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A random variable X is symmetric about 0 if X and −X have
the same distribution. There is a large literature on the estimation of a
distribution function (DF) under the symmetry restriction and tests for
checking this symmetry assumption. Often the alternative describes some
notion of skewness or one-sided bias. Various notions can be described by
an ordering of the distributions of X and −X. One such important ordering is
that P(0 < X ≤ x)−P(−x ≤ X < 0) is increasing in x > 0. The distribution
of X is said to have a Type II positive bias in this case. If X has a density f ,
then this corresponds to the density ordering f (−x) ≤ f (x) for x > 0. It is
known that the nonparametric maximum likelihood estimator (NPMLE) of
the DF under this restriction is inconsistent. We provide a projection-type
estimator that is similar to a consistent estimator of two DFs under uniform
stochastic ordering, where the NPMLE also fails to be consistent. The weak
convergence of the estimator has been derived which can be used for testing
the null hypothesis of symmetry against this one-sided alternative. It also
turns out that the same procedure can be used to estimate two cumulative
incidence functions in a competing risks problem under the restriction that
the cause specific hazard rates are ordered. We also provide some real life
examples.

1. Introduction. Let X be a random variable with the distribution function
(DF) F . A common assumption in many statistical analyses is that the distribution,
possibly after a transposition of the problem, is symmetric (about 0). Many
procedures are heavily dependent on this assumption. The literature contains a
large number of nonparametric tests for testing this assumption. Many of these
tests are variations of the sign test, Wilcoxon tests, Kolmogorov–Smirnov tests
or Cramér–von Mises tests [see Chapter 22 in Shorack and Wellner (1986)].
The simplest and commonest alternatives are one-sided or two-sided shifts. More
general alternatives can be obtained by introducing some ordering between the
subdistribution functions (SDFs),

F1(x) = F(0−) − F(−x−) and F2(x) = F(x) − F(0), x ≥ 0.(1.1)
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Note that

H(x) = F1(x) + F2(x), x ≥ 0,(1.2)

defines the DF of the life distribution, |X|, on [0,∞) if P (X = 0) = 0.
Dykstra, Kochar and Robertson (1995) considered the testing problems

H0 :F1(x) = F2(x) ∀x(1.3)

against the two alternatives H1 − H0 and H2 − H0, where

H1 :F2(x) ≥ F1(x) ∀x(1.4)

and

H2 :F2(x) − F1(x) is increasing in x ∀x.(1.5)

Throughout we use increasing (decreasing) for nondecreasing (nonincreasing).
Yanagimoto and Sibuya (1972) discuss the two notions of positive biasedness
represented by H1, referred to as Type I bias, and H2, referred to as Type II bias.
Dykstra, Kochar and Robertson (1995) consider only the discrete multinomial
problem where the observations are assumed to be restricted to a finite grid
symmetric about 0. Although their description is not couched in the language
of (1.4) and (1.5), it can be seen that they are the same as (1.4) and (1.5)
specialized to their discrete case. They obtain the nonparametric maximum
likelihood estimators (NPMLEs) under the three hypotheses and develop the
likelihood ratio tests, the test statistics having chi-bar squared (mixture of chi-
squares) distributions asymptotically. They also prove strong consistencies for
their estimators and point out that strong consistency still holds for the NPMLE
in the continuous case under Type I bias. However, it fails to hold under Type II
bias because the NPMLE assigns the mass 1/n at each observation, Xi , if Xi > 0,
but assigns the mass 1/2n at each of Xi and −Xi if Xi < 0.

A common way for Type II bias to occur is when a distribution with a symmetric
unimodal density shifts. In applications, these situations are frequently treated as
slippage problems under the assumption of normality. For example, the difference
in a paired comparison is often assumed to be a shifted normal. The assumption
of Type II bias greatly generalizes this distributional assumption, and at the same
time it improves on the purely empirical estimate as shown later. Our aim in this
paper is to provide a consistent estimator under Type II bias when F is continuous.
The estimator is a projection-type estimator, similar to those employed by Rojo
and Samaniego (1993), Mukerjee (1996) and Arcones and Samaniego (2000) for
estimating two distributions under uniform stochastic ordering, where the NPMLE
fails to be consistent, as shown by Rojo and Samaniego (1991) and Mukerjee
(1996). Kochar, Mukerjee and Samaniego (2000) have also used these ideas for
estimating a monotone mean residual life function. We show that the estimator
is strongly uniformly consistent. We also derive its weak convergence properties,
find confidence bands for F and develop tests for testing H0 against H2 − H0.
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In Section 2 we define our estimator under the order restriction in (1.5) and
prove its strong uniform consistency. In Section 3 we derive the asymptotic
properties of our estimator. In Section 4 we consider an application of these
methods to the estimation of two cumulative incidence functions (defined in that
section) under an ordering of the cause-specific hazard rates. It turns out that the
mathematical analysis of this problem can be borrowed entirely from Sections
2 and 3. We also consider the same problem in the presence of censoring. In
Section 5 we give some results of simulations. In Section 6 we give some real
life examples. In Section 7 we provide a discussion of our results.

2. Estimator and consistency. We consider the estimation of F under the
order restriction (1.5). To avoid trivialities we assume that P (X < 0) > 0.
Throughout we assume that X is continuous. If it has a density f, then our order
restriction is equivalent to the statement that f (x) ≥ f (−x) for all x ≥ 0. By our
continuity assumption,

H(x) = F1(x) + F2(x) = F(x) − F(−x) = P (−x ≤ X ≤ x), x ≥ 0.(2.1)

Define � by

�(x) = F2(x) − F1(x) = F(x) + F(−x) − 2F(0), x ≥ 0.(2.2)

We can write F in terms of H, � and F(0) by

F(x) =
{(

�(x) + H(x)
)
/2 + F(0), x ≥ 0,(

�(−x) − H(−x)
)
/2 + F(0), x < 0.

Let X1,X2, . . . ,Xn be a random sample of size n from F . Let Fn denote the usual
empirical DF of F . For x ≥ 0, define the following “empirical” estimates:

F1n(x) = Fn(0) − Fn(−x−) = 1

n

∑
i

I (−x ≤ Xi ≤ 0),

F2n(x) = Fn(x) − Fn(0) = 1

n

∑
i

I (0 < Xi ≤ x),

Hn(x) = F1n(x) + F2n(x) = Fn(x) − Fn(−x−) = 1

n

∑
i

I (−x ≤ Xi ≤ x),

�n(x) = F2n(x) − F1n(x) = Fn(x) + Fn(−x−) − 2Fn(0)

= 1

n

∑
i

[I (0 < Xi ≤ x) − I (−x ≤ Xi ≤ 0)].

(2.3)

For convenience, we have defined the estimators above to be right continuous.
Under our continuity assumption, with probability 1, �n(0) = Hn(0) = 0, and
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�n and Hn are step functions with jumps of 1/n at each |Xi |. The estimate Fn

may be recovered by

Fn(x) =
{(

�n(x) + Hn(x)
)
/2 + Fn(0), x ≥ 0,(

�n(−x−) − Hn(−x−)
)
/2 + Fn(0), x < 0.

(2.4)

Note that (Fn,F1n,F2n,�n,Hn) are unbiased estimators of (F,F1,F2,�,H).
Also note that

F(0) = F1(∞) = [H(∞) − �(∞)]/2 = [1 − �(∞)]/2.

Our order restriction corresponds to �(x) is increasing in x. Thus �(x) =
supy≤x �(y) for all x. Our restricted estimator of � employs the sample analog of
this. We define the restricted estimators by

H ∗
n (x) = Hn(x), x ≥ 0,

�∗
n(x) = sup

y≤x
�n(y), x ≥ 0,

F ∗
1n(x) = (

Hn(x) − �∗
n(x)

)
/2, x ≥ 0,(2.5)

F ∗
2n(x) = (

Hn(x) + �∗
n(x)

)
/2, x ≥ 0,

F ∗
n (x) =

{(
�∗

n(x) + Hn(x) + 1 − �∗
n(∞)

)
/2, x ≥ 0,(

�∗
n(−x−) − Hn(−x−) + 1 − �∗

n(∞)
)
/2, x < 0.

Note that F ∗
1n(∞) = [1 − �∗

n(∞)]/2 is our restricted estimator of F(0).

2.1. Consistency. The strong uniform consistency of F ∗
n follows essentially

from the Glivenko–Cantelli lemma and the triangle inequality of the sup-norm.

THEOREM 2.1. Let F ∗
n be defined as in (2.5). Then

sup
x

|F ∗
n (x) − F(x)| a.s.→ 0.

PROOF. Since Hn is the empirical DF of |X|, H ∗
n

a.s.→ H uniformly. We also
have

�n(x) = 1

n

∑
i

[I (0 < Xi ≤ x) − I (−x ≤ Xi < 0)] a.s.→ �(x),

uniformly for x ∈ [0,∞), from an application of the Glivenko–Cantelli lemma.
Since � is increasing on [0,∞), from the triange inequality of the sup-norm [see,
e.g., Lemma 2 in Rojo and Samaniego (1993)] we have

sup
x≥0

∣∣∣∣ sup
y≤x

�n(y) − sup
y≤x

�(y)

∣∣∣∣ ≤ sup
y≥0

|�n(y) − �(y)|.

Thus supx≥0 |�∗
n(x) − �(x)| a.s.→ 0. Putting these results in (2.5) and using the

continuity of �n and Hn completes the proof of the theorem . �
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3. Weak convergence. Let Zn = √
n[Fn − F ] on (−∞,∞), and let Z1n =√

n[F1n −F1], Z2n = √
n[F2n −F2], Z3n = √

n[�n −�] and Z4n = √
n[Hn −H ]

on [0,∞). Using the special construction in Theorem 3.1.1 in Shorack and Wellner
(1986) for convergence of the uniform empirical and its distributional equivalence
to an arbitrary empirical process in their Theorem 1.1.2, it can be seen that

(Zn,Z1n,Z2n,Z3n,Z4n)
w⇒ (Z,Z1,Z2,Z3,Z4)(3.1)

in (D(R),D(R),‖ · ‖) × (D(R+),D(R+),‖ · ‖)4, where D is the σ -algebra
generated by the finite-dimensional distributions. The limiting five-variate process
is a mean-zero Gaussian process with a.s. continuous paths. Here

Z1 = (Z4 − Z3)/2, Z2 = (Z4 + Z3)/2,

and

Z(x) =
{(

Z4(x) + Z3(x) − Z3(∞)
)
/2, x ≥ 0,(

Z3(−x) − Z4(−x) − Z3(∞)
)
/2, x < 0.

Their covariances can be computed using (2.3) and (2.4). The following is a partial
list with s ≤ t , the latter ones being derivable from the first:

Cov
(
Zi(s),Zj (t)

) = Fi(s)[δij − Fj(t)], i, j ∈ {1,2},
Cov

(
Z3(s),Z3(t)

) = H(s) − �(s)�(t),

Cov
(
Z4(s),Z4(t)

) = H(s)[1 − H(t)],
Cov

(
Z3(s),Z4(t)

) = �(s)[1 − H(t)],
Cov

(
Z4(s),Z3(t)

) = �(s) − H(s)�(t),(3.2)

Cov
(
Z1(s),Z3(t)

) = −F1(s)F2(t) − F1(s)[1 − F1(t)],
Cov

(
Z3(s),Z1(t)

) = −F2(s)F1(t) − F1(s)[1 − F1(t)],
Cov

(
Z2(s),Z3(t)

) = F2(s)[1 − F2(t)] + F2(s)F1(t),

Cov
(
Z3(s),Z2(t)

) = F2(s)[1 − F2(t)] + F1(∞)F2(t),

where δij = 1 if i = j and 0 otherwise. We know that Z(x)
d= B0(F (x)) and

Z4(x)
d= B0(H(x)), where B0 is a (standard) Brownian bridge. The process Z3

does not have a simple description in terms of a Brownian bridge or a Brownian
motion. However, if � is constant on [c, d], then{

Z3(y) − Z3(c) : c ≤ y ≤ d
} d= {

B
(
H(y) − H(c)

)
: c ≤ y ≤ d

}
,(3.3)

where B is a (standard) Brownian motion, and{
Z3(y) − Z3(c) : c ≤ y ≤ d

} ⊥ {{Z3(y) :y ≤ c}, {Z4(y) :y ≥ 0}},(3.4)
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where X ⊥ Y means X and Y are independent. This can be verified by computing
the covariances. In particular, when � ≡ 0, that is, when F is symmetric, Z3 is a
Brownian motion rescaled by H , and Z3 and Z4 are independent processes.

It is worth noting that, if F has the compact support [τL, τR], with τR ≥ −τL
by our order restriction, then the process Z ≡ 0 on (−∞, τL] and on [τR,∞),
Zi ≡ 0 on (−∞,0] for 1 ≤ i ≤ 4, Z4 ≡ 0 on [τR,∞), Z3 = Z3(τR) ≡ V ∼
N(0,1 − �2(∞)) on [τR,∞), and Z1 = −V/2 and Z2 = V/2 on [τR,∞).

Let

Z∗
n = √

n[F ∗
n − F ], Z∗

in = √
n[F ∗

in − Fi], i = 1,2,

and

Z∗
3n = √

n[�∗
n − �].

Note that

Z∗
1n = (Z4n − Z∗

3n)/2 and Z∗
2n = (Z4n + Z∗

3n)/2.

We consider the weak convergence of (Z∗
n,Z∗

1n,Z
∗
2n,Z

∗
3n,Z4n) on (−∞,∞)×

[0,∞)4. We first derive the weak convergence of Z∗
3n = √

n(�∗
n − �). Define the

functions l and u from [0,∞) to [0,∞) by

l(x) = inf[y ≤ x :�(y) = �(x)] and u(x) = sup[y ≥ x :�(y) = �(x)].
By continuity of �, the infimum (supremum) is actually a minimum [maximum,
if u(x) < ∞].

THEOREM 3.1. Let Z∗
3 (x) = supl(x)≤y≤x Z3(y), x ≥ 0. Then

Z∗
3n

w⇒ Z∗
3 on [0,∞).

PROOF. By Lindvall (1973) and Stone (1963), it is sufficient to prove the weak
convergence on [0, b] for all b > 0. Fix b > 0. For x ≤ b we have

Z∗
3n(x) = √

nmax
[

sup
l(x)≤y≤x

�n(y) − �(x), sup
y≤l(x)

�n(y) − �(x)

]

= √
nmax

[
sup

l(x)≤y≤x

(
�n(y) − �(y)

)
, sup
y≤l(x)

�n(y) − �(l(x))

]
.

By the continuous mapping theorem, the process

√
n

{
sup

l(x)≤y≤x

(
�n(y) − �(y)

)
: 0 ≤ x ≤ b

}
w⇒ Z∗

3 on [0, b].

Since Z3 has a.s. continuous paths, a path of Z∗
3 is a.s. left continuous with a jump

down at the fixed points {u(x)} when l(x) < u(x) < ∞, and is right continuous
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at 0 with a value of 0 at 0. We will show that the second term has the same limiting
distribution as

√
n(�n ◦ l − � ◦ l), and, since

√
n(�n ◦ l − � ◦ l)

w⇒ Z3 ◦ l

by the continuous mapping theorem, it is dominated by Z∗
3 . The paths of Z3 ◦ l are

similar to those of Z∗
3 except that they are constant on [l(x), u(x)] for all x, and

may jump up or down at u(x). Now, for 0 ≤ x ≤ b and arbitrary δ > 0,
√

n
(
�n(l(x)) − �(l(x))

)
≤ √

n sup
y≤l(x)

(
�n(y) − �(l(x))

)
≤ √

n sup
(l(x)−δ)∨0≤y≤l(x)

(
�n(y) − �(y)

)
∨ √

n sup
y≤(l(x)−δ)∨0

(
�n(y) − �(l(x))

)
≤ [√

n
(
�n(l(x)) − �(l(x))

) + w
(√

n(�n − �); δ
)]

∨ √
n sup

y≤(l(x)−δ)∨0

(
�n(y) − �(l(x))

)
,

where the modulus of oscillation,

w
(√

n(�n − �); δ
) = sup

{x,y∈[0,b] : |y−x|≤δ}
∣∣√n[�n(y) − �(y) − �n(x) + �(x)]∣∣,

satisfies

lim
δ→0

lim sup
n→∞

P
[
w

(√
n(�n − �); δ

) ≥ ε
] = 0 ∀ ε > 0.

Let τL be the left endpoint of the support of �. Then �n(l(x)) = �(l(x)) = 0 for
x ≤ τL. For x > τL,

√
n sup

y≤(l(x)−δ)∨0

(
�n(y) − �(x)

)
≤ √

n sup
y≤(l(x)−δ)∨0

(
�n(y) − �(y)

) + √
n
[
�

(
(l(x) − δ) ∨ 0

) − �(l(x))
]

= Op(1) + Dn(x, δ),

where the Op(1) term is bounded above by ‖Z3n‖ d→ ‖Z3‖ uniformly in x, and
DN(x, δ) → −∞ as n → ∞ uniformly on [a, b] for all τL < a ≤ b. Thus, the

process {Op(1)+Dn(x, δ) : 0 ≤ x ≤ b} p→ −∞ I (τL, b], which proves the claimed
convergence of the second term. �

THEOREM 3.2. The process

(Z∗
n,Z∗

1n,Z
∗
2n,Z

∗
3n,Z4n)

w⇒ (Z∗,Z∗
1 ,Z∗

2 ,Z∗
3 ,Z4)
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on (−∞,∞) × [0,∞)4, where

Z∗
1 = (Z4 − Z∗

3 )/2 and Z∗
2 = (Z∗

3 + Z4)/2 on [0,∞),(3.5)

and

Z∗(x) =
{(

Z∗
3(x) + Z4(x) − Z∗

3 (∞)
)
/2, x ≥ 0,(

Z∗
3(−x) − Z4(−x) − Z∗

3(∞)
)
/2, x < 0.

(3.6)

Also, for x ≥ 0 and for all t > 0,

P
(|Z∗

i (x)| > t
) = P

(|Zi(x)| > t
)
, i = 1,2,3.

PROOF. The proof of the first part follows from the weak convergence of the
unstarred process in (3.1) with a.s. continuous paths in the limit, Theorem 3.1 and
the continuous mapping theorem.

We first prove the second part for i = 3. Note that

Z∗
3(x) = Z3(l(x)) + sup

l(x)≤y≤x

[Z3(y) − Z3(l(x))].

Now,

Z3(l(x)) ∼
√

H(l(x)) − �2(x)U1,

where U1 ∼ N(0,1), and using (3.3) and (3.4), the second term is distributed as

sup
l(x)≤y≤x

B
(
H(y) − H(l(x))

) d= √
H(x) − H(l(x)) |U2|,(3.7)

where U1 and U2 are independent standard normals [Billingsley (1968), page 72].
We note that, if X and Y are independent mean-zero normals, then for t > 0,{∣∣X + |Y |∣∣ ≤ t

} = {|X + Y | ≤ t, Y ≥ 0} ∪ {|X − Y | ≤ t, Y < 0},
and Y

d= −Y , implying P (|X + |Y || ≤ t) = P (|X + Y | ≤ t). Thus, if U is a
standard normal, then

|Z∗
3 (x)| d=

∣∣∣√H(l(x)) − �2(x)U1 + √
H(x) − H(l(x)) |U2|

∣∣∣
d=

√
H(x) − �2(x) |U |

d= |Z3(x)|.
For i = 1, from (3.5) we have

2Z∗
1(x) = Z4(x) − Z3(l(x)) − sup

l(x)≤y≤x

[Z3(y) − Z3(l(x))].
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From (3.4), Z4(x) − Z3(l(x)) is a mean-zero normal, independent of the last term
on the right-hand side above. Writing 2F1(x) = H(x) − �(x) in (3.2) we get

Var
(
2Z1(x)

) − Var
(
Z4(x) − Z3(l(x))

) = H(x) − H(l(x)).

Using this, an analysis similar to the case of i = 3 shows that |Z∗
1 (x)| d= |Z1(x)|.

The proof the case i = 2 parallels that of the case i = 1. �

The second part of this theorem points out the interesting fact that, although
Z∗

i (x) may not be equal to Zi(x) in distribution for i = 1,2,3, their absolute
values are. In Section 3.1 we show that P (|Z∗(x)| > t) ≤ P (|Z(x)| > t) for all x

and for all t > 0, the proof of which is a little more complicated.

3.1. Asymptotic bias and MSE. It is well known that for any DF (or SDF) G,
and its empirical estimator Gn, E[√n supx |Gn(x) − G(x)|r ] is a bounded
sequence for all r > 0. Thus Theorem 3.2 allows us to compute the asymptotic
bias and the asymptotic MSE (AMSE) of the various estimators.

From (3.7), we have

E[Z∗
3(x)] =

√
2

π

√
H(x) − H(l(x)),

which is zero when l(x) = x and approaches the maximum possible value
of

√
(2/π) when � ≡ 0, corresponding to l(x) = 0 for all x and x → ∞. From

this we see that

E[Z∗
1(x)] = −

√
H(x) − H(l(x))

2π
and E[Z∗

2(x)] =
√

H(x) − H(l(x))

2π
.

Let x ≥ 0 and

L = inf[y :�(y) = �(∞)].
Since � is increasing, either L = l(x) or L > x. Note that L may be ∞. From (3.6),
we have

E[Z∗(x)] = 1√
2π

[√
H(x) − H(l(x)) − √

1 − H(L)
]
.

If � ≡ 0, implying l(x) = L = 0, then E[Z∗(x)] = −√
(1/2π) at x = 0, and

then monotonically increases to 0 as x → ∞. If H(L) = 1 then E[Z∗(x)] > 0
if l(x) < x, and is equal to zero otherwise. If �(x) is strictly increasing in x then

Z∗(x)
d= Z(x) for all x. A similar analysis applies in the case x < 0.

From the second part of Theorem 3.2, the AMSEs of F ∗
1n(x), F ∗

2n(x) and �∗
n(x)

are the same as those of F1n(x), F2n(x) and �n(x), respectively. We compare
E[Z∗(x)]2] and E[Z(x)]2 via the following theorem.
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THEOREM 3.3. For all x ∈ R, we have

P
(|Z∗(x)| > t

) ≤ P
(|Z(x)| > t

) ∀ t > 0,

where the inequality is strict if l(|x|) < |x| and 0 < F(x) < 1.

PROOF. First, assume that x ≥ 0. Now Z(x) is a mean-zero Gaussian process
whose variance can be computed from the following general result that holds for
x ≤ u ≤ ∞:

σ 2(u) ≡ E[Z4(x) + Z3(x) − Z3(u)]2

= H(x)[1 − H(x)] + [H(x) − �2(x)] + [1 − �2(u)]
+ 2

{[�(x) − H(x)�(x)]
− [�(x) − H(x)�(u)] − [H(x) − �(x)�(u)]}

= H(u) − [H(x) − �(u) + �(x)]2.

(3.8)

In comparing the tail probabilities of |Z(x)| and |Z∗(x)| we use the fact that, if
U is a mean-zero normal, then P (|U − b| > t) is increasing in b > 0 for all t > 0,
as can be verified by direct computation.

If L = l(x) then �(x) = �(∞) and Var(2Z(x)) = σ 2(∞) = 1 − H 2(x). Note
that

0 ≤ Z∗
3 (∞) − Z∗

3(x)

=
[
Z∗

3(x) ∨ sup
y≥x

Z3(y)

]
− Z∗

3(x)

= 0 ∨ sup
y≥x

[Z3(y) − Z∗
3 (x)]

≤ sup
y≥x

[Z3(y) − Z3(x)],

(3.9)

where the inequality is strict with positive probability if l(x) < x and F(x) < 1.

Using the independence of Z4(x) and supy≥x[Z3(y)−Z3(x)] from (3.4), we have

P
(|2Z∗(x)| > t

)
= P

(|Z4(x) − [Z∗
3 (∞) − Z∗

3(x)]| > t
)

≤ P

(∣∣∣∣Z4(x) − sup
y≥x

[Z3(y) − Z3(x)]
∣∣∣∣ > t

)
= P

(∣∣√H(x)[1 − H(x)]U1 − √
1 − H(x) |U2|

∣∣ > t
)

= P
(√

1 − H 2(x)|U | > t
)

= P
(|2Z(x)| > t

)
for all t > 0, where U, U1 and U2 are standard normals with U1 ⊥ U2.
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If L > x then, using Z∗
3(L)

d= Z3(L), �(L) = �(∞) and (3.9) with L in place
of x, we have

P
(
2|Z∗(x)| > t

)
= P

(|Z4(x) − [Z∗
3 (∞) − Z∗

3 (x)]| > t
)

≤ P
(|Z4(x) + Z3(x) − Z∗

3 (∞)| > t
)

= P
(∣∣Z4(x) + Z3(x) − Z3(L) − [Z∗

3 (∞) − Z∗
3 (L)]∣∣ > t

)
≤ P

(∣∣∣∣Z4(x) + Z3(x) − Z3(L) − sup
y≥L

[Z3(y) − Z3(L)]
∣∣∣∣ > t

)
= P

(∣∣σ(L)U1 − √
1 − H(L)|U2|

∣∣ > t
)

= P
(√

σ 2(L) + 1 − H(L)|U | > t
)

= P
(
σ(∞)|U | > t

) = P
(
2|Z(x)| > t

)
,

where U , U1 and U2 are standard normals with U1 ⊥ U2, and the first inequality
is strict with positive probability if l(x) < x.

The proof for the case x < 0 with F(x) > 0 is analogous, using

τ 2(u) ≡ E[Z3(−x) − Z4(−x) − Z3(u)]2

= H(u) − [H(−x) + �(u) − �(−x)]2

for −x ≤ u ≤ ∞ in place of σ 2(u) in (3.9). However, if x < 0 and F(x) = 0,
then Var(2Z(x)) = τ 2(∞) = 0; that is, Z∗(x)

d= Z(x)
d= 0, using the covariance

formulas in (3.2). Thus the strict inequality in the theorem holds only when
F(x) > 0 and l(−x) < −x. �

COROLLARY 3.4. For all x ∈ R, we have E[Z∗(x)]2 ≤ E[Z(x)]2, with strict
inequality if l(|x|) < |x| and F(x) > 0.

The proof follows directly from Theorem 3.3.

3.2. Asymptotic tests and confidence bands. We now consider some asymp-
totic inference procedures. Consider the test of H0 against H2 − H0 as given
by (1.3) and (1.5). Equivalent expressions for H0 and H2 are

H0 :�(x) = 0 ∀x ≥ 0 and H2 :�(x) is increasing in x ∀x ≥ 0.

Since � is nondecreasing, it has at least one point of increase if and only if

sup
x≥0

sup
0≤y≤x

[�(x) − �(y)] > 0,
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and a natural test criterion based on a sample of size n will be to reject H0 if the
test statistic

Tn ≡ sup
x≥0

sup
0≤y≤x

√
n[�n(x) − �n(y)] is large.

Since � ≡ 0 under H0,

Tn
d→ sup

x≥0
sup

0≤y≤x

[
B(H(x)) − B(H(y))

]
= sup

0≤v≤1

[
B(v) − inf

0≤u≤v
B(u)

]
d= sup

0≤v≤1
|B(v)|,

the last equality following from Lévy (1948). The limiting distribution is well
known [Billingsley (1968), page 79]. Hall and Wellner (1979) have shown that
the approximation of P [sup0≤v≤1 |B(v)| ≤ a] by 1 − 4(1 − �(a)) gives a three-
decimal place accuracy for a > 1.4; here � is the DF of a standard normal. Using
this approximation, it is easy to carry out a test for H0 against H2 −H0 at the usual
levels of significance.

One might also be interested in finding an asymptotic confidence interval for F

at a point or a confidence band over some interval [c, d]. Note that P (|Z∗(x)| ≤
t) ≥ P (|Z(x)| ≤ t) for all t > 0 by Theorem 3.3. Thus, if the usual confidence
region of the form Fn(·)± tn(·) in the unrestricted case is replaced by F ∗

n (·)± tn(·),
we get a conservative confidence region with the same confidence coefficient while
ensuring that the order restriction (1.5) holds for the point estimator of F .

4. An application in competing risks problems. In this section we apply
the theory developed to a problem in competing risks theory. Suppose that T is
the continuous lifetime of a unit with the DF H and the survival function (SF)
S = 1 − H , subject to several competing causes of failure. Let δ denote the cause
of failure; that is, {δ = j} is the event that the cause of failure is j . The cumulative
incidence function (CIF) due to cause j is a SDF, defined by

Fj (t) = P [T ≤ t, δ = j ], j = 1,2 . . . ,(4.1)

with H(t) = ∑
j Fj (t). The cause-specific hazard rate due to cause j is defined by

λj (t) = lim
�t↓0

1

�t
P [t ≤ T < t + �t, δ = j |T ≥ t], j = 1,2, . . . ,(4.2)

the overall hazard rate being λ(t) = ∑
j λj (t). The CIF Fj (t) may be written as

Fj(t) =
∫ t

0
λj (u)S(u) du.(4.3)
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Often it is reasonable to assume that the hazard rates are ordered, λ1 ≤ λ2,
implying risk two progresses faster than risk one. In the case of just two causes of
failure, it can be seen from (4.3) that this corresponds to �(t) ≡ F2(t) − F1(t) is
increasing in t . Aly, Kochar and McKeague (1994) have developed a test for

H0 :λ1 = λ2 against H2 − H0, where H2 :λ1 ≤ λ2.(4.4)

We carry out the corresponding estimation problem under the order restriction H2.
Let T1, T2, . . . , Tn be a random sample from H . For x ≥ 0, define the empirical
estimators of F1, F2, � and H by

Fjn(t) = 1

n

∑
i

I (Ti ≤ t, δi = j), j = 1,2,

Hn = F1n + F2n and �n = F2n − F1n.

(4.5)

Define the restricted estimators by

H ∗
n (t) = Hn(t), �∗

n(t) = sup
s≤t

�n(s),

F ∗
1n(t) = Hn(t) − �∗

n(t)

2
and F ∗

2n(t) = Hn(t) + �∗
n(t)

2
.

(4.6)

By comparing the estimators in (4.5) and (4.6) with those in (2.3) and (2.5), we
note that the mathematical structures of the estimators of F1, F2, � and H are
identical, although their interpretations are different. Thus, the restricted estimators
are strongly uniformly consistent; the normalized processes (Z1n,Z2n,Z3n,Z4n)

and (Z∗
1n,Z

∗
2n,Z

∗
3n,Z4n), defined with the same symbols as in Section 3, have

the same weak convergence properties as given by Theorems 3.1 and 3.2 (with
Z∗

n and Z∗ omitted); and the asymptotic bias and MSE of F ∗
1n, F ∗

2n, �∗
n and H ∗

n

are the same as given in Section 3.1.
The testing problem in (4.4) is the same as the one in Section 3.2, which

coincides with that obtained by Aly, Kochar and McKeague (1994). Since
|Z∗

i | and |Zi | have the same distributions by the second part of Theorem 3.2, by
replacing the confidence intervals or confidence bands of the form Fjn(·) ± tn(·)
for the unrestricted case by F ∗

jn(·) ± tn(·), j = 1,2, we get confidence intervals
and confidence bands with the same confidence coefficient, while ensuring that
the order restriction H2 in (4.4) holds.

4.1. Censoring case. We now consider the case when there is censoring in
addition to the two competing risks. We identify three causes of failure, δ = 0,

1 and 2, where {δ = 0} is the event that the subject was censored.
Let Ci denote the censoring time for the ith subject, and let Li = Ti ∧ Ci. We

assume that the Cis are continuous, and identically and independently distributed
(i.i.d.) with SF SC , and are independent of the life distributions {Ti}. We also
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assume that the right endpoint of the support of S, if finite, is less than or equal to
that of SC . For the ith subject we observe (Li, δi), the time and cause of failure of
the ith subject. Here the Lis are i.i.d. by our assumptions. Let π denote the SF of
the Lis; that is, π(t) = S(t)SC(t) for t ≥ 0, by our independence assumption.

For j = 1,2, let 	j be the cumulative cause-specific hazard function for
risk j and let 	 = 	1 + 	2 be the cumulative hazard function for the life
distribution T . Let Ŝn and ŜC denote the Kaplan and Meier (1958) estimators of
S and SC , respectively, chosen to be left continuous for technical reasons. Define
the (unrestricted) estimators of F1, F2, � = F2 − F1 and H = F1 + F2 by

Fjn(t) =
∫ t

0
Ŝn(u) d	jn(u), j = 1,2,

�n = F2n − F1n and Hn = F1n + F2n,

(4.7)

where 	jn is the Nelson–Aalen estimator of 	j [see, e.g., Fleming and Harrington
(1991)], given by

	jn =
n∑

i=1

I (Li ≤ t, δi = j)∑n
s=1 I (Ls ≥ Li)

, j = 1,2.

Although we are using the Kaplan–Meier estimator Ŝn for S = 1 − H in the
censored case, we continue using the same notation for the various other estimators
and related entities as in the uncensored case for notational simplicity. Note that
F1n, F2n, �n and Hn are right continuous. We define our restricted estimators
under the assumption that � is increasing by

H ∗
n = Hn, �∗

n(t) = sup
s≤t

�n(s),

F ∗
1n(t) = Hn(t) − �∗

n(t)

2
and F ∗

2n(t) = Hn(t) + �∗
n(t)

2
.

(4.8)

Strong uniform consistency of the restricted estimators on [0, b] for all b with
π(b) > 0 follows from that of the unrestricted ones [see, e.g., Shorack and Wellner
(1986), page 306, and the corrections posted on the website given in the reference]
under our assumptions, as in the proof of Theorem 2.1.

We define the normalized processes (Z1n,Z2n,Z3n,Z4n) and (Z∗
1n,Z

∗
2n,

Z∗
3n,Z4n) for the unrestricted and the restricted estimators, respectively, the same

way as in Section 2, and using the same symbols. In the censoring case we consider
the weak convergence of these processes on [0, b]4, where b is any constant with
π(b) > 0. As in the uncensored case,

(Z1n,Z2n,Z3n,Z4n)
w⇒ (Z1,Z2,Z3,Z4) on [0, b]4,

where (Z1,Z2,Z3,Z4) is a four-variate Gaussian process with a.s. continuous
paths.
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Lin (1997) considered the estimation of F1 only in the same context, but
without the order restriction. We follow the martingale formulation of the problem
similar to that given in Lin (1997). For s ≤ t ≤ b, letting d	′

j (u) = d	j(u)/π(u),
j = 1,2, and d	′(u) = d	(u)/π(u) for u ≥ 0, a partial list of the covariances is
given by

Cov
(
Z1(s),Z1(t)

)
=

∫ s

0
[1 − F1(s) − F2(u)][1 − F1(t) − F2(u)]d	′

1(u)

+
∫ s

0
[F1(u) − F1(s)][F1(u) − F1(t)]d	′

2(u),

Cov
(
Z1(s),Z2(t)

)
=

∫ s

0
[1 − F1(s) − F2(u)][F2(u) − F2(t)]d	′

1(u)

+
∫ s

0
[1 − F2(t) − F1(u)][F1(u) − F1(s)]d	′

2(u),

Cov
(
Z3(s),Z3(t)

)
=

∫ s

0
[S(u) − �(u) + �(t)][S(u) − �(u) + �(s)]d	′

1(u)

+
∫ s

0
[S(u) + �(u) − �(t)][S(u) + �(u) − �(s)]d	′

2(u),(4.9)

Cov
(
Z4(s),Z4(t)

)
= S(s)S(t)

∫ s

0
d	′(u),

Cov
(
Z3(s),Z4(t)

)
= S(t)

∫ s

0
[�(u) − S(u) − �(s)]d	′

1(u)

+ S(t)

∫ s

0
[�(u) + S(u) − �(s)]d	′

2(u),

Cov
(
Z4(s),Z3(t)

)
= S(s)

∫ s

0
[�(u) − S(u) − �(t)]d	′

1(u)

+ S(s)

∫ s

0
[�(u) + S(u) − �(t)]d	′

2(u).
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Lin’s (1997) derivation of the weak convergence of Z1n to Z1 can be adapted to
find the first two covariances in (4.9). Cov(Z2(s),Z2(t)) and Cov(Z2(s),Z1(t))

can be obtained by interchanging the subscripts in the first two formulas. The other
covariances follow from the facts that �n = F2n −F1n and Hn = F1n +F2n, using
2F1 = 1 − S − �, 2F2 = 1 − S + �, 1 − F1 = S + F2 and 1 − F2 = S + F1.

The weak convergence results for Z∗
3n and (Z∗

1n,Z
∗
2n,Z

∗
3n,Z4n) are the same

as in Theorem 3.1 and the first part of Theorem 3.2 (omitting Z∗
n and Z∗), using

the same arguments. To prove the second part of Theorem 3.2, suppose that � is
constant on [c, d] for some 0 ≤ c ≤ d ≤ b. Then, for c ≤ y ≤ x ≤ d , by splitting
the integrals

∫ y
0 (·) as

∫ c
0 (·) + ∫ y

c (·) in Cov(Z3(y),Z3(x)) and using the fact that
�(u) is the constant �(c), for c ≤ u ≤ x, we have

Cov
(
Z3(y) − Z3(c),Z3(x) − Z3(c)

) =
∫ y

c
S2(u) d	′(u)

so that {
Z3(y) − Z3(c) : c ≤ y ≤ d

} d= {
B

(
V (y) − V (c)

)
: c ≤ y ≤ d

}
,(4.10)

where B is a Brownian motion and

V (z) =
∫ z

0
S2(u) d	′(u), z ≤ b.

This result reduces to (3.3) when there is no censoring, that is, when π = S and
V = H . By computing covariances, we also get{

Z3(y) − Z3(c) : c ≤ y ≤ d
} ⊥ {{Z3(y) :y ≤ c}, {Z4(y) :y ≥ 0}},(4.11)

which is the same as (3.4), repeated for convenience.
Let σ 2(s) denote the variance of Z3(s), s ≤ b, and note that V (y) − V (s)

in (4.10) could also be written as σ 2(y) − σ 2(c). The proof of |Z∗
3 (x)| d= |Z3(x)|

follows by the same arguments as in Theorem 3.2 by changing Var(Z3(x)) from

H(l(x)) − �2(x) to σ 2(l(x)) and by changing (3.8) to read

sup
l(x)≤y≤x

B
(
V (y) − V (l(x))

) d=
√

σ 2(x) − σ 2(l(x))|U2|.

The proof of |Z∗
j (x)| d= |Zj (x)|, j = 1,2, follows in a similar manner. Summariz-

ing, we have the following theorem.

THEOREM 4.1. For any b > 0 with π(b) > 0,

(Z∗
1n,Z

∗
2n,Z

∗
3n,Z4n)

w⇒ (Z∗
1 ,Z∗

2 ,Z∗
3 ,Z4) on [0, b]4,
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where Z∗
1 = (Z4 −Z∗

3)/2 and Z∗
2 = (Z∗

3 +Z4)/2. Also, for x ≤ b and for all t > 0,

P
(|Z∗

j (x)| > t
) = P

(|Zj (x)| > t
)
, j = 1,2,3.

4.1.1. Asymptotic tests and confidence bands under censoring. The test in
Section 3.2 needs to be modified when there is censoring. In the martingale
formulation, when � = 0,

Z3n(x) = √
n

∫ x

0
Ŝn(u) d(	2n − 	1n)(u)

which converges weakly to Z3(x)
d= B(V (x)) on [0, b] as opposed to B(H(x)) in

the uncensored case. This greatly inflates the argument of B . However, a rescaled
version,

Ẑ3n(x) = √
n

∫ x

0

√
ŜC(u) Ŝn(u) d(	2n − 	1n)(u)(4.12)

converges weakly to B(H(x)), as may be verified by computing the covariances.
Thus, we reject H0 in favor of H2 − H0 if

sup
x≥0

sup
0≤y≤x

[
Ẑ3n(x) − Ẑ3n(y)

]
,

which converges in distribution to sup0≤y≤1 |B(y)|, is large.

As Lin (1997) has noted, the confidence bands for F1 and F2 using the
covariance formulas in (4.9) appear intractable. He has proposed several methods
of constructing confidence bands, centered at the estimators, F1n and F2n. From
Theorem 4.1, we can obtain confidence bands with the same confidence coefficient
by changing the centering to F ∗

1n and F ∗
2n, while retaining the order restriction.

5. Simulations. In this section we present a small set of a large number of
simulations we have carried out comparing the bias and MSE of the restricted
and the unrestricted estimators. Table 1 compares the simulated bias and MSE of
Fn and F ∗

n for the DF F of X ∼ N(0.1,1) at p-percentiles of the distribution using
a sample size of n = 30 with 10,000 replications.

In this simulation F(0)
.= 0.46, and the bias of F ∗

n (x) is largest around x = 0,
decreasing as |x| becomes larger, which is commensurate with our analysis in
Section 3.1. The gain in MSE by using the restricted estimator appears to be quite
substantial.

For the application in Section 4 we present some results in the uncensored
case using Block and Basu’s (1974) absolutely continuous bivariate exponential
distribution for our simulation study. If (X,Y ) has this distribution, then the joint
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TABLE 1
Comparison of bias (B) and MSE of Fn and F∗

n at
p-percentiles of X with n = 30 and 10,000 replications

p B(Fn) B(F∗
n ) MSE(Fn)

MSE(F ∗
n )

05 0.0002 0.0023 1.6994
10 0.0001 0.0020 1.7138
15 0.0008 0.0009 1.7618
20 0.0009 −0.0018 1.8262
25 0.0006 −0.0059 1.8410
30 0.0009 −0.0107 1.8780
35 0.0005 −0.0173 1.8585
40 0.0009 −0.0263 1.7668
45 0.0008 −0.0391 1.4769
50 0.0010 −0.0314 1.4689
55 0.0008 −0.0207 1.5102
60 0.0006 −0.0138 1.5123
65 0.0007 −0.0085 1.4718
70 0.0006 −0.0046 1.4412
75 0.0008 −0.0014 1.4415
80 −0.0003 0.0000 1.4286
85 −0.0003 0.0016 1.4395
90 −0.0000 0.0023 1.4700
95 0.0005 0.0024 1.5070

density is given by

f (x, y) =


α1α(α2 + α0)

α1 + α2
exp{−α1x − (α2 + α0)y}, x < y,

α2α(α1 + α0)

α1 + α2
exp{−α2y − (α1 + α0)x}, x > y,

where α0 ≥ 0, α1 > 0 and α2 > 0 are parameters, and α = α0 + α1 + α2. The
cause-specific hazard rates

λj (t) ≡ αjα

α1 + α2
, j = 1,2,

are proportional, and α0 is the dependence parameter, with X and Y independent if
and only if α0 = 0. Since the problem is scale independent, we have kept α1 fixed
at 1, and carried out the simulations for various values of α0 and α2, computed
the biases of all the estimators, and the ratios of the MSEs of the unrestricted to
those of the corresponding restricted estimators at all deciles of the distribution of
(X ∧ Y ). We present only the cases with α0 = 1 and α2 = 1.0,1.5,2.0 and 2.5.
The simulations are based on 10,000 iterations in each case.

With the exception of the case α0 = 1, α1 = 1, α2 = 1, q = 0.1 for
estimating F2, the restricted estimators give a small improvement in the MSE over
the unrestricted ones.
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TABLE 2
Comparison of bias (B) and MSE of F1n, F∗

1n, F2n and F∗
2n at q-quantiles of (X ∧ Y),

uncensored case with n = 30 and 10,000 replications

q B(F1n) B(F∗
1n) MSE(F1n)

MSE(F ∗
1n)

B(F2n) B(F∗
2n) MSE(F2n)

MSE(F ∗
2n)

α0 = 1, α1 = 1, α2 = 1.0

0.1 0.0001 0.0003 1.4263 0.0003 0.0117 0.9490
0.2 0.0001 0.0000 1.2876 0.0000 0.0193 1.0058
0.5 −0.0007 0.0002 1.1671 0.0002 0.0344 1.0687
0.8 0.0005 −0.0012 1.1529 −0.0012 0.0448 1.1129
0.9 0.0009 −0.0007 1.1572 −0.0006 0.0483 1.1147

α0 = 1, α1 = 1, α2 = 1.5

0.1 −0.0001 0.0001 1.4123 0.0001 0.0080 1.0266
0.2 0.0003 −0.0002 1.3002 −0.0002 0.0118 1.0928
0.5 −0.0002 −0.0012 1.2209 −0.0016 0.0147 1.1496
0.8 −0.0004 0.0001 1.2431 0.0001 0.0176 1.1933
0.9 −0.0002 −0.0004 1.2445 −0.0004 0.0179 1.2297

α0 = 1, α1 = 1, α2 = 2.0

0.1 −0.0003 0.0003 1.3738 0.0003 0.0061 1.0309
0.2 −0.0004 0.0012 1.2721 0.0010 0.0089 1.0708
0.5 0.0002 0.0013 1.1916 0.0013 0.0107 1.0899
0.8 0.0003 0.0002 1.1415 0.0003 0.0103 1.1035
0.9 0.0001 −0.0003 1.1347 −0.0003 0.0097 1.1182

α0 = 1, α1 = 1, α2 = 2.5

0.1 0.0000 −0.0001 1.3482 −0.0001 0.0044 1.0411
0.2 −0.0002 0.0000 1.2342 0.0000 0.0060 1.0722
0.5 −0.0009 0.0005 1.1194 0.0006 0.0072 1.0599
0.8 −0.0008 0.0001 1.0956 0.0002 0.0070 1.0704
0.9 −0.0006 −0.0002 1.0771 −0.0002 0.0066 1.0648

6. Examples. For our first example we consider the data in Table 3 from
Moore and McCabe (1993) giving the pretest and posttest scores on the MLA
listening test in Spanish for 20 high school teachers who attended an intensive
course in Spanish.

We assume that the 20 random variables X1, . . . ,X20 are i.i.d. with the DF F

that has a Type II positive bias, where Xi = (posttest score − pretest score) for
the ith subject. Estimating F by F ∗

n yields Table 4. Although the sample size is
only 20, if we use our asymptotic test in Section 3.2 for testing the efficacy of
the training method, we get the test statistic = 1.7888 with a p-value = 0.148.
A one-sided paired t-test for comparing the mean of pretest and the mean of
posttest yields a p-value of 0.029. Thus it appears that the assumption of normality
used in the t-test is crucial in concluding that the training method is effective.

For our second example we consider a set of mortality data [Hoel (1972)] of 99
RMF strain mice subjected to radiation in a laboratory experiment. Causes of death
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TABLE 3
Pretest and posttest data

Subject Pretest Posttest Subject Pretest Posttest

1 30 29 11 30 32
2 28 30 12 29 28
3 31 32 13 31 34
4 26 30 14 29 32
5 20 16 15 34 32
6 30 25 16 20 27
7 34 31 17 26 28
8 15 18 18 25 29
9 28 33 19 31 32

10 20 25 20 29 32

were classified into thymic lymphoma, reticulum cell sarcoma, and other causes.
For purposes of illustration we consider only the deaths from sarcoma (δ = 1) and
lymphoma (δ = 2), and assume that the deaths, 39 of them, due to other causes
are independent of these. The restricted and unrestricted estimators of the CIFs,
F1 and F2, are given in Figure 1.

FIG. 1. Estimators of F1 and F2: F1n (solid), F2n (long dash-dots), F∗
1n (dots), F∗

2n (short
dash-dots).
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TABLE 4
Estimation of F under
Type II positive bias

x F∗
n (x)

−7.00 0.000
−5.00 0.050
−4.00 0.100
−3.00 0.150
−2.00 0.200
−1.00 0.300

0.00 0.300
1.00 0.400
2.00 0.550
3.00 0.750
4.00 0.850
5.00 0.950
7.00 1.000

The unrestricted estimators appear to show that F2 − F1 does increase until
the last death due to lymphoma (δ = 2). For larger sample sizes the same trend
might have continued as indicated by the restricted estimators. The test for this
was carried out by Aly, Kochar and McKeague (1994) whose test procedure was
the same as ours.

7. Discussion. Type II bias is a generalization of the parametric problem of
a shift of the median of a symmetric distribution, and as such could be utilized in
many applications. For continuous distributions, it is known that the NPMLE of
a distribution function with Type II bias is inconsistent. In this paper we have
proposed a projection type estimator that is strongly uniformly consistent. We
have derived its weak convergence properties, and have shown that the restricted
estimator improves on the empirical in terms of MSE. Asymptotic confidence
bands for the DF using the unrestricted bands, but by changing the centering from
the unrestricted to the restricted estimator, have been shown to be conservative for
the same confidence coefficient. We have also developed procedures for testing
symmetry against Type II positive bias.

As an application of the techniques, we have shown that the mathematical
structure of the estimation of two cumulative incidence functions in competing
risks problems, ordered by their cause specific hazard rates, is similar. Consistency
and asymptotic distributions of the estimators have been derived, and asymptotic
tests and confidence bands have been discussed. In this case, the asymptotic
MSE is the same for the restricted and the (unrestricted) empirical estimators. We
have also considered the same problem under censoring using the Kaplan–Meier
estimator, and the results are similar.
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We have provided some simulation results to compare the MSEs of the restricted
and unrestricted estimators for finite samples for several cases. It appears that the
restricted estimators are uniformly better in terms of MSE. We have also given
some real life examples to illustrate our procedures.
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