then (124) must be satisfied for almost 
all X8 and thus it must be possible to represent (125) in the form (126) 
with the function TJ coinciding with the functions F8i(X. I 0). In order 
to prove the sufficiency of the conditions, assume that the system of 
functions 'j(j= 1, 2, * , ) exists, satisfying the conditions of 
Theorem 3. Then 

V+8 V 

(127) E Ajm.'j = E A j'j(X,, 0)) 
j=1 j=l 

where some of the A j may be equal to zero. Let hij be defined in relation 
to the functions 'J in the same way as gij was defined in relation to 
the function Fi of Theorem 2. Thus 
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(128) hsj= - T i 'jp(X8, 2, t)dX (i, j = 1, 2, ,) 

and further 

(129) H =hij Ii,j=1,2, 

with Ht denoting the minor of the determinant H. It is easy to see that 
(127) implies 

A8 
(130) Aj H Hjm. 

In fact, multiplying (127) in turn by Sk (k= 1, 2, *, v) and taking 
the expectations, we obtain 

V V+8 

(131) E Ajhjk = - A,jm'Xjk = 0, k m 

and 
V V+8 

(132) E Ajhm = -> A,jm'Xjm = - A8'/ 
j=1 j=1 

and it is seen that the coefficients A j must have the form (130). But 
then, by Theorem 2, the asymptotic variance of the estimate of t8m 
derived from the equation Tj = 0 must be equal to the lower bound 
provided by the Cramer-Rao inequality. 

Theorem 3 provides easy means of determining equations yielding 
unimpaired estimates of the structural parameters, if they exist. The 
procedure is as follows. Write down in a column the expressions of the 
logarithmic derivatives of the joint distribution of all the variables 
forming a partially consistent system. Next to this column write the 
matrix of the A81k' for k = 1, 2, . . . , v+s and 1= 1, 2, . . , v. Referring 
to notation (83), (84), (94), and (95) we have 

8 

E +X1 A8111 A 810 A81P 

i=1 

E +i2 A821 A822', * * * A82V' 
t=1 

(133) 

E ?$v Asl A 8V2 A *n8VVt 

i1 A8,+1',1 As8,v+1,2 * , VA888 

w1 8,?11. . . ?i. . . . . . 

(08 A8,V+8,1 A8,V+S,2 ' ... * A8,V+8,V J 
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Next form the sum of products of the logarithmic derivatives by the cor- 
responding terms of the first column of the matrix. If this sum splits 
into not more than v terms of the form A jTj where the functions Tj 
satisfy the conditions of Theorem 3, then it is possible to obtain an 
estimate of @) having unimpaired efficiency. Similar trials with col- 
umns 2, 3, , v of the matrix will answer the same question relating 
to estimates of 02, 02, * * *, 2v 

It is possible that the sum of products, say 

v 8 VI 

(134) E Askm' 5 ik = Z A jTj 
k=1 i=l1 

with v' <v. Then, even if the v' functions Tj satisfy the necessary con- 
ditions, the problem appears of supplying an additional v-v' functions 
Tj such that the whole system of v equations T(X8, T) = 0 yields con- 
sistent estimates of all the structural parameters. Theorem 3 guaran- 
tees that, in whatever way these v' additional functions are selected, 
provided the whole system satisfies the conditions of Theorem 1, the 
resulting estimate of E)m will have unimpaired efficiency. This circum- 
stance indicates the desirability of a system that satisfies condition 
(134) for as many different values of m as possible. Of course, the source 
of the additional v - v' equations is the system of modified maximum- 
likelihood equations described above. It is interesting that cases exist 
where one of the several structural parameters can be estimated with 
unimpaired efficiency, but not the others. A case of this kind is dis- 
cussed below. 

8. ILLUSTRATIONS 

The present paper originated from the work of one of the authors, 
relating to the problem of fitting a straight line when both variables are 
subject to error. The general statement of this problem is given in 
Section 2 as Example (3) and the results of the complete solution will 
be published elsewhere. Further below a particular case of the problem 
is considered in some detail. The purpose of this analysis is to illustrate 
some of the points of the preceding section, namely, (i) the process 
of determining equations yielding an unimpaired estimate of one of the 
structural parameters and (ii) the fact that, on occasion, one of the 
several structural parameters may admit an unimpaired estimate, but 
not the others. 

In order to illustrate these facts, a special case of the problem of 
fitting a straight line is chosen for consideration in this paper. This 
case is somewhat artificial and of minor practical importance. This, 
however, does not diminish its illustrative value. 

The case considered is that where, in the notation adopted in the 
description of Example (3), Section 2, mi = m and ni = n for i = 1, 



30 J. NEYMAN AND ELIZABETH L. SCOTT 

2, *..., s and 01 = a2 = a. It is assumed that a2 and a are unknown struc- 
tural parameters, but that the coefficient ,B is a known number. 

In attempting to obtain estimates of a2 and a we follow the steps out- 
lined above. 

First step. Write down the logarithmic derivatives of the probability 
law (7), with respect to the parameters a-2, a, and (i: 

&logpi _ m+n 

(15 *1 lo =124 - ._ yj a 
(9a-2 2 a-2 

1 m n 

2a E (X,j 
- 

(i)2 + E (yij - a 
;2)) 

(135) 
O = - 

Oi2 =-clg pi n-(yi. - at$ 

&log pi I 
wi = -___ - 2 = m(xi. - i) + n3(yi. - a - i)}. 

dS 2 

Here xi. and yi. are the arithmetic means of the xij and the yij respec- 
tively. 

Second step. Compute the expectations 

(136) Xijk = 6(Oi;jik), /.i = 6(i ij/w), 7 = 

for j= 1, 2 and 1= 1, 2, * * * s. Simple algebra gives 

m+n n 
Xill = 2 ? X2 = Xi21 = 0, Xi22 = -, 

2 0-4 ~~~~~~~~a2 
(137) m ? 

no32 

Ail =l O, i2 = - Vi = - a2 

Third step. Write the determinant A,' of (95) 
m +n 

s 0 0 0 ... 0 
2a2 

sn nf nfl nfl 
0 --- ... - 

a2 a2 a2 a2 

no3 m + nl3o. 0 ~ nnl 0 ... 0 
(138) a2 a2 

nol m +,nf 
0 - 0 ... 0 

a2 a2 

* . . . . . . . . . . . . . . . . . . . . . . . 

no8 m + ng3 0 nl 0 0 . m+f 

a2 a2 

and compute the minors A8ik'. 
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Fourth step. Write down the column of the logarithmic derivatives 
of the joint distribution of all the observable random variables and the 
v=2 column matrix of minors A.,k'. 

smn 
__ jil 02(m + no,2) 

m?n m?n132 E ?i2 0 s - 
0-4 ( 2o 2 / 

(139) m ? nnfim?nfi2 -1 
Wi) 0 -s--- -I- 

m ? n ntfim?+ ni2\8-1 
(~~O8 0 -8 I - 

2a-4 O\2 c2 

Multiply the logarithmic derivatives by the corresponding terms of 
the first column of the matrix and sum the results. 

smn 8 smn f s(m + n) 

(140) a2(m + n0l2) i1l a2(m + n32) 1 2a2 

1 8r m n 

+ Zi,2 Z[ (Xj - i)2 + E (yij - a - 2 

Multiply the logorithmic derivatives by the second column of the 
matrix and sum the results. 

m+n(m+n12 s)8 

2a-4 t a2 J E=l (141) -2mn ( ? ~ )l W ( a x 
m +n nogm+no2S- 81 

2a4 a2 a2 E woi = A (y a- O- x) 

where A is a coefficient depending on a but independent of the random 
variables xij and yij and where x. . and y. . are the arithmetic means of 
all the xij and all the yij respectively. It is seen that expression (140) 
does not split into a sum of type (126) of at most two components. On 
the other hand, expression (141) is itself a product of a function of the 
observable variables and of just one unknown structural parameter, 
namely y. . - a- fx.., by a coefficient A, which does not depend on 
the random variables. Moreover, the function y. . - a - Ox.. has its 
expectation equal to zero, as s-* it tends to zero in probability and 
its derivative with respect to a is a constant. The conclusions are: (i) 
there is no system of equations satisfying the conditions of Theorem 1 
which yield an unimpaired estimate of c2; (ii) an unimpaired estimate, 
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say a* of the parameter a is possible, provided we use for estimation 
the equation 

(142) Y.. -a* -,Bx.. =O 

which gives immediately 

(143) a* = Y.. - ,x... 

University of California 
Berkeley 
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