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Abstract

A random variable Y1 is said to be smaller than Y2 in the increasing concave stochas-
tic order if E[φ(Y1)] ≤ E[φ(Y2)] for all increasing concave functions φ for which the
expected values exist, and smaller than Y2 in the increasing convex order if E[ψ(Y1)] ≤
E[ψ(Y2)] for all increasing convex ψ. This article develops nonparametric estimators
for the conditional cumulative distribution functions Fx(y) = P(Y ≤ y | X = x) of a re-
sponse variable Y given a covariate X, solely under the assumption that the conditional
distributions are increasing in x in the increasing concave or increasing convex order.
Uniform consistency and rates of convergence are established both for the K-sample
case X ∈ {1, . . . ,K} and for continuously distributed X.

1 Introduction

The nonparametric estimation of distribution functions under stochastic order restrictions
is a classical problem in statistics. It can be formulated very generally as the task to es-
timate the conditional distributions of a random variable Y given a covariate X, solely
under the assumption that these distributions are increasing in a certain stochastic order.
The classical and best understood order is first order stochastic dominance, requiring that
the conditional cumulative distribution functions (CDFs) Fx(y) = P(Y ≤ y | X = x) are
decreasing in x for every fixed y ∈ R. Brunk et al. (1966) were the first to consider this
constrained estimation problem in the two sample case X ∈ {1, 2}. Almost 40 years later,
El Barmi and Mukerjee (2005) have described an estimator for X taking K discrete ordered
values, say, X ∈ {1, . . . ,K}, and again after more than a decade, Mösching and Dümbgen
(2020b) extended it to continuously distributed X. In a further leap of complexity, Henzi
et al. (2021c) have shown that consistent estimation under first order stochastic dominance
is even possible with partially ordered covariates X ∈ Rd. Stronger orders considered in the
literature are the uniform stochastic ordering and the likelihood ratio order, see El Barmi
and Mukerjee (2016) and Mösching and Dümbgen (2020a) and the references therein. A
weaker constraint is stochastic precedence (Arcones et al., 2002), and a structurally dif-
ferent stochastic order is the peakedness order, where the variability of the conditional
distributions of Y around a center is increasing in the covariate (Rojo and Batún-Cutz,
2007; El Barmi and Mukerjee, 2012; El Barmi and Wu, 2017). A common attractive feature
of all these order restricted estimators is that they do not require the specification of tuning
parameters, and automatically adapt to the smoothness of the underlying functions that
are estimated, such as in Mösching and Dümbgen (2020b, Theorems 3.3 and 3.4).
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So far, the main efforts in developing estimators under stochastic order restrictions
have been focused on first order stochastic dominance and stronger orders, and consistency
results in the case of continuously distributed X have only been derived for first order
stochastic dominance. This is a limitation insofar as these orders require the conditional
CDFs Fx(y) to be decreasing in x for all fixed y. In particular, the CDFs for different
values of x are not allowed to cross, which in practice often happens in the tails when the
variability of Y increases (or decreases) with x. The purpose of this article is to develop
consistent estimators under the increasing concave and increasing convex stochastic order,
which are weaker orders applicable in situations where first order stochastic dominance is
not appropriate. Estimation under the increasing concave order has been studied before
by Rojo and El Barmi (2003) and El Barmi and Marchev (2009) in the two-sample case
X ∈ {1, 2}. In this article, an estimator generalizing the one by El Barmi and Marchev
(2009) to the K-sample case and continuously distributed X is proposed, and uniform
consistency and rates of convergence are established.

For two random variables Y1 and Y2 with finite expected values, Y1 is said to be smaller
in the increasing concave order than Y2 if E[φ(Y1)] ≤ E[φ(Y2)] for all increasing concave
functions φ for which the expectations exist. Similarly, Y1 is smaller than Y2 in the in-
creasing convex order if E[ψ(Y1)] ≤ E[ψ(Y2)] for all increasing convex functions ψ, which is
equivalent to −Y2 being smaller than −Y1 in the increasing concave order. In the following,
these orders are abbreviated as Y1 �icv Y2 and Y1 �icx Y2, respectively, and �icx and �icv

are both used as orders on random variables and on their CDFs. Another characterization
(see Shaked and Shanthikumar, 2007, Chapter 4) for the increasing concave order is

E[(y − Y1)+] =

∫ y

−∞
F1(t) dt ≥

∫ y

−∞
F2(t) dt = E[(y − Y2)+], y ∈ R,

where (z)+ = max(z, 0), and F1 and F2 are the CDFs of Y1 and Y2, respectively. For the
increasing convex order, the analogous condition reads as

E[(Y1 − y)+] =

∫ ∞
y

1− F1(t) dt ≤
∫ ∞
y

1− F2(t) dt = E[(Y2 − y)+], y ∈ R.

A useful sufficient condition for the increasing concave order is that the CDFs F1 and F2

cross at a single point y0 with F1(y) ≤ F2(y) for y ≤ y0 and F1(y) ≥ F2(y) for y ≥ y0,
or with the reverse inequalities for the CDFs in case of the increasing convex order. The
increasing concave order is well-known in economics as second order stochastic dominance,
with “second order” referring to the fact that monotonicity is required for the integrated
CDFs and not for the CDFs themselves. If Y1 and Y2 are portfolio returns, then Y1 �icv Y2
means that all individuals with increasing concave utility functions φ, i.e. all risk-averse
utility maximizers, prefer Y2 over Y1. In the literature on finance and insurance, the
increasing convex order appears under the name stop-loss order, a term introduced by
Goovaerts et al. (1982) referring to the characterization E[(Y1− y)+] ≤ E[(Y2− y)+], which
states that the expected stop-loss of Y2 over any retention limit y exceeds the stop-loss of
Y1. This suggests using �icx as an order for comparing risks.

In the economics and finance literature, research has so far mainly been focused on de-
veloping tests for verifying if conditional distributions satisfy �icv- or �icx-order constraints,
rather than using these orders as restrictions for estimating distributions. Baringhaus and
Gruebel (2009), Berrendero and Cárcamo (2011), and Donald and Hsu (2016) develop
methods for the two-sample case; see the references in these articles for earlier works on
the two-sample testing problem. The K-sample case has been addressed by Linton et al.
(2005) and Zhang and Zhang (2015). The test by Linton et al. (2005), which covers first,
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second and higher order stochastic dominance, allows for dependency among the obser-
vations and also adjustment by covariates. Zhang and Zhang (2015) assume independent
data and apply an isotonic regression estimator corresponding to the intermediate esti-
mator M̃x(y) in Section 2 of this article. For a continuous covariate, Hsu et al. (2019)
and Chetverikov et al. (2021) propose more general tests of monotonicity, which are also
applicable to testing higher order stochastic dominance.

If one detaches the increasing concave (convex) order from its economic interpretation,
then it can be viewed as an order relation where Y increases with X, but its variability
decreases (increases). More precisely, Y1 �icv Y2 if and only if there exists a variable
Z such that Z �cx Y1 and Z �st Y2, where �st and �cv denote first order stochastic
dominance and the convex order, respectively. The latter is a variability order requiring
that E[c(Z)] ≤ E[c(Y2)] for all convex functions c such that the expectations exist (see
Shaked and Shanthikumar, 2007, Chapter 3 and Theorem 4.A.6). For the increasing convex
order, one has Y1 �cx Z instead of Z �cx Y1. With this broader perspective, one can
find practical situations where the �icv- and �icx-order arise as natural constraints. For
example, Vittorietti et al. (2021) perform a study in materials science, where intuition about
physical properties suggests a model N (µk, σ

2
k) with µ1 ≤ · · · ≤ µK and σ21 ≥ · · · ≥ σ2K

for measurements of a certain outcome in K different types of materials. This model,
also studied by Shi (1994), satisfies the increasing concave order, and the methodology in
this article provides an alternative nonparametric method for estimating the conditional
distributions in their applications. Another application where the �icv- and �icx-order may
be useful is the post-processing of point forecasts. Following Henzi et al. (2021c), if X is
a point forecast for an outcome variable Y , say, an expert’s inflation forecast, then one
would expect that Y attains higher values as X increases. Henzi et al. (2021c) suggest
to quantify the uncertainty of X by estimating the conditional CDFs Fx on training data
under the assumption that they are increasing in first order stochastic dominance in x.
This is plausible for many variables with right-skewed distribution, such as accumulated
precipitation (Henzi et al., 2021c) or patient length of stay (Henzi et al., 2021b,a). But the
assumption may fail to hold in situations where the variability of Y strongly changes with
X. The case study in Section 6 presents an example with income expectations, where such
an effect can be observed and the �icv-order provides a more plausible constraint than first
order stochastic dominance.

2 Estimation

To avoid redundancy, only the estimation for the increasing concave order is presented
here; the necessary adaptations for the increasing convex order are straightforward. Let
(X1, Y1), . . . , (Xn, Yn) ∈ R×R be covariate-observation pairs based on which the conditional
distributions are to be estimated. In the literature on estimation under stochastic order
restrictions, the CDFs Fx(y) are often only estimated at the distinct values x1 < · · · < xd
of X1, . . . , Xn and y1 < · · · < ym and of Y1, . . . , Yn, and frequently used estimation methods
are nonparametric maximum likelihood estimation (NPLME) (e.g. in Dykstra et al., 1991;
Mösching and Dümbgen, 2020a) and monotone least squares regression (e.g. in El Barmi
and Mukerjee, 2005; Mösching and Dümbgen, 2020b). However, these two approaches turn
out to be unrewarding in the case of the increasing concave order. Firstly, they lead to a
constrained optimization problem with O(n2) variables in general, namely the estimators
F̂xi(yj) for Fxi(yj), which is not efficiently solvable for large n. And secondly, for the
�icv-constrained estimator, proving consistency using the definition of the estimator as
maximizer of the likelihood or least squares estimator seems intractable. The construction
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here is therefore an indirect approach. For x, y ∈ R, define

Mx(y) =

∫ y

−∞
Fx(t) dt = E[(y − Y )+ | X = x].

Under the assumption that Fx �icv Fx′ if x ≤ x′, the quantities Mx(y) should be decreasing
in x for all fixed y, and they satisfy

M ′x(y+) = lim
h→0, h>0

Mx(y + h)−Mx(y)

h
= Fx(y).

This suggests that an estimator M̂x for Mx may yield, under some conditions, an estimator
for Fx. We restrict the estimation of Fx(y) to x ∈ {x1, . . . , xd}; in Section 3, it is shown
that under a continuity assumption, any interpolation method to obtain estimates for
x 6∈ {x1, . . . , xd} is sufficient for uniform consistency.

Since MXi(y) equals the expected value E[(y−Y )+ | X = Xi], a reasonable estimator for
it is the antitonic least squares regression M̃X1(y), . . . , M̃Xn(y) of (y − Y1)+, . . . , (y − Yn)+
with covariates X1, . . . , Xn, that is,

[M̃X1(y), . . . , M̃Xn(y)] = argmin
η∈Rn: ηi≥ηj if Xi≤Xj

n∑
i=1

[ηi − (y − Yi)+]2.

The order constraints enforce M̃Xi(y) = M̃Xj (y) if Xi = Xj , so the above problem is
equivalent to the reduced, weighted antitonic regression

[M̃x1(y), . . . , M̃xd(y)] = argmin
η∈Rd: η1≥···≥ηd

d∑
i=1

wi[ηi − hi(y)]2,

where wi = #{j ≤ n : Xj = xi}, i = 1, . . . , d, and

hi(y) =
1

wi

∑
j:Xj=xi

(y − Yj)+.

This antitonic regression has the min-max-representation

M̃xi(y) = min
k=1,...,i

max
j=k,...,d

1∑j
s=k ws

j∑
s=k

wshs(y), (1)

see Equations (1.9)-(1.13) of Barlow et al. (1972). In principle, one could now try to
estimate Fxi(y) by taking the right-sided derivative of M̃xi(·) at y. However, M̃xi is not
necessarily convex and therefore its derivative may be decreasing and not a CDF. To correct
this, let M̂xi be the greatest convex minorant to the function y 7→ M̃xi(y), which is the
pointwise greatest convex function bounded by M̃xi from above, and define F̂xi(y) as the
right-hand slope of M̂xi(·) at y. The following proposition, which is a consequence of the
above min-max-formula and basic properties of greatest convex minorants, shows that this
is a valid strategy. Its proof, and the proofs of all subsequent theoretical results, are deferred
to the appendix.

Proposition 2.1.

(i) The functions M̃xi(y) and M̂xi(y) are increasing and piecewise linear in y for fixed
i ∈ {1, . . . , d}, and decreasing in i for fixed y ∈ R.
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(ii) The functions F̂xi(y) for fixed i ∈ {1, . . . , d} are piecewise constant CDFs with Fxi(y) =
0 for y < y1 and Fxi(y) = 1 for y ≥ ym.

In practice, it is not possible to compute M̃xi(y) and M̂xi(y) at all y ∈ R. Although
these functions are piecewise linear, there is no efficient procedure to identify the knots
where their slope changes. A pragmatic solution is to evaluate M̃x and M̂x on a fine grid
t1 < · · · < tk with t1 = y1 and tk = ym, and interpolate linearly in between. This has the
consequence that the CDFs F̂xi can only put mass on t1, . . . , tk. By a standard result about
isotonic regression (see Appendix A), the right-sided slope of the greatest convex minorant
to the interpolation of (t1, M̃xi(t1)), . . . , (tk, M̃xi(tk)) equals the isotonic regression of the
slopes

F̃xi(tj) =
M̃xi(tj+1)− M̃xi(tj)

tj+1 − tj
with weights tj+1−tj , j = 1, . . . , k−1. This isotonic regression directly yields the estimators
for the conditional CDFs,

[F̂xi(t1), . . . , F̂xi(tk−1)
]

= argmin
ξ∈Rk−1: ξ1≤···≤ξk−1

k−1∑
j=1

(tj+1 − tj)[ξj − F̃xi(yj)]2,

and F̂xi(tk) = 1 by Proposition 2.1 (ii) if tk = ym. To summarize, the estimation procedure
consists of two series of monotone regressions, informally speaking one in the X-direction
for fixed threshold y to obtain �icv-ordered distributions, and another in the Y -direction for
fixed covariate xi to ensure that the CDFs are increasing. It is not necessary to compute
the functions M̂xi explicitly, since the computation of the greatest convex minorant is
indirect via its right-hand slope. The exact solution of monotone regression problems can
be obtained efficiently with the Pool-Adjacent Violators Algorithm (PAVA), which has
complexity O(N) with sorted covariate and sample size N . Hence the overall complexity
of the estimation procedure is O(n2) if the number of distinct values in X1, . . . , Xn or
Y1, . . . , Yn grows at the rate O(n).

If the distinct values y1, . . . , ym of Y1, . . . , Yn are taken as the grid for computation,
then the estimated distributions F̂xi can only put mass on the actual observations in the
data, and they are equal to the conditional empirical cumulative distribution functions
(ECDF) if these already satisfy the increasing concave order condition. That is, if F̌xj
is the ECDF of all Yi with Xi = xj and if F̌xi �icv . . . �icv F̌xd , then F̂xj = F̌xj for

j = 1, . . . , d. If in addition X1, . . . , Xn are pairwise distinct, F̂Xi is the Dirac measure at
Yi for i = 1, . . . , n. The estimators under first order stochastic dominance (El Barmi and
Mukerjee, 2005; Mösching and Dümbgen, 2020b) also have this property. However, with the
increasing concave order, even if the grid {t1, . . . , tk} contains {y1, . . . , ym}, the estimator
can put probability mass on points outside of {y1, . . . , ym}. In particular, if the response
variable is known to take values in a discrete set, say Z, then the grid should be chosen
within this set to avoid positive estimated probabilities outside of the actual support.

The increasing concave order is preserved under pointwise convex combinations of
CDFs, i.e. if F1 �icv F2 and G1 �icv G2, then also λF1 + (1 − λ)G1 �icv λF2 + (1 − λ)G2

for λ ∈ (0, 1). This fact opens the possibility to combine the estimation procedure with
sample splitting as suggested in Henzi et al. (2021c) for first order stochastic dominance.
Instead of estimating the conditional distributions with the complete dataset, one may
draw random subsamples from the data and aggregate the estimated conditional CDFs
from each run by their pointwise average. This subsample aggregation (subagging) yields
smoother estimated CDFs and prevents overfitting. Alternatively, the data can also be
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partitioned into several disjoint subsets instead of drawing subsamples, and Banerjee et al.
(2019) have proved that this divide and conquer strategy may lead to better convergence
rates of isotonic mean regression. Partitioning of the data is a valid strategy for very large
datasets, but in smaller datasets it is more desirable to apply subagging to avoid that the
estimator depends too strongly on the chosen partition. In principle, the averaging step in
subagging or sample splitting could also be done on the level of the estimators M̃x instead
of the CDFs F̂x, but if the goal is to obtain smoother CDFs, it is more natural to average
the F̂x.

Finally, we show that the estimator proposed here generalizes the one by El Barmi and
Marchev (2009) for the case Xi ∈ {1, 2}. Their estimator depends on a parameter α ∈ [0, 1],
and equality holds for α = #{i ≤ n : Xi = 1}/n. This follows from the fact that with
M̌j(y) =

∫ y
−∞ F̌j(t) dt, one can write M̃j(y) as

M̃j(y) = 1{M̌j(y) ≥ M̌2(y)}M̌1(y) + 1{M̌1(y) < M̌2(y)}[αM̌1(y) + (1− α)M̌1(y)],

for j = 1, 2, where 1 is the indicator function. Taking the right-hand slope of the great-
est convex minorant of the above functions then yields Equation (8) from El Barmi and
Marchev (2009). The choice α = #{i ≤ n : Xi = 1}/n was already suggested in their
article, and it corresponds to the natural weight for which M̃j , j = 1, 2, are the antitonic
regression estimators.

3 Uniform consistency

The following notation and assumptions are required for stating the theorems about uniform
consistency. Let (Xni, Yni), i = 1, . . . , n, n ∈ N, be a triangular array defined on a measur-
able space (Ω,F) with a probability measure P. For a sequence of events (An)n∈N ⊂ F ,
the statement “An holds with asymptotic probability one” means limn→∞ P(An) = 1.
The covariates Xn1, . . . , Xnn are assumed to be independent and have distinct values
x1 < · · · < xd, and the response variables Yn1, . . . , Ynn are independent conditional on
Xn1, . . . , Xnn such that P(Yni ≤ y | Xni) = FXni , with the CDFs Fx increasing in x in
the increasing concave order. The distinct values of Yn1, . . . , Ynn are again denoted by
y1 < · · · < ym. A subscript n in M̃n;x(y), M̂n;x(y), and F̂n;x(y) will be used to indicate
that these quantities depend on the sample size n, but the dependency of m and d on n is
not written explicitly to lighten the notation. If x 6∈ {x1, . . . , xd}, it is only assumed that
M̃n;xi(y) ≥ M̃n;x(y) ≥ M̃n;xi+1(y) for all y ∈ R if x ∈ [xi, xi+1), and M̃n;x(y) = M̃n;x1(y) if

x < x1 or M̃n;x(y) = M̃n;xd(y) if x ≥ xd. The same property then also holds for M̂n;x.
The key condition for proving consistency of F̂n;x(y) is the following.

(A) There exists (cn)n∈N ⊂ [0,∞) and a sequence of sets (In)n∈N, In ⊂ R, such that

lim
n→∞

P

(
sup

y∈R, x∈In
|M̃n;x(y)−Mx(y)| ≥ cn

)
= 0.

Sufficient conditions for (A) will be given below, and the convergence rate cn depends
on whether X is discrete or continuously distributed and on the tail properties of Fx.
If Xn1, . . . , Xnn ∈ {1, . . . ,K}, one can simply set In = {1, . . . ,K}. For continuously
distributed covariates on an interval I, In will be of the form In = {x ∈ I : x ± δn ∈ I}
with δn → 0, that is, it is in general not possible to show consistency at the boundary of the
covariate domain. This is also the case in isotonic mean regression and estimation under
first order stochastic dominance (Mösching and Dümbgen, 2020b).

The following proposition establishes the connection between the uniform consistency
of M̃n;x(y) and F̂n;x(y).

6



Proposition 3.1. Assume that (A) holds and I ⊆ R is a set such that In ⊆ I, n ∈ N.

(i) If there exist J ⊆ R and constants C ≥ 0, β > 0 such that |Fx(y)−Fx(z)| ≤ C|y−z|β

for all y, z ∈ J , x ∈ I, then with Jn = {y ∈ J : y ± c1/(1+β)n ∈ J},

lim
n→∞

P

(
sup

y∈Jn, x∈In
|F̂n;x(y)− Fx(y)| ≥ (2 + C)cβ/(1+β)n

)
= 0.

(ii) If the distribution functions Fx, x ∈ I, have support in Z and if M̃n;x is computed
with grid {y1, y1 + 1, . . . , ym − 1, ym}, then

lim
n→∞

P

(
sup

y∈R, x∈In
|F̂n;x(y)− Fx(y)| ≥ 2cn

)
= 0.

Proposition 3.1 shows that if M̃n;x(y) is uniformly consistent in x and y at a rate cn,
then the estimator F̂n;x(y) is also uniformly consistent. When the response variable is
integer-valued, F̂n;x is consistent at the same rate. Otherwise, if the distribution functions

Fx are Hölder continuous with index β, the corresponding rate for F̂n;x(y) is c
β/(1+β)
n , for

example c
1/2
n if the Fx are Lipschitz continuous. Note that in the case J = R, the sets Jn

in Proposition 3.1 (i) are also equal to R, and in (ii), the support of Fx, x ∈ I, could be
any discrete lattice instead of Z.

We proceed to state conditions under which (A) holds. For the K-sample case, the
assumption on the covariate is the following.

(K) The covariates take values in I = {1, . . . ,K}, and minj=1,...,K P(Xni = j) = p for
some p > 0.

Instead of {1, . . . ,K} in (K), the set I could be any discrete ordered set with cardinality
K. In the continuous case, the assumptions are analogous to (A.1) and (A.2) in Mösching
and Dümbgen (2020b).

(C1) The covariates Xn1, . . . , Xnn admit a Lebesgue density bounded away from zero by
p > 0 on an interval I.

(C2) There exists a constant L > 0 such that for all u, v ∈ I and y ∈ R,

|Mu(y)−Mv(y)| ≤ L|u− v|.

Note that the set I and the constants p in (K) and (C1) and L in (C2) do not depend on
n. Condition (C1) could be replaced by the weaker assumption that the number of points
in every subinterval of I of a certain size grows sufficiently fast, like in (A.2) of Mösching
and Dümbgen (2020b, see also their Remark 3.2). In particular, it is not necessary to
assume that the covariates Xn1, . . . , Xnn are pairwise distinct or independent. However,
this more general condition would require to introduce additional notation and constants.
Similarly, in (K), it is sufficient that each value j ∈ {1, . . . ,K} is attained at least nδ times
with asymptotic probability one for some δ > 0. The Lipschitz assumption (C2) in the
continuous case is standard in isotonic regression (see e.g. Yang et al., 2019; Dai et al.,
2020), and it could be replaced by Hölder continuity with index α ∈ (0, 1) at the cost of a
slower convergence rate.

Since the goal is to prove consistency for an estimator of the expected values E[(y −
Y )+ | X = x], it is natural that some additional assumptions on the tail behaviour of the
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distributions Fx are required. In the two cases below, the set I is assumed to be the one
from (K) or from (C1), (C2).

(P) There exist λ > 2 and y0 ≥ 0 such that for all y ≥ y0 and x ∈ I,

P(|Y | ≥ y | X = x) ≤ y−λ.

(E) There exist λ > 0 and y0 ≥ 0 such that for all y ≥ y0 and x ∈ I,

P(|Y | ≥ y | X = x) ≤ exp(−λy).

Theorem 3.2. Condition (A) holds with

cn =


4p−1/2n−1/2+1/λ log(n)1/2+1/λ, under (K) and (P),

8p−1/2λ−1n−1/2 log(n)3/2, under (K) and (E),

[4p−1/2 + L]n−1/3+2/(3λ) log(n)1/3+2/(3λ), under (C1), (C2), and (P),

(2/λ)2/3[4p−1/2 + L]n−1/3 log(n), under (C1), (C2), and (E),

and

In =


{1, . . . ,K}, under (K),

{x ∈ I : x± n−1/3+2/(3λ) log(n)1/3+2/(3λ) ∈ I}, under (C1), (C2), and (P),

{x ∈ I : x± (2/λ)2/3n−1/3 log(n) ∈ I}, under (C1), (C2), and (E).

In the K-sample case, Theorem 3.2 implies uniform consistency at a rate of at least
(log(n)/n)1/4 if the distribution functions Fx(y) are Lipschitz continuous in y and have
exponential tails. This is slower than the n−1/2-rate of the empirical distribution functions
stratified by the K covariate values, and suggests that this lower bound is not always tight.
Indeed, if the conditional CDFs Fj , j = 1, . . . ,K, have support on disjoint, pointwise
increasing intervals, then F̂n;j are equal to the ECDFs of the corresponding subsamples
and hence known to converge at the faster rate. Nevertheless, the result extends the
ones from the current literature. In the two-sample case K = 2, Rojo and El Barmi (2003)
establish strong uniform convergence and pointwise but not uniform root-n convergence for
their estimator, while El Barmi and Marchev (2009) only prove strong uniform consistency,
but do not derive rates of convergence.

For a continuously distributed covariate and exponential tails, M̃x(y) converges uni-
formly in x and y at a rate of n−1/3 up to a logarithmic factor, which is known to be the
global rate of convergence of the isotonic regression estimator. When the conditional dis-
tributions have power tails with exponent λ, the rate becomes slower by a factor of n2/(3λ).
In general, the global n−1/3-rate of convergence for isotonic regression does not require the
assumption of exponential tails, but the results across the literature are not directly com-
parable. For example, Zhang (2002) shows that with bounded second moments, the risk
of the isotonic mean regression estimator, i.e. the root mean squared error at the design
points, scales at a rate of n−1/3, whereas Yang et al. (2019) prove uniform consistency with
the same rate (up to logarithmic factors) in the supremum norm under sub-gaussianity of
the error terms. Theorem 3.2 yields a stronger statement since convergence is also uniform
in the parameter y, and with exponential tails it still matches the optimal global rate up
to the logarithmic factor. For F̂x(y), Theorem 3.2 implies a rate of at least n−1/6 under
the favorable assumption (E) and Lipschitz continuity of Fx(y) in y.

Isotonic regression for the mean has the property that it automatically adapts to the
local smoothness of the underlying function; see for example Guntuboyina and Sen (2018);
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Yang et al. (2019). A slight adaptation in the proof of Theorem 3.2 shows that this is also
true for the estimator M̃x(y). For example, if Mx(y) is constant in x ∈ I, for all fixed
y, then the bound on the error under (E) becomes 8p−1/2λ−1 log(n)2n−1/2 and is thus of
order n−1/2 up to the logarithmic factor. Similarly, rates in between n−1/3 and n−1/2 can
be obtained when |Mx(y) −Mx′(y)| ≤ L|x − x′|v for x ∈ I and all y, with suitable v > 1.
The same phenomenon occurs in part (i) of Proposition 3.1, where faster convergence rates
are obtained for larger exponents β in the Hölder continuity assumption.

4 Inference

Constructing confidence intervals for conditional distributions under stochastic order con-
straints is difficult. This section does not provide a solution to this problem for the �icv-
and �icx-order, but it gives an overview of potential approaches and their pitfalls.

The limiting distributions of shape-constrained estimators are often rather complicated
and depend on unknown characteristics of the underlying functions (Park et al., 2012;
Guntuboyina and Sen, 2018), which makes it difficult to derive confidence intervals from
them. For �icv-order in the K-sample case, Zhang and Zhang (2015) have shown n1/2[Mxi−
M̃xi ] converges to a process which is described by a min-max formula similar to (1) applied
to integrated Brownian bridges with rescaled time. To construct confidence intervals for
Mxi(y) or Fxi(y) from these distributions, one would need knowledge about the true CDFs
and about the groups where the constraints are binding, i.e. hold with equality, which is
usually not available in practice.

A more promising approach seem to be bootstrap methods, which have been explored
by Park et al. (2012) in the case of first order stochastic dominance. However, the bootstrap
is delicate in shape restricted regression, where it was shown that some popular bootstrap
methods can be inconsistent (Guntuboyina and Sen, 2018, Section 4.2.1, and the references
therein), and so far there has been no thorough analysis of this phenomenon in the case of
estimating conditional distributions. For the maximum likelihood estimator of a decreasing
density, the Grenander estimator, it has been shown that suitable smoothing can yield a
consistent bootstrap estimator (Groeneboom et al., 2010). This suggests to study the
smoothed estimator

K̂x;h(y) =

∫ ∞
−∞

K

(
y − t
h

)
dF̂x(t),

where K is a smooth CDF, h > 0 a bandwidth, and F̂x an estimator under stochastic
order restrictions. This modification, which has not been studied for smoothing restricted
estimators of conditional distributions so far, may also be interesting from a pure estimation
perspective as an alternative to the bagging procedure suggested in Section 2.

Finally, Yang et al. (2019) developed a method for constructing simultaneous confi-
dence intervals in isotonic mean regression which requires no tuning parameters. These
confidence bands only assume subgaussian error distributions, and are similar to the re-
stricted confidence intervals by El Barmi and Mukerjee (2005, Section 5) under first order
stochastic dominance. In the case of the increasing concave order, they might help to con-
struct confidence bands for Mx(y) for varying x and fixed y, but it is not obvious whether
this allows to derive practically useful bands for the derivative Fx(y) = M ′x(y).

5 Simulations

In the following simulation examples, the �icv- and �icx-order constrained estimators are
compared to competitors in terms of the L1 distance between the estimated and the true
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CDFs, and in terms of the mean absolute error (MAE) of quantile estimates,

L1(F̂n, F ) = E
(∫ ∞
−∞
|F̂n(y)− F (y)| dy

)
, dqγ(F̂n, F ) = E

(
|F̂−1n (γ)− F−1(γ)|

)
,

where F̂n denotes an estimator for F and the expected value is taken over the sampling
distribution of F̂n for the given sample size. The expected value in the definition of L1 and
dqγ is approximated by the empirical mean over 10′000 simulations for the examples with
discrete and 5′000 simulations for those with continuously distributed covariates.

With covariate values X ∈ [1, 4], the following three settings are considered:

Y1 = X1/2 +
[
1 + (X − 2)/(1 + (X − 2)2)1/2

]
ε, ε ∼ Student(df = 10), (2)

Y2 ∼ Gamma(shape = X, rate = X9/10), (3)

Y3 ∼ Beta-binomial(n = 50, α = X3, β = 1 +X3). (4)

The conditional distributions of Y1 given X are ordered in the increasing convex order,
and the those of Y2 and Y3 with respect to the increasing concave order; see Figure 1
(a) for an illustration. In the K-sample case, X takes values in {1, 4}, {1, 2, 3, 4}, and
{1, 1.5, . . . , 3.5, 4}, i.e. K = 2, 4, 7, which allows comparing the change in estimation error
at previously available values of X when the number of samples increases. For simulation
examples with continuous covariate, the sample of X is generated independent and uni-
formly distributed on [1, 4]. In all simulations the distinct observed values of the response
variable are taken as grid for the computation of the �icv- and �icx-order constrained
estimators.

Table 1 shows the performance order restricted estimators compared to the ECDF in
the K-sample case, with fixed group sizes n = 30, 50 as in El Barmi and Marchev (2009).
One would expect that the improvement of the restricted estimator over the ECDF is
larger when more constraints are binding. That is, when the conditional CDFs Fx (or the
functions Mx) are close to each other for the different values of x, and when the sample size
is small, then the restricted estimator may gain precision by pooling information across the
K groups. The case study confirms this intuition. For K = 2 (groups X = 1 and X = 4)
the ECDF already satisfies the order constraints in most cases and has similar estimation
error as the constrained estimator. However, as new groups are included with covariate
value X in between those of the previously present groups, the order restricted estimators
benefit from the larger total sample size and achieve a lower estimation error both globally,
i.e. in L1-distance, and for most quantiles considered. This improvement is larger for n = 30
than for n = 50, since with the larger sample size the ECDFs are already closer to the true
distributions and require fewer corrections to satisfy the order constraints.

In the continuous case, the estimator under first order stochastic dominance by Mösching
and Dümbgen (2020b) is chosen as competitor. This comparison is of interest since in situa-
tions where a variable Y depends monotonically on X one might want to impose first order
stochastic dominance as a restriction, but it is sometimes not fully clear if the monotone
relationship is strong enough such that all conditional exceedance probabilities 1 − Fx(y)
are increasing in x for all y, or if there might be crossings of the CDFs.

As Figure 1 (a) shows, for the simulations (3) and (4) the conditional quantile curves
up to the seventh decile are all increasing in the covariate X, and so are the conditional
quantile curves above the third decile in (2). Therefore, although first order stochastic
dominance is violated, it serves as a reasonable approximation in these problems. Figure 2
shows the relative performance of the estimators for n = 500. The estimator by Mösching
and Dümbgen (2020b) achieves a lower absolute error for the median, for the 0.1-quantile in
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Table 1: Relative improvement in mean L1 distance, mean absolute error of quantile esti-
mates of �icv- and �icx-order constrained estimator compared to ECDF stratified by the
value of X, for K = 2, 4, 7 and group sizes of n = 30, 50.

n = 30 Student (2) Gamma (3) Beta-binomial (4)
K X L1 dq0.1 dq0.5 dq0.9 L1 dq0.1 dq0.5 dq0.9 L1 dq0.1 dq0.5 dq0.9

2 1.0 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.07 0.00 0.00 0.00 0.00
4.0 0.00 0.00 0.00 0.00 -0.03 0.00 0.00 -0.04 0.00 0.00 0.00 0.00

4 1.0 0.00 0.00 0.00 0.00 0.06 0.00 0.05 0.12 0.00 0.00 0.00 0.00
2.0 -0.01 -0.10 0.01 -0.01 0.08 0.05 0.12 0.19 0.05 0.00 0.05 0.09
3.0 0.06 0.19 0.08 0.05 0.09 0.13 0.18 0.21 0.13 0.09 0.09 0.12
4.0 0.05 0.16 0.10 0.10 0.03 0.11 0.11 0.14 0.08 0.09 0.15 0.10

7 1.0 0.00 -0.01 0.00 0.00 0.08 0.04 0.10 0.13 0.01 0.00 0.00 0.01
1.5 -0.02 -0.10 0.00 -0.01 0.14 0.13 0.21 0.29 0.05 0.00 0.04 0.05
2.0 0.01 0.01 0.05 0.00 0.16 0.20 0.26 0.35 0.12 0.05 0.12 0.14
2.5 0.08 0.23 0.15 0.08 0.18 0.25 0.31 0.37 0.21 0.14 0.22 0.24
3.0 0.13 0.33 0.23 0.19 0.17 0.28 0.32 0.36 0.28 0.24 0.22 0.29
3.5 0.14 0.33 0.26 0.25 0.15 0.28 0.30 0.32 0.27 0.29 0.29 0.20
4.0 0.09 0.23 0.19 0.21 0.07 0.19 0.19 0.22 0.15 0.15 0.26 0.19

n = 50 Student (2) Gamma (3) Beta-binomial (4)
K X L1 dq0.1 dq0.5 dq0.9 L1 dq0.1 dq0.5 dq0.9 L1 dq0.1 dq0.5 dq0.9

2 1.0 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.05 0.00 0.00 0.00 0.00
4.0 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 -0.02 0.00 0.00 0.00 0.00

4 1.0 0.00 0.00 0.00 0.00 0.04 0.00 0.02 0.10 0.00 0.00 0.00 0.00
2.0 -0.01 -0.07 0.00 0.00 0.05 0.02 0.08 0.14 0.03 0.00 0.02 0.08
3.0 0.04 0.13 0.05 0.04 0.07 0.08 0.14 0.20 0.09 0.05 0.04 0.07
4.0 0.04 0.13 0.07 0.07 0.03 0.07 0.09 0.11 0.06 0.06 0.12 0.05

7 1.0 0.00 0.00 0.00 0.00 0.07 0.02 0.07 0.13 0.00 0.00 0.00 0.00
1.5 -0.01 -0.07 0.00 0.00 0.11 0.09 0.16 0.25 0.03 0.00 0.02 0.03
2.0 0.00 -0.04 0.02 -0.01 0.13 0.14 0.21 0.29 0.08 0.02 0.08 0.12
2.5 0.05 0.15 0.09 0.03 0.15 0.19 0.26 0.32 0.16 0.09 0.19 0.20
3.0 0.11 0.28 0.19 0.15 0.16 0.23 0.28 0.34 0.23 0.17 0.16 0.25
3.5 0.13 0.27 0.23 0.22 0.14 0.24 0.27 0.31 0.25 0.26 0.26 0.16
4.0 0.08 0.20 0.16 0.18 0.07 0.16 0.16 0.18 0.14 0.11 0.26 0.12
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Figure 1: (a) Deciles of the conditional distributions in the simulation examples (2), (3), (4).
The median is depicted as a dashed line. (b) Quantile curves (levels 0.1, 0.3, 0.5, 0.7, 0.9) for
simulation example (3) together with �icv-ordered estimator (n = 500; ICV and subagging
variant ICVsbg with 50 subsamples of size 250 = n/2).
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(3) and (4), and for the 0.9-quantile in (2), uniformly over all values of X. This is due to the
fact that the corresponding quantile curves are monotone and estimation under this correct
constraint is more efficient than with the weaker �icv- and �icx-constraints. The picture
is different for the low quantiles in (2) and the high quantiles in (3) and (4), where the
conditional quantile curves are antitonic and the best isotonic approximation is constant,
which generally provides a poor fit. Figure 2 also compares the errors of subagging variants
of the estimators; see Figure 1 (b) for an illustration of the estimated quantile curves in the
Gamma example. For both estimators, 50 random subsamples of size 250 = n/2 are drawn
from the data, and the conditional CDFs from each fit to the subsamples are averaged
pointwise. It can be seen that the �icv- and �icx-order constrained estimators benefit more
from subagging than the estimator with first order stochastic dominance. A comparison of
different subagging variants and results for other sample sizes are given in the Appendix
D.

There are many other methods for estimating conditional distributions than the shape-
constrained regression methods discussed so far in this article, such as models based on
parametric families (Rigby and Stasinopoulos, 2005), nonparametric kernel methods (Li
and Racine, 2008), or quantile regression (Koenker, 2005), only to name a few. In general,
the advantage of shape-constrained estimators is that they are free from tuning parameters
and automatically adapt to the (unknown) smoothness of the underlying functions which
are to be estimated, but other estimation methods can achieve a smaller estimation error
when their assumptions are satisfied. Indeed, in a simulation and case study, Henzi et al.
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Figure 2: Relative improvement in L1 distance and mean absolute error of quantile esti-
mates of the �icv- and �icx-order constrained estimator compared to the estimator under
first order stochastic dominance, for n = 500. The solid lines show the improvement when
the estimators are computed on the full sample, and the dashed lines for a subagging variant
with 50 subamples of size 250.
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(2021c, Sections 4 and 5, Supplement S4) have found that estimators with first order
stochastic dominance constraints are often not superior to competitors in terms of L2

estimation error. This can be expected also for the estimators proposed in this article,
which do not generally outperform the estimator under first order stochastic dominance.

6 Case study

It is well known that in the the evaluation of point forecasts, a wrongly specified loss func-
tion, such as the absolute error for comparing mean forecasts, may lead to counterintuitive
results and distorted forecast rankings (Gneiting, 2011). This causes problems in the inter-
pretation of economic surveys, where respondents are often asked to issue point predictions
for future quantities, but it is unspecified what functional of their (hypothetical) predic-
tive distribution is meant. As a remedy, various tests of forecast rationality, or forecast
calibration, have been proposed in the literature. A recent contribution is by Dimitriadis
et al. (2019), who develop tests for the hypothesis that a given point forecast is the mean,
median, or mode functional, or a convex combination of the three. The case study in this
section demonstrates that the estimation of conditional distributions can complement such
tests to gain additional information for the interpretation of point forecasts.

If X denotes a point forecast and Y the observation, the hypothesis of forecast ratio-
nality with respect to a functional T can be defined as X = T [L(Y | X)], where L(Y | X)
denotes the conditional law of Y given the forecast X. This formulation is a special but
important case of equation (2.1) in Dimitriadis et al. (2019), which allows including addi-
tional information available to the forecaster for conditioning. If T is the mean functional,
then forecast rationality is equivalent to the moment condition E(Y −X | X) = 0. For the
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median, the corresponding condition is E(1{Y ≥ X} | X) = 0.5, provided that L(Y | X)
is a continuous distribution. Based on such conditions, Dimitriadis et al. (2019) developed
asymptotic tests for forecast rationality.

Distributional regression provides a different, more qualitative approach to this problem.
If the conditional distributions L(Y | X = x) were known, one could easily derive the
functional of interest T (x) = T [L(Y | X = x)] and detect violations of forecast rationality
by directly comparing T (x) and x. Estimators with stochastic order restrictions allow to
mimic this ideal situation, without having to impose restrictive or implausible assumptions
on the conditional distributions. For sufficiently precise point forecasts X, one would expect
that the actual observation Y tends to attain higher values as X increases. Moreover,
estimating L(Y | X) under stochastic order constraints only requires the ranks of the
forecasts X1, . . . , Xn in a sample, but not their values. This makes a comparison of Xi

and T (Xi) sensible, because X1, . . . , Xn themselves have not been provided to the model.
Other estimation methods, such as kernel regression (Li and Racine, 2008), generally do
not have this property.

To illustrate the approach, consider the data example from Section 5.1 of Dimitriadis
et al. (2019). In the Labor Market Survey by the Federal Reserve Bank of New York,
respondents are asked three times per year to report their annualized income in four months.
The sample analysed here ranges from March 2015 to November 2019. Some respondents
participate in several rounds of the survey, and only the first round is included for those
individuals which occur several times to obtain independent observations. Additionally,
like in Dimitriadis et al. (2019), observations with very high or low expectations or income
(above 300’000 or below 1000, 4.0% of the sample; an upper bound of 1 million was used
in Dimitriadis et al. (2019)) are removed since the data is very sparse and uninformative
for such values, as are cases when the ratio of expectation and income or the inverse
ratio is between 9 and 13 (27 instances), which might be due to misplaced decimal points
or erroneously reporting monthly instead of annualized income. The remaining sample
consists of 3161 observations. The survey of consumer expectations (SCE; © 2013-2020
Federal Reserve Bank of New York) data for this case study are available without charge at
https://www.newyorkfed.org/microeconomics/sce, and may be used subject to license
terms posted there. The New York Fed disclaims any responsibility for the analysis and
interpretation of Survey of Consumer Expectations data in this article.

Panels (a) and (b) of Figure 3 illustrate the joint distribution of the income expectations
and realizations. There is a strong monotone relationship, with a Pearson correlation of
0.92, but interestingly, for the lowest deciles of the income expectations, the corresponding
conditional CDFs of the observed income cross in the upper tail, indicating a violation of
first order stochastic dominance. The intuition behind these results is that individuals are
generally able to predict their income well, which explains the strong monotone relationship,
but low income expectations are sometimes overly pessimistic. Rozsypal and Schlafmann
(2021) have found with different data that people with lower income tend to have pessimistic
expectations, both conditionally on potential confounder covariates and unconditionally.
The increasing concave order can accomodate this situation, as it allows that the conditional
CDFs cross in the upper tail. To estimate the conditional distributions, a subagging version
of the �icv-order restricted estimator with 50 subsamples of half of the total sample size
is applied. From the estimated distributions, the mean, median, and mode functional are
then computed, with the mode taken as the location of the largest jump of the conditional
CDFs, which are piecewise constant stepfunctions. Panels (c) and (d) of Figure 3 display
estimated quantile curves and the three functionals depending on the income expectation.

For the mean functional, the forecast rationality test of Dimitriadis et al. (2019) yields
a p-value of 1.7 ·10−12, computed with the R package fcrat available on https://github.
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Figure 3: (a) Expected and realized income in the case study. (b) ECDF of the realized
income for binned expectations. The boundaries of the bins are the 0.1 to 0.4-quantile of
the income expectations. (c) Estimated quantile curves (levels 0.1, 0.3, 0.5, 0.7, 0.9). (d)
Mean, median and mode functional computed from the estimated conditional distributions
(for expectations and incomes below 200’000).
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com/Schmidtpk/fcrat. As can be seen in Figure 3, the conditional mean curve lies above
the bisector for expectations below 25’000, and below the bisector when the expectation
exceeds 75’000, so there is indeed a systematic deviation of the income expectation from the
estimated mean. For the median and the mode functional, the p-values of the rationality
test are 4.5 · 10−8 and 0.93, respectively. This huge difference in the p-values is in contrast
to the curves in Figure 3 (d), where the expected income does not seem to deviate system-
atically from either functional. A simulation reveals that for data where the outcome Y
may be exactly equal to X, the p-value for the median should indeed be interpreted with
care. By taking the estimated medians as new income expectation and simulating new
observations from the estimated conditional distributions, one obtains new data sets where
the income expectation equals the median of the underlying distribution by construction.
Over 10’000 simulations, the rejection rate for the median rationality test is 0.03, 0.11 and
0.19 at the levels 0.01, 0.05, and 0.10 – the test is anticonservative. The reason for the
non-validity of the median rationality test is likely to be the discreteness in the data: The
realized incomes only take 526 distinct values with a sample size of n = 3161, and in 22%
of the cases the income expectation is exactly equal to the realized income. Hence the
condition E(1{Y ≥ X} | X) = 0.5 may be violated even if X is equal to the conditional
median due a point mass of the conditional distributions at the expected income X.

In conclusion, the�icv-constrained estimator suggests that both median and mode could
rationalize the income expectations, and it confirms that the income expectations should
not be interpreted as a mean forecast.

7 Discussion

The estimators proposed in this article may extended to more complex settings than uni-
variate covariates X. One avenue for future work is to consider partially ordered instead of
real-valued covariates. A partial order relation � on a space X satisfies the same proper-
ties as the usual order of real numbers (transitivity, reflexivity, antisymmetry), but not all
elements of X need to be comparable; an example is the componentwise order of vectors
on Rp. To construct estimators in this setting, it suffices to slightly modify the definition

[M̃X1(y), . . . , M̃Xn(y)] = argmin
η∈Rn: ηi≥ηj if Xi�Xj

n∑
i=1

[ηi − (y − Yi)+]2

from Section 2, with the only difference that Xi, Xj ∈ Rp in the argmin are now compared
with respect to the partial order �. A similar min-max formula as in (1) also applies in
this case (see Barlow et al. (1972)), so that Proposition 2.1 continues to hold. The compu-
tation of [M̃X1(y), . . . , M̃Xn(y)] is still feasible since it is a quadratic minimization problem
with linear constraints, for which most statistical software programs provide efficient algo-
rithms. While consistency with partially ordered covariates has been proved for estimation
under first order stochastic dominance constraints (Henzi et al., 2021c), it remains an open
problem for the orders considered in this article.

The generalization to partially ordered covariates is of interest as it allows to construct
nonparametric distributional regression models with shape and scale parameters. In the
spirit of Henzi et al. (2021c), assume that we are interested in estimating the conditional
distribution of a variable Y ∈ R given a collection of point forecasts s ∈ Rp, say, predictions
from a survey of experts or from different numerical models. This conditional distribution
provides a corrected, re-calibrated version of the forecasts. An effective approach is to
model L(Y | S = s) with Gaussian distributions N (a+ bs̄, c+ dσ(s)2), where s̄ and σ(s)2

are the mean and variance of the point forecasts s, respectively, and the parameters are
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estimated on training data of past forecasts and observations. Gneiting et al. (2005) apply
this approach in weather forecasting, and Gneiting and Thorarinsdottir (2010) a slightly
more sophisticated model in inflation prediction. When b, d > 0, which usually the case or
even imposed (Gneiting et al., 2005), the distributions N (a+ bs̄, c+ dσ(s)2) are increasing
in the �icx-order when the vector x = (s̄, σ(s)) ∈ R2 increases componentwise. Hence, the
estimator with �icx-order constraints and covariate vector (s̄, σ(s)) could provide a flexible
nonparametric alternative to such a parametric location-scale model.

A further potential extension are distributional single index models in the spirit of Henzi
et al. (2021b), where the covariate X itself is derived from a higher dimensional covariate
Z with some dimension reducing function θ, such as X = θ(Z) = α>Z for α,Z ∈ Rp.
Henzi et al. (2021b) have shown that when the conditional CDFs P(Y ≤ y | Z) of Y
only depend on Z via θ(Z), and when these distributions are increasing in first order
stochastic dominance as θ(Z) increases, then the combination of a consistent estimator θ̂n
for θ and a shape constrained estimator applied to (θ̂n(Xi), Yi), i = 1, . . . , n, may again
yield a consistent estimator of the conditional CDFs. It is an open question whether similar
results hold for the increasing concave and convex order.
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A Greatest convex minorants

Let I ⊆ R be an interval and f : I → R a function. The greatest convex minorant of f is
the pointwise greatest convex function g such that g(x) ≤ f(x) for all x ∈ I. It exists if and
only if f can be bounded from below by an affine linear function, and if the greatest convex
minorant exists, it is unique since the pointwise supremum of convex functions is again
convex. By the same reason, if f1 and f2 are functions with greatest convex minorants g1
and g2, then f1(x) ≥ f2(x) for all x implies that also g1 ≥ g2.

A standard result about isotonic regression (see e.g. Robertson et al., 1988, Theorem
1.2.1) states that the isotonic regression of z1, . . . , zr with weights w1, . . . , wr > 0, that is,
the minimizer of

∑r
i=1wi(θi − zi)2 over all θ1 ≤ · · · ≤ θr, equals the left-hand slope of the

greatest convex minorant to the function that results from linearly interpolating

(0, 0),

(
k∑
i=1

wi,
k∑
i=1

wkzk

)
, k = 1, . . . , r.

This result allows to describe right-hand slope of the greatest convex minorant of any
piecewise linear function with finitely many knots.

Lemma A.1. Let f : [t1, tk]→ R be piecewise linear with knots at t1 < · · · < tk and let g
be its greatest convex minorant. Then the right-hand slope of g at t1, . . . , tk−1 is given by
the isotonic regression of [f(ti+1)− f(ti)]/[ti+1− ti] with weights ti+1− ti, i = 1, . . . , k− 1.

The following lemma is known as Marshall’s Inequality.

Lemma A.2. Let I ⊆ R be an interval and f : I → R a function, and let g be the greatest
convex minorant of f and h : I → R any convex function. Assume that ‖f − h‖∞ < ∞,
where ‖ · ‖∞ is the usual supremum norm of functions. Then, ‖g − h‖∞ ≤ ‖f − h‖∞.

Proof. Let ε = ‖f −h‖∞. The function h̃(x) = h(x)− ε is convex and satisfies f(x) ≥ h̃(x)
for all x ∈ I by definition of ε. This and the definition of g imply that f(x) ≥ g(x) ≥ h(x)−ε
for all x ∈ I. Since also f(x)− h(x) ≤ ε by the definition of ε, this yields

−ε ≤ g(x)− h(x) ≤ f(x)− h(x) ≤ ε,

and so ‖g − h‖∞ ≤ ε = ‖f − h‖∞.
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B Proofs of theoretical results

Some proofs rely on properties of greatest convex minorants, which are stated in Section
A.

Proof of Proposition 2.1. Formula (1) in the article shows that M̃xi(y) is decreasing in i
and increasing in y when the respective other argument is fixed, and

M̃xi(y) = 0, y ≤ y1, M̃xi(ym + t) = M̃xi(ym) + t, t > 0. (5)

In particular, it follows that the greatest convex minorant M̂xi of M̃xi exists. For k, j ∈
{1, . . . , d} with k ≤ j, the functions y 7→

∑j
s=k wshs(y)/(

∑j
s=k ws) are piecewise linear

with finitely many knots, a property which is preserved when taking pointwise maxima
and minima of finitely many functions. Therefore, the M̃xi are also piecewise linear. For
any i ∈ {1, . . . , d}, y ∈ R and t > 0,

0 ≤ M̃xi(y + t) = min
k=1,...,i

max
j=k,...,d

1∑j
s=k ws

j∑
s=k

wshs(y + t)

≤ min
k=1,...,i

max
j=k,...,d

1∑j
s=k ws

j∑
s=k

ws[hs(y) + t] = M̃xi(y) + t,

so 0 ≤ [M̃xi(y + t) − M̃xi(y)]/t, and hence M̂xi(y) is increasing in y. Lemma A.1 and
(5) together with the inequality [M̃xi(y + t) − M̃xi(y)]/t ≤ 1 imply that F̂xi ∈ [0, 1] with
F̂xi(y) = 0 for y < y1 and F̂xi(y) = 1 for y ≥ ym, and F̂xi is continuous from the right and
increasing because is is the right-hand derivative of a convex function. Finally, M̂xi(y) is
decreasing in i because M̃xi(y) is pointwise decreasing in i for all y; see Section A.

Proof of Proposition 3.1. The proof is similar to the proof of Corollary 1 in Dümbgen et al.
(2004). With (cn)n∈N from (A), define An = {supy∈R, x∈In |M̃n;x(y)−Mx(y)| < cn}. Then
limn→∞ P(An) = 1, and in the following derivations, assume that the inequality in An

holds. In case (i), let vn = c
1/(1+β)
n . For x ∈ In, by convexity of M̂x(·),

M̂n;x(y)− M̂n;x(y − vn)

vn
≤ F̂n;x(y) ≤ M̂n;x(y + vn)− M̂n;x(y)

vn
,

and the same property holds for Fx and Mx instead of F̂n;x and M̂n;x. The function Mx(·)
is convex, so due to Lemma A.2,

sup
y∈R
|M̂n;x(y)−Mx(y)| ≤ sup

y∈R
|M̃n;x(y)−Mx(y)|.

Combining these facts yields, for any y ∈ Jn,

F̂n;x(y) ≥ M̂n;x(y)− M̂n;x(y − vn)

vn

≥ Mx(y)− |M̂n;x(y)−Mx(y)| −Mx(y − vn)− |M̂n;x(y − vn)−Mx(y − vn)|
vn

≥ Fx(y − vn)− 2cn/vn

≥ Fx(y)− Cvβn − 2cn/vn = Fx(y)− (2 + C)cβ/(1+β)n ,
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and similarly

F̂n;x(y) ≤ M̂n;x(y + vn)− M̂n;x(y)

vn
≤ Fx(y) + (2 + C)cβ/(1+β)n .

Thus |F̂n;x(y)−Fx(y)| ≤ (2 +C)c
β/(1+β)
n with on An for x ∈ In and y ∈ Jn, for each n ∈ N.

Under (ii), for y ∈ Z and x ∈ In,

F̂n;x(y) = M̂n;x(y + 1)− M̂n;y(y) ≤Mx(y + 1)−Mx(y) + 2cn = Fx(y) + 2cn,

and analogously F̂n;x(y) ≥ Fx(y)− 2cn, which gives |F̂n;x(y)− Fx(y)| ≤ 2cn For y ∈ R \ Z,
the same bound is valid since Fx(y) = Fx(byc) and F̂n;x(y) = F̂n;x(byc), where the latter
holds if M̃n;x(y) and M̂n;x(y) are only computed at y ∈ Z and interpolated linearly.

The proof of Theorem 3.2 requires several auxiliary results.

Proposition B.1. Let Z1, . . . , Zk be random variables in a non-degenerate interval [a, b] ⊂
R. Then there exists a universal constant M ≤ 25/2e such that for all ε > 0,

P

(
sup
z∈R

1√
k

∣∣∣ k∑
i=1

(z − Zi)+ − E[(z − Zi)+]
∣∣∣ ≥ ε) ≤M exp

(
−2ε2

(b− a)2

)
Proof. Let Fi be the cumulative distribution function of Zi. The assumption Fi(z) = 0 for
s < a implies that E[(z − Zi)+] =

∫ z
a Fi(z) ds, so

1√
k

∣∣∣ k∑
i=1

(z − Zi)+ − E[(z − Zi)+]
∣∣∣ =

1√
k

∣∣∣ k∑
i=1

∫ z

a
1{Zi ≤ s} − Fi(s) ds

∣∣∣
≤ 1√

k

∫ z

a

∣∣∣ k∑
i=1

1{Zi ≤ s} − Fi(s)
∣∣∣ ds

≤ 1√
k

∫ z

a
sup
u∈R

∣∣∣ k∑
i=1

1{Zi ≤ u} − Fi(u)
∣∣∣ ds

=
1√
k

(b− a) sup
u∈R

∣∣∣ k∑
i=1

1{Zi ≤ u} − Fi(u)
∣∣∣.

Theorem 4.6 of Mösching and Dümbgen (2020b) now yields the result.

For γ > 0 and z ∈ R, let tγ(z) = min(max(−γ, z), γ). The following inequality, which
follows by simple case distinctions, will be applied several times: For all y, z ∈ R,

|(y − z)+ − (y − tγ(z))+| ≤ (γ + z)− + (z − γ)+, (6)

where (x)− = max(0,−x) and (x)+ = max(0, x) for x ∈ R.

Lemma B.2. Let Z be a random variable such that for some z0 > 0 and all z ≥ z0,

P(|Z| ≥ z) ≤

{
z−λ, for some λ > 1, or

exp(−λz), for some λ > 0.

Then for γ ≥ z0,

E
(

sup
z∈R
|(z − Z)+ − (z − tγ(Z))+|

)
≤

{
γ−λ+1/(λ− 1), or

exp(−λγ)/λ.
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Proof. Replacing z by the random variable Z in (6) implies that for all γ ≥ 0,

E
(

sup
z∈R
|(z − Z)+ − (z − tγ(Z))+|

)
≤ E[(γ + Z)− + (Z − γ)+].

To compute the expected value in the upper bound, let F denote the cumulative distribution
function of Z. Then,

E[(γ + Z)−] =

∫ −γ
−∞

F (z) ds, E[(Z − γ)+] =

∫ ∞
γ

1− F (z) ds.

This implies

E
(

sup
z∈R
|(z − Z)+ − (z − tγ(Z))+|

)
≤
∫ ∞
γ

F (−s) + (1− F (s)) ds =

∫ ∞
γ

P(|Z| ≥ s) ds.

In the first case, for γ ≥ z0, it holds
∫∞
γ P(|Z| ≥ s) ds ≤ γ−λ+1/(λ− 1). In the second case,

the upper bound is exp(−λγ)/λ.

Proposition B.1 and Lemma B.2 allow to derive an analogous result to Corollary 4.7
of Mösching and Dümbgen (2020b), for which some additional notation is required. For
y ∈ R and r, s ∈ {1, . . . , n}, r ≤ s, define wrs = s− r + 1 and

Mrs(y) =
1

wrs

s∑
i=r

(y − Yni)+, M̄rs(y) =
1

wrs

s∑
i=r

E[(y − Yni)+].

Recall that the estimator M̃n;xi has the representation

M̃n;xi(y) = min
k=1,...,i

max
j=k,...,d

1∑j
s=k ws

j∑
s=k

wshs(y),

for the distinct values x1 < · · · < xd of Xn1, . . . , Xnn, wi = #{j ≤ n : Xnj = xi}, and

hi(y) =
1

wi

∑
j:Xj=xi

(y − Ynj)+, i = 1, . . . , d.

For fixed i ∈ {1, . . . , d}, let 1 ≤ r(i) ≤ s(i) ≤ d be indices such that

M̃n;xi(y) =
1∑s(i)

k=r(i)wk

s(i)∑
k=r(i)

wkhk(y).

Assuming Xn1 ≤ · · · ≤ Xnn, with r̃(x) = min{j ≤ n : Xnj = xr(i)}, s̃(x) = max{j ≤ n :

Xnj = xr(i)}, the estimator M̃n;xi(y) equals

M̃n;xi(y) =
1

s̃(i)− r̃(i) + 1

s̃(i)∑
k=r̃(i)

(y − Ynk)+.

This implies that

max
1≤r≤s≤d

∥∥∥∥∥ 1∑s
k=r wk

s∑
k=r

wk(hk −Mxk)

∥∥∥∥∥
∞

≤ max
1≤r≤s≤n

‖Mrs − M̄rs‖∞,

and an asymptotic upper bound for max1≤r≤s≤n ‖Mrs − M̄rs‖∞ is derived below.

23



Proposition B.3. Let Rn = max1≤r≤s≤nw
1/2
rs ‖Mrs − M̄rs‖∞. Then for any D > 2,

lim
n→∞

P
(
Rn ≤ D log(n)1/2γn

)
= 1,

where

γn =

{
(n log(n))1/λ, under (P),

2 log(n)/λ, under (E).

Proof. For γ > 0, define

u(γ) =

{
γ−λ+1/(λ− 1), under (P),

exp(−λγ)/λ, under (E),
p(γ) =

{
γ−λ, under (P),

exp(−λγ), under (E).

By Lemma B.2, for any y ∈ R and γ ≥ y0,

1

wrs

∣∣∣ s∑
i=r

E[(y − Yni)+]− E[(y − tγ(Yni))+]
∣∣∣ ≤ u(γ).

Also by (P) or (E) and by (6),

P

(
sup
y∈R
|(y − Yni)+ − (y − tγ(Yni))+| > 0

)
≤ P(|Yni| ≥ γ) ≤ p(γ).

This implies that the events

Bn =

{
sup

y∈R,i=1,...,n
|(y − Yni)+ − (y − tγ(Yni))+| = 0

}

satisfy P(Bn) ≥ 1 − np(γ). Let γMrs and γM̄rs be defined as Mrs and M̄rs but with the
truncated variables tγ(Yni) instead of Yni. By the above considerations, conditional on Bn,
for any 1 ≤ r ≤ s ≤ n,

‖Mrs − M̄rs‖∞ = sup
y∈R

1

wrs

∣∣∣ s∑
i=r

(y − Yni)+ − E[(y − Yni)+]
∣∣∣ ≤ ‖ γMrs − γM̄rs‖∞ + u(γ)

Proposition B.1 implies that

P

(
sup
y∈R

w1/2
rs | γMrs(y)− γM̄rs(y)| ≥ ε

)
≤M exp

(
−2ε2

(2γ)2

)
.

Replace now γ by

γn =

{
[n log(n)]1/λ, under (P),

2 log(n)/λ, under (E).

This yields

n · p(γn) =

{
n[n log(n)]−λ/λ = log(n)−1,

n exp(−2λ log(n)/λ) = n−1,

and therefore limn→∞ P(Bn) = 1. Also,

n1/2 · u(γn) =

{
n1/2[n log(n)](1−λ)/λ/(λ− 1) = n−1/2+1/λ log(n)1/λ−1/(λ− 1),

n1/2 exp(−2λ log(n)/λ)/λ = n−3/2/λ,
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which gives limn→∞ n
1/2 · un = 0, using λ > 2 in the first case. For δ > 0, define εn =

2(1 + δ) log(n)1/2γn. Then, for n large enough such that n1/2u(γn) ≤ δ log(n)1/2γn, and by
conditioning on Bn,

P(Rn ≥ εn) ≤
∑

1≤r≤s≤n
P(w1/2

rs ‖Mrs − M̄rs‖∞ ≥ εn)

≤
∑

1≤r≤s≤n
P
(
w1/2
rs ‖ γnMrs − γnM̄rs‖∞ + w1/2

rs u(γn) ≥ εn
)

≤
∑

1≤r≤s≤n
P
(
w1/2
rs ‖ γnMrs − γnM̄rs‖∞ + n1/2u(γn) ≥ εn

)
≤

∑
1≤r≤s≤n

P
(
w1/2
rs ‖ γnMrs − γnM̄rs‖∞ ≥ 2(1 + δ/2) log(n)1/2γn

)
≤ Mn(n+ 1)

2
exp

(
−8(1 + δ/2)2 log(n)γ2n

(2γn)2

)
≤ M

2
exp(2 log(n+ 1)− 2(1 + δ/2)2 log(n))→ 0, n→∞.

Proof of Theorem 3.2, discrete setting (K). For j = 1, . . . ,K, let Aj = {i ∈ {1, . . . , n} :
Xni = j}, and define M̌n;j =

∑
i∈Ai

(y − Yni)+/#Ai. Recall that M̃n;j(y) is the antitonic
regression of (Xni, (y − Yni)+), i = 1, . . . , n. Corollary B of Robertson et al. (1988, p. 42)
implies that for all y ∈ R,

max
j=1,...,K

|Mj(y)− M̃n,j(y)| ≤ max
j=1,...,K

|Mj(y)− M̌n,j(y)|

This gives
max

j=1,...,K
‖Mj − M̃n,j‖∞ ≤ max

j=1,...,K
‖Mj − M̌n,j‖∞.

Assume that Xn1 ≤ · · · ≤ Xnn, and define k(j) = max{k ∈ {1, . . . , n} : Xnk = j} for
j = 1, . . . ,K, and k(0) = 0. Then #Aj = k(j)− k(j − 1), and by assumption (K),

min
j=1,...,K

k(j)− k(j − 1)

n
=

#Aj
n
≥ p/2.

with asymptotic probability one. Since M̌n;j(y) = M(k(j−1)+1),k(j)(y) and w(k(j−1)+1),k(j) =
#Aj , Proposition B.3 implies that, with asymptotic probability one for any D > 2 and
j = 1, . . . ,K,

‖M̌n;j −Mj‖∞ ≤ (w(k(j−1)+1),k(j))
−1/2Rn ≤

(np
2

)−1/2
Rn ≤ Dγn

(
2

p

)1/2( log(n)

n

)1/2

.

With D =
√

8 > 2, the upper bound equals

cn =

{
4p−1/2n−1/2+1/λ log(n)1/2+1/λ, under (P),

8p−1/2λ−1n−1/2 log(n)3/2, under (E).

Proof of Theorem 3.2, continuous setting (C1), (C2). With Proposition B.3, one can ap-
ply the same strategy of proof as for Theorem 3.3 in Mösching and Dümbgen (2020b). Let
δn be a sequence such that limn→∞ δn = 0 and limn→∞ nδn/ log(n) = ∞. By assumption
(C1) and by the result in Section 4.3 of Mösching and Dümbgen (2020b), for all subintervals
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I ⊆ I of length at least δn and any q ∈ (0, p), the inequality {i ≤ n : Xni ∈ I} ≥ qnδn
holds with asymptotic probability one. Let x ∈ I such that x− δn ∈ I, and define

r(x) = min{i ≤ n : Xni ≥ x− δn}, j(x) = max{i ≤ n : Xni ≤ x}.

By the above considerations, with asymptotic probability one, r(x) and j(x) are well-
defined, satisfy r(x) ≤ j(x), x − δn ≤ Xnr(x) ≤ Xnj(x) ≤ x, and #{j ≤ n : Xnj ∈
[x− δn, x]} ≥ qnδn. Therefore, for any y ∈ R,

M̃n;x(y)−Mx(y) ≤ M̃n;xj(x)(y)−Mx(y)

= min
k=1,...,i

max
j=k,...,d

1∑j
s=k ws

j∑
s=k

wshs(y)−Mx(y)

≤ max
n≥s≥j(x)

Mr(x)s(y)−Mx(y)

≤ (qnδn)−1/2Rn + max
n≥s≥j(x)

M̄r(x)s(y)−Mx(y)

≤ (qnδn)−1/2Rn +Mxr(x)(y)−Mx(y) (7)

≤ (qnδn)−1/2Rn + Lδn, (8)

using antitonicity of t 7→ M̃t(y) in the first line, equation (1) from the article in the second
line, and antitonicity of t 7→ Mt(y) in the second-last step. An analogous argument for
Mx(y)− M̃n;x(y) and the asymptotic bound for Rn in Proposition B.3 yield

|M̃n;x(y)−Mn,x(y)| ≤ (qnδn)−1/2 ·D log(n)1/2γn + Lδn.

forD > 2. The convergence rates of these two summands are balanced if δn = (log(n)/n)1/3γ
2/3
n ,

and for D =
√

8 and q = p/2, the upper bound equals

cn =

{
[4p−1/2 + L]n−1/3+2/(3λ) log(n)1/3+2/(3λ), under (P),

(2/λ)2/3[4p−1/2 + L]n−1/3 log(n), under (E).

If Mx(y) is constant in x ∈ I for all y, then the difference Mxr(x)(y)−Mx(y) in (7) equals

zero, and the term Lδn in (8) disappears. In that case, one can set δn = log(n)−1, which
again with D =

√
8 and q = p/2 yields the upper bound

Dq−1/2n−1/2 log(n)1/2γn = 8p−1/2λ−1 log(n)2n−1/2

under (E), which is valid for all x such that x± log(n)−1 ∈ I.

C Convergence rates with interpolation

In Section 2 in the manuscript, it is suggested to estimate M̃x(y) and M̂x(y) only on a
finite grid t1, . . . , tk. Below is a proof that this indeed does not influence the convergence
rates, provided that t1 = y1, tk = ym, and that the grid is fine enough.

Proof that convergence rates are valid under interpolation. Assume that (A) holds, i.e.

lim
n→∞

P

(
sup

y∈Jn,x∈In
|M̃n;x(y)−Mx(y)| ≥ cn

)
= 0
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for some sequences of sets In, Jn ⊆ R. Let m̃n;x be the linear interpolation of M̃n;x computed
on this grid. That is, for y ∈ (ti, ti+1], set m̃n;x(y) = λM̃x(ti) + (1 − λ)M̃n;x(ti+1) with
λ = (ti+1 − y)/(ti+1 − ti), and m̃n;x(y) = 0 = M̃n;x(y) for y ≤ y1 = t1 and m̃n;x(y) =
M̃n;x(ym) + (y− ym) = M̃n;x(tk) + (y− tk) for y ≥ ym = tk. Then, since Mx(·) is Lipschitz
continuous with Lipschitz constant 1,

|m̃n;x(y)−Mx(y)| ≤

max
(
|M̃n;x(ti)−Mx(ti)|+ |ti − y|, |M̃n;x(ti+1)−Mx(ti+1)|+ |ti+1 − y|

)
for all y ∈ R. Provided that supi=1,...,k−1 |ti − ti+1| ≤ cn, this implies supy∈Jn |m̃n;x(y) −
Mx(y)| ≤ 2cn, so the same convergence rate applies if M̃x(y) and M̂x(y) are evaluated on a
sufficiently fine grid. If Yn1 < · · · < Ynn are independent and admit a density bounded away
from zero on J ⊇ Jn, then the results of Section 4.3 in Mösching and Dümbgen (2020b)
imply that supi=1,...,n−1 |Yni − Yn(i+1)| ≤ cn holds with asymptotic probability one for the
cn from Theorem 3.2 in the manuscript, so it is admissible in this case to take the observed
values y1, . . . , ym as the grid.

D Additional figures for Section 4

Figure 4 shows the same comparison as Figure 1 in the manuscript for n = 1000 and
n = 1500. In Figures 5 and 6, different variants of subagging are compared. Using more
than n/2 of the total data in subsamples is generally not better than n/2 or less. A higher
number of subsamples improves the subagging variants of the estimators, but the effect
diminishes as the number of subsamples increases.
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Figure 4: Relative improvement in L1 distance and mean absolute error of quantile esti-
mates of the �icv- and �icx-order constrained estimator compared to the estimator under
first order stochastic dominance, for n = 1000 and n = 1500. The solid lines show the
improvement when the estimators are computed on the full sample, and the dashed lines
for a subagging variant with 50 subamples of size n/2.
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Figure 5: Relative improvement of subagging variants of the �icv- and �icx-constrained es-
timators (ICV/ICX) and of the estimator with first order stochastic dominance constraints
(FSD) compared to the version without subagging. The sample size is n = 1000 fraction
of data in each subsample is n/2 = 500.
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Figure 6: Relative improvement of subagging versions of �icv- and �icx-constrained esti-
mators (ICV/ICX) and of the estimator with first order stochastic dominance constraints
(FSD), compared to the variant with subsamples of size n/2. The sample size is n = 1000
and the number of subsamples is 50 for the variants with subagging.
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