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Abstract

Significant progress has been made recently on

theoretical analysis of estimators for the stochas-

tic block model (SBM). In this paper, we con-

sider the multi-graph SBM, which serves as a

foundation for many application settings includ-

ing dynamic and multi-layer networks. We ex-

plore the asymptotic properties of two estima-

tors for the multi-graph SBM, namely spectral

clustering and the maximum-likelihood estimate

(MLE), as the number of layers of the multi-

graph increases. We derive sufficient conditions

for consistency of both estimators and propose

a variational approximation to the MLE that is

computationally feasible for large networks. We

verify the sufficient conditions via simulation

and demonstrate that they are practical. In addi-

tion, we apply the model to two real data sets: a

dynamic social network and a multi-layer social

network with several types of relations.

1. Introduction

Modeling relational data arising from networks includ-

ing social, biological, and information networks has re-

ceived much attention recently. Various probabilistic mod-

els for networks have been proposed, including stochas-

tic block models and their mixed-membership variants

(Airoldi et al., 2008; Goldenberg et al., 2010). However,

in many settings, we not only have a single network, but a

collection of networks over a common set of nodes, which

is often referred to as a multi-graph. Multi-graphs arise in

several types of settings including dynamic networks with
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time-evolving edges, such as time-stamped social networks

of interactions between people, and multi-layer networks,

where edges are measured in multiple ways such as phone

calls, text messages, e-mails, face-to-face contacts, etc.

A significant challenge with multi-graphs is to extract com-

mon information across the layers of the multi-graph in a

concise representation, yet be flexible enough to allow dif-

ferences across layers. Motivated by the above examples,

we consider the multi-graph stochastic block model first

proposed by Holland et al. (1983), which divides nodes into

classes that define blocks in the multi-graph. The key as-

sumption is that nodes share the same block structure over

the multiple layers, but the class connection probabilities

may vary across layers. We believe this model is a flexible

and principled way of analyzing multi-graphs and provides

a strong foundation for many applications. The special case

of a single layer, often referred to simply as the stochastic

block model (SBM), has been studied extensively in recent

years (Bickel and Chen, 2009; Rohe et al., 2011; Choi et al.,

2012; Celisse et al., 2012; Jin, 2012; Bickel et al., 2013;

Amini et al., 2013). However, the more general multi-graph

case has not been studied as much.

In this paper, we explore the asymptotic properties of sev-

eral estimators for the multi-graph SBM by letting the num-

ber of network layers grow while keeping the number of

nodes fixed. We prove that a spectral clustering estimate of

the class memberships is consistent for a special case of the

model (Section 4.1). Next we derive sufficient conditions

under which the maximum-likelihood estimate (MLE) of

the class memberships is consistent in the general case

(Section 4.2). Finally we propose a variational approxi-

mation to the MLE that is computationally tractable and

is applicable to many multi-graph settings including dy-

namic and multi-layer networks (Section 4.2.1). We apply

the spectral and variational approximation methods to sev-

eral simulated and real data sets, including both a dynamic

and a multi-relational social network (Section 5).
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Our main contribution is the consistency analysis for the

MLE, which ensures the tractability of the model and paves

the way for more sophisticated models and inference tech-

niques. To the best of our knowledge, we provide the first

theoretical results for the multi-graph SBM for a growing

number of layers.

2. Related work

Probabilistic models for networks have been studied for

several decades; many commonly used models are dis-

cussed in the survey by Goldenberg et al. (2010). More

recent work includes non-parametric network models us-

ing graphons (Airoldi et al., 2013; Wolfe and Olhede, 2013;

Gao et al., 2014). Most previous models assume that a sin-

gle network, rather than a multi-graph, is observed.

Two settings where multi-graphs arise include dynamic and

multi-layer networks. Dynamic network models typically

assume that a sequence of network snapshots is observed

at discrete time steps. Previous work on dynamic net-

work models has built upon models for a single network

augmented with Markovian dynamics. Ahmed and Xing

(2009); Hanneke et al. (2010) built upon exponential ran-

dom graph models. Ishiguro et al. (2010); Yang et al.

(2011); Ho et al. (2011); Xu and Hero (2014); Xu (2015)

built on stochastic block models. Sarkar and Moore (2005);

Sarkar et al. (2007); Durante and Dunson (2014) used la-

tent space models. Foulds et al. (2011); Heaukulani and

Ghahramani (2013); Kim and Leskovec (2013) used latent

feature models.

Multi-layer networks consider multiple types of connec-

tions simultaneously. For example, Facebook users in-

teract by using “likes”, comments, messages, and other

means. Multi-layer networks go by many other names like

multi-relational, multi-dimensional, multi-view, and multi-

plex networks. The analysis of multi-layer networks has

a long history (Holland et al., 1983; Fienberg et al., 1985;

Szell et al., 2010; Mucha et al., 2010; Magnani and Rossi,

2011; Oselio et al., 2014). However there has not been

much work on probabilistic modeling of such networks,

aside from the multi-view latent space model proposed by

Salter-Townshend and McCormick (2013), which couples

the latent spaces of the multiple layers.

A third related setting involves modeling populations of

networks, where each observation consists of a network

snapshot drawn from a probability mass function over a

network-valued sample space. Durante et al. (2014) pro-

posed a nonparametric Bayesian model for this setting.

This setting differs from the multi-graph setting that we

consider in this paper because the network snapshots (lay-

ers) are drawn in an independent and identically distributed

(iid) fashion, with no coupling between the snapshots.

The statistical properties of the inference algorithms in both

dynamic and multi-layer network models have not typically

been studied. Recently there has been a lot of progress

on consistency analysis for single networks. Maximum-

likelihood estimation, its variational approximation, and

spectral clustering have all been proven to be consistent

under the stochastic block model (Bickel and Chen, 2009;

Rohe et al., 2011; Choi et al., 2012; Celisse et al., 2012;

Zhao et al., 2012; Jin, 2012; Bickel et al., 2013; Lei and

Rinaldo, 2014; Yang et al., 2014) as the number of nodes

N → ∞. Intuitively, for each new node added to the graph,

we observe N realizations, hence larger N provides more

information leading to consistent estimation of the model.

We extend the ideas used in single networks to multi-

graphs. We note that the asymptotic regime is different in

this case. For a single network, one typically lets N → ∞,

while for multi-graphs, we let T → ∞ with N fixed. In-

tuitively it means we do not need to observe a very large

network to get a correct understanding of the structure. In-

stead, we can gain the information through multiple sam-

ples, which may represent, for example, multiple observa-

tions over time or multiple relationships. In practice, it may

be more realistic to allow N to grow along with T , particu-

larly for the dynamic network setting. Allowing N to grow

provides more information; thus our analysis with fixed N
serves as a conservative analysis for different settings.

3. Multi-graph stochastic block model

We present an overview of the multi-graph stochastic

block model first proposed by Holland et al. (1983). A

single relation is represented by an adjacency matrix

Gt = (Gt
ij), i, j = 1, . . . , N . We focus on symmetric bi-

nary relations with no self-edges. For a multi-graph, we

observe an adjacency array ~G = {G1, G2, . . . , GT } shar-

ing the same set of nodes. Subscripts denote the same node

pairs for any t, while the superscript t indexes layers of

the multi-graph. A layer may refer to time or type of rela-

tion depending on the application. If ~G is a random adja-

cency array for N nodes and T relations, then the probabil-

ity distribution of ~G is called a stochastic multi-graph. Let

the edge Gt
ij be a Bernoulli random variable with success

probability Φt
ij . Φt = (Φt

ij) ∈ [0, 1]N×N is the probabil-

ity matrix of graph Gt. Let ~Φ = {Φ1, Φ2 . . . ΦT } be the

probability array. We assume the independence of edges

within and across layers conditioned on the probability ar-

ray. That is, the adjacency array is generated according to

Gt
ij |~Φ

ind
∼ Bern(Φt

ij).

The multi-graph stochastic block model is a special case

of a stochastic multi-graph. In the multi-graph SBM,

networks are generated in the following manner. First
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each node is assigned to a class with probability π =
{π1, . . . , πK} where πk is the probability for a node to

be assigned to class k. Then, given that nodes i and

j are in classes k and l, respectively, an edge between

i and j in network layer t is generated with probabil-

ity P t
kl. In other words, nodes in the same classes in

the same layer have the same connection probability gov-

erned by ~P = {P 1, P 2, . . . , PT } ∈ [0, 1]K×K , the class

connection probability array. Let ci ∈ {1, . . . ,K} denote

the class label of node i. Then Φt
ij = P t

cicj
.

The nodes have class labels ~c shared by all of the lay-

ers of the multi-graph, but in each layer the class con-

nection probabilities P t
kl may be different. As we con-

sider undirected networks, P t is a symmetric matrix with

K(K + 1)/2 free parameters. One can see that the (single

network) SBM is a special case of the multi-graph SBM

with T = 1.

Though simple, this multi-graph model has not been for-

mally studied in the a posteriori setting where class labels

are estimated. It serves as a basis for many settings in-

cluding dynamic networks and networks with multiple re-

lations. More importantly, it can be theoretically analyzed

and can provide insight on more complex models.

4. Consistent estimation for the multi-graph

stochastic block model

Holland et al. (1983) only discussed estimation of the

multi-graph SBM with blocks specified a priori. The sam-

ple proportion of each layer t is the maximum-likelihood

estimate (MLE) of the class probability matrix P t. How-

ever, in most applications, the block structure is unknown.

Hence our main goal is to accurately estimate the class

memberships. We extend several inference techniques used

for the single network SBM to the multi-layer case.

It is not immediately straightforward how we can utilize in-

ference techniques designed for the single network SBM.

One may imagine inferring ~c independently from each net-

work and averaging across them, e.g. by majority voting.

That is, each node is assigned the class label that occurs

most often. We find in simulations that this ad-hoc method

often does not work well.

We propose spectral clustering on the mean graph as a mo-

tivating method for a special case of the model. Then we

discuss maximum-likelihood estimation, a natural way to

combine the information contained in the different layers,

for the general case. Maximum-likelihood estimation is in-

tractable for large networks so we also consider a varia-

tional approximation to the MLE.

Our main focus is on the consistency properties of these

methods. We consider a fixed number of nodes N but let

the number of graph layers T → ∞. In reality, although we

do not have infinite layers, we often encounter situations

with a large number of layers, such as dynamic networks

over long periods of time.

4.1. Consistency of spectral clustering

Spectral clustering is a popular choice for estimating the

block structure of the SBM because it scales to large net-

works and has shown to be consistent as N → ∞ (Sussman

et al., 2012). The method is based on singular value decom-

position and K-means clustering on the singular vectors.

A natural way to extend spectral clustering from single net-

works to multi-graphs is to apply spectral clustering on the

mean graph Ḡ = 1

T

∑T

t=1
Gt. This method is intuitively

appealing as it matches with the assumption of a single set

of class labels shared by all of the layers. We show that un-

der some stationarity and ergodicity conditions, it indeed

provides a consistent estimate of the class assignments.

Specifically we consider the case where the class connec-

tion probabilities P t vary across layers but have the same

mean M . The following theorem shows the consistency of

spectral clustering on the mean graph Ḡ if the mean M is

identifiable.

Theorem 1. Assume ~P follows a stationary ergodic pro-

cess such that E(P t
kl) = µkl and V ar(P t

kl) = ǫ2kl for all

t. Assume M = [µkl] is identifiable, i.e. M has no iden-

tical rows. Let Ḡ = 1

T

∑T

t=1
Gt. Spectral clustering of

Ḡ gives accurate labels as T → ∞. That is, let UN×K

be the first K right singular vectors in the singular value

decomposition of Ḡ. K-means clustering on the rows of

UN×K outputs class estimates ĉ1, ..., ĉN . Up to permuta-

tion, ĉ = c, a.s. as T → ∞.

We provide a sketch of the proof; details can be found in a

longer version posted on arXiv (Han et al., 2015). Since we

have independent errors in the probability matrix and also

independent errors in the Bernoulli observations, averaging

cancels the error so that Ḡ → CMC ′. Here C is a rank K
matrix incorporating the class assignment vectors. Using

an inequality from Oliveira (2009), we bound the distance

between the singular vectors of Ḡ and CMC ′. Therefore,

spectral clustering on Ḡ clusters the nodes into K different

classes.

Remark 1. To determine the number of classes is a difficult

model selection problem even for a single network. We

will not discuss this problem in detail. We assume K is

fixed and known in this paper.

Remark 2. The diagonal of Gt is always 0 because no self-

edges are allowed; however the diagonal of CMC ′ is not

necessarily 0. This may not cause a problem as N → ∞.

But for finite N , it may cause error in estimating the singu-

lar vectors. If this is the case, we may utilize the singular

value decomposition that minimizes the off-diagonal mean
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square error

argmin
U,S

∑

i<j

(Ḡij − UiSU
′
j)

2,

which can be computed by iterative singular value decom-

position (Scheinerman and Tucker, 2010).

The condition in Theorem 1 requiring ~P to be stationary

with identifiable mean M is restrictive. Spectral clustering

on the mean graph is not effective in many cases. Consider

the case for which

P t ∈

{(

0.7 0.3
0.3 0.7

)

,

(

0.3 0.7
0.7 0.3

)}

where both outcomes are equally likely for all t. Then

M =

(

0.5 0.5
0.5 0.5

)

is not identifiable. Spectral clustering on the mean graph

fails to correctly estimate the class assignments as T →
∞. But there is information contained in this multi-graph.

We can use maximum likelihood estimation to estimate the

class assignments correctly in this case.

4.2. Consistency of maximum likelihood estimate

Now we focus on the general case where we do not place

any structure on ~P . A natural way to estimate the class

assignment is to use the maximum-likelihood estimate

(MLE). We show that for a large enough fixed N , the MLE

will estimate the class memberships correctly as T → ∞.

First we define some notation. For any class assignment z,

let nk(z) = #{i : zi = k} be the number of nodes in class

k. Let m(z) = mink nk(z) denote the minimum number

of nodes in any class under labels z. Let

nkl(z) =

{

nknl, k 6= l

nk(nk − 1)/2, k = l.

be the number of pairs of nodes in each block. We drop

the dependency on z whenever it is unambiguous. We also

drop the superscript t when we talk about a single layer of

the network.

Now define some notation related to the MLE. The com-

plete log-likelihood for parameters (z, P ) is

l(z, P ) =
∑

i<j

(

Gij log(Pzizj ) + (1−Gij) log(1− Pzizj )
)

.

Here P is a parameter not to be confused with the true class

connection probability matrix. In particular, we are inter-

ested in the case Pkl = P̄kl(z) where

P̄kl(z) =
1

nkl(z)

∑

i:zi=k
j:j 6=i,zj=l

Pcicj .

Here P̄ is the average of the true P under block assignment

z. To ease notation, let

σ(p) = p log(p) + (1− p) log(1− p).

Denote the expectation of log-likelihood of (z, P̄ (z)) as

h(z) = E[l(z, P̄ (z))] =
∑

k≤l

nkl(z)σ(P̄ (z)).

Now, as we do not observe the true P , the natural step is to

estimate it with the empirical mean for any given z. So let

okl(z) =
∑

zi=k
zj=l

{

Gij , k 6= l

Gij/2, k = l.

be the observed number of edges in block (k, l). Then the

profile log-likelihood (Bickel and Chen, 2009) is defined as

f(z) =
∑

k≤l

nkl(z)σ

(

okl(z)

nkl(z)

)

.

Let the expectation of f be

g(z) = E(f(z)) =
∑

k≤l

nkl(z)E

[

σ

(

okl(z)

nkl(z)

)]

.

Now we are ready to state the consistency of the MLE for

the multi-graph SBM. If all elements of P t are bounded

away from 0 and 1 and their column differences are at least

some distance apart, then when we have a sufficient number

of nodes in each block, the true label c uniquely maximizes

the sum of profile log-likelihoods over the layers.

Theorem 2. Let

C0 = inf
t,k,l

(P t
kl, 1− P t

kl)

δ = inf
t,k,l

max
m

[

σ(P t
km) + σ(P t

lm)− 2σ

(

P t
km + P t

lm

2

)]

.

Assuming C0 > 0 and δ > 0, if m(c) = mink nk(c) is

sufficiently large, then

ĉ = argmax
z

∑

t

f t(z) → c, a.s. as T → ∞.

The idea is that
∑

t f
t(z) is the sum of independent profile

log-likelihoods. We need N to be sufficiently large so that

the expectation of the profile log-likelihood at each layer is

maximized at the true labels c. Then as T → ∞, we have

convergence to expectation for
∑

t f
t(z). We formalize the

ideas by establishing the following lemmas.

Lemma 1 (From Choi et al. (2012)). For any label assign-

ment z, let r(z) count the number of nodes whose true class
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assignments under c are not in the majority within their re-

spective class assignment under z. Let

δ = min
k,l

max
m

σ(Pkm) + σ(Plm)− 2σ

(

Pkm + Plm

2

)

.

Then the expectation of the log-likelihood h is maximized

by h(c), and

h(c)− h(z) ≥
r(z)

2
δmin

k
nk(c).

In particular, for all z 6= c,

h(c)− h(z) ≥
1

2
δmin

k
nk(c).

Lemma 1 shows the expectation of the log-likelihood is

maximized at the true parameters, and the difference of the

true parameters and any other candidate is at least some

distance apart which depends on the column difference of

the probability matrix. However, as we work with the pro-

file log-likelihood, we establish Lemmas 2 and 3 to bound

the difference between the expectation of the profile log-

likelihood and the complete log-likelihood.

Lemma 2. Let x ∼ 1

N
Bin(N, p). For p ∈ (0, 1),

E(σ(x)) → σ(p) +
1

2N
+O

(

1

N2

)

, as N → ∞.

Lemma 3. Assume C0 ≤ Pkl ≤ 1 − C0, C0 > 0. For

any δ0 > 0 and any z, if mink nk(z) is large enough, then

the difference between the expectation of the profile log-

likelihood g(z) and the expectation of the complete log-

likelihood h(z) is bounded in the following manner:

∣

∣

∣

∣

g(z)− h(z)−
K(K + 1)

4

∣

∣

∣

∣

≤ δ0.

Lemma 2 utilizes a Taylor series expansion. For simplicity,

we use big O(·) notation instead of specifying an actual

bound. Readers can refer to the longer version posted on

arXiv for the bound and the constants in the bound (Han

et al., 2015). Lemma 3 uses Lemma 2 and shows that with

a sufficiently large number of nodes, the difference of the

expectation of the profile log-likelihood and complete log-

likelihood is K(K + 1)/4 and a negligible term δ0. Com-

bining the lemmas and using the concentration inequality,

we can show that Theorem 2 provides sufficient conditions

for the consistency of the multi-graph SBM. The proofs of

Lemmas 1–3 and Theorem 2 can be found also in the longer

version posted on arXiv (Han et al., 2015).

Remark 3. The main difference between the N → ∞ case

considered in most previous work and the T → ∞ case that

we consider is that, for N → ∞, a direct bound is put on f
and l. For T → ∞, we need only to bound the expectation

of f and l. This is newly studied here. In other words, for

some particular class connection probability matrix P , the

number of nodes required in a single network to have an

accurate estimate is much larger than what is needed in a

multi-graph with a growing number of layers.

4.2.1. VARIATIONAL APPROXIMATION

The MLE is computationally infeasible for large networks

because the number of candidate class assignments grows

exponentially with the number of nodes. To overcome the

computational burden, variational approximation, which

replaces the joint distribution with independent marginal

distributions, can be used to approximate the MLE. Daudin

et al. (2008) has a detailed discussion of variational approx-

imation in the SBM. We adapt it to the multi-graph SBM,

resulting in the following update equations:

bik ∝ πk

∏

j 6=i

∏

t

∏

l

[

(P t
kl)

gt
ij (1− P t

kl)
1−gt

ij

]bjl

πk ∝
∑

i

bik

P t
kl =

∑

i 6=j bikbjlg
t
ij

∑

i 6=j bikbjl
,

where the bik’s denote the variational parameters. The

derivation is straightforward; we provide details in the

longer version posted on arXiv (Han et al., 2015).

Variational approximation has been shown to be consistent

in the SBM (Celisse et al., 2012; Bickel et al., 2013). We

conjecture that the performance of variational approxima-

tion is also good in the multi-graph SBM. Unless otherwise

specified we use variational approximation to replace the

MLE in all experiments.

5. Experiments

5.1. Numerical illustration

We begin with a toy example where we investigate empir-

ically how many nodes are needed for the profile MLE to

correctly recover the classes as T → ∞. Due to the compu-

tational intractability of computing the exact profile MLE,

we consider very a small network with N = 16 nodes and

K = 2 classes where each class has 8 nodes. Consider two

multi-graph SBMs with the following probability matrices:

Case 1: P t ≡

(

0.55 0.45
0.45 0.55

)

Case 2: P t ≡

(

0.51 0.49
0.49 0.51

)

The δ (defined in Theorem 2) corresponding to the row

difference of P t is much smaller in case 2. Empirically
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Figure 1. Comparison of bound in Lemma 2 to exact values of N(E(σ(x)) − σ(p)) − 1/2 for varying N and p. The tightness of the

bound affects the minimum number of nodes required to guarantee consistency in Theorem 2.

Table 1. Minimum number of nodes N required for consistency

of the profile MLE with K = 2 classes under different values for

parameters C0 and δ from Theorem 2.

δ

C0
0.3 0.25 0.2 0.15 0.1 0.05

0.165 42 50 64 88 124 184

0.091 44 52 66 92 142 234

0.040 46 56 70 94 148 314

0.010 66 68 74 100 156 330

the profile MLE succeeds to get the true labels in case 1

while it fails in case 2. Further analysis shows that in order

to have consistency given the class connection probability

matrix P t in case 2, the total number of nodes should be at

least 40. This toy example demonstrates that conditions on

the probability matrices and network size are necessary for

consistency. Theorem 2 provides sufficient conditions.

Next we investigate the tightness of the conditions in The-

orem 2. The tightness of Lemma 1 was studied by Choi

et al. (2012). We check the tightness of Lemma 2. For dif-

ferent p, we can calculate the exact value of N(E(σ(x))−
σ(p)) − 1/2 and compare it to the bound from Lemma 2.

Figure 1 shows that the bound is loose for small N , but has

almost the same asymptotic decay as the exact calculation.

For small N , the remainder in Taylor expansion causes de-

viation. Also the bounds are looser for p closer to 0 or 1
but still informative in most cases.

For the special case of K = 2 classes, we can calculate

all of the constants in the sufficient conditions in Theorem

2 for different values of C0 and δ by enumerating cases.

Details are provided in the longer version posted on arXiv

(Han et al., 2015). Table 1 shows the smallest number

of nodes N that is sufficient for consistency of the profile

MLE to hold for different values of C0 and δ. Note that the

minimum N is in the tens or hundreds, suggesting that the

bounds in Theorem 2 are not overly loose and are indeed

of practical significance.

5.2. Comparison with majority voting

As previously mentioned, majority voting is another way

to utilize inference methods for a single network on multi-

graphs. We consider two majority vote methods as base-

lines for comparison, one that utilizes spectral clustering

on each layer, and one that applies a variational approxi-

mation to each layer. When using majority voting between

different layers of the network, the estimated class labels

for each layer must first be aligned or matched. We utilize

the Hungarian algorithm (Kuhn, 1955) to compute the max-

imum agreement matching between the estimated labels at

layer t with the majority vote up to layer t− 1.

We conduct simulations to compare our proposed meth-

ods of spectral clustering on the mean graph and pro-

file maximum-likelihood estimation with the majority vote

baselines. We consider a well-studied scenario where we

have 128 nodes initialized randomly into 4 classes (New-

man and Girvan, 2004). For each layer, the within-class

connection probability is 0.0968, and the between-class

connection probability is 0.0521. Under such connection

probabilities, the classes are below the detectability limit

(Decelle et al., 2011) for a single layer, so the class esti-

mation accuracy from a single layer is very low. We in-

crease the number of layers and observe how the accuracy

changes.

Figure 2 shows the accuracy of the two proposed meth-

ods compared to the two majority voting methods averaged

over 100 replications. Both the profile MLE and spec-

tral clustering on the mean graph have the anticipated in-
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Figure 2. Simulation experiment comparing the proposed meth-

ods of profile MLE and spectral clustering on the mean graph

with two majority vote baselines. The proposed methods increase

in accuracy as the number of layers increases, but the two heuris-

tic methods based on majority vote do not.

creasing accuracy over time. But the accuracies of the two

heuristic majority vote methods do not improve. Though

one may expect the errors in majority vote to be canceled

out over time, these results show that, without careful av-

eraging of errors, we cannot gain from the multiple layers.

We find that this is due to choosing connection probabili-

ties below the detectability limit; if we make the estimation

problem easier by increasing the within-class probability

above the detectability limit, then the majority vote meth-

ods do improve with increasing layers, albeit much slower

than the methods we propose in this paper.

5.3. MIT Reality Mining data

Next we apply our model on the MIT Reality Mining data

set (Eagle and Pentland, 2006). This data set comprises

93 students and staff at MIT in the 2004-2005 school year

during which time their cell phone activities were recorded.

We construct dynamic networks based on physical proxim-

ity, which was measured using scans for nearby Bluetooth

devices at 5-minute intervals. We exclude data near the be-

ginning and end of the experiment where participation was

low. We discretize time into 1-week intervals, similar to

Mutlu and Aviyente (2012); Xu et al. (2014), resulting in

39 time steps between August 2004 and May 2005.

We treat the affiliation of participants as ground-truth class

labels and test our proposed methods. Two communities

are found: one of 26 Sloan business school students, and

one of 67 staff working in the same building. Since degree

heterogeneity may cause problems in detecting communi-

ties using the SBM (Karrer and Newman, 2011), we reduce

its impact by connecting each participant to the 5 other par-

ticipants who spent the most time in physical proximity

during each week. Figure 3 shows the empirical block con-

nection probabilities within and between the two classes,
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Figure 3. Estimates of class connection probabilities in the Real-

ity Mining data set. The probabilities vary significantly over time,

particularly for edges between Sloan students.

Table 2. Class estimation accuracy in the Reality Mining data set

given data up to week listed in the first column. Best performer in

each row is listed in bold. Both the proposed spectral clustering

on the mean graph and profile maximum-likelihood estimation

approaches improve over time, but majority vote does not.

WEEK MAJ. VOTE SPECTRAL MEAN PROFILE MLE

10 0.76 0.62 0.57

15 0.82 0.94 0.95

20 0.83 0.95 0.98

25 0.78 0.95 0.99

30 0.80 0.97 0.99

35 0.80 0.97 0.99

END 0.77 0.97 0.99

estimated by the profile MLE. The class connection prob-

abilities vary significantly over time, which validates the

importance of the varying class connection probability as-

sumption in our model. Notice that the two communities

become well-separated around week 8. The class estima-

tion accuracies for the different methods are shown in Ta-

ble 2. Since the community structure only becomes clear at

around week 8, the spectral and profile MLE methods are

initially worse than majority voting but quickly improve

and are superior over the remainder of the data trace. By

combining information across time, the proposed methods

successfully reveal the community structure while major-

ity voting continues to improperly estimate the classes of

about 20% of the people.

5.4. AU-CS multi-layer network data

We look at another example from a multi-layer network

comprising five kinds of self-reported on-line and off-line

relationships between the employees of a research depart-

ment: Facebook, leisure, work, co-authorship, and lunch

(AU-CS ML, 2014). We assume the class structure to be in-

variant across the different types of relations and apply our
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Figure 4. The estimated community structures in the AU-CS multi-layer networks overlaid onto the adjacency matrices of different

relations. The dots denote connections (edges), and the grids correspond to SBM blocks.

model. For model selection, we extend the Integrated Clas-

sification Likelihood (ICL) criterion proposed by Daudin

et al. (2008) for the single network SBM to multi-graphs to

select the number of blocks K. Specifically we maximize

−2Q( ~G)+ (K − 1) logN +
TK(K + 1)

2
log

N(N − 1)

2
,

where Q( ~G) is the variational approximation to the com-

plete log-likelihood. We initialize the variational approxi-

mation with different randomizations as well as the spectral

clustering solution. The term is maximized at K = 4.

Figure 4 shows the estimated 4 classes overlaid onto the

adjacency matrix of each relation. Although we have no

ground truth for this data set, we detect well-separated

communities in all relations aside from co-authorship,

which is an extremely sparse layer. Notice once again the

difference in empirical connection probabilities over the

multiple layers of the multi-graph.

For this data set, we do not have ground truth labels to

evaluate the class estimation accuracy. We note, however,

that the ICL obtained by our variational approximation al-

gorithm is much better than the ICLs obtained by fitting

an SBM on the mean graph and by majority vote, both of

which are over 4000.

6. Discussion

In this paper, we investigated the multi-graph stochastic

block model applied to dynamic and multi-layer networks

with invariant class structure. Both spectral clustering on

the mean graph and maximum-likelihood estimation are

proved to be consistent for a fixed number of nodes when

we have an increasing number of network layers, provided

certain sufficient conditions are satisfied.

There are several interesting avenues for extensions of our

analysis. First we can add a layer of probabilistic modeling

on the probability matrices if we have additional informa-

tion. Since dynamic networks usually vary smoothly over

time, we can put a state-space model on the adjacency array

(Xu and Hero, 2014). We can also use a hierarchical model

on the probability matrices to couple them for analyzing

multi-layer networks. Since our sufficient conditions do not

consider such additional structure, an interesting area of fu-

ture work would be to derive sufficient conditions that uti-

lize the structure on the probability matrices, which would

likely produce tighter bounds. It would also be interesting

to draw connections to recent work on consistent estima-

tion for populations of networks (Durante et al., 2014), for

which no coupling between samples (layers) exists.
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