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1 Introduction

This work concerns consistent interactions of Curtright fields [1]. Curtright fields are

Lorentz tensors T aµν% with Lorentz indices µ, ν, % having the permutation symmetries1

T aµν% = −T aνµ% , T a[µν%] = 0. (1.1)

The additional index a is no Lorentz index but only enumerates the Curtright fields, i.e.

we examine also models with more than one Curtright field. The Lagrangian that we use

for free (non-interacting) Curtright fields is

L(0) = − 1

12
δab (F aµν%σF

bµν%σ − 3F aµνF
bµν) (1.2)

wherein

F aµν%σ = ∂µT
a
ν%σ + ∂νT

a
%µσ + ∂%T

a
µνσ , F aµν = F aµν%

% (1.3)

and Lorentz indices are lowered and raised with a flat metric ηµν and its inverse ηµν . Cur-

tright fields are particularly interesting in D = 5 dimensions because there a Curtright field

is the elementary field (counterpart of the metric field) in a dual formulation of linearized

general relativity [2, 3].

We apply the BRST-BV-cohomological approach [4, 5] to construct consistent inter-

actions. In that approach one seeks a master action S = S(0) + gS(1) + g2S(2) + . . .

which solves the master equation (S, S) = 0 [6], wherein S(0) is the master action of the

original (undeformed) theory and g is a deformation parameter. S is thus a deforma-

tion of S(0). The master equation (S, S) = 0 imposes (S(0), S(1)) = 0 at first order in g,

(S(1), S(1))+2(S(0), S(2)) = 0 at second order etc. The first order condition (S(0), S(1)) = 0

requires in D dimensions

sω0,D + dω1,D−1 = 0 (1.4)

wherein s is the BRST differential s · = (S(0), · ) of the original theory, d = dxµ∂µ is

the exterior derivative, ω0,D is the integrand (exterior D-form with ghost number 0) of

1Antisymmetrization of indices is defined as X[µν] = 1
2
(Xµν−Xνµ) etc., symmetrization correspondingly

as X(µν) = 1
2
(Xµν +Xνµ) etc.
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S(1) =
∫
ω0,D, and ω1,D−1 is an exterior (D− 1)-form with ghost number 1 (generally ωg,p

denotes an exterior p-form with ghost number g).

(1.4) implies descent equations sω1,D−1 + dω2,D−2 = 0, sω2,D−2 + dω3,D−3 = 0 etc.

with increasing ghost number and decreasing form-degree that can be compactly written

as (see section 9 of [7] and section 3 of [8] for reviews)

(s+ d) ΩD = 0, ΩD =
D∑

p=m

ωD−p,p (1.5)

wherein ΩD is a “total form” with “total degree”2 D, and m is some form-degree at which

the descent equations terminate (the value of m varies from case to case).

2 BRST differential

In our case the master action corresponding to the Lagrangian (1.2) can be taken as

S(0) =

∫
[L(0) − 2(∂µS

a
ν% + ∂µA

a
ν% − ∂%Aaµν)T ?µν%a − (6S?µνa + 2A?µνa )∂µC

a
ν ]dDx (2.1)

wherein Saµν and Aaµν denote ghost fields, Caµ denote ghost-for-ghost fields, and T ?µν%a ,

S?µνa , A?µνa denote the antifields for T aµν%, S
a
µν and Aaµν respectively (the antifields for Caµ

are denoted C?µa ). The ghost fields and antifields have the index symmetries

Saµν = Saνµ, Aaµν = −Aaνµ, T ?µν%a = −T ?νµ%a ,

T ?[µν%]
a = 0, S?µνa = S?νµa , A?µνa = −A?νµa .

The fields, antifields, spacetime coordinates xµ and differentials dxµ have the following

ghost numbers (gh), antifield numbers (af), Graßmann parities (| |) and BRST transfor-

mations (s):

Z gh(Z) af(Z) |Z| sZ

T aµν% 0 0 0 2(∂[µS
a
ν]% + ∂[µA

a
ν]% − ∂%A

a
µν)

Saµν 1 0 1 6∂(µC
a
ν)

Aaµν 1 0 1 2∂[µC
a
ν]

Caµ 2 0 0 0

T ?µν%a −1 1 1 1
2δab∂σ(F bσµν% − 3F b[σµην]%) = δab(E

bµν% − Eb[µην]%)

S?µνa −2 2 0 −2∂%T
?%(µν)
a

A?µνa −2 2 0 3∂%T
?µν%
a = −6∂%T

?%[µν]
a

C?µa −3 3 1 ∂ν(6S?νµa + 2A?νµa )

xµ 0 0 0 0

dxµ 0 0 1 0

(2.2)

2The total degree G of a total form ΩG =
∑
p ωG−p,p is the sum of the form-degree and the ghost number

of its exterior forms ωG−p,p. A total form with total degree G is called a total G-form.

– 2 –



J
H
E
P
0
6
(
2
0
2
0
)
0
1
2

wherein Eaµν% and Eaµ are traces of a gauge invariant tensor Eaµν%στ :

Eaµν%στ =
1

2
(∂σF

a
µν%τ − ∂τF aµν%σ), Ea

µν% = −Eaσµν%σ, Ea
µ = Eaµν

ν . (2.3)

These tensors fulfill the identities

Ea[µν%σ]τ = 0, Ea
[µν%] = 0, (2.4)

∂τEaµν%στ = −3∂[µE
a
ν%]σ , ∂τEaτµν%σ = ∂%E

a
µνσ − ∂σEaµν% , (2.5)

∂µEaµν% = −1

2
∂%E

a
ν , ∂%Eaµν% = −∂[µE

a
ν] . (2.6)

For later purpose we also introduce the totally tracefree part W a
µν%στ of Eaµν%στ in dimen-

sions D > 3:

W a
µν%

στ = Eaµν%
στ +

6

D − 3
Ea[µν

[σδ
τ ]
%] −

6

(D − 3)(D − 2)
Ea[µδ

σ
ν δ

τ
%] . (2.7)

We remark that Fµν%σ, Eaµν%στ , W a
µν%στ , Eaµν% and Eaµ are the counterparts of the linearized

Levi-Civita-Christoffel connection, Riemann-Christoffel tensor, Weyl tensor, Ricci tensor

und curvature scalar of general relativity, respectively. Eaµν% and Eaµ vanish on-shell in the

free theory, and Eaµν%στ equals W a
µν%στ on-shell in the free theory:

Eaµ = − 2

D − 3
sT ?µb δba ≈ 0, (2.8)

Eaµν% = s

(
T ?µν%b − 2

D − 3
T
?[µ
b ην]%

)
δba ≈ 0, (2.9)

Eaµν%στ = W aµν%
στ −

6

D − 3
s

(
T
?[µν
b [σδ

%]
τ ] −

2

D − 2
T
?[µ
b δνσδ

%]
τ

)
δba ≈W aµν%

στ (2.10)

wherein

T ?µa = T ?µνa ν (2.11)

and ≈ denotes equality on-shell in the free theory (sT ?µν%a is the Euler-Lagrange derivative

of L(0) with respect to T aµν%, i.e. the BRST-transformations sT ?µν%a are the “left hand sides”

of the equations of motion of the free theory).

3 Constituent total forms

To construct solutions of equations (1.4) and (1.5) we define total 1-forms Ωaµν%
1 and 2-

forms Ωaµν%
2 :

Ωaµν%
1 = Haµν% − F aµν%σdxσ, Ωaµν%

2 = −Eaµν%στdxσdxτ (3.1)

wherein

Ha
µν% = 6∂[µA

a
ν%] . (3.2)
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The forms defined in equations (3.1) fulfill

(s+ d) Ωaµν%
1 = Ωaµν%

2 , (s+ d) Ωaµν%
2 = 0. (3.3)

Furthermore in dimensions D > 4 we define total (D − 3)-forms Ωaµ
D−3:

Ωaµ
D−3 =

D∑
p=D−3

ωaµD−3−p,p ,

ωaµ−3,D = δabC?µb dDx,

ωaµ−2,D−1 = −δab(6S?νµb + 2A?νµb )(dD−1x)ν ,

ωaµ−1,D−2 =
36

D − 3
δab
(
x[ν∂σT

?%σ]µ
b − xτηµ[ν∂σT

?%σ]
b τ −

2

D − 2
ηµ[νx%∂σT

?σ]
b

)
(dD−2x)ν% ,

ωaµ0,D−3 = − 12

D − 4
W aν%σµ

τx
τ (dD−3x)ν%σ (3.4)

and total (D − 2)-forms Ωaµν%
D−2 :

Ωaµν%
D−2 = ωaµν%−1,D−1 + ωaµν%0,D−2 ,

ωaµν%−1,D−1 = 3δab
(
∂[µT

?ν%]σ
b − ησ[µ∂τT

?ν%]τ
b − 2

D − 3
ησ[µ∂νT

?%]
b

)
(dD−1x)σ ,

ωaµν%0,D−2 = Eaµν%στ (dD−2x)στ (3.5)

wherein

(dD−px)µ1...µp =
1

(D − p)!p!
εµ1...µDdx

µp+1 . . . dxµD . (3.6)

The forms defined in equations (3.4) and (3.5) fulfill

(s+ d) Ωaµ
D−3 = 0, (s+ d) Ωaµν%

D−2 = 0. (3.7)

Comments.

(i) The total (D − 3)-forms Ωaµ
D−3 defined in equations (3.4) derive from the following

simpler total (D − 3)-forms ΛaµD−3:

ΛaµD−3 = ωaµ−3,D + ωaµ−2,D−1 + λaµ−1,D−2 + λaµ0,D−3 + λaµ1,D−4 ,

λaµ−1,D−2 = −12δabT ?ν1ν2µb (dD−2x)ν1ν2 ,

λaµ0,D−3 = 6(F aν1ν2ν3µ − 3ηµν1F aν2ν3%%)(d
D−3x)ν1ν2ν3 ,

λaµ1,D−4 = 24ηµν1Haν2ν3ν4(dD−4x)ν1...ν4 (3.8)

with ωaµ−3,D and ωaµ−2,D−1 as in equations (3.4).

Using table (2.2) it can be readily checked that the total forms Λaµ
D−3 are (s+d)-

cocycles:

(s+ d)ΛaµD−3 = 0. (3.9)
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Furthermore it can readily be shown that Λaµ
D−3 is no (s + d)-coboundary. Indeed,

ΛaµD−3 = (s+ d)ηaµD−4 would imply ωaµ−3,D = δabC?µb dDx = sηaµ−4,D + dηaµ−3,D−1 for some

local exterior forms ηaµ−4,D and ηaµ−3,D−1 which can be easily shown not to exist. Hence,

ΛaµD−3 is nontrivial in the cohomology of (s+ d).

λaµ0,D−3 in ΛaµD−3 is a conserved exterior (D − 3)-form of the free theory be-

cause (3.9) contains

dλaµ0,D−3 = −sλaµ−1,D−2 ≈ 0.

Now, λaµ0,D−3 is not gauge invariant in the free theory because (3.9) also contains the

equation

sλaµ0,D−3 = −dλaµ1,D−4 6= 0.

However, for D > 4 we can “improve” ΛaµD−3 by subtracting an (s + d)-coboundary

from it which removes the exterior (D − 4)-form from it and makes the resulting

exterior (D − 3)-form gauge invariant. Indeed, we have

D > 4 : λaµ1,D−4 = dηaµ1,D−5 + sηaµ0,D−4 (3.10)

wherein

ηaµ1,D−5 =
120

D − 4
xν5Haν4ν3ν2ην1µ(dD−5x)ν1...ν5 , (3.11)

ηaµ0,D−4 =
24

D − 4
(F aν4ν3ν2µxν1 − 4F a[ν4ν3ν2

%x
%]ην1µ)(dD−4x)ν1...ν4 . (3.12)

(3.10) implies that the total (D−3)-form ΛaµD−3−(s+d)(ηaµ1,D−5+ηaµ0,D−4) contains only

exterior p-forms with form-degrees p ≥ D− 3.3 Moreover its exterior (D− 3)-form is

λaµ0,D−3 − dη
aµ
0,D−4 = − 12

D − 4
Kaν3ν2ν1µ(dD−3x)ν1ν2ν3 ,

Ka
ν3ν2ν1µ = Eaν3ν2ν1µ%x

% + 3x[ν3E
a
ν2ν1]µ + 3ηµ[ν3E

a
ν2xν1] − 3ηµ[ν3E

a
ν2ν1]%x

%.

(3.13)

Notice that this exterior (D − 3)-form indeed is gauge invariant and that it does

not contain any x-independent terms. In fact, the x-independent terms of dηaµ0,D−4

cancel exactly λaµ0,D−3 and only the x-dependent terms of dηaµ0,D−4 survive. (3.13) is

already a gauge invariant improvement of λaµ0,D−3 but we proceed one step further

and remove also terms from the exterior (D − 3)-form (3.13) which vanish on-shell

in the free theory. Using equations (2.8)–(2.10) one finds that such terms are the

BRST-transformation of the following exterior (D − 3)-form ηaµ−1,D−3:

ηaµ−1,D−3 =
36

D−3
δab
(
ηµν3T ?ν2ν1b %x

%−xν3T ?ν2ν1µb +
2

D−2
ηµν3xν2T ?ν1b

)
(dD−3x)ν1ν2ν3 .

(3.14)

3This total (D − 3)-form very likely coincides with the total (D − 3) form H̃µ of [11] that occurs there

in the case (p, q) = (2, 1), see section 3.3 of the arXiv-version of [11].
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We arrive at the improved total form (3.4):

ΛaµD−3 − (s+ d)(ηaµ1,D−5 + ηaµ0,D−4 + ηaµ−1,D−3) = Ωaµ
D−3 . (3.15)

(s + d)Ωaµ
D−3 = 0 is thus a direct consequence of (3.9). As ΛaµD−3 is nontrivial in the

cohomology of (s+ d), Ωaµ
D−3 is also nontrivial in that cohomology.

Notice also that the exterior (D−2)-form ωaµ−1,D−2 in Ωaµ
D−3 does not contain any

x-independent terms either. This parallels what happened for the exterior (D − 3)-

form: the x-independent terms of dηaµ−1,D−3 cancel exactly λaµ−1,D−2 and only the

x-dependent terms of dηaµ−1,D−3 survive in ωaµ−1,D−2. In fact one can proceed further

and remove also the s-trivial terms in ωaµ−1,D−2 (i.e. the terms with ∂σT
?σ··
b and ∂σT

?σ
b )

by subtracting a total form (s + d)ηaµ−2,D−2 from ΛaµD−3, and afterwards also the s-

trivial terms in the resultant redefined exterior (D − 1)-form and exterior D-form

which however appears to be merely of academic interest and therefore is not done

here (the exterior p-forms with p > D − 2 in Ωaµ
D−3 anyway do not contribute to the

deformations constructed below).

We remark that it is impossible to improve Λaµ
D−3 to an (s + d)-cocycle with

a gauge invariant and x-independent exterior (D − 3)-form. Indeed, such an im-

provement would require the existence of x-independent exterior forms ηaµ0,D−4 and

ηaµ1,D−5 that fulfill (3.10) but it can easily be shown that such forms do not exist. The

improvement of ΛaµD−3 thus necessarily depends explicitly on the coordinates x. Fur-

thermore the improvement is crucial for the construction of consistent deformations

involving Ωaµ
D−3, as will become clear below.

(ii) The total (D − 2)-forms Ωaµν%
D−2 defined in equations (3.5) are actually (s + d)-exact,

i.e. one has Ωaµν%
D−2 = (s + d)ηaµν%D−3 for some total (D − 3)-form ηaµν%D−3 . This follows

already from the fact that Ωaµν%
D−2 has no exterior D-form. In particular the exterior

(D−2)-form ωaµν%0,D−2 of Ωaµν%
D−2 is thus trivial, i.e. ωaµν%0,D−2 = dηaµν%0,D−3 +sηaµν%−1,D−2 for some

exterior (D−3)-form ηaµν%0,D−3 and some exterior (D−2)-form ηaµν%−1,D−2. In other words,

ωaµν%0,D−2 is d-exact on-shell in the free theory. However, it is not d-exact on-shell in

the space of gauge invariant and x-independent exterior forms, i.e. there is no gauge

invariant exterior (D − 3)-form ηaµν%0,D−3 which does not dependent explicitly on the

coordinates x such that ωaµν%0,D−2 ≈ dη
aµν%
0,D−3 (e.g. in D = 5 one has ωaµν%0,3 ≈ dηaµν%0,2 with

ηaµ1µ2µ30,2 ∝ εµ1...µ5F aµ4µ5ν%dx
νdx%).

(iii) Ωaµν%
2 in (3.1) and Ωaµν%

D−2 in (3.5) can also be modified by removing terms that vanish

on-shell in the free theory. In particular, using equation (2.10) one can write terms

of Ωaµν%
2 that vanish on-shell in the free theory as sηaµν%−1,2 with an exterior 2-form

ηaµν%−1,2 and redefine Ωaµν%
1 → Ωaµν%

1 − ηaµν%−1,2 and Ωaµν%
2 → Ωaµν%

2 − (s + d)ηaµν%−1,2 =

−W aµν%
στdx

σdxτ − dηaµν%−1,2 . Furthermore one can write terms of ωaµν%0,D−2 that vanish

on-shell in the free theory as sηaµν%−1,D−2 with an exterior (D−2)-form ηaµν%−1,D−2 and rede-

fine Ωaµν%
D−2 → Ωaµν%

D−2−(s+d)ηaµν%−1,D−2 whose exterior (D−2)-form is W aµν%στ (dD−2x)στ .

The first order consistent deformations constructed below from Ωaµν%
1 , Ωaµν%

2 and

Ωaµν%
D−2 can be constructed likewise (and equivalently) with the redefined total forms.

– 6 –
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4 Consistent first order deformations

Using the total forms (3.1), (3.4) and (3.5) we now construct solutions of equation (1.5)

in dimensions D = 5 and D = 7 which are cubic in the fields and antifields and which we

call “Yang-Mills type”, “Chapline-Manton type”, “Freedman-Townsend type” and “Chern-

Simons type” solutions (this wording will be justified in section 6), and which we denote

ΩYM
D , ΩCM

D , ΩFT
D and ΩCS

D , respectively.

The Yang-Mills type solutions are:

D = 5 : ΩYM
5 = εµ1...µ5Ωaµ1µ2µ3

3 Ωbµ4ν%
1 Ωcµ5

1 ν%fabc , (4.1)

D = 7 : ΩYM
7 = εµ1...µ7Ωaµ1µ2µ3

5 Ωbµ4µ5ν
1 Ωcµ6µ7

1 νfabc (4.2)

wherein fabc are constant coefficients that are totally symmetric in D = 5 and totally

antisymmetric in D = 7 (and otherwise arbitrary, at least at first order):

D = 5 : fabc = f(abc) , D = 7 : fabc = f[abc] . (4.3)

In (4.1) and (4.2) Ωa···
3 and Ωa···

5 are the total (D− 2)-forms of (3.5) for D = 5 and D = 7,

and Ωb···
1 and Ωc···

1 are the total 1-forms of (3.1).

The Chapline-Manton type solutions are:

D = 5 : ΩCM
5 = εµ1...µ5Ωaν

2 Ωbµ1µ2µ3
2 Ωcµ4µ5

1 ν eabc , (4.4)

D = 7 : ΩCM
7 = εµ1...µ7Ωaµ1

4 Ωbµ2µ3µ4
2 Ωcµ5µ6µ7

1 eabc (4.5)

wherein eabc are constant coefficients that are symmetric in D = 5 and antisymmetric

symmetric in D = 7 in the last two indices (and otherwise arbitrary):

D = 5 : eabc = eacb , D = 7 : eabc = −eacb . (4.6)

In (4.4) and (4.5) Ωa·
2 and Ωa·

4 are the total (D − 3)-forms of (3.4) for D = 5 and D = 7,

and Ωc···
1 and Ωb···

2 are the total 1-forms and 2-forms of (3.1).

Cubic Freedman-Townsend and Chern-Simons type solutions exist only in D = 5

dimensions:

D = 5 : ΩFT
5 = εµ1...µ5Ωaµ1

2 Ωbµ2
2 Ωcµ3µ4µ5

1 dabc , (4.7)

ΩCS
5 = εµ1...µ5Ωaµ1µ2µ3

1 Ωbµ4ν%
2 Ωcµ5

2 ν% cabc (4.8)

wherein dabc are constant coefficients that are antisymmetric in the first two indices and cabc
are totally antisymmetric constant coefficients (otherwise these coefficients are arbitrary):

dabc = −dbac , cabc = c[abc] . (4.9)

In (4.7) Ωa·
2 and Ωb·

2 are the total (D − 3)-forms of (3.4) for D = 5 and Ωc···
1 are the total

1-forms of (3.1), and in (4.8) Ωa···
1 are the total 1-forms of (3.1), and Ωb···

2 and Ωc···
2 are the

2-forms of (3.1).
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Comments.

(i) The total 5-forms ΩCM
5 , ΩFT

5 and ΩCS
5 given in equations (4.4), (4.7) and (4.8) solve

equation (1.5) because (s+ d)ΩCM
5 , (s+ d)ΩFT

5 and (s+ d)ΩCS
5 contain only exterior

forms with form-degrees p > 5 and thus vanish in D = 5, as can be readily checked.4

Similarly the total 7-form ΩCM
7 given in equation (4.5) solves equation (1.5) because

(s + d)ΩCM
7 contains only exterior forms with form-degrees p > 7 and thus vanishes

in D = 7. The symmetries (4.6) and (4.9) of the coefficients eabc and cabc avoid that

the total forms ΩCM
5 , ΩCM

7 and ΩCS
5 are obviously (s+ d)-exact (the symmetry of the

e’s avoids that ΩCM
D has the structure (s + d)(ΩD−3Ω1Ω1), the symmetry of the c’s

avoids that ΩCS
5 has the structure (s+ d)(Ω2Ω1Ω1)). The antisymmetry (4.9) of the

coefficients dabc simply reflects the even Graßmann parity of the total forms Ωaµ
2 and

the antisymmetry of εµ1...µ5 .

(ii) (s + d)ΩYM
D = 0 for D = 5 and D = 7 can be shown as follows. For an object

Z%1%2%3 = Z[%1%2%3] in D = 2k + 1 dimensions we define

D = 2k + 1 : Z̃µ1...µk−1ν1...νk−1 := εµ1...µk−1ν1...νk−1%1%2%3Z%1%2%3 ≡ Z̃(µ)(ν) (4.10)

where (µ) and (ν) denote the multi-indices [µ1 . . . µk−1] and [ν1 . . . νk−1], respectively

(in D = 5 (µ) and (ν) are not multi-indices but just ordinary indices). Notice that

Z̃(µ)(ν) = (−)k−1Z̃(ν)(µ). (4.11)

With this multi-index notation the total forms ΩYM
D in equations (4.1) and (4.2) can

be written as

ΩYM
2k+1 ∝ Ω̃

a(µ)(ν)
2k−1 Ω̃b

1(%)(µ)Ω̃
c(%)
1 (ν)fabc (4.12)

and one obtains, using (s+ d)Ω̃
a(µ)(ν)
1 = Ω̃

a(µ)(ν)
2 (which holds owing to (3.3)):

(s+ d)ΩYM
2k+1 ∝ Ω̃

a(µ)(ν)
2k−1 Ω̃b

2(%)(µ)Ω̃
c(%)
1 (ν)fabc

= −d2k+1x Ẽa(µ)(ν)στ Ẽb(%)(µ)στ H̃
c(%)

(ν)fabc (4.13)

where we used that Ω̃
a(µ)(ν)
2k−1 Ω̃b

2(%)(µ) = −d2k+1x Ẽa(µ)(ν)στ Ẽb(%)(µ)στ is an exterior vol-

ume form which is implied by equations (3.1) and (3.5). (4.13) vanishes because

of (4.11) if fabc = f(abc) for k = 2m and fabc = f[abc] for k = 2m + 1. We remark

that (4.12) actually vanishes for k > 4 because in dimensions D = 2k + 1 > 9 there

is no way to contract the nine free Lorentz indices of Ωaµ1µ2µ3
2k−1 Ωbµ4µ5µ6

1 Ωcµ7µ8µ9
1 in a

Lorentz invariant way. For the same reason there is no ΩYM
D in even dimensions D.

In D = 9 one obtains

D = 9 : ΩYM
9 = εµ1...µ9Ωaµ1µ2µ3

7 Ωbµ4µ5µ6
1 Ωcµ7µ8µ9

1 fabc , fabc = f(abc)

4For this result it is crucial that the exterior (D− 3)-form ωaµ0,D−3 of the total (D− 3)-form ΩaµD−3 given

in (3.4) is gauge invariant because otherwise Ωaµ
D−3 would contain an exterior (D−4)-form and the reasoning

for ΩCM
5 and ΩFT

5 would fail. This likewise applies to ΩCM
7 .
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which turns out to be a trivial solution of (1.5), i.e. ΩYM
9 = (s + d)η8 for a total

8-form η8. Whether or not (4.1) and/or (4.2) are nontrivial solutions of (1.5) is not

completely clear to the author yet.

(iii) Using the same multi-index notation as above, one can construct further Chern-

Simons type solutions of (1.5) in odd dimensions:

D = 2k + 1 : ΩCS
2k+1 = Ω̃

a1(µ1)
2 (µ2)Ω̃

a2(µ2)
2 (µ3) · · · Ω̃

ak(µk)
2 (µk+1)Ω̃

ak+1(µk+1)
1 (µ1)ca1...ak+1

(4.14)

wherein ca1...ak+1
= c[a1...ak+1] if k = 2m and ca1...an+1 = c(a1...ak+1) if k = 2m+ 1. We

remark that the Chern-Simons type solution (4.8) can be written in this form.

5 Consistent deformations in first order formulation

To explore whether or not the consistent first order deformations derived in the previous

section exist to all orders we employ the first order formulation [9] of the free theory. The

classical fields of that formulation are denoted ϕaµν% and Ba
µν%σ whose Lorentz indices have

the permutation symmetries

ϕaµν% = −ϕaνµ% , Ba
µν%σ = Ba

µ[ν%σ] . (5.1)

We take as Lagrangian of the first order formulation

L̂(0) = δab

(
1

4
Ba
µν%σB

bνµ%σ − 1

4
BaµνBb

µν −
1

6
Baµν%σF̂ bν%σµ +

1

2
BaµνF̂ bµν

)
(5.2)

wherein

Ba
µν = Ba%

%µν , F̂ aµν%σ = 3∂[µϕ
a
ν%]σ , F̂ aµν = F̂ aµν%

%. (5.3)

The B-fields are auxiliary fields which can be eliminated using the algebraic solution of

their equations of motion. Elimination of the B-fields reproduces the Lagrangian (1.2) (up

to a total divergence ∂µR
µ) with the definitions5

ϕaµν% = T aµν% + Uaµν% , Uaµν% = ϕa[µν%] . (5.4)

The ghost fields of the first order formulation of the free theory are denoted Da
µν and Ĥa

µν% =

Ĥa
[µν%], the ghost-for-ghost fields again Caµ, and the antifields again with a ? and indices

corresponding to the indices of the respective field. These fields and antifields have the

following ghost numbers, antifield numbers, Graßmann parities and BRST transformations

5The fields U disappear from the Lagrangian upon elimination of the B-fields because they contribute

only to the total divergence ∂µR
µ.
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(corresponding to the master action Ŝ(0) =
∫

[L̂(0) −
∑

Φ(sΦ)Φ?]dDx):

Z gh(Z) af(Z) |Z| sZ

ϕaµν% 0 0 0 2∂[µD
a
ν]% − Ĥ

a
µν%

Ba
σµν% 0 0 0 −∂σĤa

µν%

Da
µν 1 0 1 6∂µC

a
ν

Ĥa
σµν% 1 0 1 0

Caµ 2 0 0 0

ϕ?µν%a −1 1 1 1
2δab∂σ(Bb%σµν − 3Bb[σµην]%) = δab(Ê

bµν% − Êb[µην]%)

B?µν%σ
a −1 1 1 1

2δab

(
Bb[ν%σ]µ −Bb[ν%ησ]µ − 1

3 F̂
bν%σµ + F̂ b[ν%ησ]µ

)
D?µν
a −2 2 0 −2∂%ϕ

?%µν
a

Ĥ?µν%
a −2 2 0 −ϕ?[µν%]

a + ∂σB
?σµν%
a

C?µa −3 3 1 6∂νD
?νµ
a

(5.5)

wherein

Êa%στµν = ∂[µB
a
ν]%στ , Êaµν% = −Êaσµν%σ, Êaµ = Êaµν

ν . (5.6)

We also note that Da
µν = Saµν + 3Aaµν , i.e. Saµν = Da

(µν) and Aaµν = 1
3D

a
[µν].

We now introduce the following total 1-forms and 2-forms analogously to (3.1):

Ω̂aµν%
1 = Ĥaµν% −Ba

σ
µν%dxσ, Ω̂aµν%

2 = −Êaµν%στdxσdxτ (5.7)

and the following total (D − 3)-forms analogously to (3.4):

Ω̂aµ
D−3 =

D∑
p=D−3

ω̂aµD−3−p,p ,

ω̂aµ−3,D = δabC?µb dDx,

ω̂aµ−2,D−1 = −6 δabD?νµ
b (dD−1x)ν ,

ω̂aµ−1,D−2 =
36

D − 3
δab
(
x[ν∂σϕ

?%σ]µ
b − xτηµ[ν∂σϕ

?%σ]
b τ −

2

D − 2
ηµ[νx%∂σϕ

?σ]τ
b τ

)
(dD−2x)ν% ,

ω̂aµ0,D−3 = − 12

D − 4
Ŵ aν%σµ

τx
τ (dD−3x)ν%σ (5.8)

wherein Ŵ a
ν%σµτ is defined analogously to W a

ν%σµτ in (2.7), with Ê in place of E. The total

forms (5.7) and (5.8) fulfill

(s+ d)Ω̂aµν%
1 = Ω̂aµν%

2 , (s+ d)Ω̂aµν%
2 = 0, (s+ d)Ω̂aµ

D−3 = 0. (5.9)

Therefore solutions Ω̂CM
5 , Ω̂CM

7 , Ω̂FT
5 and Ω̂CS

5 of equation (1.5) arise from the solutions

ΩCM
5 , ΩCM

7 , ΩFT
5 and ΩCS

5 given in equations (4.4), (4.5), (4.7) and (4.8) by the replacements
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Ωaµν%
1 → Ω̂aµν%

1 , Ωaµν%
2 → Ω̂aµν%

2 and Ωaµ
D−3 → Ω̂aµ

D−3. We shall show now that the solutions

Ω̂CM
5 , Ω̂CM

7 , Ω̂FT
5 and Ω̂CS

5 are in fact equivalent in the cohomology H(s+d) of (s+d) to their

respective counterparts ΩCM
5 , ΩCM

7 , ΩFT
5 and ΩCS

5 , i.e. one has ΩCM
5 = Ω̂CM

5 + (s+ d)η4 for

some local total 4-form η4 etc. This follows from the fact that in the first order formulation

of the free theory with Lagrangian (5.2) one has

Ba
µν%σ ≈ F aν%σµ + ∂µU

a
ν%σ (5.10)

which implies

Êa%στµν ≈ Ea%στµν , Ŵ a
%στµν ≈W a

%στµν (5.11)

and

Ω̂aµν%
1 + (s+ d)Uaµν% = Haµν% − (Ba

σ
µν% − ∂σUaµν%)dxσ ≈ Ωaµν%

1 (5.12)

with Haµν% and Ωaµν%
1 as in (3.1). Hence, in the first order formulation of the free theory the

total 1-form Ω̂′ aµν%1 = Ω̂aµν%
1 + (s+ d)Uaµν% equals on-shell the total 1-form Ωaµν%

1 of (3.1),

the 2-form Ω̂aµν%
2 equals on-shell the 2-form Ωaµν%

2 of (3.1) and the exterior (D − 3)-form

ω̂aµ0,D−3 of the total (D−3)-form Ω̂aµ
D−3 equals on-shell the exterior (D−3)-form ωaµ0,D−3 of the

total (D− 3)-form Ωaµ
D−3 of (3.4). Therefore the antifield independent parts of the exterior

D-forms present in ΩCM
5 , ΩCM

7 , ΩFT
5 and ΩCS

5 coincide on-shell with the respective antifield

independent parts of the exterior D-forms present in the total D-forms Ω̂′CM
5 , Ω̂′CM

7 , Ω̂′FT
5

and Ω̂′CS
5 which arise from ΩCM

5 , ΩCM
7 , ΩFT

5 and ΩCS
5 by the replacements Ωaµν%

1 → Ω̂′ aµν%1 ,

Ωaµν%
2 → Ω̂aµν%

2 and Ωaµ
D−3 → Ω̂aµ

D−3. As a consequence the solutions of equation (1.4) (i.e.,

the exterior D-forms) present in ΩCM
5 , ΩCM

7 , ΩFT
5 and ΩCS

5 are equivalent in the cohomology

H(s|d) of s modulo d to the respective solutions present in Ω̂′CM
5 , Ω̂′CM

7 , Ω̂′FT
5 and Ω̂′CS

5

which in turn implies that the (s+ d)-cocycles ΩCM
5 , ΩCM

7 , ΩFT
5 and ΩCS

5 are equivalent in

the cohomology H(s+d) to the respective (s+d)-cocycles Ω̂′CM
5 , Ω̂′CM

7 , Ω̂′FT
5 and Ω̂′CS

5 (i.e.

one has ΩCM
5 = Ω̂′CM

5 + (s+ d)η′4 for some local total 4-form η′4 etc.).6 Furthermore Ω̂′CM
5 ,

Ω̂′CM
7 , Ω̂′FT

5 and Ω̂′CS
5 are equivalent in H(s+d) to Ω̂CM

5 , Ω̂CM
7 , Ω̂FT

5 and Ω̂CS
5 , respectively,

because Ω̂′CM
5 , Ω̂′CM

7 , Ω̂′FT
5 and Ω̂′CS

5 are all linear in Ω̂′ aµν%1 , and because Ω̂aµν%
2 and Ω̂aµ

D−3

are (s+ d)-cocycles: e.g., one has

Ω̂′CM
5 = εµ1...µ5Ω̂aν

2 Ω̂bµ1µ2µ3
2 (Ω̂cµ4µ5

1 ν + (s+ d)U cµ4µ5ν) eabc

= Ω̂CM
5 + (s+ d)(εµ1...µ5Ω̂aν

2 Ω̂bµ1µ2µ3
2 U cµ4µ5ν eabc).

This implies indeed that ΩCM
5 , ΩCM

7 , ΩFT
5 and ΩCS

5 are equivalent in H(s + d) to Ω̂CM
5 ,

Ω̂CM
7 , Ω̂FT

5 and Ω̂CS
5 , respectively, and that the defomations of the free theory which arise

from these (s+ d)-cocycles are equivalent as well, respectively.

6This follows by standard arguments from the general feature of the local BRST-cohomology that the

cohomology HD
k (δ|d) of the Koszul-Tate differential δ (= part of s with antifield number 1) modulo d

vanishes in the space of local exterior D-forms which have both positive antifield number k and positive

pureghost number, i.e. in the space of exterior D-forms which depend at least linearly both on antifields

and on fields with positive ghost number, see section 6.3 of [7].
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Now, the first order deformations Ŝ(1) which arise from the solutions Ω̂CM
5 , Ω̂CM

7 , Ω̂FT
5

and Ω̂CS
5 of (1.5) fulfill (Ŝ(1), Ŝ(1)) = 0 simply because the exterior D-forms present in these

solutions do not depend on the fields ϕ, and the only antifields on which these exterior

D-forms depend are the antifields ϕ? of ϕ (of course, ΩCS
5 and Ω̂CS

5 do not depend on

antifields at all and therefore it is actually not necessary to substitute Ω̂CS
5 for ΩCS

5 in

order to get (S(1), S(1)) = 0 for this deformation by itself; however this changes when one

considers linear combinations of ΩCM
5 , ΩFT

5 and ΩCS
5 ). Hence, these first order deformations

Ŝ(1) provide in fact already a complete deformation Ŝ = Ŝ(0) + gŜ(1) of the master action

Ŝ(0) of the first order formulation of the free theory. This implies that the first order

deformations arising from the solutions (4.4), (4.5), (4.7) and (4.8) of (1.5) indeed exist

to all orders and the complete deformations in the second order formulation of the free

theory with Lagrangian (1.2) can be obtained from Ŝ by eliminating the auxiliary fields

B (e.g., perturbatively). It should also be noticed that this reasoning does not only apply

to the Chapline-Manton, Freedman-Townsend and Chern-Simons type solutions in D = 5

individually but also to any linear combination thereof.

The author has not found an analogous line of reasoning for the Yang-Mills type

deformations yet. The reason is that it does not appear straightforward to find B-dependent

total forms Ω̂ analogous to (5.7) and (5.8) for the Yang-Mills type deformations which allow

a reasoning similar to comment (ii) in section 4.

6 Conclusion

The first order deformations L(1) of the Lagrangian (1.2) that arise from the solutions

of (1.5) given in section 4 in dimensions D = 5 and D = 7 are obtained from the antifield

independent parts L(1)dDx of the exterior D-forms of these solutions. The first order

deformations L(1)
YM obtained in this way from the solutions (4.1) and (4.2) read explicitly

D = 5 : L(1)
YM = εµ1...µ5Eaµ1µ2µ3στF

b
µ4ν%

σF cµ5
ν%τfabc , (6.1)

D = 7 : L(1)
YM = εµ1...µ7Eaµ1µ2µ3στF

b
µ4µ5ν

σF cµ6µ7
ντfabc . (6.2)

The first order deformations L(1)
CM obtained from the solutions (4.4) and (4.5) are

D = 5 : L(1)
CM = −12 εµ1...µ5W a

ν1...ν4%x
%Ebµ1µ2µ3

ν1ν2F cµ4µ5
ν4ν3 eabc , (6.3)

D = 7 : L(1)
CM = −4 εµ1...µ7W a

ν1ν2ν3µ1%x
%Ebµ2µ3µ4

ν1ν2F cµ5µ6µ7
ν3eabc , (6.4)

and the first order deformations L(1)
FT and L(1)

CS obtained from the solutions (4.7) and (4.8)

are7

D = 5 : L(1)
FT = −12 εµ1...µ5εν1...ν5W a

ν1ν2ν3µ1%x
%W b

ν4ν5τµ2σx
σF cµ3µ4µ5

τdabc , (6.5)

L(1)
CS = εµ1...µ5εν1...ν5F aµ1µ2µ3ν1E

b
%σµ4ν2ν3E

c%σ
µ5ν4ν5cabc . (6.6)

7Here we assumed that the flat metric has signature (−,+,+,+,+). Other conventions can result in a

minus sign in (6.6) and a plus sign in L(1)
N in (6.7). We remark that all results presented in this work are

actually valid also for non-Minkowskian metrics, with possible reversed signs in (6.6) and in L(1)
N in (6.7).
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Notice that the first order deformations (6.1) and (6.3) exist for any number of Curtright

fields (and in particular for only one Curtright field), whereas the first order deforma-

tions (6.4) and (6.5) require at least two Curtright fields, and the first order deforma-

tions (6.2) and (6.6) require at least three Curtright fields because of equations (4.3), (4.6)

and (4.9). Furthermore notice that all the above first order deformations are Lorentz in-

variant, in spite of the explicit x-dependence of the deformations (6.3), (6.4) and (6.5).8

This explicit x-dependence results from the fact that a gauge invariant improvement of

the conserved exterior (D − 3) form λaµ0,D−3 in (3.8) necessarily depends explicitly on the

coordinates x, cf. remark (i) in section 3. The deformations (6.3), (6.4) and (6.5) are thus

Lorentz invariant but appear to be variant under standard spacetime translations. The

deformations (6.1), (6.2) and (6.6) are Poincaré invariant.

Notice also that all the above first order deformations are cubic in the Curtright fields

and that the deformations (6.1) and (6.2) contain four derivatives of the Curtright fields

(terms ∂2T∂T∂T ) whereas the deformations (6.3)–(6.6) contain five derivatives of the Cur-

tright fields (terms ∂2T∂2T∂T ), respectively.

Furthermore, all deformations (6.1)–(6.5) are accompanied by deformations of the

gauge transformations of the free theory. The first order deformations of these gauge

transformations are obtained from the corresponding solutions of (1.5) given in section 4,

more precisely from the terms with antifield number 1 in the exterior D-forms of these

solutions. We leave it to the interested reader to write out these deformations of the gauge

transformations explicitly. The commutator algebra of the first order deformed gauge

transformations remains Abelian in all cases, however. This corresponds to the fact that

the exterior D-forms of the solutions of (1.5) given in section 4 do not contain terms with

antifield number exceeding 1.

The deformations derived here are thus compatible with the results of [10, 11] where

it was shown that Poincaré invariant first order consistent deformations of the free theory

that modify nontrivially the gauge transformations leave the commutator algebra of the

deformed gauge transformations Abelian on-shell, and that there are actually no nontrivial

consistent deformations of this type containing at most three derivatives of the Curtright

fields. In fact it can easily be shown that x-independent and Lorentz invariant nontrivial

consistent deformations that are strictly invariant under the gauge transformations of the

free theory and contain at most four derivatives do not exist either. Indeed, according

to the results of [10, 11] such deformations can be taken to be quadratic in the tensors

Eaµν%στ but all such quadratic terms actually vanish on-shell up to a total divergence

because of (2.5)–(2.9) and are thus trivial deformations of the Lagrangian (1.2). Therefore

it seems that the above deformations might actually provide the simplest possible Lorentz

invariant nontrivial deformations of the free theory in dimensions D = 5 and D = 7 at first

order.

As shown in section 5 the above first order deformations (6.3)–(6.6) can in fact be

extended to all orders, most readily using the first order formulation of the theory. Fur-

8This holds because the would-be infinitesimal Lorentz transformation of xµ as a contravariant Lorentz

vector vanishes: ξν∂νx
µ − xν∂νξµ = 0 for ξµ = xνkν

µ with constant kν
µ.
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thermore in D = 5 any linear combination of the deformations (6.3), (6.5) and (6.6) can

be extended to all orders. Whether or not the first order deformations (6.1) and (6.2) can

be extended to higher orders is left open here.

We also remark that in all above first order deformations the tensors Eaµν%στ can be re-

placed by the traceless tensors W aµν%στ (2.7) and vice versa because of Eaµν%στ ≈W aµν%στ ,

see also remark (iii) in section 3 (such replacements provide equivalent deformations and

modify the deformed gauge transformations).

The author admits that he has no complete proof yet that the above deformations are

really nontrivial. Therefore some (or all) of these deformations may actually turn out to

be trivial. The proof of nontriviality is hampered by the possible explicit x-dependence

of the terms (forms) that may make the deformations trivial. The author plans to in-

vestigate this issue, and whether or not the first order deformations (6.1) and (6.2) can

be extended to higher orders in a future work (unless someone else does the job).9 How-

ever, the similarity of (6.1)–(6.6) to Yang-Mills [12], Chapline-Manton [13], Freedman-

Townsend [14] and Chern-Simons [15] interactions, respectively, in combination with some

BRST-cohomological considerations, suggests the nontriviality of the deformations.

Let me therefore briefly comment on similarities (and differences) of the defor-

mations (6.1)–(6.6) to Yang-Mills, Chapline-Manton, Freedman-Townsend and Chern-

Simons interactions. To that end standard p-form gauge potentials are denoted Aap =
1
p!A

a
µ1...µpdx

µ1 . . . dxµp , the corresponding field strength (p+ 1)-forms F ap+1 = dAap and the

Hodge duals F̄ aD−p−1 of the field strength forms.

Yang-Mills interactions in D dimensions are F̄ aD−2A
b
1A

c
1fabc. This is analogous to (4.1)

and (4.2) with Ωa···
D−2 corresponding to F̄ aD−2, and Ωb···

1 and Ωc···
1 corresponding to Ab1 and

Ac1, respectively. I stress that the terminology “Yang-Mills type interactions” used in the

present work only relates to this structure of the interactions and not to the commutator

algebra of the deformed gauge transformations (i.e. it is not related to the question whether

or not this algebra is Abelian).

Cubic Chapline-Manton interactions in D dimensions with two 1-form gauge fields are

F̄ aD−3F
b
2A

c
1eabc. This is analogous to (4.4) and (4.5) with Ωa·

D−3 corresponding to F̄ aD−3,

Ωb···
2 corresponding to F b2 , and Ωc···

1 corresponding to Ac1.

Cubic Freedman-Townsend interactions in 5 dimensions are F̄ a1 F̄
b
1A

c
3dabc. This is anal-

ogous to (4.7) with Ωa·
2 and Ωb·

2 corresponding to F̄ a1 and F̄ b1 , and Ωc···
1 corresponding to Ac3.

The correspondence here does not match the form-degrees and total degrees but concerns

the structure F̄ F̄A.

Cubic Chern-Simons interactions in 5 dimensions are Aa1F
b
2F

c
2 cabc. This is analogous

to (4.8) with Ωa···
1 corresponding to Aa1, and Ωb···

2 and Ωc···
2 corresponding to F b2 and F c2 .

The difference of the deformations (6.1)–(6.6) as compared to standard Yang-Mills,

Chapline-Manton, Freedman-Townsend and Chern-Simons interactions results on the one

9In particular there seems to be no obvious counterpart of the Yang-Mills type self-interactions (6.1)

and (6.2) in previous works, such as [19] which aimed to classify cubic consistent interactions of “mixed

symmetry” and higher spin fields rather completely. Therefore it seems to be worthwhile to check whether

or not especially the self-interactions (6.1) and (6.2) are trivial, and if they turn out to be nontrivial, to

clarify their relation to results of previous works.
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hand from the additional Lorentz indices of the Ω’s as compared to standard p-form gauge

potentials Ap and, on the other hand, from the fact that the action
∫
L(0)dDx does not cor-

respond to the standard Maxwell type action for free p-form gauge potentials Ap containing

terms
∫
Fp+1F̄D−p−1.

As far as the author knows the self-interactions of Curtright fields obtained in this paper

have not been disclosed anywhere else in the literature so far. Nevertheless, self-interactions

of “mixed symmetry gauge fields” similar to the Chapline-Manton type interactions (6.3)

and (6.4) have been found in [11]. They are disclosed under item (iv) in section 8.1 of

the arXiv-version of [11]. The self-interactions disclosed there also depend explicitly on

the coordinates x and have a structure analogous to the Chapline-Manton type interac-

tions (6.3) and (6.4). In the particular case (p, q) = (2, 1) (corresponding to a Curtright

field) and s = 1 (using the notation of [11]) the interactions given there will very likely

in D = 5 provide a self-interaction of a Curtright field equivalent to the Chapline-Manton

type interaction (6.3) (for one Curtright field) when the Lorentz structure of the fields is

taken into account.10

Let me finally remark that it is quite straightforward to construct interactions of Cur-

tright fields with other fields in appropriate dimensions similar to the above self-interactions

using the approach of the present paper. For instance, similarly to equation (4.7) one easily

constructs solutions ΩN
5 of equation (1.5) in D = 5 which provide first order deformations

L(1)
N of the Lagrangian from the total (D − 3)-forms (3.4) for D = 5 and the total 1-form

Ω1 = C + Aµdx
µ which is the sum of a standard Abelian 1-form gauge potential Aµdx

µ

and the corresponding ghost field C:

D = 5 : ΩN
5 = Ωaµ

2 Ωb
2µΩ1gab , Ω1 = C +Aµdx

µ, L(1)
N = −Aµjµ,

jµ = εµν1ν2%1%2W̃ a
ν1ν2σW̃

b
%1%2

σgab, W̃
a
ν1ν2σ = εν1...ν5W

aν3ν4ν5
σ%x

% (6.7)

wherein gab = gba are constant symmetric coefficients and L(1)
N is a Noether coupling of

the gauge field Aµ and an (“improved”) Noether current jµ of the free theory (∂µj
µ ≈ 0).

Analogously one constructs in D = 5 Chern-Simons type interactions of Curtright fields

and a standard Abelian 1-form gauge potential from the solution Ωaµν%
2 Ωb

2µν%Ω1kab of (1.5)

wherein kab = kba are constant symmetric coefficients and Ωa···
2 and Ωb···

2 are the 2-forms

of (3.1). Cubic interactions ∂T∂T∂2h of a Curtright field T with a symmetric 2-tensor

field hµν = hνµ representing the metric field of linearized general relativity were obtained in

section 5 of [16] (see equation (5.14) there). These interactions are reminiscent of the Yang-

Mills type self-interactions (6.1) and (6.2) and may be constructible analogously to (4.1)

and (4.2) using a total curvature (D − 2)-form for the h-field in place of Ωaµ1µ2µ3
D−2 . This

indicates that the approach used here may also be useful for the construction of consistent

interactions of other “mixed symmetry” or higher spin fields. Cubic interactions of various

fields of that type in various dimensions, both in flat space and in anti-de Sitter space,

10Section 8.1 of [11] actually concerns the cases k > 1 in the notation used there, i.e. deformations which

may lead to deformed gauge transformations with a non-Abelian commutator algebra. An interaction with

(p, q) = (2, 1) and s = 1 however actually represents the case k = 1, i.e. it corresponds to a deformation

which leaves the commutator algebra of the deformed gauge transformations Abelian at first order. This is

compatible with the results of the present paper.
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were constructed by different methods in [17–21], amongst others (see also references cited

therein).
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