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Little prior image processing work has addressed estimation and
classification of skin color in a manner that is independent of cam-
era and illuminant. To this end, we first present new methods for 1)
fast, easy-to-use image color correction, with specialization toward
skin tones, and 2) fully automated estimation of facial skin color,
with robustness to shadows, specularities, and blemishes. Each of
these is validated independently against ground truth, and then com-
bined with a classification method that successfully discriminates
skin color across a population of people imaged with several dif-
ferent cameras. We also evaluate the effects of image quality and
various algorithmic choices on our classification performance. We
believe our methods are practical for relatively untrained operators,
using inexpensive consumer equipment.

1. INTRODUCTION

Prior image processing work has well addressed skin color detec-
tion, in which image pixels are classified into skin and non-skin cate-
gories. Recent efforts show good results across imagery of people of
all races, for a wide variety of cameras and illuminants [6, 7]. Much
less work, however, has investigated objective measurement of hu-
man skin tone, to enable its color classification. An understanding
of a person’s skin color that is independent of the illuminant and the
imaging system would have use in many domains, including:

• Medicine: for quantification of skin erythema, lesions, ultra-violet
radiation effects, and other phenomena

• Computer graphics: for more accurate rendering of people in video-
conferencing, or for improving or altering their appearance

• Fashion: for automated suggestion of personal appearance prod-
ucts, such as clothing and eyeglasses, that complement skin tone

• Biometrics: to aid in person recognition within small groups, or
for systems in which determination of skin coloring is useful

Ideally, this analysis would be produced with easily obtained equip-
ment and minimum effort. However, prior work in the medical do-
main requires sophisticated instrumentation and controlled lighting,
or is not designed to discriminate skin color across people [8, 10, 12].
In computer graphics and interfaces, Tsumura et.al.[5, 11] and An-
gelopoulou et.al.[1] emphasize representation and synthesis rather
than classification, and require multispectral data beyond what cam-
eras normally provide. Methods for dynamic construction of per-
sonalized skin models to aid in face and hand tracking in video have
been proposed (e.g.[3, 9]), but the models are dependent on the illu-
minant and imager, and are therefore unsuited for application to skin
colors obtained under other conditions.

In this paper, we present and validate consistent, fast techniques
for measuring and classifying facial skin color from a single, ca-
sually posed digital camera image. The techniques are designed to
allow comparison of skin tones across a wide variety of cameras and
environments, for all races of people. We also investigate the effects
of varying image quality on our methods. Our aim is to develop

methods that are practical for application in many computer vision
and image processing tasks, beyond what prior art has enabled.

An overview of the image processing pipeline for our methods is
shown in Figure 1. The pipeline may be divided into three primary
segments: 1) image color calibration and correction, 2) automated
sampling of facial skin pixels to produce a skin tone estimate, and
3) classification of skin tone. We present algorithms and results for
each segment in turn in Sections 2, 3, and 4.

2. IMAGE COLOR CORRECTION

To classify skin color accurately across a wide variety of imaging
devices and environments, we must account for the effects of the
camera system and scene illuminants in each image. This could be
done by pre-calibrating the camera, and controlling or measuring
the illuminant at capture time. However, it is unreasonably diffi-
cult, expensive, or time-consuming for end users to do this in many
application contexts, particularly in the home, outdoor, and mobile
domains. We believe that, for many applications, a better solution is
to require the presence in the image of a detectable pattern contain-
ing a known reference color set. This pattern might take the form of
a paper color chart, available at a doctor’s office or store counter, that
would be held by the user when the picture is taken. Alternatively,
for less conspicuous human-computer interface and monitoring ap-
plications, known colors may be embedded naturally in the furniture,
walls, or other parts of the background.

Hence, for this paper, we assume the presence of a “color cal-
ibration target” in each image, containing colors of known spectral
reflectance arranged in a distinctive pattern. We use the color target
to transform raw image pixel colors, for all devices and illuminants,
into a single “corrected” space in which we analyze skin color.

2.1. Color correction method

Much prior work exists on color calibration of imaging systems; for
a summary, see [2]. We present a technique that is designed for accu-
rate correction of skin colors, and that is robust enough for use with
a single, casually-posed image from most any consumer camera.

Our color calibration target, visible in the images of Figure 2,
was designed for robust automatic detection, as well as for explo-
ration of the space of reference colors best suited for our task. It
contains 3 rows of 8 color patches set against a black background,
wrapped by a white then a black frame. The top row contains pri-
mary and secondary colors for general scene tone balancing, and
two shades of gray for white balance. The other two rows contain 16
patches representative of the range of human skin color. We printed
the target on photopaper medium, measured the spectral reflectances
of each patch, and use a simple image formation model to approxi-
mate them as 3-component, sRGB encoded digital values.

Automatic detection of the target is based on segmentation of the
image into regions whose contours are located at zero crossings of
the Laplacian of a smoothed luminance version of the image. A valid
detected target has a black rectangle boundary contained within a



Fig. 1. Overview of image processing pipeline for skin color measurement and classification.

white rectangle boundary. Homographies relate the flat physical sur-
face within each rectangle to the camera image coordinate system,
and can be computed from the corner locations of each rectangle.
We require the homographies to be in sufficient agreement for valid
target detection. If valid, they are used to predict patch locations
and shapes within the target, which are verified by search for lumi-
nance edges. If a sufficient number (currently 75%) of the patches
are found, multiple samples from each patch’s interior are extracted
and averaged to produce patch mean colors. The configuration of
these colors are used to determine the target’s orientation.

An optimal color transform is determined by least-squares esti-
mation of the 3x4 transform A that best maps measured patch means
�M to the reference sRGB patch colors �R:
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This provides a 3x3 color transformation plus a per-component off-
set. Prior to least-squares, patch means with at least one saturated
component are excluded, and the sRGB color component function
is inverted for both �M and �R. For each image, we computed four
“types” of color transforms, using different subsets of color patches:

• Base: black, white, gray, blue, green, red, cyan, magenta, yellow
• Skin: the 16 patches in the lower two rows of the target
• Skin+gray: skin patches plus black, white, and gray
• All: all patches on the chart

While transforms based only on skin-colored patches may produce
poor correction for the overall image, they may perform best for the
skin pixels that are our focus. Alternatively, failure to sample the
raw image color space more broadly, using the “base” patches, may
destabilize and skew the color transforms even with the skin region.

Fig. 2. Images before (top row) and after (bottom row) color correc-
tion, for all four cameras. Left to right: HP850, Nikon D1, iPAQ,
web-cam. Transforms based on skin patches only.

2.2. Validation of color correction
Ninety people were each captured with four different cameras while
holding a copy of our color calibration target. The cameras were an
HP 850 (3.9 MPixel), a Nikon D1 (2.7 MPixel), an HP iPAQ camera
(1.3 MPixel), and a commodity web-cam (0.1 MPixel). Illumina-
tion also varied across a subject’s images. Our color target detection
scheme worked well across all cameras, although the success rate
declined from 100% for the Nikon and HP850 to 78% and 93% for
the iPAQ and web-cam, with failures due largely to motion blur.

A comparison of images before and after color correction, for
the same person captured by different cameras, is shown in Figure 2.
In this case, color transforms were based only on skin-colored target
patches. This provided good agreement among facial color across
images, at the expense of less consistent backgrounds. Transforms
based on all target patches produced more visually pleasing results.

To quantitatively evaluate the effects of the color correction on
skin pixels of subject faces, we compared statistics of manually se-
lected skin pixels for pairs of images of each of the 90 subjects cap-
tured with different cameras. Two different people (hereafter desig-
nated “expert samplers”) each collected at least 20 color samples in
each image, avoiding selection of pixels in shadows, specularities,
and blemishes. They also avoided nose, upper cheeks, and other ar-
eas known to often be sun-affected, and thus less indicative of true
skin tone. For two images of the same subject captured by differ-
ent cameras, manually collected sample sets can be compared via
multivariate analysis of variance (MANOVA) to test the hypothesis
that both sets were drawn from the same normal distribution. For a
given pair of cameras, this MANOVA score (in [0..1] range, 0 being
best) was averaged across all subjects. If color correction is working
well, the average cross-device MANOVA score should be similar to
that obtained when comparing color sample distributions obtained
by different expert samplers on the same image. We therefore nor-
malize each average cross-device MANOVA score by the average
cross-expert MANOVA score, to obtain our cross-device color cor-
rection error measure. This measure should, ideally, be near 1.

Table 1 shows the cross-device color correction error measure
obtained for each pairing of cameras we used. We computed these
measures for each of the four types of color transforms (e.g. “base”,
“skin”, etc.) listed in Section 2.1. In general, color transforms based
only on skin patches performed best, with post-correction, cross-
device color differences that were about 15-35% greater than typical
differences in corrected colors collected by different expert samplers
on the same image. Transforms based on “skin+gray” and “all”
patches performed slightly worse, while those computed from the
“base” set alone were significantly worse. Hence, it appears that
dense sampling of the color region of interest (skin tones) was more
important than broad sampling of the color space. We re-examine
this question when evaluating skin tone classification in Section 4.2.

3. SKIN COLOR ESTIMATION

Little study has been made on how best to extract accurate skin tone
information from images of faces. Prior work typically either com-
putes the average color near the location of a face pattern detection



Table 1: Cross-Device Color Correction
Numbers indicate error measure ratios (cross-device vs.
cross-expert-sampler) described in text; 1 is ideal value.

Comparison Skin Skin+Gray All Base
HP850 v. Nikon 1.15 1.23 1.42 1.67
HP850 v. IPAQ 1.35 1.59 1.59 2.17

HP850 v. Web-cam 1.18 1.27 1.37 1.63
Nikon v. IPAQ 1.36 1.44 1.43 1.98

Nikon v. Web-cam 1.14 1.28 1.40 1.74
IPAQ v. Web-cam 1.33 1.46 1.60 2.16

[3], or applies heuristics after attempting to parse facial structure [4].
We have not found prior work that evaluates the accuracy of such ap-
proaches, via comparison to ground truth.

We divide the skin color estimation problem into two parts: 1)
finding the face, and then 2) sampling the face and analyzing color
statistics to extract a skin tone estimate that is relatively unaffected
by blemishes, shadows, and specularities. For the first part, we rely
on face pattern detection, for which many methods have achieved
very high success rates [14]. For most domains in which we might
apply our method, we can either expect the user to present his face
to the camera, or we can repeatedly sample a video stream until a
suitable image is found. We use a C++ implementation of the Viola-
Jones face detector [13], applied at 24 resolutions, with lenient de-
tection thresholds and, if necessary, image rotation. When multiple
detections occur in an image, we select that with largest area. We
found this to have high reliability across all quality of imagery: 95-
98% detection of the subject’s face, for each of our four cameras.
Most misses were due to faces extending past the edge of the image.

For the second part (face color extraction), we begin with the
face bounding box provided by the Viola-Jones detector. The loca-
tion of facial features within this box is not constant across all detec-
tions, and the box typically includes non-face background. Lighting
and hair can cause shadows to fall on any part of the face, and skin
texture is well known to produce large regions of specularities. De-
spite all this, we found that accurate estimates of skin tone could
usually be obtained without detailed parsing of facial features and
without segmentation of the face from the background. Specifically,
we employed the following steps:

1. Apply a binary “face mask” template within the bounding box,
excluding pixels that lie in the zero portions of the template. Our
template excludes the outer region, to avoid background contam-
ination, but extends somewhat widely in the lower portion where
cheeks - good face color sampling locations - are likely to be.

2. Sort remaining pixels by luminance. Luminance (Y ) may be
computed in many ways, but we found Y = R + G + B to give
best cross-device consistency of results.

3. Compute the mean color of pixels ranked in the [L..U ] percentile
in luminance, where L and U are lower and upper bounds. This

Fig. 3. Automatic face color estimation. (a) Face detection (b) Ap-
ply face mask template (c) Exclude pixels with luminance ranked
outside specified bounds. Note removal of hair, eyebrows, nose and
cheek shadows and specularities, and most of eyes and lips.

Table 2: Automatic Skin Color Estimation Performance
Percent differences between manual and automatic estimates, in

chromaticity space of Y=R+G+B, R/Y, G/Y.
Luminance Percentile Range Color Component

R/Y G/Y Y
33-98% 0.92 0.40 2.37
33-90% 0.98 0.39 2.45
50-98% 1.08 0.37 2.98

excludes high-end outliers (e.g. specularities), as well as hair,
nostrils, mouths, and shadowed parts of the face, all of which
tend to have lower luminance than the person’s true skin tone.

The above procedure can be performed independently of color cor-
rection; hence, applications that do not need such correction may use
it. Figure 3 shows an example of face pixels selected by the method.

To test this method, we computed, over all 90 of our subjects,
the average absolute difference between the automatically extracted
skin tone and the mean of the manually sampled distributions col-
lected by our expert samplers. We repeated this for three different
choices of luminance bounds [L..U ]. The results are summarized in
Table 2. The differences between automatic and manually generated
face color estimates were less than 3% per color component, with the
luminance having the greatest error. All three choices of [L..U ] per-
formed well, but using pixels with the broadest range of luminances
(33-98th percentile) best matched our manual estimates, with a 50-
98% range being worst. Hence, it appears more critical to include
lower luminance pixels than high ones. The effect of this luminance
range on skin tone classification will be examined in Section 4.2.

4. CLASSIFICATION OF SKIN COLOR

By transforming our automatically generated skin tone estimates of
Section 3 into the corrected color space obtained through the cali-
bration methods of Section 2, we hope to relate, cluster, and classify
skin tones in a consistent manner, across multiple people, capture
devices, and illuminants. An example classification scheme and its
resulting performance are discussed below.

4.1. Ground truth estimation

To train and test methods for skin tone classification, ground truth is
needed. Because there is no standard set of skin color classes, and
no standard for labeling people by skin tone, we need to create our
own. In effect, we need to partition our corrected color space into
regions (one per class) that cover and sensibly divide the full gamut
of human skin color. We cannot arbitrarily select such a partitioning,
e.g. by quantizing each color space dimension into thirds, as this will
trivialize classification. Definition of these regions through physical
measurements of skin color, for example with a spectrophotome-
ter, is also problematic. Although a spectrophotometer may provide
more spectral information than a camera, it is still not clear where
to sample skin color on the face or body, and we will need to relate
the measurement space of these samples, in the end, to the corrected
color space of our cameras. It is difficult to make reasonable choices
in both matters that are not somehow correlated with our methods in
Sections 2 and 3, and hence we would expect an artificial bias toward
better success in our classification testing.

We believe that a better, more unbiased approach is to develop
skin color classes based on the calibration target colors present in
our images. Specifically, we label each subject according to the skin-
colored patch on our target to which her manually sampled skin color



Fig. 4. 2D projections of color class data along each pair of axes in
chromaticity space. Ellipses encompass one standard deviation.

distribution is closest, in the uncorrected color space of the original
image, as measured by the Mahalanobis distance:

(�p − �ms)
T V −1

s (�p − �ms) (2)

�p is the patch mean, and �ms and Vs are the mean and covariance
for the distribution of skin color data manually collected for a given
image. This method completely avoids contamination from the color
correction of Section 2, and is correlated with the automated skin
sampling methods of Section 3 only to the extent that those methods
adhere to the guidelines used by our human expert samplers, which
we hope to be true.

We thus have 16 skin color classes, one for each patch on the
lower two rows of our target. Each of our 90 subjects was assigned,
as described above, to one of these classes, using images captured
by the Nikon D1. Next, face colors (extracted as in Section 3) for
all people were color-corrected (as in Section 2) and collected to-
gether according to class label, across all cameras, to form skin class
descriptions. Figure 4 shows ellipses fitted to these classes. It is
evident that no 2D projection of the data would provide good class
separation, so we classify in a 3D color space. This is consistent with
the best representations found for skin color in prior work [5, 6].

4.2. Classification experiments

“Leave-one-out” cross-validation was used to evaluate classification
performance. For each person in turn, skin color classes are formed
using data from all other people (and all cameras), and the remaining
“test” person is classified against this set. The Mahalanobis distances
between the test person’s color data and each class are computed and
sorted, with lower distances indicating a better match. The rank of
the correct class is determined, and ideally should be ranked first.
Multiple test images from different cameras are used for each per-
son, and the results are averaged. To evaluate the overall classifica-
tion performance, results are averaged across all people tested in this
way, to produce an average rank of the correct class label. Also, we
compute an ROC curve indicating how often the correct label is the
top one, among the top 2, among the top 3, etc.

We performed this cross-validation for different choices of 1)
color transform type (e.g. “skin”, “all”, etc.), 2) skin pixel lumi-
nance bounds [L..U ], and 3) classification color space (i.e. color-
corrected sRGB, or chromaticity or Hue-Saturation-Value spaces de-
rived from the corrected sRGB). Classification results for all combi-
nations of these choices are shown in Table 3. The best result, as
judged by average rank of the correct class label, was obtained in the
corrected sRGB color space, using color transforms based only on
skin-colored patches, and [L..U ] bounds of 33-98%. For this case,
the average rank of the correct label was 1.58, with the top choice
being correct 64% of the time. The correct label was among the top
two 85% of the time, and never lower than fifth.

When comparing classification of images of the same person
from two different cameras, the top selected labels agreed 66% of
the time. Classification correctness did not drop significantly for
cameras with lower image resolution, although more people became
unclassifiable due to calibration color target detection failures. In

Table 3: Skin Color Classification Results
Rank of correct class label, averaged across all test subjects, for
different combinations of color transforms, classification color

spaces, and skin color estimation methods.
Color spaces: R = sRGB, C = chromaticity, H = HSV

Luminance Skin Skin+Gray All
Bounds L-U R C H R C H R C H

33-98% 1.58 1.97 2.05 2.01 2.28 2.15 2.08 2.14 2.28
33-90% 1.61 1.89 2.06 2.05 2.21 2.34 2.29 2.51 2.63
50-98% 1.72 1.64 1.87 2.18 2.40 2.34 2.12 2.34 2.40

general, classification performed best when color transforms were
based only on skin-colored target patches, declining by about 40%
(in terms of average rank of correct label) when “skin+gray” or “all”
patches were used. Classification in the sRGB color space was sig-
nificantly better than in chromaticity, which in turn was better than
in HSV. Choice of [L..U ] bounds had negligible effect.

We believe this is promising performance, especially given the
small separation in sRGB space between the 16 skin patch colors
that served as the basis for the class labels. For many tasks, a sparser
density of skin classes may suffice, and performance would increase
significantly. We hope to improve performance by experimenting
with different classifiers and improved face color sampling methods.

5. CONCLUSION

By transforming automatically generated facial skin tone estimates
into a corrected color space obtained through an easy-to-use calibra-
tion procedure, we can relate, cluster, and classify skin tones consis-
tently - across multiple people, capture devices, and illuminants - to
enable a wide variety of applications. We believe our color correc-
tion and automated skin color estimation algorithms are themselves
of interest, and we validated each independently. All steps in our im-
age processing and classification pipeline are of low computational
weight, making them practical for a wide variety of systems.
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