
Temi di Discussione
(Working Papers)

Consistent inference in fixed-effects stochastic frontier models

by Federico Belotti and Giuseppe Ilardi

N
u
m
b
e
r

1147

O
c

to
b

e
r
 2

0
1
7





Temi di discussione
(Working papers)

Consistent inference in fixed-effects stochastic frontier models

by Federico Belotti and Giuseppe Ilardi

Number 1147 - October 2017



The purpose of the Temi di discussione series is to promote the circulation of working 
papers prepared within the Bank of Italy or presented in Bank seminars by outside 
economists with the aim of stimulating comments and suggestions.

The views expressed in the articles are those of the authors and do not involve the 
responsibility of the Bank.

Editorial Board: Ines Buono, Marco Casiraghi, Valentina Aprigliano, Nicola 
Branzoli, Francesco Caprioli, Emanuele Ciani, Vincenzo Cuciniello, Davide  
Delle Monache, Giuseppe Ilardi, Andrea Linarello, Juho Taneli Makinen,  
Valerio Nispi Landi, Lucia Paola Maria Rizzica, Massimiliano Stacchini.

Editorial Assistants: Roberto Marano, Nicoletta Olivanti.

ISSN 1594-7939 (print)

ISSN 2281-3950 (online)

Printed by the Printing and Publishing Division of the Bank of Italy



CONSISTENT INFERENCE IN FIXED-EFFECTS  

STOCHASTIC FRONTIER MODELS 

 

by Federico Belotti* and Giuseppe Ilardi** 

 

Abstract 

The classical stochastic frontier panel data models provide no mechanism for 

disentangling individual time-invariant unobserved heterogeneity from inefficiency. Greene 

(2005a, b) proposed the ‘true’ fixed-effects specification, which distinguishes these two latent 

components while allowing for time-variant inefficiency. However, due to the incidental 

parameters problem, the maximum likelihood estimator proposed by Greene may lead to 

biased variance estimates. We propose two alternative estimation procedures that, by relying 

on a first-difference data transformation, achieve consistency when n goes to infinity with 

fixed T. Furthermore, we extend the approach of Chen et al. (2014) by providing a 

computationally feasible solution for estimating models in which inefficiency can be 

heteroskedastic and may follow a first-order autoregressive process. We investigate the finite 

sample behavior of the proposed estimators through a set of Monte Carlo experiments. Our 

results show good finite sample properties, especially in small samples. We illustrate the 

usefulness of the new approach by applying it to the technical efficiency of hospitals. 
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1 Introduction

The1 analysis of efficiency is an important issue in many empirical studies and the Stochastic

Frontier (SF) model, introduced by Aigner et al. (1977) and by Meeusen & van den Broeck

(1977), represents a popular tool to measure this unobservable economic indicator.2 Since then,

several improvements on SF modeling have led to a large empirical literature, most of which is

based on panel data.3

Compared to cross-sectional data, longitudinal data has an important advantage as it allows

to follow the same unit over time, thereby allowing to control and model unobserved heterogene-

ity. Depending on how this source of heterogeneity is treated, SF panel data literature can be

classified into two major groups of models.4 The first group treats time invariant heterogeneity

as if it were inefficiency, thus not providing any mechanism to disentangle the former from the

latter. This group includes, among others, Schmidt & Sickles (1984), Pitt & Lee (1981), Bat-

tese & Coelli (1988, 1992, 1995) and Kumbhakar (1990). On the other hand, the second group

distinguishes between the aforementioned latent components by separating the inefficiency from

the effect of time invariant omitted explanatory variables that are unrelated with the production

process but affect the output (Kumbhakar & Hjalmarsson, 1995; Greene, 2005a,b; Wang & Ho,

2010; Emvalomatis, 2012; Colombi et al., 2014; Chen et al., 2014).

This study reconsiders the estimation of the “true” fixed-effects (TFE) model in Greene

(2005a) addressing the incidental parameters problem that affect his maximum likelihood dummy

variables estimator (MLDVE). As Greene’s simulations suggest, this issue does not affect the

frontier coefficients but leads to inconsistent variance estimates. Since these parameters represent

the key ingredients in the post-estimation of inefficiencies, a solution to this issue is crucial in the

1 An earlier version of this paper circulated under the title “Consistent Estimation of the true fixed fixed-effects
stochastic frontier models”. We are indebted with Marco Perone Pacifico, Franco Peracchi and Andrea Piano
Mortari for valuable advices and discussions. We thank Silvio Daidone and Francesco D’Amico for sharing their
data with us. We also thank Bill Greene, Vincenzo Atella, Clinton Horrace, Santiago Pereda Fernandez, Valentina
Nigro and the participants at the XII European Workshop on Efficiency and Productivity Analysis and at the
46th Italian Statistical Society Scientific Meeting for their helpful comments. Any errors and omissions are the
sole responsibility of the authors. The opinions expressed are those of the authors and do not necessarily reflect
the position of Bank of Italy.

2Production frontiers represent the maximum amount of output that can be obtained from a given level of
inputs, while a cost frontier characterizes the minimum expenditure required to produce a bundle of outputs given
the prices of the inputs used in its production.

3See Kumbhakar & Lovell (2000) or Greene (2008) for recent surveys.
4See Greene (2005a,b) for a detailed review on the treatment of unobserved heterogeneity in SF models.
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SF context. In a parallel research,5 Chen et al. (2014) propose a consistent marginal maximum

likelihood estimator (MMLE) for the TFE model exploiting a within-group data transformation

and the properties of the closed skew normal (CSN) class of distributions (Gonzalez-Farias et al.,

2004a).6 The authors study the normal-half normal model and acknowledge the possibility of

allowing for a truncated normal inefficiency. However, they restrict both error components to be

homoskedastic, a strong assumption that could heavily affect the inference in a SF framework

(Kumbhakar & Lovell, 2000).

In this paper we propose two alternative consistent estimators which extend the Chen et al.

(2014) results in different directions. The first estimator is based on the marginalization of

the inefficiency term via simulation and can be used to estimate both homoskedastic and het-

eroskedastic normal-half normal and normal-exponential models. The second is a U-estimator

based on all pairwise quasi-likelihood contributions constructed exploiting the analytical ex-

pression available for the marginal likelihood function when T = 2. This strategy allow us to

provide a computationally feasible approach to estimate normal-half normal, normal-exponential

and normal-truncated normal models in which both error components can be heteroskedastic.

Furthermore, for the normal-half normal and normal-truncated normal models, the inefficiency

is also allowed to follow a first-order autoregressive process. These extensions may be considered

relevant from the methodological point of view since both model parameters and inefficiency es-

timates may be adversely affected when these features are neglected. Furthermore, they are

also important from the empirical perspective because they allow to test specific hypotheses of

interest and policy implications, avoiding biased two-step procedures (Wang & Schmidt, 2002).

The remainder of this paper is organized as follows. Section 2 reviews the TFE model

and describes the derivation of the marginal likelihood in the first-difference setup. Section 3

presents our consistent estimators while Section 4 provides some extensions to the Chen et al.

(2014) results. In Section 5 we discuss whether the fixed-effects may also capture part of the

inefficiency, providing new insight from a statistical perspective to this relevant issue. Section 6

investigates the small sample properties of the proposed estimators through a set of Monte Carlo

5An earlier version of this and Chen et al. (2014) paper has been presented at the XII European Workshop
on Efficiency and Productivity Analysis.

6In the spirit of Cornwell & Schmidt (1992), the term marginal refers to a model in which the nuisance
parameters have been eliminated through a data transformation. Consistently, we then refer to the Chen et al.
(2014) estimator as MMLE instead of Within MLE.
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experiments. Section 7, provides an illustration through an application on hospitals technical

efficiency. Finally, Section 8 offers some conclusions.

2 The model

Consider the following specification for a fixed-effects stochastic production frontier model

yit = αi + xitβ + εit, (1)

εit = vit − uit, (2)

vit ∼ IID N (0, ψ2), (3)

uit ∼ IID Fu, i = 1, . . . , n, t = 1, . . . , T, (4)

where, for each unit i and period t, yit represents the log of output, xit is a 1 × k vector of

functions of exogenous inputs, β is a k × 1 vector of technology parameters and αi is the unit

fixed-effect.7 The composite error term εit is the difference between the symmetric idiosyncratic

error vit and the one-sided disturbance uit, which represents inefficiency.8 The vit disturbance

is assumed to be normally distributed with zero mean and variance ψ2 while uit is assumed

to be distributed independently of vit according to the Fu distribution. In what follows, we

are particularly concerned with the cases in which Fu is exponential with scale parameter σ,

uit ∼ E(σ), half normal with zero mean and variance σ2, uit ∼ N+(0, σ2), and truncated normal

with mean ν and variance σ2, uit ∼ N+(ν, σ2).9 We define λ = σ/ψ as the signal-to-noise ratio

(STN), which provides an indication of the relative contributions of uit and vit to the variability

of εit. There is a philosophical debate in the SF literature about whether or not to separate αi

from uit. We sidestep this issue and focus instead on how to consistently estimate the parameters

of model (1)-(4). Nevertheless, Section 5 provides a discussion of some relevant cases in which

the fixed-effects may capture part of the inefficiency.

7For notational simplicity, we assume balanced panels but all the results can be easily generalized to the
unbalanced case.

8Notice that when the sign of the last term in (2) is positive, the model describes a stochastic cost frontier.
9Contrary to Schmidt & Sickles (1984), Cornwell et al. (1990) and Lee & Schmidt (1993), these distributional

assumptions are required here for identification purposes.
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Greene (2005a) shows that, by treating the unit-specific intercepts as parameters to be es-

timated, the maximization of the likelihood function for the model (1)-(4) is computationally

feasible also in presence of a large number of nuisance parameters (> 1, 000). However, as

Greene’s simulations suggest, this approach may lead to inconsistent variance estimates, espe-

cially in short panels.10

A natural strategy to avoid this issue consists in eliminating the nuisance parameters through

a data transformation. This strategy has been followed for instance by Wang & Ho (2010) for a

model in which inefficiency is assumed to change deterministically over time, that is uit = hitui

where hit = exp(zitδ) and ui ∼ N+(ν, σ2). As noted by the authors, this assumption is critical

for deriving the marginal likelihood since the distribution of ui is not affected by the first-

difference transformation. In what follows, we do not impose any constraint on the variability

of u over time at the cost of a more challenging marginal likelihood derivation.

The first-difference transformation implies that model (1)-(4) can be rewritten as

∆yi = ∆Xiβ +∆εi, (5)

∆εi = ∆vi −∆ui, (6)

∆vi ∼ IID NT−1(0,Ψ), (7)

∆ui ∼ IID F∆u(σ), i = 1, . . . , n, (8)

where ∆yi = (∆yi2, . . . ,∆yiT )
′ with ∆yit = yit − yit−1 and ∆Xi is the T − 1 × k matrix of

time-varying covariates with the t-th row denoted by ∆xit = (∆xit1, . . . ,∆xitk), ∀ t = 2, . . . , T .

The normality assumption for vit implies that ∆vi has a T − 1-variate normal distribution with

10 The incidental parameters problem is no longer an issue for the MLDVE when T → ∞ with fixed n. The
MLDVE shows very good finite sample properties when the longitudinal dimension is large enough (T > 15, see
Section 6.1).
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covariance matrix Ψ = ψ2ΛT−1, where ΛT−1 is the symmetric tridiagonal T − 1× T − 1 matrix

ΛT−1 =

























2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1
. . .

. . .
...

...
. . .

. . .
. . . −1

0 0 . . . −1 2

























. (9)

On the other hand, the multivariate distribution of ∆ui is generally unknown. Nevertheless,

given the independence assumption between ∆vi and ∆ui, the marginal likelihood contribution

L∗
i can be defined in general terms as

L∗
i (θ) =

∫

f(∆vi,∆ui|θ) d∆ui =

∫

f(∆vi|θ)f(∆ui|σ) d∆ui

=

∫

f(∆yi|β, ψ,∆Xi,∆ui)f(∆ui|σ) d∆ui, (10)

where θ = (β
′

, σ, ψ)′. The marginalization of ∆ui hides two challenges: the multivariate density

function f(∆ui|σ) is unknown; the integral (10) does not lead to a closed-form expression. In

the next Section we present two estimation strategies that overcome these issues.

3 Estimation

3.1 Marginal maximum simulated likelihood estimation

The marginalization in equation (10) can be performed by simulation, in a way similar to the

elimination of nuisance parameters in nonlinear random-effects models. We propose to estimate

model (5)-(8) treating the marginal likelihood function as an expectation with respect to the

random vector ∆ui.

In order to apply the MSL approach, we make the following assumptions: i) Fu belongs to a

one-parameter family of distributions with a support defined over R+ and scale parameter σ; ii)

Fu exhibits a scaling property, i.e. ui = σũi where the rescaled inefficiency ũi does not depend

on the unknown parameter σ.
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The first assumption is needed to derive a valid draw to be used for the estimation and rules

out the possibility of using two-parameters distributions (e.g., truncated normal or gamma).

While two-parameters flexible distributions have been widely and successfully applied in many

studies, the estimation of the location/shape parameter can be hard in small samples. This

practical identification issue has been raised for both the normal-gamma and normal-truncated

normal convolutions by Ritter & Simar (1997) and Almanidis & Sickles (2012), respectively.

Even if less flexible, models based on half-normal and exponential inefficiency are not affected

by this practical identification problem and can be very useful in many empirical applications.

Furthermore, both half-normal and exponential distributions are characterized by the scaling

property and therefore the second assumption does not appear restrictive.

The marginal likelihood contribution L∗
i can be expressed in terms of its simulated counter-

part as

L∗
i (θ) =

∫

f(∆yi|θ,∆Xi,∆ui)f(∆u|σ)d∆ui = (11)

= E∆ũ [φT−1 (∆εi + σ∆ũi;0,Ψ)] = (12)

≈ 1

G

G
∑

g=1

φT−1 (∆εi + σ∆ũig;0,Ψ) , (13)

where ∆εi = ∆yi−∆Xiβ, φT−1(.;m, V ) is the T −1-variate Gaussian density with mean vector

m and covariance matrix V , and G is the number of draws from the multivariate distribution of

the first-differenced rescaled inefficiency F∆ũ.
11 Therefore, all we need is to simulate from the

distribution of ∆ũi and this task is straightforward if we are able to simulate from the univariate

distribution of uit. Indeed, if the two previous assumptions hold, the vector ∆ũig = (ũi2g −

ũi1g, . . . , ũiTg − ũi(T−1)g)
′ is, by construction, a valid draw from F∆ũ. Following Gouriéroux

& Monfort (1991), under the regularity conditions ensuring the large sample properties of the

MMLE, the resulting marginal maximum simulated likelihood estimator (MMSLE) is consistent

and asymptotically equivalent to the MMLE as n→ ∞ and G→ ∞ with
√
n/G→ 0.12 It then

follows that the accuracy of this approach relies on whether G is sufficiently large to guarantee

that the average (13) is a good approximation of the expectation (12).

11Clearly, since ũ does not depend on σ, the same is true also for the distribution of ∆ũ.
12A discussion of the conditions required for the consistency of the MMLE for the normal-exponential model

are given in Appendix A.2.
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For practical implementation, two issues must be considered: (i) how many draws are needed

to obtain a good approximation and (ii) how to simulate them efficiently. On the first point,

the literature is heterogenous. As pointed out by Greene (2003), the rule of thumb “the more

the better” is not helpful when time (and computational power) becomes a consideration. In

fact, the marginal benefit of additional draws eventually becomes nil. The second consideration

concerns how to obtain the draws efficiently. Numerous procedures have been recently proposed

in the numerical analysis literature to reduce the computational burden related to the use of

pseudo-uniform random draws (Morokoff & Caflisch, 1995; Sloan & Woźniakowski, 1998). We

propose to use Halton sequences (Halton, 1960), a computationally efficient alternative which

has been extensively used for the implementation of the MSL estimation technique (see, among

others, Train, 2000; Bhat, 2001; Greene, 2003, 2005a,b). This strategy makes the MMSLE

manageable even in the case of moderately large sample sizes (e.g., n = 1000, T = 10). Our

simulations suggest that the minimum number of Halton sequences needed to get a suitable

approximation of the expectation (12) is 10 sequences per observation.13

It is worth emphasizing that the MMSLE may be applied also when the within-group trans-

formation is used to remove the fixed-effects. In this case, the simulated likelihood contribution

of each unit is

L∗
i (θ) ≈

1

G

G
∑

g=1

φT (▽εi + σ▽ũig;0,Ψ) , (14)

where “▽” denotes within-group transformed variables. Again, the vector ▽ũig = (ũi1g −

ūig, . . . , ũiTg − ūig)
′ is a valid draw from F▽ũ, with ūig =

1
T

∑T
t=1 ũitg.

3.1.1 Heteroskedastic case

The estimation procedure described above can be easily generalized to the case of heteroskedastic

inefficiency. This extension relaxes the i.i.d. assumption allowing for an additional source of (de-

terministic) variability in the inefficiency term. This model feature is relevant since both model

parameters and inefficiency estimates may be adversely affected by neglected heteroskedastic-

13Notice that the same approximation can be reached using 100 pseudo-random draws for observation. In our
case the computational efficiency compared to pseudo-uniform random draws appears to be at least 10 to 1.
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ity.14 Moreover, the inclusion of explanatory variables correlated with inefficiency but not with

unobserved heterogeneity may enhance parameters identification (Amsler & Schmidt, 2015).

A possible specification for the unit- and time-specific scale parameter may be σit = g(zitδ)

where g(.) is a known positive monotonic function, zit is a 1× s vector of exogenous covariates

and δ is a s × 1 vector of parameters to be estimated. The simulated likelihood contribution

becomes

L∗
i (θ) ≈ 1

G

G
∑

g=1

φT−1 (∆εi +∆ηi;0,Ψ) , (15)

where ∆ηi = ∆(σi ⊙ ũig) with σi = (σi1, . . . , σiT )
′, ũig = (ũi1g, . . . , ũiTg)

′ is a draw from Fũ

and the symbol ⊙ represents the element-wise product.15 In this case, we can define the average

STN ratio λ̄ = 1
nTψ

∑n
i=1

∑T
t=1 σit. Notice that allowing for heteroskedastic inefficiency makes

the MMSLE far more computationally intensive (the rule of thumb is to use at least 50 sequences

per observation). As shown in the next Section, this shortcoming can be overcome at the cost

of a (negligible) loss in terms of efficiency.

3.2 Pairwise difference estimator

As a computationally feasible alternative, we propose to exploit the closed-form expression of

the integral (10) when the inefficiency is exponentially distributed and T = 2.16 Indeed, while

we were able to derive the p.d.f. of the random vector ∆ui also when T > 2, the subsequent

marginalization needed to derive the p.d.f. of the random vector ∆εi cannot be performed in

closed form.17 Nevertheless, when T = 2, the difference ∆U = U2−U1 between two independent

but not identically distributed exponential random variables Ut ∼ E(ςt) with ςt = σ−1
t , t = 1, 2,

14 The multi-stage approach by Kumbhakar & Hjalmarsson (1995) represents a simple way to estimate parame-
ters of model (1)-(4). However, in presence of neglected heteroskedasticity driven by variables that are correlated
with those included in the frontier’s equation, it may lead to biased estimates also in the first stage.

15As discussed in Section 3.1, the within-group transformation can alternatively be used to remove the fixed-
effects.

16The half normal and truncated normal cases will be discussed in Section 4.
17See Appendix A.1.
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is asymmetric Laplace distributed with p.d.f.

f(∆u|ς1, ς2) =















ς1ς2
ς1+ς2

exp (ς1∆u) , if ∆u < 0,

ς1ς2
ς1+ς2

exp (−ς2∆u) , otherwise.

(16)

Thus, by allowing the scale parameter of the inefficiency distribution to depend on a set of

exogenous explanatory variables, σit = exp(zitγ), the resulting marginal likelihood function for

a two-period panel is

L∗(θ) =
n
∏

i=1

f(∆yit|θ,∆xit)

=
n
∏

i=1

{∫

R

f(∆yit|β, ψ,∆xit,∆uit)f(∆u|ς1, ς2)d∆uit
}

=

n
∏

i=1

{∫

R

1

(4πψ2)T/2
exp

[

−1

2

∆εit −∆uit
2ψ2

]

d∆uit

}

=

n
∏

i=1

{

1

(4πψ2)T/2

[

∫

R+

exp

(

−1

2

(∆εit −∆uit)
2

2ψ2

)

d∆uit +

∫

R
−

exp

(

−1

2

(∆εit −∆uit)
2

2ψ2

)

d∆uit

]}

=

n
∏

i=1

ςi1ςi2
(ςi1 + ςi2)(4πψ2)T/2

{

∫

R+

exp

[

−1

2

(

(∆εit −∆uit)
2

2ψ2
+ 2ςi2∆uit

)]

d∆uit

+

∫

R
−

exp

[

−1

2

(

(∆εit −∆uit)
2

2ψ2
− 2ςi1∆uit

)]

d∆uit

}

=
n
∏

i=1

{

ςi1ςi2
(ςi1 + ςi2)

exp
(

ς2i2ψ
2 − ςi2∆εit

)

×

×
[

Φ

(

∆εit√
2ψ

−
√
2ςi2ψ

)

+ exp
[

ψ2(ς2i1 − ς2i2) + (ςi1 + ςi2)∆εit
]

Φ

(

−∆εit√
2ψ

−
√
2ςi1ψ

)]}

, (17)

where ∆εit = ∆yit −∆xitβ, Φ(.) is the c.d.f. of a standard Gaussian random variable and

ςit = exp(−zitγ), (18)

with t = 1, 2. Notice that the homoskedastic case can be easily obtained by substituting ςi1 =

ςi2 = σ−1. Similarly, heteroskedasticity in v can be easily introduced by modeling the variance

of the idiosyncratic error.

The marginal likelihood function (17) implies the existence of H =
(

T
2

)

consistent MMLEs,

one for each “subsample” extracted considering two waves of the panel. In fact, if we restrict the
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inference to one of these subsamples, we can still consistently estimate the vector of parameters

θ = (β′,γ ′, ψ)′. Even if each of these H estimators shares the asymptotic properties of a

MMLE applied on the whole sample, it exploits only a portion of the available information

implying high inefficiency in finite samples. Similarly to Abrevaya (1999), we can produce

a more efficient estimator by combining the H marginal log-likelihoods in just one objective

function. The resulting estimator can be viewed as a quasi MMLE for the whole sample in

which the correlation between the subsamples is ignored.

Before discussing in detail the estimator, let us present this inferential process in a simplified

case where only subsamples extracted from consecutive pairs of waves are considered. Similarly

to the partial maximum likelihood approach used in Wang et al. (2013), by combining the

marginal likelihood function defined in (17) we can define a “split-sample” estimator θ̆ as

θ̆ = argmax
θ∈Θ

1

nT ∗

n
∑

i=1

T
∑

t=2

log f(∆yit| θ,∆xit), (19)

where T ∗ = int(T/2). The distinguishing feature of this estimator from the MMLE is that we

are not assuming a full sample likelihood factorization in terms of the product of the subsamples

likelihood contributions.

As shown by Honoré & Powell (1994), the split-sample estimator is inefficient compared to

the estimator θ̃ defined as the maximizer of the following objective function

Un (θ) = n−1

(

T

2

)−1 n
∑

i=1

T
∑

t=2

∑

s<t

log f(∆s
tyi| θ,∆s

txi), (20)

where ∆s
tyi = yit − yis and ∆s

txi = xit − xis. Following previous literature (Honoré & Powell,

1994; Abrevaya, 1999, among the others), we refer to the maximizer of (20) as pairwise difference

estimator (PDE). This estimator maximizes an objective function which involves all pairs of

waves, exploiting more information with respect to the split-sample estimator.18

As already mentioned, the relevant property of this inferential procedure is that the asymp-

totics are also determined by n → ∞ with fixed T . In particular, its consistency is a direct

18Consistently with Abrevaya (1999), we find that the criterion function (20) is much smoother than the
MMLE’s objective function.
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consequence of the consistency of the underlying subsamples MMLEs.19 Under the assumptions

ensuring the asymptotic normality of PDE and recognizing that this estimator belongs to the

class of U-estimators, its asymptotic variance is equal to A−1
0 B0A

−1
0 , where

A0 = −
T
∑

t=2

∑

s<t

E [∇θθ log f(∆
s
tyi|∆s

txi,θ0)] , (21)

and

B0 = E







[

T
∑

t=2

∑

s<t

∇θ log f(∆
s
tyi|∆s

txi,θ0)

][

T
∑

t=2

∑

s<t

∇θ log f(∆
s
tyi|∆s

txi,θ0)

]′




, (22)

where ∇θ and ∇θθ denote the vector of first and second derivatives of the objective function

respectively, and θ0 is the true parameters vector.20 Estimation of the asymptotic variance of

the PDE is straightforward since, for each pairwise difference, we have that

−E[∇θθ log f(∆
s
tyi|∆s

txi,θ0)] = E[∇θ log f(∆
s
tyi|∆s

txi,θ0)∇θ log f(∆
s
tyi|∆s

txi,θ0)
′].

Therefore, the estimator of the asymptotic variance of θ̃ is given by

Âvar(θ̃) = n−1Â−1
0 B̂0Â

−1
0 , (23)

where

Â0 =
1

n

n
∑

i=1

T
∑

t=2

∑

s<t

∇θ log f(∆
s
tyi|∆s

txi, θ̃)∇θ log f(∆
s
tyi|∆s

txi, θ̃) (24)

and

B̂0 = Â0 +
1

n

n
∑

i=1

T
∑

t=2

∑

s<t

∑∑

(k,h) 6=(t,s)

∇θ log f(∆
s
tyi|∆s

txi, θ̃)∇θ log f(∆
h
kyi|∆h

kxi, θ̃). (25)

19A discussion of the conditions required for the consistency of the subsamples MMLEs and of the PDE for the
normal-exponential model are given in Appendix A.2.

20Even if we do not establish the asymptotic normality of the PDE, it is worth noting that our Monte Carlo
simulations show that the ratio between the average standard errors obtained from the proposed covariance matrix
estimator and the standard deviation over replications of the estimated coefficients is close to one.
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Notice that the consistency property of θ̃ can also be obtained when T → ∞ with fixed n.

However, due to the inconsistency of the subsamples MMLEs, a formal proof needs to be adapted

from the large sample theory for minimizers of U-processes developed by Honoré & Powell (1994).

3.3 Fixed-effects and inefficiency scores

A fundamental feature of SF models is the estimation of technical (cost) inefficiency. The

standard approach is to post-estimate inefficiency exploiting the conditional distribution of uit

given εit. Following Jondrow et al. (1982) (JLMS) a point estimate of uit can be obtained using

the mean of the conditional distribution, E(uit|ε̂it), evaluated at ε̂it = yit − α̂i − xitβ̂.

Since we consider a transformed model in which the αi are ruled out from the parameter

space, the estimation of the fixed-effects has to be performed in a second stage. An efficient

estimator for αi can be obtained by maximizing the log-likelihood function of the untransformed

model where the other parameters are substituted by a consistent estimates.21 A simpler alter-

native when the inefficiency is assumed to be heteroskedastic is given by

α̂i =
1

T

T
∑

t=1

(

yit − xitβ̂ + ĉit

)

i = 1, . . . , n, (26)

where β̂ and ĉit = E(uit|β̂, σ̂it) are consistent estimates. In particular, ĉit = σ̂it when uit ∼ E(σit)

and ĉit =
√
2π−1σ̂it when uit ∼ N+(0, σ2it) (σ̂it = σ̂ in the homoskedastic case).22 This estimator

is equivalent to the mean-adjusted estimator of αi in the fixed-effects linear model and, therefore,

is consistent as T → ∞.

4 Extensions

In this Section, we show how the pairwise difference estimation strategy can be used to extend the

recent work of Chen et al. (2014) to the heteroskedastic normal-truncated normal. Furthermore,

we propose a variant of the TFE model in which the inefficiency is assumed to be heteroskedastic

21Although our case is equivalent to the one reported in Section 2.2.2 of Wang & Ho (2010), an explicit formula
for αi cannot be obtained from the first-order condition of the log-likelihood due to the presence of the individual
effect also in the arguments of the inverse Mills ratio.

22Equation (26) refers to the case of production frontiers. For cost frontiers, the ĉit term enters the expression
with a minus sign.
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and follows a first-order autoregressive process. In both cases we exploit the properties of the

Closed Skew Normal (CSN) class of distributions (Gonzalez-Farias et al., 2004a). The multi-

variate CSN distributions have been introduced as a generalization of the Gaussian distribution

to model, in a natural way, the skewness feature of the distribution. Thanks to its closeness

under marginalization and linear transformations, this class of distributions naturally applies in

the SF context. A comprehensive discussion of the CSN family and its properties can be found

in Gonzalez-Farias et al. (2004b). For all the specifications covered in this Section, we do not

provide any formal proof of, nor claim, consistency and/or asymptotic normality. Nonetheless,

the Monte Carlo experiments reported in Section 6, which cover also the specifications consid-

ered in this Section, show that both the bias and the variance of the PDE tend to zero as the

sample size increases.

4.1 Normal-truncated normal model

A p-dimensional random vector Y is distributed according to a CSN distribution with parameters

µ, Σ, D, ν and ∆, denoted by Y ∼ CSNp,q(µ,Ω, D,ν,∆), if it is continuous with the following

p.d.f

f(y) = Cφp (y;µ,Ω)Φq (D(y − µ);ν,∆) , y ∈ Rp, (27)

where C−1 = Φq

(

0;ν,∆+DΩD
′

)−1
and φp(.;µ,Ω) and Φq(.;ν,∆) are the p-dimensional p.d.f.

and q-dimensional c.d.f. of the Gaussian distribution, with p ≥ 1, q ≥ 1, µ ∈ Rp, ν ∈ Rq, D

an arbitrary q × p matrix, Ω and ∆ positive definite matrices of dimensions p × p and q × q,

respectively.

Dominguez-Molina et al. (2004, proposition 13.6.1) prove that the T -dimensional random

variable εi = vi − ui, for i = 1, . . . , n with vi ∼ NT (0,Ψ) and ui ∼ N+
T (ν,Σ), is distributed as

εi ∼ CSNT,T (−ν,Ω∗,−ΣΩ−1
∗ ,−ν,∆∗), i = 1, . . . , n, (28)

where Ω∗ = Σ+Ψ and ∆∗ = Σ− Σ(Σ + Ψ)−1Σ.

Similarly to Chen et al. (2014) who have used the within-group transformation in the case of a
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homoskedastic normal half-normal model, we use the first-difference transformation to eliminate

the nuisance parameters. In what follows we show the derivation of the density of the random

vector ∆εi = Aεi, where A is the following T − 1× T matrix

A =

























−1 1 0 · · · · · · 0

0 −1 1 0 · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 −1 1 0

0 0 . . . 0 −1 1

























. (29)

As noted before, the CSN family is closed to linear transformations. Hence, using the

Proposition 2.3.1 of Gonzalez-Farias et al. (2004b), the random vector ∆εi is distributed as

∆εi ∼ CSNT−1,T (−∆ν,ΩA, DA,−ν,∆A), i = 1, . . . , n, (30)

where ΩA = A(Σ+Ψ)A
′

, DA = −ΣA
′

(AΣA
′

+AΨA
′

)−1 and ∆A = Σ−ΣA
′

(A(Σ+Ψ)A
′

)−1AΣ,

with p.d.f. given by23

f(∆εi) = [ΦT (0;−ν,Σ)]−1 φT−1 (∆εi;−∆ν,ΩA) ΦT (DA∆εi;−ν,∆A) . (31)

By exploiting this result, the MMLE for the normal-truncated normal “true” fixed-effects model

is

θ̂ = argmax
θ∈Θ

1

n

n
∑

i=1

log f(∆εi| θ,∆xit). (32)

In general, the maximization of (32) requires the numerical approximation of a T-dimensional

normal integral for each unit in the panel. Regardless of the method used to approximate this

integral, the higher its dimension, the higher the computational burden. As pointed out by

Kumbhakar & Tsionas (2011), this approximation becomes cumbersome when T > 5 but can

be handled when the inefficiency is homoskedastic (Chen et al., 2014). Indeed, the covariance

matrix ∆A in ΦT (.) has a special (equicorrelated) structure and the computations may be greatly

23The normal-half normal case can be straightforwardly obtained by replacing ν = 0 in (28).

18



simplified following the result outlined in Kotz et al. (2000).

This simplification does not apply to the case of heteroskedastic errors, i.e. Σi = diag(σ2i1, . . . , σ
2
iT )

and Ψi = diag(ψ2
i1, . . . , ψ

2
iT ), since ∆A has not the aforementioned desirable structure anymore.

In order to keep the estimation feasible, we propose to apply the pairwise difference approach

using the marginal likelihood function of a two-period normal-truncated normal model. The

marginal likelihood function can be straightforwardly obtained by considering T = 2 in equa-

tion (31) as

L∗(θ) =
n
∏

i=1

[Φ2(0;−ν̃i,Σi)]
−1 φ

(

∆εit;−∆νit, ξ
2
i

)

Φ2

(

d̃i;0,Ξi

)

, (33)

where the location parameter ν̃i = R̃iτ with R̃i a 2 × r matrix of exogenous covariates, d̃i =

{
[

(σ2i1,−σ2i2)′ξ−2
i

]

(∆εit+∆νit)}+ν̃i, Σi = diag(σ2i1, σ
2
i2), ξ

2
i = σ2i1+σ

2
i2+ψ

2
i1+ψ

2
i2, σit = exp(zitγ)

and ψit = exp(witδ), with zit and wit two vectors of explanatory variables, and

Ξi =







σ2i1 0

0 σ2i2






− ξ−2

i







σ4i1 −σ2i1σ2i2
−σ2i1σ2i2 σ4i2






.

When T > 2, the evaluation of T -dimensional normal integrals, which makes problematic the

extension of the Chen et al. (2014) approach to the heteroskedastic case, can be replaced by

the approximation of
(

T
2

)

2-dimensional normal integrals whose evaluation has been shown to

be accurate and computationally efficient (Genz, 2004). Hence, the PDE objective function is

Un (θ) = n−1

(

T

2

)−1 n
∑

i=1

T
∑

t=2

∑

s<t

log
{

[Φ2(0;−ν̃i,Σi)]
−1 φ

(

∆s
tεi;−∆s

tνi, ξ
2
i

)

Φ2

(

d̃i;0,Ξi

)}

, (34)

where the pairwise difference operator ∆s
t is defined in equation (20). Finally, inefficiency esti-

mates can be obtained using the procedure described in Section 3.3 substituting ĉit = ν̂it+
√

2
π σ̂it,

with ν̂it = r̃itτ̂ .

4.2 A dynamic inefficiency model

The sources of inefficiency dynamics may be manifold. First, the dynamics can be linked to

parametric functions of time or time varying observable factors that are under the firms’ control.
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Second, since the production process may be affected by unexpected events, inefficiency can

be considered a stochastic variable that randomly varies over time. Third, some inputs are

considered “fixed” in the short-run because the economic environment places high adjustment

costs. In this case, we expect the inefficiency to be persistent, that is the inefficiency in one period

is influenced by its past levels. The normal truncated-normal model considered in Section 4.1

accommodates the first two sources of dynamics: the inefficiency randomly vary over time and

both its location and scale may depend on a set of observable factors. However, an “endogenous”

dynamics of inefficiency has not yet been included in the model.

A new generation of dynamic frontier approaches is emerging with the aim of disentan-

gling the long-run from the short-run inefficiency levels (Ahn & Sickles, 2000; Tsionas, 2006;

Emvalomatis, 2012). To the best of our knowledge, Emvalomatis (2012) is the only study in

which unobserved heterogeneity is separated from a first order autoregressive inefficiency. How-

ever, the model is estimated through a Bayesian correlated random effects approach in which a

distribution for the unit-specific effects must be specified.

We propose instead to introduce the aforementioned dynamics in a fixed-effects framework,

by adequately specifying Σ in (28). In particular, we consider the following heteroskedastic

normal-half normal model with AR(1) inefficiencies

vi ∼ NT (0,Ψi), (35)

ui ∼ N+
T (0,Σi), (36)

Σi =
1

1− ρ2
Ωi, (37)

Ψi = diag(ψ2
i1, . . . , ψ

2
iT ), (38)

where Ωi = {ωits}t,s=1,...,T with ωits = σitσisρ
|t−s|, and where σit and ψit are defined as in

Section 4.1. In this representation ρ represents the inefficiency autocorrelation coefficient.

Again, in order to lower the computational burden, we propose to estimate the parameter

vector θ = (β′,γ ′, δ′, ρ)′ by applying the pairwise estimation strategy to the marginal likelihood

function of a dynamic two-periods normal-half normal model. The PDE objective function can

be easily obtained by substituting in equation (34) the following
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Σi =







σ2i1 ρσi1σi2

ρσi1σi2 σ2i2






, (39)

ξ2i = σ2i1 + σ2i2 + ψ2
i1 + ψ2

i2 − 2ρσi1σi2, (40)

d̃i = {
[

(σ2i1 + ρσi1σi2,−σ2i2 − ρσi1σi2)
′ξ−2
i

]

∆εit, (41)

Ξi =







σ2i1 ρσi1σi2

ρσi1σi2 σ2i2






− ξ−2

i







a b

c d






. (42)

where a = σ4i1 − 2ρσ3i1σi2 + ρ2σ2i1σ
2
i2, b = c = ρσ3i1σi2 − (1 + ρ2)σ2i1σ

2
i2 + ρσi1σ

3
i2, and d =

σ4i2 − 2ρσi1σ
3
i2 + ρ2σ2i1σ

2
i2. As discussed in Section 3.3, in order to apply the JLMS estimator we

first need an estimate for the αi’s. We propose to use equation (26) with

ĉi = Σ̂it

(

Φ∗
T (0,0, Σ̂i)

ΦT (0,0, Σ̂i)

)

, (43)

where Φ∗
T is the vector of partial derivatives of ΦT . Then, inefficiency scores can be easily

obtained by adapting equation 13.19 of Dominguez-Molina et al. (2004) as

E(ui|ε̂i) = Υ̂i + ∆̂∗i
Φ∗
T (Υ̂i,0, ∆̂∗i)

ΦT (Υ̂i,0, ∆̂∗i)
, (44)

where Υ̂i = −Σ̂i(Σ̂i + Ψ̂i)
−1ε̂i, ∆̂∗i = Σ̂i − Σ̂i(Σ̂i + Ψ̂i)

−1Σ̂i.
24

5 Unobserved heterogeneity and inefficiency

A TFE model can be very useful in practice to separate the inefficiency term from the effect

of relevant time invariant unobserved features of the production environment that are beyond

the control of the firm.25 Following the example of Amsler & Schmidt (2015), suppose that the

firms are farms, then, these factors could be represented by soil quality or microclimate. In

these circumstances, a relevant issue is whether the fixed-effects may capture also part of the

24The computation of the inefficiency scores requires in this case the numerical approximation of a T-dimensional
integral for each unit in the panel, but this cumbersome approximations are performed in a second stage and not
within the optimization algorithm.

25Here, as in the rest of the paper, we are still assuming that the inefficiency is time varying.
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inefficiency. This section aims to provide new insight to this issue from a statistical perspective.

As formally proved in the Appendix A.2, even thought the pairwise estimation strategy is

based on a first difference transformation of the data, the information contained in ∆uit allow

the estimation of all the relevant features characterizing the distribution of the inefficiency.

Despite this fixed-effects killing transformation, the PDE allows to consistently estimate also

the parameters associated with time invariant inefficiency factors (see the simulations results

reported in Section 6). However, there are cases in which the fixed-effects may capture part of

the inefficiency. To see this point, let us consider the following competing model specification

proposed by Colombi et al. (2014)

yit = αi + x′
itβ + vit − ũi − ũit, (45)

in which the inefficiency is represented by two (additive) components: one is time invariant,

ũi, the other is time varying, ũit. In this case, applying any fixed-effects killing transformation

will also eliminate ũi. Although model (45) looks like a generalization of model (1)-(2), the

two models are based on different distributional assumption on the inefficiency term, uit for

model (1)-(2) and uit = ũi + ũit in model (45). Indeed, Colombi et al. (2014) assume that ũi ∼

N+(0, σ21) and ũit ∼ N+(0, σ22) and the sum of independent half normals is not half normally

distributed.26 Moreover, Colombi et al. (2014) also assume that ũi is independent from ũit, which

is a rather strong assumption. As stated in Kumbhakar & Hjalmarsson (1995) and Colombi

et al. (2014), the main advantage is to allow for a unit specific long-run component in a simple

homoskedastic set up. As also discussed before (see Section 4.2), inefficiencies can be persistent

due to an autoregressive structure or can fluctuate around a production unit’s specific mean

due to observable time invariant factors affecting its moments (e.g., ownership, organizational

structure, location).27 In this paper we show how both cases can be easely modeled allowing

the inefficiency to be simultaneously heteroskedastic and dynamic. We believe that, in general,

it is not possible to formally test which of the two competing specifications is supported by the

26This statistical fact is true also for the exponential and truncated normal distributions.
27Notice that the effect of these time-invariant factors is identified even if they are correlated with the unobserved

heterogeneity. In a model with only time invariant inefficiency, Amsler & Schmidt (2015) proved that exogenous
explanatory variables correlated with the time-invariant inefficiency ui but not with unobserved heterogeneity αi
can be used to separately identify these two latent components without any distributional assumptions.
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data. However, the Colombi et al. (2014) specification shares a set of parameters with the Chen

et al. (2014) model (i.e., the frontier parameters and those corresponding to the terms ũit and

vit). Then, under the assumption that the Colombi et al. (2014) model is correctly specified,

the MMLE of Chen et al. (2014) is consistent in estimating these common parameters. This

suggests that the validity of Colombi et al. (2014) specification may be easily verified by using

a Hausman (1978) test comparing the common parameters estimates. Clearly, a rejection of

the null hypothesis does not imply necessarily that the correct model is the one proposed by

Chen et al. (2014), but only that the assumptions of the Colombi et al. (2014) model are not

supported by the data. Summarizing, unless the inefficiency can be decomposed additively in

a time invariant and a time varying components, the estimators proposed in this paper can be

used to successfully separate unobserved heterogeneity from inefficiency.

6 Monte Carlo evidence

In this Section we study the finite sample properties of the MMSLE and PDE via numerical

simulations.28 We start by comparing the PDE and Greene’s MLDVE in the case of a het-

eroskedastic normal-exponential model. This first set of simulations illustrates the consistency

property of the PDE and complements previous simulation studies by Greene (2005a,b), Wang

& Ho (2010) and Chen et al. (2014) on the adverse effect of the incidental parameters bias.

In a second set of simulations, we study the finite sample properties of our MMSLE together

with those of the MMLE proposed by Chen et al. (2014) in a homoskedastic normal-half normal

setup. This exercise compares two consistent estimators allowing to make some statement on

their finite sample efficiency. Finally, we offer some evidence about the performance of the PDE

in a normal-half normal production model where inefficiency is assumed to be heteroskedastic

and to follow a first-order autoregressive process.

In all these cases, we investigate the effect of different sample sizes (n = 100, 250) and panel

lengths (T = 5, 10). All simulation designs have a common base: i) the fixed-effect parameters

α1, ..., αn are drawn from a standard Gaussian random variable; ii) one explanatory variable is

28A Stata command implementing the methods described in this paper is available. It can be installed from
within Stata by typing net install sftfe, from(http://www.econometrics.it/stata). Please, notice that
the command cannot be downloaded from the website but just directly installed through the Stata software.
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used xit = 0.5αi +
√
0.52wit with wit ∼ N (0, 1); iii) for each experiment, we use the same αi

and xit in all replications, thus only uit and vit are redrawn in each replication; vi) the number

of replications, R = 1000.

Simulation results are summarized for each set of simulations by reporting the average

bias and Mean Squared Error (MSE) of the estimates, together with the linear (ru,û) and the

Spearman rank correlation coefficients between the (true) simulated inefficiencies and the es-

timated ones. The inefficiency’s bias and MSE are computed for each replication over the

N = n×T observations, and then these quantities are averaged over replications, e.g., MSE(ûit)=

R−1
∑R

r=1(NT )
−1
∑n

i=1

∑T
t=1(E(uit|ε̂it) − u0it)

2, where E(uit|ε̂it) is the JLMS estimate and u0it

is the simulated (true) inefficiency.

6.1 PDE vs MLDVE

We consider the following heteroskedastic normal-exponential model

yit = αi + βxit + vit − uit, (46)

vit ∼ N (0, ψ2), (47)

uit ∼ E (σi) , (48)

σi = exp(γ0 + ziγ1), i = 1, . . . , n, t = 1, . . . , T, (49)

where zi ∼ N (0, 0.0625). It is worth noting that we have deliberately specified a time invariant

inefficiency factor. This allows to show that, despite the first-difference transformation, the PDE

is able to consistently estimate the parameters associated with this kind of factors. We keep fixed

in each experiment the values of the frontier parameter β = 1, ψ = 0.25 and γ1 = 1, while the

value of γ0 varies across scenarios in order to obtain different STN ratios (λ̄ = 1, 1.5, 2, 4, 6).29

For instance, we set γ0 = −1.5 and γ0 = −0.8 to obtain λ̄ ≈ 1 and λ̄ ≈ 2, respectively.

Figure 1 reports a comparison between PDE and MLDVE in terms of the proportion of

non-problematic replications, i.e. replications where ψ̂ > 0.001. The first result to highlight

is the huge gap between the performance of the two estimators, with the MLDVE unable to

29Given the heteroskedastic specification for the inefficiency, see equation (49), the considered STN ratios are
actually defined as averages λ̄ = 1

nψ

∑n

i=1
σi.
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provide a non-zero estimate of ψ when λ̄ ≥ 4 and T ≤ 10.

We argue that the downward bias of ψ̂ has two drivers. First of all, it is due to the incidental

parameters problem since the number of replications with non-zero ψ̂ increases with larger T ’s

but not with the cross-sectional dimension. Secondly, given that the number of replications

with non-zero ψ̂ remains low for large STN ratios (e.g., λ̄ > 4) even in presence of long panels

(e.g., T = 15), we argue that this source of bias is related to the intrinsic characteristics of the

likelihood function in SF models. As shown by Liseo (1990) for the convolution of normal and

half-normal distributions, this issue has a simple justification when all realizations are negative

(i.e., εit < 0, ∀i, t). In this case, the likelihood becomes an increasing function of λ implying

that λ̂ = ∞, or equivalently ψ̂ = 0.30 Notice that this problematic behavior is not limited to

this extreme case. Indeed, it can be often observed in small cross-sectional samples when λ ≥ 8,

while our simulations show that the MLDVE suffers from this issue also for smaller values of

λ̄ (Figure 1).31 This evidence suggests that the incidental parameters problem amplifies this

critical behavior of the likelihood function. We find that both MMSLE and PDE are essentially

not affected by the aforementioned issue, presumably because ∆εi is centered at zero.32

Following Chen et al. (2014), we discuss the simulation results by distinguishing problematic

and non-problematic replications. Since the inference using MLDVE is markedly problematic

for large STN ratios, we limit our analysis to λ̄ = 1, 2. Even so, for some configurations we have

been forced to increase the number of replications to 10,000 in order to be able to compare the

two estimators.

Tables 1 - 4 show that the frontier parameter (β) is accurately estimated by both estimators

in all scenarios. Consistently with Greene (2005b), we find that the incidental parameters bias

does not affect the frontier parameter estimates. Thus, the TFE model behaves as a linear

panel data model where the bias only affects the variance parameters. In the estimation of the

variances, the PDE performs quite well even in the case of small samples (n = 100, T = 5),

30As noted by Azzalini & Capitanio (1999), this intrinsic property of the likelihood function cannot be removed
by a reparameterization. It is worth noting that some statistical packages report non-convergence when ψ ap-
proaches zero and, as a consequence, this behaviour is often mistakenly considered as a numerical maximization
problem.

31Simulations for the MLE in the case of normal-half normal and normal-exponential cross-sectional models are
available from the authors upon request.

32The same is true for the Chen et al. (2014) estimator where the nuisance parameters are eliminated through
the within-group transformation.
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while the MLDVE estimates are accurate only for the non-problematic samples. In these cases,

the most favorable for the MLDVE, the PDE properties appear to be in line with those of the

MLDVE. On the other hand, in the problematic scenarios, the MLDVE not only systematically

underestimates ψ, but also leads to a relevant bias for both γ0 and γ1.
33 The PDE’s performances

improve when n gets larger. The better performances stem from both a smaller bias and smaller

variance of the parameter estimates proving evidence of fixed-T consistency. For example, the

MSEs of γ0 and γ1 decrease from 0.066 and 0.111 to 0.022 and 0.042, respectively, when n

increases from 100 to 250 keeping fixed λ̄ = 1 and T = 5. The MLDVE behaves quite well in

scenarios where T = 10, however the PDE offers performances that are substantially equivalent,

in particular when λ̄ = 2.

As for the estimation of the inefficiencies, we do not observe a substantial difference between

the two approaches in the non-problematic samples, while the PDE appears to be slightly su-

perior in the problematic ones. Interestingly, an increase in the length of the panel does not

produce significant improvements in the correlation between the (true) simulated inefficiencies

and the estimated ones. This evidence suggests that, even in short panels, the relative ranking of

the sample units is not affected by the inefficiency bias due to the post-estimation of fixed-effects.

6.2 MMSLE vs MMLE

We consider the homoskedastic normal-half normal model investigated by Chen et al. (2014),

that is

yit = αi + βxit + vit − uit, (50)

vit ∼ N (0, ψ2), (51)

uit ∼ N+
(

0, σ2
)

i = 1, . . . , n, t = 1, . . . , T. (52)

We set β = 1 and consider two different STN ratios (λ = 1, 2) fixing the variance of the

compounded error to unity ω2
ε =

(

π−2
π

)

σ2 + ψ2 = 1. This setup implies σ = ψ = 0.85643 when

33Interestingly, the PDE exhibits its better finite sample performances in the problematic cases. This behavior
may be due to the fact that the distinction of problematic and non problematic replications is driven by the
performance of the MLDVE in estimating ψ and this is likely to create some advantages for the MLDVE in the
non-problematic replications.
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λ = 1, and σ = 1.27684, ψ = .63842 in the other case.34

The aim of this exercise is to compare in a homoskedastic set up the MMSLE with the

estimator recently proposed by Chen et al. (2014). Since Chen et al. (2014) show that their

MMLE outperforms the MLDVE, we do not include the latter in the comparison.

Table 5 summarizes the simulation results using the same structure adopted before. Consis-

tently with the evidence reported in Chen et al. (2014) and with the behaviour of the PDE, both

MMSLE and MMLE do not show any problem in the estimation of ψ. The main message is that

both estimators exhibit consistency with fixed T , showing very similar finite sample properties.

Only when n = 100 and T = 5 the MMSLE seems to be slightly better than the MMLE in

estimating σ, but this difference vanishes when the sample size grows.

These results can be taken as evidence that the MMSLE is a viable alternative to the

MMLE in a homoskedastic normal-half normal setting. Given the unavailability of a closed

form expression for the marginal likelihood function when T > 2, to the best of our knowledge

the MMSLE remains the only estimator for the homoskedastic normal-exponential TFE model.

6.3 Dynamic PDE

In this last simulation exercise, we illustrate the inferential performance of the PDE in a dynamic

setup. In particular, we specify the following heteroskedastic normal-half normal model with

AR(1) inefficiencies

yi = αiιT + βxi + vi − ui, (53)

vi ∼ NT (0, ψ
2It), (54)

ui ∼ N+
T

(

0,
1

1− ρ2
Ωi

)

, i = 1, . . . , n, (55)

where Ωi = {ωits}t,s=1,...,T with ωits = σitσisρ
|t−s| and σit = exp(γ0 + zitγ1) with zit ∼ N (0, 1).

The simulation of inefficiency vector ui is performed using the MCMC approach outlined in

Geweke (1991) or in Robert (1995), which uses a Gibbs algorithm for sampling from an arbitrary

multivariate truncated normal distribution. We set β = 0.5, ψ = 0.5, γ0 = −0.5 and γ1 = 1

34For the MMSLE we use 30 Halton sequences for observation while, following Chen et al. (2014), we exploit
the results of Kotz et al. (2000) for the MMLE implementation.
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(this implies λ̄ = 1
nTψ

∑n
i=1

∑T
t=1 σit ≈ 2), and consider two different values for the ρ parameter

(ρ = 0.3, 0.7).

Table 6 clearly shows the consistency property of the PDE. In the “low” autocorrelation

case (ρ = 0.3), all parameters are accurately estimated in almost all the scenarios. Only when

n = 100 and T = 5, we find a relevant MSE for γ0 and ρ. An increase in the length of the panel

produces significant reductions in both the bias and the MSE. For example, the MSEs of γ0 and

ρ decrease from 0.054 and 0.074 to 0.018 and 0.032 when T increases from 5 to 10. Analogously,

a larger cross-sectional dimension yields similar improvements.

In the “high” autocorrelation case (ρ = 0.7), we observe less accurate estimates only for γ0,

especially when n = 100 and T = 5. Differently from the “low” autocorrelation case, we find

that the finite sample performances of the estimator are much more affected by an increase in

the length of the panel than by an equivalent increase in the cross-sectional dimension.

The inefficiencies are accurately estimated in all the scenarios. We do not find significant

improvements when the cross-sectional dimension increases, while the availability of a longer

panel provides slightly better results. Similarly, the finite sample properties remain substantially

unaffected by changes in ρ. It is worth mentioning the case of ρ = 0.3 for which we observe a small

increase in the bias of E(u|ε̂) moving from T = 5 to T = 10. This seemingly counterintuitive

result is linked to the computation of ĉi, which becomes slightly less accurate when T grows.

7 Empirical application

In this Section, we apply the PDE estimator in an empirical study of Italian hospitals activity.

Recently, Daidone & D’Amico (2009) found that public and private not-for-profit hospitals are

significantly more efficient than private for-profit structures. A previous study of Barbetta et al.

(2007), whose analysis only covers the second part of the nineties, found that not-for-profit

hospitals are more efficient than their public counterparts. Our analysis integrates the work of

Daidone & D’Amico (2009), to which we refer the reader for further details on data sources and

variable definitions. In particular, we investigate how labor structure, ownership and level of

specialization affect hospital’s technical inefficiency. In the remainder of this Section, we provide

a brief discussion of the data, outline the model and, finally, discuss the results.
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7.1 Data

The data set consists of a yearly unbalanced panel of Italian hospitals located in the Lazio’s

region from 2000 to 2005. The panel contains 109 hospitals observed over a 6 years period, for

a total of 619 observations.

The output variable is the number of acute patients discharges adjusted for its case-mix

complexity through the Diagnosis Related Groups (DRG) weights. In order to represent the

multi-output nature of the hospitals industry, we classify adjusted discharges using the infor-

mation contained in the DRG categories. The classification system of the hospital activity in

the study period is made up of 492 DRGs. In order to keep the estimation feasible, discharges

have been aggregated into the following five output variables: Complex Surgery (Y1), Emergency

Room Treatments (Y2), Cancers and HIV (Y3), General Surgery (Y4) and General Medicine (Y5).

We consider as inputs the number of beds (X4), the number of physicians (X1), nurses (X2) and

other personnel (X3, comprising teaching and ancillary staff).

One of the policy questions of this empirical application is to assess the role of specialization

as a determinant of technical inefficiency. We consider the Gini ratio, which is equal to zero

in the case of generalist hospitals with perfect equidistribution of health care services (e.g.,

polispecialistic medical center) and equal to one in the case of hospitals characterized by a

single specialty, as an indicator of the level of specialization. The second research question is

about the link between ownership structure and inefficiency. We classify the hospitals in public,

private but not-for-profit and private for profit.35 Finally, in order to investigate the role of

the labor force structure, both the nurses/beds and the physicians/beds ratios are included in

the inefficiency equation. Descriptive statistics and a brief summary of variable definitions are

reported in Table 7.

7.2 Model and estimation

A Stochastic Distance Function is the easiest solution to represent the multi-output production

technology in a single SF equation.36 Following Kumbhakar & Lovell (2000), a stochastic multi-

35Notice that this classification reflects not only the ownership status, but also the founding sources. Public
hospitals include hospitals directly managed by Local Health Authorities, independent public hospitals (D.L.
502/92) and assimilated to public structures (L. 833/78).

36For a detailed discussion of distance functions and their properties see Fare et al. (2008).
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output distance function model for panel data can be defined as

(Y5it)
−1 = D

(

Xit,
Y ∗
mit

Y5it
;β

)

exp (uit − vit). (56)

The dependent variable is the reciprocal of the chosen normalizing output Y5it (General Medicine),

while the covariates are the inputs and the remaining normalized outputs (m = 1, . . . , 4). By

specifying D(.) as a translog function and adapting the model in order to allow a production

frontier interpretation, equation (56) can be written as37

y5it = αi +
4
∑

m=1

δmy
∗
mit +

4
∑

k=1

βkxkit +
1

2

4
∑

m=1

4
∑

p=1

δmpy
∗
mity

∗
pit +

1

2

4
∑

k=1

4
∑

j=1

βkjxkitxjit +

+

4
∑

k=1

4
∑

m=1

βkδmxkity
∗
mit +

2005
∑

t=2001

dt + vit − uit, (57)

where y∗mit are the normalized outputs, dt are year dummies, δmp and βkj are technological

parameters with the index i denoting hospital, t representing time, k and j labeling the input

variables and m and p indicating outputs.38

The inefficiency uit is assumed to be heteroskedastic with scale parameter σit = exp(zitγ),

where zit contains both time-varying and time-invariant covariates: the Gini ratio (Gini), the

nurses and the physicians per bed ratios (Nurses/Bed and Physicians/Bed), dummies for the

quartiles of the number of beds (with the 1st quartile as the base category), ownership status

dummies (public hospitals represent the base category), year dummies (with 2000 as the base

year) and geographical dummies for each Local Health Authority in the region.

It is worth to emphasize that the data used in this application mirrors the sample size of

one of the Monte Carlo experiments analyzed in Section 6.1 (n = 100 and T = 5). As reported

in figure 1, the MLDVE is frequently affected by the ψ̂ ≈ 0 issue in this case. This issue also

arose in estimating model (57). Since also the standard MLE applied on pooled data shows this

problematic behavior, for comparison purposes we estimate model (57) using a “pooled” version

37Equation (57) has been adapted for estimation purposes by transforming the left-hand side of the equation
to be y5it rather than −y5it. This allows to interpret the estimates as in a standard production frontier model
(see, among the others, Morrison Paul et al., 2000).

38All output and input variables in equation (57) are expressed in logarithms. Symmetry constraints have been
imposed on the interaction terms, i.e δmp = δpm and βkj = βjk.
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of the PDE characterized by the following objective function

Un (θ) =

(

N

2

)−1 N
∑

i=2

∑

j<i

log f(∆j
iy| θ,∆

j
ix), (58)

where ∆j
iy = yi − yj , ∆

j
ix = xi − xj and N is the total number of observations.39 Moreover,

in order to investigate whether distributional assumptions matter, we estimate the model as-

suming both a normal-exponential (N-E) and a normal-half normal (N-HN) distribution for the

composed error.

7.3 Results

Table 8 summarizes technological parameter estimates using elasticities (evaluated at covariates

means) of the distance function with respect to outputs and inputs. For the pooled case, the

results significantly point to increasing returns to scale. Nurses and beds elasticities are positive

and statistically significant, while the one for the ancillary staff is not statistically different from

zero. As expected, General Medicine has the highest elasticity value among all the outputs

confirming the importance of this department in terms of hospital activity. This evidence, both

in terms of elasticities and return to scale, is in line with the estimates reported in Daidone

& D’Amico (2009). Also the elasticities from PDE estimates suggest a similar “technological”

picture: return to scale are increasing and the number of beds still remains the most important

input in the production process. However, the elasticity of the ancillary staff becomes negative

and statistically significant when the unobserved fixed-effects are included in the model. Since

this auxiliary input is less involved in the production process, this result is not surprising and

suggests that the oversizing of ancillary staff may be considered as a ballast for the production

process.

Table 9 reports the inefficiency effects estimates. As a first result, we observe that controlling

for time-invariant unobserved heterogeneity greatly affects the magnitude and the significance

of the estimates. For instance, looking at the effect of ownership structure, the pooled estimates

suggest that private not-for-profit hospitals are less efficient than public ones in the normal-

39Following Honoré & Powell (1994, pp.248-255), we also correspondingly adapt the asymptotic variance-
covariance matrix estimator.
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exponential model, while this effect vanishes in the “true” fixed-effects specifications. This

evidence may be justified by the fact that private hospitals are subject to caps on production

for cost-containment reasons, leading some of them to a suboptimal level of production and, as

a consequence, to a higher level of inefficiency. This regulatory constraint has been constant

over the study period and, therefore, this feature is likely to be captured by the fixed-effects.

Further, the labor force structure have a significant role in explaining inefficiency variability

once unobserved heterogeneity is controlled for. In the fixed-effects specifications, these results

are robust to the distributions assumed for the composed error.

As expected, the estimated inefficiency scores are on average much larger for the pooled mod-

els. This result occurs because the estimate of σ̄ is much lower in the TFE specifications, where

a portion of the variability is captured by the fixed-effects. The last panel of Table 9 reports the

Spearman rank correlation coefficients between the estimated inefficiencies. As expected, the

pooled model provides a very different inefficiency ranking than the TFE one (the Spearman

coefficient is between 0.19 and 0.28), whereas the ranking from the TFE model is basically the

same regardless of the distribution assumed for inefficiency (the Spearman coefficient between

the normal-exponential and the normal-half normal models is about 0.98).

8 Concluding remarks

This paper reconsiders the estimation of the “true” fixed-effects (TFE) stochastic frontier panel

data model of Greene (2005a) aiming to solve the incidental parameters problem affecting his

maximum likelihood dummy variables estimator (MLDVE). We propose two alternatives that,

by relying on a first-difference data transformation, avoid the incidental parameters problem

and achieve consistency under the normal-exponential model and fixed-T asymptotics. The first

is a marginal maximum simulated likelihood estimator (MMSLE) that can be used to estimate

both homoskedastic and heteroskedastic normal-half normal and normal-exponential models.

In the spirit of Honoré & Powell (1994), the second is a U-estimator based on all pairwise

quasi-likelihood contributions constructed exploiting the analytical expression available for the

marginal likelihood function when T = 2. This strategy allow us to provide a computationally

feasible approach to estimate normal-half normal, normal-exponential and normal-truncated
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normal models in which both error components can be heteroskedastic. Furthermore, for the

normal-half normal and normal-truncated normal models, the inefficiency is also allowed to

follow a first-order autoregressive process.

The finite sample properties of the proposed estimators are investigated through a set of

Monte Carlo experiments. Our results suggest that both estimation procedures generally per-

form well also when both n and T are small, as is commonly the case in economic applications.

On the other hand, the Greene (2005a)’s estimator provides unsatisfactory results in many of

the considered Monte Carlo scenarios, especially when T is small. Furthermore, we find that

our MMSLE is a viable alternative to the Chen et al. (2014) marginal maximum likelihood

estimator (MMLE) in a homoskedastic normal-half normal setting. Of special note is the good

performance of the PDE applied to a heteroskedastic normal-half normal model with AR(1)

inefficiencies.

Finally, we apply the PDE to estimate a multi-output stochastic distance function on a

panel of italian hospitals. This empirical illustration provides evidence of the PDE usefulness

in a setting where standard likelihood-based estimators fail to provide reliable inference. We

find that controlling for time-invariant unobserved heterogeneity in the frontier function greatly

affects the magnitude and the statistical significance of the so-called inefficiency effects and, as

expected, that inefficiency estimates from a pooled model are much higher than those obtained

from the TFE one.
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Figure 1: PDE vs MLDVE: proportion∗ of replications with non-zero ψ̂ (computed using the
first 1,000 simulated samples).
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Table 1: Simulation results for PDE and MLDVE with n = 100, T = 5. The Spearman rank
correlation coefficient is in parentheses.

(a) λ = 1

All replications (1000)

PDE MLDVE
Bias MSE Bias MSE

β1 -0.001 3.5e-04 0.002 6.1e-04
γ0 -0.075 0.066 0.296 0.174
γ1 0.081 0.111 -0.408 0.287
ψ 0.002 7.5e-04 -0.164 0.037

E(u|ε) -0.014 0.036 0.074 0.069
ru,û 0.805 0.745

(0.577) (0.523)

(b) λ = 2

All replications (10000)

PDE MLDVE
Bias MSE Bias MSE

β1 -5.0e-04 6.0e-04 0.042 0.004
γ0 -0.036 0.019 0.152 0.026
γ1 0.044 0.047 -0.430 0.195
ψ 0.004 0.002 -0.249 0.062

E(u|ε) -0.014 0.088 0.039 0.103
ru,û 0.886 0.872

(0.699) (0.668)

Non problematic (427)

PDE MLDVE
Bias MSE Bias MSE

β1 -0.003 3.7e-04 -0.002 3.8e-04
γ0 -0.124 0.073 -9.0e-05 0.045
γ1 0.131 0.124 -0.083 0.091
ψ 0.007 6.9e-04 -0.049 0.003

E(u|ε) -0.021 0.036 0.002 0.035
ru,û 0.804 0.811

(0.576) (0.576)

Non problematic (293)

PDE MLDVE
Bias MSE Bias MSE

β1 0.002 5.9e-04 0.075 0.009
γ0 -0.039 0.021 0.150 0.034
γ1 0.052 0.050 -0.400 0.197
ψ 0.002 0.002 -0.229 0.056

E(u|ε) -0.014 0.088 0.043 0.105
ru,û 0.885 0.870

(0.698) (0.666)

Problematic (573)

PDE MLDVE
Bias MSE Bias MSE

β1 -3.4e-04 3.4e-04 0.004 7.9e-04
γ0 -0.038 0.060 0.517 0.269
γ1 0.043 0.102 -0.651 0.433
ψ -0.002 7.9e-04 -0.250 0.062

E(u|ε) -0.008 0.036 0.127 0.095
ru,û 0.806 0.696

(0.578) (0.484)

Problematic (9707)

PDE MLDVE
Bias MSE Bias MSE

β1 -5.8e-04 6.0e-04 0.041 0.004
γ0 -0.035 0.019 0.152 0.025
γ1 0.044 0.047 -0.430 0.194
ψ 0.004 0.002 -0.250 0.062

E(u|ε) -0.014 0.088 0.039 0.103
ru,û 0.886 0.872

(0.699) (0.668)
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Table 2: Simulation results for PDE and MLDVE with n = 100, T = 10. The Spearman rank
correlation coefficient is in parentheses.

(a) λ = 1

All replications (1000)

PDE MLDVE
Bias MSE Bias MSE

β1 -5.5e-04 1.6e-04 -5.3e-04 1.5e-04
γ0 -0.052 0.030 -1.3e-04 0.014
γ1 0.058 0.053 -0.041 0.032
ψ 0.003 3.6e-04 -0.022 6.8e-04

E(u|ε) -0.010 0.030 -4.3e-04 0.028
ru,û 0.838 0.846

(0.606) (0.613)

(b) λ = 2

All replications (10000)

PDE MLDVE
Bias MSE Bias MSE

β1 -9.8e-04 2.8e-04 -3.2e-04 2.5e-04
γ0 -0.023 0.008 0.031 0.008
γ1 0.027 0.019 -0.081 0.022
ψ 0.005 8.6e-04 -0.047 0.004

E(u|ε) -0.009 0.062 0.009 0.051
ru,û 0.920 0.934

(0.747) (0.766)

Non problematic (9710)

PDE MLDVE
Bias MSE Bias MSE

β1 -7.3e-04 2.8e-04 -4.9e-04 2.4e-04
γ0 -0.023 0.008 0.022 0.005
γ1 0.027 0.019 -0.070 0.016
ψ 0.005 8.6e-04 -0.041 0.002

E(u|ε) -0.009 0.062 0.005 0.050
ru,û 0.920 0.935

(0.747) (0.767)

Problematic (290)

PDE MLDVE
Bias MSE Bias MSE

β1 -0.009 3.6e-04 0.006 8.6e-04
γ0 -0.022 0.008 0.353 0.126
γ1 0.024 0.016 -0.462 0.218
ψ 0.006 9.0e-04 -0.250 0.062

E(u|ε) -0.007 0.067 0.153 0.112
ru,û 0.919 0.899

(0.749) (0.721)
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Table 3: Simulation results for PDE and MLDVE with n = 250, T = 5. The Spearman rank
correlation coefficient is in parentheses.

(a) λ = 1

All replications (1000)

PDE MLDVE
Bias MSE Bias MSE

β1 3.8e-05 1.4e-04 0.008 6.5e-04
γ0 -0.029 0.022 0.412 0.218
γ1 0.029 0.042 -0.529 0.340
ψ -0.001 3.2e-04 -0.198 0.047

E(u|ε) -0.010 0.034 0.101 0.080
ru,û 0.815 0.731

(0.585) (0.507)

(b) λ = 2

All replications (10000)

PDE MLDVE
Bias MSE Bias MSE

β1 1.4e-04 2.8e-04 0.119 0.016
γ0 -0.013 0.006 0.200 0.042
γ1 0.017 0.016 -0.459 0.215
ψ -3.9e-04 7.6e-04 -0.246 0.060

E(u|ε) -0.009 0.085 0.063 0.116
ru,û 0.891 0.865

(0.704) (0.655)

Non problematic (431)

PDE MLDVE
Bias MSE Bias MSE

β1 2.8e-04 1.3e-04 0.008 7.8e-04
γ0 -0.047 0.024 0.265 0.143
γ1 0.049 0.044 -0.359 0.210
ψ 6.9e-04 3.0e-04 -0.131 0.026

E(u|ε) -0.013 0.034 0.063 0.060
ru,û 0.813 0.771

(0.585) (0.541)

Non problematic (7700)

PDE MLDVE
Bias MSE Bias MSE

β1 3.9e-04 2.7e-04 0.128 0.018
γ0 -0.011 0.006 0.209 0.046
γ1 0.015 0.016 -0.463 0.219
ψ -5.9e-04 7.3e-04 -0.245 0.060

E(u|ε) -0.009 0.085 0.067 0.118
ru,û 0.891 0.863

(0.704) (0.652)

Problematic (569)

PDE MLDVE
Bias MSE Bias MSE

β1 -1.5e-04 1.4e-04 0.008 5.5e-04
γ0 -0.015 0.021 0.522 0.274
γ1 0.014 0.041 -0.659 0.438
ψ -0.003 3.4e-04 -0.250 0.062

E(u|ε) -0.007 0.034 0.129 0.095
ru,û 0.816 0.701

(0.586) (0.482)

Problematic (2300)

PDE MLDVE
Bias MSE Bias MSE

β1 -7.0e-04 3.1e-04 0.089 0.010
γ0 -0.018 0.007 0.169 0.030
γ1 0.021 0.017 -0.445 0.202
ψ 2.4e-04 8.5e-04 -0.249 0.062

E(u|ε) -0.010 0.084 0.049 0.108
ru,û 0.891 0.870

(0.703) (0.663)
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Table 4: Simulation results for PDE and MLDVE with n = 250, T = 10. The Spearman rank
correlation coefficient is in parentheses.

(a) λ = 1

All replications (1000)

PDE MLDVE
Bias MSE Bias MSE

β1 -1.1e-04 5.8e-05 -8.5e-05 5.6e-05
γ0 -0.016 0.010 0.016 0.006
γ1 0.018 0.016 -0.056 0.014
ψ 2.2e-04 1.4e-04 -0.023 7.2e-04

E(u|ε) -0.005 0.029 0.002 0.028
ru,û 0.845 0.852

(0.614) (0.617)

(b) λ = 2

All replications (1000)

PDE MLDVE
Bias MSE Bias MSE

β1 -2.6e-04 1.1e-04 5.8e-04 1.6e-04
γ0 -0.007 0.003 0.034 0.006
γ1 0.009 0.007 -0.080 0.015
ψ 6.8e-04 3.1e-04 -0.047 0.003

E(u|ε) -0.005 0.061 0.009 0.051
ru,û 0.922 0.937

(0.750) (0.769)
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Table 5: Simulation results for MMSLE and MMLE. The Spearman rank correlation coefficient
is in parentheses.

(a) λ = 1

n = 100 T = 5

MMSLE MMLE
Bias MSE Bias MSE

β -0.005 0.003 -0.002 0.002
σ 0.054 0.077 0.085 0.060
ψ -0.042 0.011 -0.050 0.012

E(u|ε) 0.033 0.270 0.057 0.259
ru,û 0.481 0.479

(0.432) (0.431)

(b) λ = 2

n = 100 T = 5

MMSLE MMLE
Bias MSE Bias MSE

β -0.001 0.003 0.004 0.003
σ -0.018 0.029 -0.008 0.028
ψ -0.003 0.010 -0.012 0.012

E(u|ε) -0.030 0.322 -0.022 0.323
ru,û 0.712 0.712

(0.649) (0.649)

n = 100 T = 10

MMSLE MMLE
Bias MSE Bias MSE

β -0.002 0.001 -6.5e-04 0.001
σ 0.010 0.032 0.014 0.030
ψ -0.011 0.004 -0.014 0.004

E(u|ε) 0.004 0.229 0.007 0.227
ru,û 0.504 0.504

(0.455) (0.454)

n = 100 T = 10

MMSLE MMLE
Bias MSE Bias MSE

β 1.7e-04 0.001 7.0e-04 0.001
σ -0.037 0.009 -0.006 0.008
ψ 0.023 0.003 -6.9e-04 0.003

E(u|ε) -0.037 0.269 -0.012 0.269
ru,û 0.750 0.749

(0.690) (0.689)

n = 250 T = 5

MMSLE MMLE
Bias MSE Bias MSE

β 0.002 0.001 -1.7e-04 0.001
σ 0.009 0.037 0.035 0.036
ψ -0.013 0.005 -0.021 0.005

E(u|ε) -0.004 0.237 0.017 0.237
ru,û 0.477 0.477

(0.431) (0.431)

n = 250 T = 5

MMSLE MMLE
Bias MSE Bias MSE

β 0.002 0.001 0.004 0.001
σ -0.008 0.011 -0.007 0.011
ψ -6.4e-04 0.004 -0.002 0.004

E(u|ε) -0.024 0.305 -0.023 0.305
ru,û 0.711 0.711

(0.650) (0.650)

n = 250 T = 10

MMSLE MMLE
Bias MSE Bias MSE

β 5.0e-04 5.2e-04 0.001 5.1e-04
σ -0.007 0.018 -0.004 0.019
ψ -0.001 0.002 -0.003 0.002

E(u|ε) -0.010 0.214 -0.007 0.214
ru,û 0.507 0.507

(0.457) (0.457)

n = 250 T = 10

MMSLE MMLE
Bias MSE Bias MSE

β 9.0e-04 5.0e-04 8.5e-04 5.0e-04
σ -0.023 0.003 -0.001 0.003
ψ 0.015 0.001 -9.1e-04 0.001

E(u|ε) -0.026 0.262 -0.008 0.261
ru,û 0.751 0.751

(0.691) (0.691)
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Table 6: Simulation results for the dynamic PDE. The Spearman rank correlation coefficient is
in parentheses.

(a) ρ = 0.3

n = 100 T = 5

Bias MSE

β -0.001 0.002
γ0 -0.065 0.054
γ1 -0.020 0.012
ψ -0.006 0.002
ρ 0.033 0.074

E(u|ε) 0.010 0.246
ru,û 0.953

(0.780)

(b) ρ = 0.7

n = 100 T = 5

Bias MSE

β -0.003 0.002
γ0 -0.212 0.100
γ1 -0.014 0.007
ψ -0.006 0.002
ρ -0.006 0.010

E(u|ε) -0.118 0.515
ru,û 0.957

(0.800)

n = 100 T = 10

Bias MSE

β -6.1e-04 7.4e-04
γ0 0.001 0.018
γ1 -0.015 0.005
ψ -1.0e-03 6.4e-04
ρ 0.026 0.032

E(u|ε) 0.033 0.174
ru,û 0.969

(0.809)

n = 100 T = 10

Bias MSE

β -0.003 9.0e-04
γ0 -0.074 0.025
γ1 -0.015 0.003
ψ 6.8e-04 7.9e-04
ρ -0.022 0.004

E(u|ε) -0.043 0.342
ru,û 0.973

(0.841)

n = 250 T = 5

Bias MSE

β -7.1e-04 6.8e-04
γ0 -0.014 0.016
γ1 -0.007 0.004
ψ -0.002 6.4e-04
ρ 0.007 0.031

E(u|ε) 0.012 0.236
ru,û 0.957

(0.783)

n = 250 T = 5

Bias MSE

β -0.002 8.0e-04
γ0 -0.185 0.053
γ1 -0.010 0.003
ψ -6.5e-04 7.5e-04
ρ -0.009 0.004

E(u|ε) -0.109 0.498
ru,û 0.959

(0.801)

n = 250 T = 10

Bias MSE

β -3.7e-04 2.5e-04
γ0 0.007 0.007
γ1 -0.009 0.002
ψ 0.001 2.4e-04
ρ 0.037 0.013

E(u|ε) 0.036 0.170
ru,û 0.970

(0.810)

n = 250 T = 10

Bias MSE

β -0.001 3.0e-04
γ0 -0.077 0.013
γ1 -0.013 0.001
ψ 0.002 3.0e-04
ρ -0.017 0.002

E(u|ε) -0.041 0.339
ru,û 0.974

(0.842)
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Table 7: Summary Statistics and brief definition for variables considered in our Hospital Tech-
nical Efficiency application. The data set consist of the population of Lazio Hospital (N=109)
over the 2000-2005 period (for a total of 619 observations).

Variable Definition Mean Std. Dev.

Output variables:

Y1 Sum of DRG weights related to Complex Surgery 979.15 2846.44
Y2 Sum of DRG weights related to Emergency Room Treatments 189.87 260.08
Y3 Sum of DRG weights related to Cancers and HIV 1170.59 2693.84
Y4 Sum of DRG weights related to General Surgery 3506.41 4382.72
Y5 Sum of DRG weights related to General Medicine 5358.47 8163.07

Input variables:

X1 No. of Physicians 111.45 189.11
X2 No. of Nurses 223.45 388.37
X3 No. of other staff 216.06 424.61
X4 No. of beds 216.77 315.99

Inefficiency factors:

Gini index 0.671 0.13
Nurses/Beds No. of Nurses / No. of Beds ratio 0.881 0.574
Phys/Beds No. of Physicians / No. of Beds ratio 0.47 0.333
Public Hospitals Dummy variable for fully Public Hospitals 0.469 0.50
Not-for-profit Hospitals Dummy variable for Not-for-profit Hospitals 0.163 0.37
For-profit Hospitals Dummy variable for For-profit Hospitals 0.369 0.48
Rome Dummy variable for Hospitals located in the Rome area 0.723 0.45
Viterbo Dummy variable for Hospitals located in the Viterbo area 0.068 0.25
Rieti Dummy variable for Hospitals located in the Rieti area 0.029 0.17
Latina Dummy variable Hospitals located in the Latina area 0.081 0.27
Frosinone Dummy variable for Hospitals located in the Frosinone area 0.100 0.30
Year 2000 Dummy variable for year 2000 0.169 0.37
Year 2001 Dummy variable for year 2001 0.166 0.37
Year 2002 Dummy variable for year 2002 0.169 0.37
Year 2003 Dummy variable for year 2003 0.172 0.38
Year 2004 Dummy variable for year 2004 0.167 0.37
Year 2005 Dummy variable for year 2005 0.156 0.36

Table 8: Scale and output distance elasticities evaluated at the average values. Comparison
between PDE and Pooled PDE. ǫY,X denotes return to scale estimated by

∑4
i=1 ǫY,Xi .

(a) Exponential

Pooled PDE PDE

Estimate Std.error Estimate Std.error

ǫY,X 1.041 0.025 ǫY,X 1.103 0.027
ǫY,X1

0.099 0.048 ǫY,X1
0.166 0.017

ǫY,X2
0.195 0.061 ǫY,X2

0.265 0.018
ǫY,X3

0.001 0.037 ǫY,X3
-0.120 0.013

ǫY,X4
0.746 0.066 ǫY,X4

0.791 0.028

ǫY,Y1 -0.009 0.012 ǫY,Y1 0.023 0.007
ǫY,Y2 0.086 0.018 ǫY,Y2 0.116 0.010
ǫY,Y3 0.096 0.015 ǫY,Y3 0.099 0.012
ǫY,Y4 0.216 0.030 ǫY,Y4 0.162 0.012
ǫY,Y5 0.612 0.026 ǫY,Y5 0.601 0.017

(b) Half-normal

Pooled PDE PDE

Estimate Std.error Estimate Std.error

ǫY,X 1.081 0.060 ǫY,X 1.110 0.045
ǫY,X1

0.367 0.066 ǫY,X1
0.150 0.030

ǫY,X2
0.463 0.093 ǫY,X2

0.292 0.031
ǫY,X3

-0.034 0.052 ǫY,X3
-0.132 0.020

ǫY,X4
0.286 0.101 ǫY,X4

0.800 0.049

ǫY,Y1 -0.005 0.017 ǫY,Y1 0.023 0.011
ǫY,Y2 0.103 0.019 ǫY,Y2 0.115 0.017
ǫY,Y3 0.134 0.020 ǫY,Y3 0.098 0.021
ǫY,Y4 0.203 0.025 ǫY,Y4 0.163 0.021
ǫY,Y5 0.564 0.033 ǫY,Y5 0.601 0.028
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Table 9: Estimated inefficiency effects. Comparison between PDE and “Pooled” PDE. σ̄ =
1
N

∑n
i=1

∑Ti
t=1 σ̂it. Significance levels: “*”:p < 10%;“**”:p < 5%, “***”:p < 1%.

Pooled PDE PDE

EXP HN EXP HN

2nd quartile of beds 0.039 0.175 -0.718 *** -0.716 ***
(0.07) (0.27) (0.18) (0.10)

3nd quartile of beds -0.096 0.050 -1.250 *** -1.166 ***
(0.09) (0.36) (0.23) (0.15)

4nd quartile of beds -0.124 -0.691 -1.728 *** -1.561 ***
(0.11) (0.43) (0.28) (0.19)

Gini 0.130 -0.629 -0.979 -0.804
(0.39) (0.80) (0.84) (0.54)

Nurses/beds -0.247 -3.936 *** -0.400 * -0.438 ***
(0.15) (0.78) (0.22) (0.17)

Physicians/beds 0.050 -4.014 *** 0.444 * 0.509 **
(0.18) (1.27) (0.27) (0.20)

Private -0.084 -0.358 -0.190 -0.209
(0.11) (0.24) (0.22) (0.17)

Not-for-profit 0.279 *** -0.475 -0.030 -0.071
(0.08) (0.42) (0.24) (0.18)

Year 2001 0.001 -0.052 -0.227 * -0.183 **
(0.07) (0.16) (0.12) (0.07)

Year 2002 -0.043 -0.179 -0.355 *** -0.292 ***
(0.07) (0.16) (0.14) (0.09)

Year 2003 -0.018 0.173 -0.159 -0.110
(0.08) (0.18) (0.13) (0.08)

Year 2004 0.070 0.153 0.058 0.017
(0.09) (0.17) (0.13) (0.08)

Year 2005 0.066 0.394 ** 0.303 ** 0.239 **
(0.08) (0.19) (0.15) (0.10)

Viterbo 0.064 0.447 *** -1.224 *** -1.224 ***
(0.09) (0.16) (0.29) (0.19)

Latina 0.118 -0.148 -1.084 *** -0.882 ***
(0.11) (0.17) (0.28) (0.23)

Rieti -0.016 -0.699 -0.639 -0.691 ***
(0.11) (1.56) (0.43) (0.25)

Frosinone -0.029 0.134 -0.741 *** -0.725 ***
(0.11) (0.14) (0.22) (0.16)

Constant -0.968 *** 2.653 *** -0.142 0.215
(0.31) (0.71) (0.67) (0.41)

σ̄ 0.34 0.38 0.13 0.22
ψ 0.04 0.23 0.03 0.01

Estimated technical inefficiencies, ûit
Mean 0.388 0.327 0.141 0.184
SD 0.239 1.190 0.156 0.175
Min 0.002 0.000 0.002 0.001
Max 1.382 19.640 0.978 1.064

Spearman correlation

Pooled PDE (exp) 1.000
Pooled PDE (hn) 0.194 1.000
PDE (exp) 0.282 0.167 1.000
PDE (hn) 0.267 0.198 0.987 1.000
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A Appendix

A.1 The derivation of the marginal likelihood function when inefficiency is

exponentially distributed

In order to derive the marginal likelihood in the general case (T ≥ 2), we have to preliminary
derive the distribution of ∆ui. This multivariate distribution can be obtained from a marginal-
ization of the linear combination wi = Aui, where the T × T matrix A is given by

A =

























1 0 0 · · · 0

−1 1 0 · · · 0

0 −1
. . .

. . .
...

...
. . .

. . .
. . . 0

0 0 . . . −1 1

























. (A.1)

The matrix A corresponds to a convenient full rank transformation, since its inverse L = A−1 is
the lower triangular matrix with all elements equal to one. By using the Jacobian transformation
and by exploiting that uit ∼ E(σ), we can derive the p.d.f. of the vector wi as

fW (wi) = fU (ui)× I(ui > 0) =

=
1

σT
exp

(

− 1

σ
ι′TA

−1wi

)

× I(A−1wi > 0) =

=
1

σT
exp

(

− 1

σ
ι′TLwi

)

× I(Lwi > 0) =

=
1

σT
exp

(

− 1

σ

T
∑

t=1

(T + 1− t)wit

)

× I





T
⋂

t=1







t
∑

j=1

wij > 0









 , (A.2)

where I(.) is the indicator function and ιT is a T -vector with elements all equal to one. Hence,
the joint density of ∆ui = (∆ui2, . . . ,∆uiT )

′ = (wi2, . . . , wiT )
′ is given by
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f∆U (w2, ..., wT ) = f∆U (w−1)=

=

∫

⋂T
t=1{

∑t
j=1

wij>0}
1

σT
exp

(

− 1

σ

T
∑

t=1

(T + 1− t)wit

)

dw1 =

=

∫

⋂T
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∑t
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wij>0}
1

σT
exp

[

− 1

σ

(

Tw1t +

T
∑
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(T + 1− t)wit

)]

dw1 =

=

∫

⋂T
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∑t
j=1

wij>0}
1

σT
exp

[

− 1

σ

(

Tw1t + ι′T−1LT−1w−1

)

]

dw1 =

=
1

σT−1
exp

(

− 1

σ
ι′T−1LT−1w−1

)∫

⋂T
t=1{

∑t
j=1

wij>0}
1

σ
exp

(

− 1

σ
Tw1t

)

dw1 =

=
1

TσT−1
exp

(

− 1

σ
ι′T−1LT−1w−1

)

exp

(

−T
σ
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{

0, w2, w2 + w3, . . . ,

T
∑

t=2

wt

})

=

=
1

TσT−1
exp

[

− 1

σ

(

ι′T−1LT−1w−1 + T min

{

0, w2, w2 + w3, . . . ,

T
∑

t=2

wt

})]

. (A.3)

Finally, the integration of ∆ui from the joint distribution f(∆yi,∆ui|θ,∆Xi,∆ui) produces
the following marginal likelihood

L(∆yi| θ,∆xi) =

=

∫

f(∆yi,∆ui|θ,∆Xi,∆ui)dF∆ui
=

=

∫

1

(2π)T/2|Σ|1/2 exp
{

−1

2
(∆yi −∆Xiβ ∓∆ui)

′Σ−1(∆yi −∆Xiβ ∓∆ui)

}

dF∆ui
=

=

∫

1

(2π)T/2|Σ|1/2 exp
{

−1

2
(∆yi −∆Xiβ ∓∆ui)

′Σ−1(∆yi −∆Xiβ ∓∆ui)

}

×

× 1

TσT−1
exp

[

− 1

σ

(

ι′T−1LT−1∆ui − T min

{

0,∆ui2,∆ui2 +∆ui3, . . . ,

T
∑

t=2

∆uit

})]

d∆ui =

=

∫

1

(2π)T/2|Σ|1/2 exp
{

−1

2
(∆ui −∆µi)

′Σ−1(∆ui −∆µi)

}

1

TσT−1
exp (−B∆ui

∆ui) d∆ui =

=
exp

{

−1
2(∆µi)

′Σ−1∆µi
}

T (2π)(T−1)/2σT−1|Σ|1/2 ×

×
∫

exp

{

−1

2

[

(∆ui)
′Σ−1∆ui − 2

(

(∆µi)
′Σ−1 −B∆ui

)

∆ui
]

}

d∆ui. (A.4)

where ∆µi = −(∆yi−∆Xiβ), B∆ui
= ι′T−1LT−1−TJ∆ui

and J∆ui
a T −1-dimensional vector

in which the first (g−1) elements are equal to 1 and the T −g remaining elements equal to zero,
with g the position of the minimum value in the vector (0,∆ui2,∆ui2 + ∆ui3, . . . ,

∑T
t=2∆uit).
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Then, by using the following identity

−1

2

(

x′Ω−1x− 2δ′x
)

=
1

2
δ′Ωδ − 1

2
(x− ξ)′Ω−1(x− ξ),

where ξ = Ωδ, we can rewrite equation (A.4) as

L(∆yi| θ,∆Xi) =

=
1

TσT−1

∫

RT−1

exp
{

−2
(

∆µ′
iB∆ui

)}

×

× 1

(2π)(T−1)/2|Σ|1/2 exp
{

1

2

[

(∆ui − ζ∆ui
)′Σ−1 (∆ui − ζ∆ui

)
]

}

d∆ui, (A.5)

where ζ∆ui
= ∆µi − ΣiB∆ui

. The second term in the integral (A.5) is not the p.d.f. of a
multivariate normal distribution because the vector B∆ui

, as well as ζ∆ui
, assumes T different

values B̃S1
, ..., B̃ST in RT−1. If we partition RT−1 into these T implicit subregions S1, . . . , ST ,

we can rewrite (A.5) as

L∗(θ) =
n
∏

i=1

{

1

TσT−1

T
∑

k=1

[

exp
(

−2∆µ′
iB̃Sk

)

∫

Sk

φT−1

(

∆ui; ζ̃Sk ,Σi

)

d∆ui

]

}

. (A.6)

The integral in (A.6) cannot be analytically evaluated if T > 2 due to the irregularity of the
integration domains. As shown in Section 3.2, when T = 2 the two supports S1 and S2 are
respectively the positive and the negative real line, and a closed-form expression for the marginal
likelihood exists.

A.2 Consistency

In this appendix we establish the consistency of the PDE in the case of a correctly specified
heteroskedastic normal-exponential model.40

Appendix A.2.1 gives and checks the conditions required for consistency of the subsamples
MMLEs, while appendix A.2.2 shows how, for the case of the PDE, this property is naturally
inherited from the subsamples MMLEs.

To make the asymptotic arguments formal, we distinguish between the true value θ0 and θ

a generic point in the parameter space Θ. θ̂ indicates the MMLE for the subsample composed
by a pair of generic waves of the panel, while θ̃ denotes the PDE.

40The homoskedastic case is available from the authors upon request.
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A.2.1 Consistency of the MMLE

In what follows, we consider the following heteroskedastic normal-exponential model in first-
differences for a two-period panel

∆yi = ∆xiβ +∆εi, (A.7)

∆εi = ∆vi −∆ui, (A.8)

where vit ∼ N (0, ψ2) and uit ∼ E(σt) with t = 1, 2. Furthermore we denote with Qn(θ) the
corresponding marginal log-likelihood

Qn(θ) = n−1
n
∑

i=1

ℓi(θ)

where

ℓi(θ) = log

{

1

(σ1 + σ2)
exp

(

ψ2

σ22
− ∆εit

σ2

)

×
[

Φ

(

∆εit√
2ψ

−
√
2ψ

σ2

)

+ exp

[

ψ2(
σ22 − σ21
σ21σ

2
2

) + (
σ1 + σ2
σ1σ2

)∆εit

]

Φ

(

−∆εit√
2ψ

−
√
2ψ

σ1

)]}

.

Given this setup, the following Theorem states the assumptions required for the MMLE to
be consistent.

Theorem 1 In a correctly specified heteroskedastic normal-exponential model, if (i) θ0 is an
interior point of a compact set Θ; (ii) E∆X ′∆X = P , where ∆X, the n × k matrix of time-
varying covariates, is a finite p.d. matrix; (iii) E

[

ℓi(θ)
2
]

<∞; then θ̂ exists and is unique with

probability approaching one as n→ ∞ and θ̂n
p→ θ0.

An important remark is that the assumptions in Theorem 1 allow for general types of het-
eroskedasticity as the one given, for example, in equation (18). In order to have a more compact
notation but without loss of generality, we are assuming here a special form of heteroskedasticity
in which the variance of the inefficiency is fixed across units but varies over time.41 However, the
results of Theorem 1 can be generalized at the expense of more complex notation to go beyond
this special form, provided that we extend assumptions such as (iii) to allow for a more general
pattern of heteroskedasticity.

Proof: By Newey & McFadden (1994), for consistency it is sufficient to verify the following
conditions:

1. θ0 is an interior point of a compact set Θ;

41Using the same notation of equation (18), the parameters σt are in one-to-one correspondence with γt with
t = 1, 2 since σt = exp(zitγ) where zit = (di1, di2), with di1 = 1(t = 1) and di2 = 1(t = 2). Notice that the
homoskedastic case can be easily obtained by substituting σ2

1 = σ2

2 = σ2.
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2. Q(θ) attains a unique maximum over the compact set Θ at θ0;

3. the sequence of random functions {Qn(θ)} converges in probability uniformly on Θ to a
continuous function Q(θ).

We have already assumed condition (i). It is a standard assumption for optimization esti-
mators and can be considered quite innocuous here since the vector of incidental parameters α
is excluded from θ.

The second condition is the identification condition for maximum likelihood estimation.
In our case, identification can be proved following two steps. The first considers the frontier
parameters β while the second is related to the error components variances σ1, σ2 and ψ2. As
in Almanidis et al. (2014), the identification can be proved following Theorem 4 of Rothenberg
(1971).

As for the first step, model (A.7-A.8) can be considered as a standard linear panel data
model, thus assumption (ii) of Theorem 1 ensures that the OLS applied on first-differenced data
is a consistent estimator of β.

The identification of the variance parameters comes from the fact that they can be expressed
as a function of population moments. Under the distributional assumptions made for the error
terms, the moment generating function (mgf) of the convolution ∆ε is the product of the mgf
of its Gaussian and asymmetric Laplace components. Then, we have that

M∆ε(s) =
exp

(

ψ2s2

2

)

σ1σ2(σ
−1
1 − s)(σ−1

2 + s)
. (A.9)

By exploiting (A.9), it is easy shown that the first three population central moments of ∆ε are
given by

m1 = σ1 − σ2 (A.10)

m2 = 2ϕ2 + 2σ21 − 2σ1σ2 + 2σ22 (A.11)

m3 = 6σ1ϕ
2 − 6σ2ϕ

2 + 6σ31 − 6σ21σ2 + 6σ1σ
2
2 − 6σ32 (A.12)

Then, we have that

3m1m2 = 3(σ1 − σ2)(2ϕ
2 + 2σ21 − 2σ1σ2 + 2σ22)

= 6ϕ2σ1 − 6ϕ2σ2 + 6σ31 − 6σ21σ2 − 6σ21σ2 + 6σ1σ
2
2 + 6σ1σ

2
2 − 6σ32

= 6ϕ2σ1 − 6ϕ2σ2 + 6σ31 − 12σ21σ2 + 12σ1σ
2
2 − 6σ32 (A.13)

and that

m3 − 3m1m2 = 6σ21σ2 − 6σ1σ
2
2. (A.14)
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From equation (A.14), we can write

m3 − 3m1m2

6
= σ21σ2 − σ1σ

2
2 = (σ1 − σ2)σ1σ2. (A.15)

Then, since m1 = σ1 − σ2 we have that

m3 − 3m1m2

6m1
= σ1σ2 (A.16)

σ22 +m1σ2 −
m3 − 3m1m2

6m1
= 0. (A.17)

By denoting with c = m3−3m1m2

6m1
, we can write

σ22 +m1σ2 − c = 0 (A.18)

The admitted root of (A.18) is then

σ2 = −m1

2
+
√

m2
1/4 + c. (A.19)

By substituting (A.19) in (A.10) we get

σ1 =
m1

2
+
√

m2
1/4 + c. (A.20)

Finally, to find and expression for ϕ2, we can substitute (A.20) and (A.19) in (A.11)

ϕ2 =
m2

2
−m2

1 − c = m2 −m2
1 −

m3

6m1

= V ar − m3

6m1
. (A.21)

Equations (A.19), (A.20) and (A.21) define a new method of moments estimator for the variance
parameters of model (A.7)-(A.8). It then follows that the parameters of model (A.7)-(A.8) are
globally identified.

The only other primitive conditions needed for consistency are those for continuity and

uniform convergence in probability of the limiting objective function. As for the former, it

can be easily checked by inspection since ℓi(θ) is composed by continuous functions (logarithm,

exponential and standard normal c.d.f.) on the same open set. As far as the uniform convergence

in probability is concerned, since we are under the i.n.i.d. case, the Markov ULLN can be

exploited. Under the assumptions in Theorem 1, especially assumption (iii), and continuity of

the limiting objective function, we only need to check that |ℓi(wi,θ)| < c(wi), ∀θ ∈ Θ with
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E[c(wi)] < ∞ and wi = (∆yit,∆xit). To this aim, rewrite the marginal log-likelihood function

as

∣

∣

∣

∣

log

{

1

(σ1 + σ2)
exp

(

ψ2

σ2

2

− ∆εit
σ2

)

×
[

Φ

(

∆εit√
2ψ

−
√
2ψ

σ2

)

+ exp

[

ψ
2

(

σ2

2 − σ2

1

σ2

1
σ2

2

)

+

(

σ1 + σ2

σ1σ2

)

∆εit

]

Φ

(

−∆εit√
2ψ

−
√
2ψ

σ1

)]}
∣

∣

∣

∣

(A.22)

< |log(σ1 + σ2)|+
∣

∣

∣

∣

ψ2

σ2

2

− ∆εit
σ2

∣

∣

∣

∣

+

∣

∣

∣

∣

log

[

Φ

(

∆εit√
2ψ

−
√
2ψ

σ2

)

+ exp

[

ψ
2

(

σ2

2 − σ2

1

σ2

1
σ2

2

)

+

(

σ1 + σ2

σ1σ2

)

∆εit

]

Φ

(

−∆εit√
2ψ

−
√
2ψ

σ1

)]
∣

∣

∣

∣

. (A.23)

We then need to show that each term of expression (A.23) has a data-dependent upper bound
with finite expectation. In what follow, we use (A.11) and the following result

E |∆εit| = E |v2 − v1 + u1 − u2|

< E|v2|+ E|v1|+ E|u1|+ E|u2| = ψ

√

8

π
+ σ1 + σ2

< 2ψ + σ1 + σ2. (A.24)

Since Θ is a compact set, σ1, σ2 > 0, then there exists two finite constants c1 and c2 such
that supθ∈Θ| log(σ1 + σ2)| < c1 and

E

(

supθ∈Θ

∣

∣

∣

∣

ψ2

σ22
− ∆εit

σ2

∣

∣

∣

∣

)

< supθ∈Θ

[

ψ2

σ22
+ E

∣

∣

∣

∣

∆εit
σ2

∣

∣

∣

∣

]

< supθ∈Θ

[

ψ2

σ22
+

2ψ + σ1 + σ2
σ2

]

< c2. (A.25)

As for the third term of expression (A.23), we need to show that

E sup
θ∈Θ

|log [g(θ)]| <∞, (A.26)

where

g(θ) = Φ

(

∆εit√
2ψ

−
√
2ψ

σ2

)

+ exp

[

ψ2

(

σ22 − σ21
σ21σ

2
2

)

+

(

σ1 + σ2
σ1σ2

)

∆εit

]

Φ

(

−∆εit√
2ψ

−
√
2ψ

σ1

)

.

The modulus of a logarithmic function diverges to +∞ as the argument goes to zero or to
+∞. Moreover the modulus of a logarithmic function is monotonically decreasing in the interval
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(0, 1] and monotonically increasing in [1,+∞). Therefore in order to prove (A.26) ∀θ ∈ Θ is
sufficient to prove that

E |log [g1(θ)]| < +∞ and E |log [g2(θ)]| < +∞ ∀θ ∈ Θ, (A.27)

with

g1(θ) < g(θ) < g2(θ) ∀θ ∈ Θ. (A.28)

Since Φ(.) ∈ (0, 1), we can define g1(θ) and g2(θ) as

g1(θ) = Φ

(

∆εit√
2ψ

−
√
2ψ

σ2

)

,

and

g2(θ) = 1 + exp

[

ψ2

(

σ22 − σ21
σ21σ

2
2

)

+

(

σ1 + σ2
σ1σ2

)

∆εit

]

.

As for g1(θ), it is well known that the derivative ∂ log Φ(z)/∂z = φ(z)/Φ(z). By denoting

z =
(

∆εit√
2ψ

−
√
2ψ
σ2

)

, a mean-value expansion around ψ = σ2 = 0 gives

|log Φ(z)| = |log Φ(0)|+ φ(z′)
Φ(z′)

|z|, ∀θ ∈ Θ, z′ = δzwithδ ∈ (0, 1)

≤ |log Φ(0)|+ c3

(

1 + δ

∣

∣

∣

∣

∣

∆εit√
2ψ

−
√
2ψ

σ2

∣

∣

∣

∣

∣

) ∣

∣

∣

∣

∣

∆εit√
2ψ

−
√
2ψ

σ2

∣

∣

∣

∣

∣

≤ |log Φ(0)|+ c3

(

1 + δ

∣

∣

∣

∣

∆εit√
2ψ

∣

∣

∣

∣

) ∣

∣

∣

∣

∆εit√
2ψ

∣

∣

∣

∣

≤ |log Φ(0)|+ c3

[

∣

∣

∣

∣

∆εit√
2ψ

∣

∣

∣

∣

+

(

∆εit√
2ψ

)2
]

, (A.29)

with c3 a finite constant. Thus, since Θ is a compact set, we have that

E sup
θ∈Θ

|log Φ(z)| ≤ |log Φ(0)|+ c3

[

1√
2ψ

E |∆εit|+
1

2ψ2
E∆ε2it

]

≤ |log Φ(0)|+ c3

[

2ψ + σ1 + σ2√
2ψ

+
2ψ2 + 2σ21 + 2σ22 − 2σ1σ2

2ψ2

]

≤ |log Φ(0)|+ c3 [c4 + c5] < +∞, (A.30)

where c4 and c5 are two finite constants such that c4 >
2ψ+σ1+σ2√

2ψ
and c5 >

2ψ2+2σ2

1
+2σ2

2
−2σ1σ2

2ψ2 .
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As for g2(θ), given that log(1 + exp(z)) < 1 + |z| ∀z ∈ R, we have that

|log [g2(θ)]| = log

[

1 + exp

[

ψ2

(

σ22 − σ21
σ21σ

2
2

)

+

(

σ1 + σ2
σ1σ2

)

∆εit

]]

< 1 +

∣

∣

∣

∣

ψ2

(

σ22 − σ21
σ21σ

2
2

)

+

(

σ1 + σ2
σ1σ2

)

∆εit

∣

∣

∣

∣

< 1 +

∣

∣

∣

∣

ψ2

(

σ22 − σ21
σ21σ

2
2

)∣

∣

∣

∣

+

∣

∣

∣

∣

(

σ1 + σ2
σ1σ2

)

∆εit

∣

∣

∣

∣

< 1 +
ψ2

σ21
+

(

σ1 + σ2
σ1σ2

)

|∆εit| , ∀θ ∈ Θ. (A.31)

Therefore we have that

E |log [g2(θ)]| < E

[

1 +
ψ2

σ21
+

(

σ1 + σ2
σ1σ2

)

|∆εit|
]

= 1 +
ψ2

σ21
+

(

σ1 + σ2
σ1σ2

)

E |∆εit|

< 1 +
ψ2

σ21
+

(

σ1 + σ2
σ1σ2

)

(2ψ + σ1 + σ2), ∀θ ∈ Θ. (A.32)

Again since Θ is a compact set, σ1, σ2, ψ ∈ [0,+∞), then there exist two finite constants c6
and c7 such that

c6 >
ψ2

σ21
and c7 >

(

σ1 + σ2
σ1σ2

)

(2ψ + σ1 + σ2),

thus
E sup

θ∈Θ
|log [g2(θ)]| < 1 + c6 + c7 < +∞.

A.2.2 Consistency of the PDE

Theorem 2 If (i) θ0 is an interior point of a compact set Θ and (ii) θ̂
(t,s)
n

p→ θ0, ∀(t, s) with
t = 1, ..., T − 1, s = 2, ..., T and t < s then θ̃ exists and is unique with probability approaching
one as n→ ∞ and θ̃n

p→ θ0.

This theorem states that a sufficient condition for the consistency of the PDE is the consistency
of the subsamples MMLEs.

Proof:

Since we have already assumed condition (i), the proof of Theorem 2 requires to check the
validity of the following two conditions:

1. the sequence of random functions {Un (θ)} converges in probability uniformly on Θ to a
continuous function U (θ);

2. U attains a unique maximum on Θ at the true value θ0.
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The marginal log-likelihood for the subsample obtained considering two generic waves t and
s with t < s is given by

Q(t,s)
n (θ) = n−1

n
∑

i=1

ℓ
(t,s)
i (θ),

then the objective function of the PDE can be expressed as

Un (θ) =

(

T

2

)−1 T
∑

t=1

∑

s<t

Q(t,s)
n (θ) .

As already shown in Section A.2.1, a necessary condition for the consistency of θ̂
(t,s)
n is that

Q
(t,s)
n (θ) converges in probability uniformly on Θ to the following continuous function

Q(t,s) (θ) = E[ℓ
(t,s)
i (θ)].

Given that θ̂
(t,s)
n

p→ θ0, this convergence condition clearly holds. By definition, U (θ) can be
rewritten as

U (θ) = E

[

(

T

2

)−1 T
∑

t=1

∑

s<t

ℓ
(t,s)
i (θ)

]

=

(

T

2

)−1 T
∑

t=1

∑

s<t

E[ℓ
(t,s)
i (θ)]

=

(

T

2

)−1 T
∑

t=1

∑

s<t

Q(t,s) (θ) . (A.33)

Since the expectation is a linear operator and each term Q
(t,s)
n (θ) in Un (θ) converges in proba-

bility (uniformly on Θ) to its population counterpart Q(t,s) (θ), Un (θ) converges in probability
(uniformly on Θ) to U (θ).

The second condition requires that θ0 is the unique maximizer of U (θ). Since U (θ) is an
average of all Q(t,s) (θ), then it is sufficient to show that θ0 is the unique global maximizer of each
Q(t,s) (θ). The consistency of the MMLEs implies that θ0 uniquely maximizes each Q(t,s) (θ),
which completes the proof. �
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