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Abstract 

The objective of this study was to achieve simultaneous localization and mapping (SLAM) of firefighter robots for pet-

rochemical complexes. Consistency of the SLAM map is important because human operators compare the map with 

aerial images and identify target positions on the map. The global positioning system (GPS) enables increased consist-

ency. Therefore, this paper describes two Rao-Blackwellized particle filters (RBPFs) based on GPS and light detection 

and ranging (LIDAR) as SLAM solutions. Fast-SLAM 1.0 and Fast-SLAM 2.0 were used in grid maps for RBPFs in this 

study. We herein propose the use of Fast-SLAM to combine GPS and LIDAR. The difference between the original Fast-

SLAM and the proposed method is the use of the log-likelihood function of GPS; the proposed combination method 

is implemented using a probabilistic mathematics formulation. The proposed methods were evaluated using sensor 

data measured in a real petrochemical complex in Japan ranging in size from 550–380 m. RTK-GPS data was used for 

the GPS measurement and had an availability of 56%. Our results showed that Fast-SLAM 2.0 based on GPS and LIDAR 

in a dense grid map produced the best results. There was significant improvement in alignment to aerial data, and the 

mean square root error was 0.65 m. To evaluate the mapping consistency, accurate 3D point cloud data measured by 

Faro Focus 3D (± 3 mm) was used as the ground truth. Building sizes were compared; the minimum mean errors were 

0.17 and 0.08 m for the oil refinery and management building area and the area of a sparse building layout with large 

oil tanks, respectively. Consequently, a consistent map, which was also consistent with an aerial map (from Google 

Maps), was built by Fast-SLAM 1.0 and 2.0 based on GPS and LIDAR. Our method reproduced map consistency results 

for ten runs with a variance of ± 0.3 m. Our method reproduced map consistency results with a global accuracy of 

0.52 m in a low RTK-Fix-GPS environment, which was a factory with a building layout similar to petrochemical com-

plexes with 20.9% of RTK-Fix-GPS data availability.
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Introduction
�e motivation of this study was to enable the autonomy 

of firefighter robots at petrochemical complexes. Petro-

chemical complexes in fire disasters pose a high environ-

mental risk because large fires and explosions can cause 

injuries, fatalities, and devastation. �e use of firefighter 

robots can reduce the risk to firefighters. Such a system 

is comprised of several vehicles, such as a water-shoot-

ing robot, a hose-extending robot, and an exploration 

robot. An autonomous capability facilitates their control 

and enables many robots to be controlled by only a few 

operators.

One key technology for autonomous firefighter robots 

is simultaneous localization and mapping (SLAM), 

which is required because petrochemical complexes are 

restricted areas and there are limited opportunities to 

update their maps. In addition, the maps are dynamically 

changed in real time with developments such as fires, 
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explosions, moving firefighters and mobile trucks. �ere-

fore, Fast-SLAM is used in such an environment.

In this work, two dimensional Fast-SLAM is used for a 

firefighter robot in petrochemical complexes. �e road of 

a petrochemical complex has no difference in the ground 

level because the road is built to accommodate the large 

firefighter trucks and large water shooting nozzles. In 

this environment, we can develop a two-dimensional 

Fast-SLAM without considering ground level differences. 

Long-range light detection and ranging (LIDAR) sen-

sors are used with Fast-SLAM to develop a map of petro-

chemical complexes.

Petrochemical complexes have a sparse layout of very 

large oil tanks, where distances between oil tanks are 

40–80 m. LIDAR is suitable because it can measure dis-

tances of 0–100  m with high accuracy (e.g., Velodyne 

HDL-32E ± 0.02 m). Consequently, a map with a sparse 

oil tank layout can be built by SLAM.

Our procedure using Fast-SLAM for the autonomy 

of a firefighter robot is explained here. �e purpose of 

Fast-SLAM is to build a map for facilitating autonomy. 

First, Fast-SLAM is used to construct a map in a normal 

environment by human firefighters manually controlling 

the robot. Next, using the Fast-SLAM constructed map, 

human firefighters set a target point for the robot and the 

robot autonomously moves to the target by localizing its 

position using the map. �erefore, the autonomy of fire-

fighter robots can be realized by using the Fast-SLAM 

map.

�e main purpose of this research is map consistency 

because a map can be used not only by firefighter robots, 

but also by human firefighters who operate these robots. 

�e use of GPS helps increase the consistency. In this 

study, we used GPS and LIDAR data to build the map. 

GPS and LIDAR provided the heterogeneous data; their 

combination therefore required consideration for the 

map consistency.

�is paper describes a method that employs two Rao-

Blackwellized particle filters (RBPFs). �e method is 

based on GPS and LIDAR for map consistency in petro-

chemical complexes. Fast-SLAM 1.0 (FS 1.0) and Fast-

SLAM 2.0 (FS 2.0) by Grisetti et al. both in a grid map, 

were used for the RBPFs [1]. �eir weight functions were 

revised for the RBPFs based on the GPS and LIDAR sen-

sor for map consistency in petrochemical complexes. 

GPS and LIDAR data have heterogeneous characteristics. 

�ese sensor data are complementary and can be used 

to improve the accuracy and consistency of the result-

ing map. �erefore, we propose the use of Fast-SLAM 

to combine GPS and LIDAR. �e difference between 

the original Fast-SLAM and the proposed method is the 

use of the log-likelihood function of GPS; the proposed 

combination method is implemented using probabilistic 

mathematics formulation.

Figure 1 shows the result of FS 2.0 based on GPS and 

LIDAR using the proposed weight function. �e upper 

figure shows an aerial image of the petrochemical com-

plex; the lower figure is three-dimensional (3D) point 

cloud data reconstructed by our proposed FS 2.0 based 

on GPS and LIDAR.

�e remainder of this paper is organized as follows. 

In “Related works” section, review on related works are 

described. In “Simultaneous localization and mapping 

tomaintain consistency in large areas” section, the pro-

posed method is formulated. In “Evaluation” section, we 

describe the experiments conducted for evaluating the 

map consistency estimated by our method. In “Discus-

sion” section, the experimental results are presented. In 

“Conclusion” section, our conclusions are provided.

Related works
�ere are two types of SLAM. �e first includes filter 

SLAM, such as RBPFs [3], extended Kalman filter (EKF) 

[4], sparse information filter [5], and topological/hier-

archical filter [6, 7]. �e other type includes batched 

SLAM, such as respective graph-based [8], square-

root-based [9], sparse-pose-adjustment (SPA) [10], and 

Fig. 1 Result of petrochemical complex (380–550 m) consistency: 

map for Fast-SLAM 2.0 in a grid map based on GPS and LIDAR (bot-

tom) compared to an aerial map (top) [2]
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incremental-smoothing-and-mapping (iSAM) methods 

[11]. �is research used filter SLAM, which is an RBPFs 

because of limited processing power. �e filter SLAM 

showed better results in the case of limited processing 

power [12].

RBPFs were first introduced by Doucet et  al. [13]. 

Montemerlo et  al. extended RBPFs into Fast-SLAM 1.0 

by using EKF for landmark feature representation [14]. 

Later, Montemerlo et al. extended it into a faster RBPFs, 

specifically, Fast-SLAM 2.0 (FS 2.0) [14]. �eir research 

determined that the use of scan-matching results for pro-

posal distribution could increase Fast-SLAM 1.0 speed 

and accuracy. Furthermore, Grisetti et  al. formulated 

Fast-SLAM 2.0 in a dense grid map environment [1]. 

�erefore, FS 1.0 and FS 2.0 were selected for the RBPFs 

SLAM. To increase the SLAM consistency, sensors with 

high consistency, such as GPS, could be used.

Several researchers used GPS to increase map consist-

ency. For example, Gamma-SLAM uses GPS to improve 

the camera-based RBPF results [15]. In the first step, 

the map and trajectory are estimated by RBPFs. �e 

map and trajectory are then aligned using GPS data to 

minimize the error between the GPS and RBPF trajec-

tories. Singular value decomposition (SVD) and a batch 

algorithm are used. In addition, Schleicher proposed 

hierarchical SLAM [16]. For low-level sub-maps, a wide-

angle-camera-based EKF SLAM was fused with GPS for 

consistency. Each sub-map was then combined by using 

batch-algorithm multi-level relaxation (MLR) based on 

GPS to increase the global consistency of the combined 

map. Our work fuses GPS data with LIDAR inside RBPFs 

by the proposed weight function for RBPFs, which fuses 

LIDAR and GPS. �is method does not require an addi-

tional batch SLAM. GPS and LIDAR are heterogeneous 

sensors; therefore, the correct sensor fusion is required 

to achieve a complementary result.

�e method for fusion of GPS with LIDAR was pro-

posed by several researchers. Wei et  al. used a normal-

ized innovation squared (NIS) method to evaluate each 

camera/laser/GPS sensor validity before fusing the sen-

sors with an unscented information filter for localiza-

tion [17]. Soloviev used a Kalman filter with GPS, inertial 

measurements, and LIDAR [18]. Hentsche et  al. used a 

Kalman filter to integrate GPS and the inertia measure-

ment. For position estimation, the Kalman filter result 

was added to Monte Carlo localization by replacing 10% 

of the overall particles with the lowest weight [19]. Our 

present research aims to achieve sensor fusion of GPS 

and LIDAR with a complementary effect. To this end, the 

proposed method employs RBPFs with an importance 

weight function for the fusion.

Fusion of GPS with an RBPF importance function was 

previously proposed. Fusion of GPS and IMU by the 

Kalman filter for RBPF particle reweighting was used in 

[20, 21]. �ese RBPFs are similar to FS 1.0 in that sen-

sors are fused by EKF. Ren et al. used the Kalman filter to 

separately estimate GPS and IMU [20]. Depending on the 

sensor availability, only the sensor will be updated to the 

particle filter. Fusion of sensors is successful because the 

particle filter follows a Bayesian rule. Both approaches 

employ fusion data using a method similar to FS 1.0 for a 

landmark-based environment. Our approach focuses on 

fusion of GPS and LIDAR for FS 1.0 and FS 2.0 for grid-

map environments.

Simultaneous localization and mapping 
to maintain consistency in large areas
We herein propose RBPFs based on GPS and LIDAR to 

maintain map consistency. GPS and LIDAR sensor data 

are complementary. SLAM based on LIDAR uses scan 

matching to localize the robot positions. A character-

istic of LIDAR scan matching is local accuracy in man-

agement and oil refinery building areas in which several 

buildings are located near a road. However, scan match-

ing increases errors in areas with large oil tanks, where 

tanks and building layouts are sparse (more than 80  m 

between structures). On the other hand, a characteristic 

of GPS data is that they are globally absolute and accu-

rate in areas including large-oil-tank areas, especially 

where there is high satellite availability. �e errors in GPS 

measurements increase in management buildings and 

oil refinery areas because of satellite signal diffraction. 

For effective fusion, complementary sensors, which are 

GPS and LIDAR, are used for map consistency. We pro-

pose two extension methods of RBPF based on GPS and 

LIDAR using a dense grid map. FS 1.0 and FS 2.0, both 

renowned methods for RBPFs, were used, as formulated 

by Grisetti et al. [1]. To achieve a complementary effect 

on sensor fusion of RBPF based on GPS and LIDAR, 

probabilistic mathematics was used to combine GPS and 

LIDAR data in RBPFs importance weight w
(i)
t . For imple-

mentation, the RBPFs importance weight was formulated 

using the log-likelihood.

RBPFs based on GPS and LIDAR 

Douce et al. showed that RBPFs are an effective solution 

for SLAM by factorizing the states of maps and paths 

[13]. RBPFs use importance resampling to prevent cor-

rect particles from being resampled away. To obtain sen-

sor fusion, a probabilistic mathematical formulation is 

used; in particular, the formulation of importance weight 

w
(i)
t , mentioned above, is proposed to handle the GPS and 

LIDAR data. Figure 2 shows the graphical model of our 

proposed RBPFs, which contains two observations zGPS t 

and zLIDAR t as parts of observation zt .
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Formulation of RBPFs

RBPFs estimate robot pose x1:t and map m from the 

sensor data, including motion u1:t and observation z1:t . 

Equation (1) shows the factorization of RBPFs [22]:

�e main idea of RBPF is that SLAM problems are 

divided into pose estimation, p(x1:t |m, z1:t ,u1:t−1), and 

map estimation, p(m|x1:t , z1:t). Here, the target distribu-

tion is p(x1:t |m, z1:t ,u1:t−1). A particle filter is used to 

estimate the target distribution. �e map is built based 

on particle positions. �erefore, the target distribution is 

modified for the sensor fusion of GPS and LIDAR data. 

�e target distribution in Eq. (1) can be divided into an 

importance distribution and a proposal distribution by 

the Bayesian rule and Markov assumption, as shown in 

Eq. 2.

Here, γ = 1/p(zt | z1:t−1,u1:t−1) is a normalizer. �run 

showed that the importance factor in Eq. (2) is inter-

preted as a set of particles, w
(i)
t , weighted by observation 

z1:t . �e normalizer is omitted in the weight of impor-

tance, w
(i)
t , as the weight of importance is a marginal 

probability [23] given by:

where an importance weight is assigned to each particle 

(i). �e importance weight can be calculated by using a 

recursive formula [24]. �is involves recursive multi-

plication of the previous weight, w
(i)
t−1

, with the current 

observation, p(zt). It thus becomes:

(1)

p(x1:t ,m | z1:t ,u1:t−1)

= p(x1:t | m, z1:t ,u1:t−1)
︸ ︷︷ ︸

Target distribution

· p(m | x1:t , z1:t)
︸ ︷︷ ︸

Map

.

(2)

p(x1:t | m, z1:t ,u1:t−1)
︸ ︷︷ ︸

Target distribution

= γ p(z1:t | m, x1:t , z1:t−1,u1:t−1)
︸ ︷︷ ︸

Importance factor

p(x1:t | m, z1:t−1,u1:t−1)
︸ ︷︷ ︸

Proposal distribution

.

(3)w
(i)
t =

Target distribution

Proposal distribution
.

Equation (4) uses an observation sensor. In this work, 

the observation sensors were expanded to fuse GPS and 

LIDAR.

Formulation of RBPFs based on GPS and LIDAR

Our proposed fusion of GPS and LIDAR is a conditionally 

independent sensor fusion. GPS and LIDAR independ-

ence is shown in the Markov graphic in Fig.  2. No arrow 

indicates the dependence between GPS and LIDAR. In 

addition, GPS has no dependence on the map, as shown in 

Fig. 2. We propose the weight of importance equation using 

the Bayesian rule and Markov assumption is implemented 

for the two RBPFs of FS 1.0 in Eq. (7) and FS 2.0 based on 

GPS and LIDAR in Eq. (9). Given that observation z is

then, using the Bayesian rule and Markov assumption, the 

weight of importance w
(i)
t  equation for RBPFs based on 

GPS and LIDAR in Eq. (4) becomes

We formulate our GPS and LIDAR fusion on both FS 1.0 

and FS 2.0 because both FS 1.0 and FS 2.0 are renowned 

RBPFs.

FS 1.0 uses an odometry-based motion model, 

p(xt | xt−1,ut−1). �is model is used as a proposal distri-

bution (denominator) for Eq. (6). Hence, the weight func-

tion becomes

�e FS 2.0 proposal distribution uses odometry with a 

recently reported scan-matching-based motion model, 

p(xt | m
(i)
t−1, x

(i)
t−1, zldr t ,ut−1) [1]. FS 2.0 provides sig-

nificantly better accuracy when odometry with the 

scan-matching based motion model is used. �e scan-

matching-based motion model shows more accurate 

results than when using odometry alone. For this pur-

pose, odometry with the scan-matching-based motion 

model is used as a proposal distribution (denominator) 

for Eq. (6), whereby the weight function becomes

�us, combining Eqs. (8 and 6) gives

(4)w
(i)
t =

p(zt | m
(i)
t−1

, x
(i)
t )p(x

(i)
t | x

(i)
t−1

,ut−1)

p(xt | m
(i)
t−1

, x
(i)
1:t−1

, z1:t ,u1:t−1)
· w

(i)
t−1

.

(5)z = {zgps, zldr},

(6)

w
(i)
t = w

(i)
t−1 ·

p(zgps t | x
(i)
t )p(zldr t | m

(i)
t−1, x

(i)
t )p(x

(i)
t | x

(i)
t−1,ut−1)

p(xt | m
(i)
t−1, x

(i)
t−1, zt ,u1:t−1)

.

(7)w
(i)
t = p(zgps t |x

(i)
t )p(zldr t |x

(i)
t ,m

(i)
t−1)w

(i)
t−1.

(8)

p(xt | m
(i)
t−1, x

(i)
t−1, zldr t ,ut−1)

=
p(zldr t | m

(i)
t−1, xt)p(xt | x

(i)
t−1,ut−1)

p(zldr t | m
(i)
t−1, x

(i)
t−1,ut−1)

.

Fig. 2 Graphical model of SLAM based on GPS and LIDAR
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and

Based on the total probability, the term 

p(zldr t | m
(i)
t−1, x

(i)
t−1,ut−1) becomes 

∑K
j=1 p(zldr t | m

(i)
t−1,

xj) · p(xj | x
(i)
t−1

,ut−1), where j is the potential pose of 

the robot and K is the number of potential robot poses. 

�erefore, the new w
(i)
t  becomes

Implementation of balance weight fusion

For implementation, the log-likelihood function is used 

to calculate the weights for both (a) FS 1.0 based on GPS 

and LIDAR and (b) FS 2.0 based on GPS and LIDAR. �is 

is because the log-likelihood calculation is more efficient 

owing to its use of summation rather than multiplication.

For FS 1.0 based on GPS and LIDAR implementation, 

the LIDAR likelihood is calculated using the beam model 

[23]. �e GPS likelihood is the Gaussian error of the cur-

rent estimated motion model position to the GPS obser-

vation position. �e weight function becomes

where x
(i)
t  is the pose reported by the odometry-based 

motion model, and zgps t is the observation pose for GPS. 

z
(i)

ldr n,t
 is the measurement from pose x

(i)
t , and ź

(i)

ldr n,t
 

is the true measurement on map(x, y)T . σgps is the GPS 

measurement error and σldr is the LIDAR scan-match-

ing measurement error. N is the total number of LIDAR 

laser beams and n is the identification number for a laser 

beam. �e log-likelihood importance weight becomes

(9)

w
(i)
t = w

(i)
t−1

·
p(zgps t | x

(i)
t )p(zldr t | m

(i)
t−1, x

(i)
t )p(x

(i)
t | x

(i)
t−1,ut−1)

p(zldr t |m
(i)
t−1 ,xt )p(xt |x

(i)
t−1 ,ut−1)

p(zldr t |m
(i)
t−1 ,x

(i)
t−1 ,ut−1)

(10)
w

(i)
t = w

(i)
t−1p(zldr t | m

(i)
t−1, x

(i)
t−1,ut−1)

· p(zgps t | x
(i)
t ).

(11)

w
(i)
t = w

(i)
t−1

K∑

j=1

p(zldr t | m
(i)
t−1, xj) · p(xj | x

(i)
t−1,ut−1)

· p(zgps t | x
(i)
t ).

(12)

w
(i)
t = w

(i)
t−1

1
√

2πσ 2
ldr

1

N

N
∑

n=1

e

−(z
(i)
ldr n,t

−ź
(i)
ldr n,t

)
2

2σ2
ldr

×
1

√

2πσ 2
gps

e

−(x
(i)
t

−zgps t )
2

2σ2gps ,

(13)

ŵ
(i)
t = w

(i)
t−1 + w

(i)
constant t + w

(i)
gps t + w

(i)

ldr t

∝ w
(i)
t−1 + w

(i)
gps t + w

(i)

ldr t ,

where

and

Constant ŵ
(i)
constant t is omitted from Eq. (13) because 

importance ŵ
(i)
t  is marginal [23]. For the latter, FS 2.0 

based on GPS and LIDAR, the likelihood weight function 

is derived in the same way as FS 1.0:

x̂
(i)
t = argmaxxp(x̂

(i)
t | m

(i)
t−1, zt , x

(i)
t ) is the pose reported 

by scan-matching using the so-called beam end-point 

[1]. ẑ
(i)

ldr n,t
 is the LIDAR measurement from pose x̂

(i)
t  for 

a LIDAR’s laser beam and ź
(i)

ldr n,t
 is the true measure-

ment on map (x, y)T . N is the total number of LIDAR 

laser beams and n is the identification number for a 

laser beam. �e log-likelihood importance weight thus 

becomes:

where

Evaluation
Our method was evaluated in a closed petrochemical 

complex in Japan (shown in Fig.  3), which was charac-

terized by typical attributes of Japanese petrochemical 

complexes. �e size of the environment was 550  m in 

width and 380  m in length. �ere were two areas: (1) 

(14)
w

(i)
gps t = log e

−(x
(i)
t

−zgps t )
2

2σ2gps ,

(15)w
(i)

ldr t = log
1

N

N∑

n=1

e

−(z
(i)
ldr n,t

−ź
(i)
ldr n,t

)
2

2σ2
ldr ,

(16)
w

(i)
constant t = log

1
√

2πσ 2
ldr

+ log
1

√

2πσ 2
gps

.

(17)

w
(i)
t = w

(i)
t−1

1
√

2πσ 2
ldr

1

N

N
∑

n=1

e

−(ẑ
(i)
ldr n,t

−ź
(i)
ldr n,t

)
2

2σ2
ldr

×
1

√

2πσ 2
gps

e

−(x̂
(i)
t

−zgps t )
2

2σ2gps ,

(18)ŵ
(i)
t ∝ w

(i)
t−1 + ŵ

(i)
gps t + ŵ

(i)

ldr t ,

(19)
w

(i)
gps t = log e

−(x̂
(i)
t

−zgps t )
2

2σ2gps .

(20)w
(i)

ldr t = log
1

N

N∑

n=1

e

−(ẑ
(i)
ldr n,t

−ź
(i)
ldr n,t

)
2

2σ2
ldr .
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management and oil refinery buildings located near a 

road (Area 1), and (2) large oil tanks sparsely distributed 

for safety reasons (Area 2). An electric vehicle (EV) was 

used to collect sensor data because firefighter robots 

have a car-like mechanism and the EV has the same 

mechanism and size. During data collection, the EV was 

manually driven at a speed of 5 km/h for safety concerns. 

�e EV was equipped with an RTK-Fix-GPS receiver 

with an error of 0.02 m, a long-range 3D LIDAR with an 

error of 0.02 m, an inertial measurement unit (IMU) with 

an error of 0.1 deg/s, and an odometer equipped with a 

rotary encoder having an error of 0.1 m/s.

�e sensor data were recorded during data collection. 

�e vehicle was stopped at each cross-junction until the 

GPS measurement acquired an RTK-Fix-GPS for addi-

tional RTK-Fix-GPS data. �e junctions had wide satellite 

visibility and were thus suitable for acquiring RTK-Fix-

GPS measurements. During the whole experiment, the 

RTK-Fix-GPS availability was 56% as shown in Fig. 4.

For validation, we compared (a) FS 2.0 based on GPS 

and LIDAR, which is proposed in this paper, (b) FS 2.0 

based on LIDAR [1], (c) FS 1.0 in a grid map (FS 1.0) 

based on GPS and LIDAR, also proposed in this paper, 

(d) FS 1.0 based on LIDAR, (e) FS 1.0 based on GPS, 

and (f ) Karto SLAM based on LIDAR, which is a kind 

of open-source graph-based SLAM in a grid map [25]. 

We evaluated (1) global accuracy of the maps based on 

aerial map data and (2) local accuracy of the maps based 

on FARO Focus 3D data for different SLAMs. Map con-

sistency was also evaluated by comparing the maps with 

aerial images.

�ese SLAM methods used open source libraries 

provided by OpenSLAM and Robot Operating System 

(ROS).

For Fast-SLAM, we modified the SLAM Gmapping 

library. �e authors of Gmapping are Giorgio Grisetti, 

Cyrill Stachniss, and Wolfram Burgard. It is distributed 

by OpenSLAM, and the ROS wrapper is provided by the 

ROS community. We modified the weight of importance 

based on Eqs. 13 and 18 for FS 1.0 and FS 2.0 based on 

GPS and LIDAR, respectively. In addition, for FS 1.0 

based on GPS and LIDAR, we disabled scan matching for 

the motion model based on scan matching [26].

�e parameters used for Fast-SLAM are explained here. 

A grid map resolution of 0.2 m and 50 particles were used 

because they comprise the maximum values allowed by 

our computer for this environment size. �e adaptive 

resampling threshold was set to a value of 0.01 because 

we desired a higher resampling rate when GPS value was 

available. We strived to use GPS as a closed loop; that 

is, when we received sufficient GPS data, we desired to 

have a closed loop by resampling. �e beam end-point 

model two-dimensional scan matcher was used because 

it produced better results than ICP in unstructured out-

door environments [23]. �e computation time for our 

implementation was the same as that of Grisetti et al. [1] 

because the additional weight calculation was very short.

For LIDAR, the sigma parameter value, σldr, we use is 

0.2 m. To fuse GPS with LIDAR data, we evaluated sev-

eral combination parameters of GPS sigma, σgps, with 

Fig. 3 Petrochemical complex environment. Area 1 (blue) features 

management and oil refinement buildings located near a road; Area 

2 (red) shows an area of large oil tanks positioned sparsely for safety 

reasons

Fig. 4 Petrochemical complex environment. The red path is the 

robot trajectory; the green path is the RTK-Fix-GPS data
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the LIDAR sigma of 0.2 m as shown in Fig. 5. �e result 

shows that, when the GPS sigma, σgps, is 0.5  m and 

larger; the Fast-SLAM path follows the RTK-GPS data, 

while σgps is less than 0.5 m; the Fast-SLAM path have a 

larger position difference with the RTK-GPS. �erefore, 

we need to use σgps equal to 0.5 m or larger for the Fast-

SLAM path to follow the RTK-GPS data.

We have chosen 2 m as the σgps value to compensate for 

the RTK-Fix-GPS multipath error when moving near the 

building area. Lee et. al. have evaluated the RTK-Fix-GPS 

horizontal multipath error, which is 1.069 m [27]. To pre-

vent overconfidence on the RTK-Fix-GPS data, we care-

fully fused GPS data setting a value of 2 m for σgps.

For Graph SLAM, we used Karto SLAM [28]. We used 

a default parameter because it produced the best results 

when compared with several parameters.

For 3D mapping, a 3D occupancy map stored the 3D 

point cloud data to erase moving trucks and people from 

the 3D map [29]. �e 3D map was built based on the final 

trajectory of SLAM.

Result

Global map consistency

Aerial map building position data were used as the global 

positioning reference. For the evaluation, a robot 2D 

map and the aerial map were overlapped based on their 

respective GPS coordinates. Figure  6 shows the visual 

result. Figure  7 shows the numerical result. FS 2.0 and 

FS 1.0 based on GPS and LIDAR showed small position 

errors of 0.65 and 0.81 m, respectively.

Using only the LIDAR sensor, FS 2.0 and FS 1.0 based 

on LIDAR showed large position errors of 6.82 and 

7.77 m, respectively. Karto SLAM based on LIDAR also 

showed a large position error of 6.44 m. Using only the 

GPS sensor, FS 1.0 based on GPS had a significantly large 

position error of 1.36  m caused by an incorrect assess-

ment of GPS measurements near the building area. 

�erefore, the result showed that both FS 1.0 and FS 2.0 

based on GPS and LIDAR had a high global accuracy. In 

particular, FS 2.0 based on GPS and LIDAR had the high-

est global accuracy. In addition, mapping consistency was 

required, including both the correct building position 

and correct building size. Accordingly, the local error was 

evaluated.

Local map consistency

Figures 9 and 10 show the local accuracy of the map by 

evaluating the local building size. Faro Focus 3D data 

with high accuracy was used as the building size refer-

ence, as shown in Fig. 8, while a Fig. 3 shows the locations 

of Area 1 and Area 2.

FS 1.0 and FS 2.0 based on GPS and LIDAR had a high 

local accuracy in both Areas 1 and 2. For FS 2.0 based on 

GPS and LIDAR, the error in Area 1 was 0.17 m (Fig. 9), 

and the error in Area 2 was 0.08 m (Fig. 10). For FS 1.0 

based on GPS and LIDAR, the error showed a small 

increase compared to that of FS 2.0: in Area 1 it was 

0.25 m (Fig. 9); in Area 2 it was 0.26 m (Fig. 10). For both 

methods, no building shape duplication is visually evi-

dent in Figs. 9 and 10.

In addition, FS 2.0 based on LIDAR showed a high 

accuracy in Area 1 and a low accuracy in Area 2. On the 

other hand, FS 1.0 based on LIDAR had a high accuracy 

in Area 2 and a low accuracy in Area 1. FS 2.0 based 

on LIDAR showed a high accuracy of 0.39  m in Area 1 

(Fig. 9) and very low local accuracy in Area 2 of 3.04 m 

(Fig.  10). FS 1.0 based on LIDAR had a very low accu-

racy of 2.85  m occurring in Area 1 because of a failed 

Fig. 5 Fast-SLAM trajectory result based on RTK-GPS sigma values, 

which are 0.2 (dark red), 0.5 (red), 1.0 (brown), 1.5 (green), 2.0 (black), 

2.5 (dark blue), and 3.0 (blue). RTK-GPS measurement (cyan)

Fig. 6 Global consistency evaluation using an aerial map as a refer-

ence. Each building position in the 2D map (yellow) was compared 

with building the 2D position in the aerial map
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close-loop (Fig.  9) and a high local accuracy of 0.61  m 

in Area 2 (Fig.  10). �e local error is visually apparent 

from obviously duplicated buildings for FS 2.0 based on 

LIDAR in Fig. 10 and for FS 1.0 based on LIDAR in Fig. 9.

Furthermore, FS 1.0 based on GPS had a low local 

accuracy in Areas 1 and 2. �e error in Area 1 was 0.31 m 

(Fig.  9) and that in Area 2 was 0.57  m (Fig.  10). Dupli-

cates of building shapes are observed in Figs.  9 and 10. 

�e graph SLAM based on LIDAR in a grid map (Karto 

SLAM) [25] had a high accuracy in Area 2, but a low 

accuracy in Area 1, which was caused by a failed closed 

loop. �e low accuracy in Area 1 was 1.18 m (Fig. 9) and 

the high accuracy in Area 2 was 0.18 m (Fig. 10). Dupli-

cates of building shapes are evident in (Fig. 10).

�us, the results showed that both FS 1.0 and FS 2.0 

based on GPS and LIDAR had local accuracy in both 

areas.

Visual map consistency with an aerial image

Figure 11 result shows a 3D map built by FS 2.0 based on 

GPS and LIDAR from a side view. �is was the best 3D 

map result. Figures 12 and 13 show the visual consistency 

between 3D maps and an aerial map [2] from Google, 

which was the reference. FS 2.0 based on GPS and LIDAR 

Fig. 7 Global consistency result

Fig. 8 Faro Focus 3D map measured for a locally consistent refer-

ence. a Faro Focus top view. b Example of the mapping result from 

the RBPF approach

Fig. 9 Result of local consistency in Area 1

Fig. 10 Result of local consistency in Area 2

Fig. 11 3D map built from FS 2.0 based on GPS and LIDAR from a 

side view

Fig. 12 3D map built from FS 2.0 based on GPS and LIDAR (consist-

ency with the aerial map): 3D point cloud with correct building 

shapes and 3D point cloud positions aligned with the aerial map
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provided correct building shape consistency and correct 

building positions (Fig.  12). FS 1.0 based on GPS and 

LIDAR had correct building shape consistency and cor-

rect building positions (Fig. 13).

Reproducibility by multiple runs

We validated our method reproducibility based on the 

results of global position variance between ten runs in 

runs in the petrochemical complexes. To evaluate the 

reproducibility, we selected four points to cover the 

entire area on the map because three is the minimum 

number of points required to evaluate plane geometrical 

differences, which include rotation, location, and scale. 

�e result shows the global position variance between all 

runs is ± 0.3 m.

Reproducibility for different environments.

In addition, we intended to confirm SLAM reproducibil-

ity in petrochemical complexes with low-RTK-Fix-GPS 

availability. Because GPS data availability is one of the 

main factors for map consistency, we selected two addi-

tional environments for this purpose. �e first environ-

ment was Factory A with 20.9% RTK-Fix-GPS availability, 

as shown in Fig. 14a. �e second environment was Fac-

tory B, which was similar to a petrochemical complex 

management area with 29.9% RTK-Fix-GPS availability, 

as shown in Fig. 15a.

To solve the issue of low RTK-Fix-GPS data availabil-

ity, we used both RTK-Float-GPS, which has the accu-

racy of the order of a decimeter, and RTK-Fix-GPS data, 

which have accuracies to the order of a centimeter [30]. 

As a result, the RTK-fix-GPS measurement availabil-

ity increased from 20.9 to 58.1% in Factory A, as shown 

Fig. 14b, and from 29.9 to 59.7% in Factory B, as shown 

in Fig.  15b. For the weight of important calculation, we 

increased GPS σgps from 2 to 4 m for the RTK-Float-GPS 

error. In rare cases, the multipath error can become 

much higher, such as those in Fig.  16, which shows the 

RTK-Fix-GPS and RTK-Float-GPS data; the red arrow 

points to a multipath error. Figure 17 shows the enlarged 

image of the multipath error observed in Fig. 16. To pre-

vent overconfidence on the RTK-Float-GPS data, we use 

the setting value of 4 m for σgps.

For evaluation, we used mobile mapping system (MMS) 

data with an accuracy of 0.1 m [31]. Environments of Fac-

tories A and B were not restricted; therefore, we could 

measure MMS data. We evaluated the global accuracy 

and visual consistency of the maps on the basis of com-

mercial point-cloud data, as shown in Fig.  18a. For the 

evaluation, the GPS x–y position was used to overlap the 

SLAM-constructed map with the MMS map, as shown in 

Fig. 13 3D map built from FS 1.0 based on GPS and LIDAR (consist-

ency with the aerial map): 3D point cloud with correct building 

shapes and 3D point cloud positions aligned with the aerial map

Fig. 14 Red denotes the robot trajectory and green is the GPS data 

in a Factory A. a GPS availability of 20.9%: RTK-Fix-GPS; b GPS avail-

ability of 58.1%: RTK-Fix-GPS and RTK-Float-GPS

Fig. 15 Red path denotes the robot trajectory and green is the GPS 

data in a Factory B.  a GPS availability of 29.9%: RTK-Fix-GPS;  b GPS 

availability of 59.7%: RTK-Fix-GPS and RTK-Float-GPS
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Fig.  18c. We used the Gauss-Kruger projection method 

calculation, which was also used by MMS to determine 

x–y coordinates based on GPS latitude and longitude. 

�e corresponding accuracy was in the order of microm-

eters [32]. We evaluated the map consistency based on 

14 buildings in Factory A and 22 buildings in Factory B 

(Table 1).

Reproducibility of global accuracy for FS 2.0 based 

on GPS and LIDAR in Factories A and B were 0.52 and 

0.72 m, respectively. For FS 1.0 based on GPS and LIDAR, 

the reproducibility in Factories A and B were 0.70 and 

0.77 m, respectively. On other hand, for other me thods 

of FS 2.0 based on LIDAR, FS 1.0 based on LIDAR, and 

Karto SLAM the global errors were larger than 16.23 m.

Reproducibility of visual consistency for FS 2.0 based 

on GPS and LIDAR and FS 1.0 based on GPS and LIDAR 

in both cases are visually consistent because no distor-

tions are obviously visible between MMS data with map, 

as shown in Fig. 19a, b for Factory A, and Fig. 20a, b for 

Factory B. However, visual results for Karto SLAM are 

not consistent because a large distortion is observed n 

in Factory A in Fig.  19c and in Factory B, as shown in 

Fig. 20c.

Discussion
�e proposed approach employs two SLAMs based on 

GPS and LIDAR and the RBPF weight of importance 

for sensor fusion. Our results showed that the robot-

obtained map corresponded well with a geo-referenced 

map. �is is very important for firefighters because they 

send target positions to robots using robot obtained 

maps, and they can understand the robot obtained maps 

by referencing real maps.

Fig. 16 RTK-Fix-GPS and RTK-Float-GPS data (green) and estimated 

RTK-Fix-GPS and RTK-Float-GPS trajectory (black line) with multipath 

error (red arrow)

Fig. 17 Multipath error enlarged from Fig. 16. RTK-Float-GPS data 

(green), estimated RTK-Float-GPS trajectory (black line), and RTK-

Float-GPS measurement error of 7.26 m caused by the multipath error 

(red line)

Fig. 18 Data in petrochemical complexes:  a red denotes MMS point-cloud data;  b 2D map by proposed method;  c using GPS position, MMS data 

overlap our 2D map

Table 1 Global accuracy

SLAM Global accuracy (m)

Factory A Factory B

FS 2.0 GPS and LIDAR 0.52 0.72

FS 1.0 GPS and LIDAR 0.70 0.77

FS 2.0 LIDAR 23.91 32.91

FS 1.0 LIDAR 16.23 29.20

Karto LIDAR 61.20 91.28
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In our study, both Fast-SLAM successfully aligned 

positions with GPS geo-referenced data and produced 

locally consistent maps. FS 2.0 based on GPS and LIDAR 

showed the best consistency with real maps, as evidenced 

by comparing results with those of FS 1.0 based on GPS 

and LIDAR, FS 2.0 and FS 1.0 based on LIDAR, FS 1.0 

based on GPS, and Karto SLAM based on LIDAR. FS 2.0 

based on GPS and LIDAR had accurate alignment with 

the geo-referenced positions: the trajectory error was 

0.65 m based on the aerial map data, as shown in Fig. 7. 

�e map distortion was 0.17 m near buildings and 0.08 m 

near the area with oil tanks (Figs. 9 and 10).

Figure 12 shows that FS 2.0 based on GPS and LIDAR 

is consistent with an aerial map. FS 1.0 based on GPS 

and LIDAR had a small increase of alignment error to 

GPS compared to FS 2.0. �e trajectory error was 0.81 m 

based on the aerial map data (Fig.  7). �e map distor-

tion was 0.25 m near buildings and 0.026 m near the area 

with oil tanks (Figs.  9 and 10). Figure  13 shows that FS 

1.0 based on GPS and LIDAR is also consistent with the 

aerial map.

Our method could reproduce the map variance of 

0.3  m for 10 runs. Furthermore, we could reproduce 

map consistency for our method in two low-RTK-Fix-

GPS environments by using both RTK-Fix-GPS and 

RTK-Float-GPS. �e visual cue and global accuracy were 

used to show map consistency.

FS 2.0 based on GPS and LIDAR are visually consistent, 

as shown in Fig. 19a in Factory A and Fig. 20a in Factory 

B. �e global accuracy is 0.52 and 0.72  m in Factory A 

and B, respectively. FS 1.0 based on GPS and LIDAR are 

also visually consistent, as shown in Fig. 19b for Factory 

A, and Fig. 20b for Factory B. �e global accuracy error, 

specifically, 0.18 m in Factory A and 0.05 m in Factory B, 

increased compared to that of FS 2.0 based on GPS and 

LIDAR.

�e limitation of this method pertains to roads with 

no ground level differences. �is method does not work 

well in environments with large ground level differ-

ences. However, this method satisfies the firefighter robot 

requirement in petrochemical complexes where the 

roads have no ground differences.

In this work, we selected RTK-Fix-GPS and RTK-

Float-GPS. In addition to filter good measurements, we 

filtered GPS data with the horizontal dilution of preci-

sion (HDOP) > 1.2 to use only accurate data. However, 

Fig. 19 Data in petrochemical complexes where red is ground truth 

MMS data and the result of SLAM: a FS 2.0 based on GPS and LIDAR 

map and b FS 1.0 based on GPS and LIDAR map are visually shown to 

have consistency. On the other hand, c Karto SLAM based on LIDAR 

map has no consistency because large distortions are evident on the 

map

Fig. 20 Data in a factory where red is ground truth MMS data and 

the result of SLAM: a FS 2.0 based on GPS and LIDAR map and b FS 

1.0 based on GPS and LIDAR map are observed to have consistency. 

However, c Karto SLAM based on LIDAR map has no consistency 

because large distortions are apparent on the map
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we still observed incorrect RTK-Fix-GPS and RTK-Float-

GPS when moving near building. �ese errors caused 

GPS multipath signal errors. To prevent over overconfi-

dence on RTK-GPS data, we carefully fused GPS data by 

using large GPS sigma σgps.

Conclusion
In this study, we extended two RBPFs based on GPS and 

LIDAR for consistent map construction in petrochemical 

complexes. FS 2.0 and FS 1.0, both in a grid map, were 

used for SLAM. We herein proposed a weight function 

that fuses GPS and LIDAR data inside the RBPFs. An 

importance weight function is derived to achieve sensor 

fusion. �e weight function enables maintenance of the 

respective advantages of both GPS and LIDAR sensors. 

�erefore, these RBPFs based on GPS and LIDAR not 

only have local consistency, but also global consistency. 

An experiment was conducted in a closed petrochemical 

complex in Japan (550 m × 380 m). RTK-GPS availabil-

ity was 56% in the petrochemical complex. Our results 

showed FS 2.0 had the best result with a significant 

improvement of alignment to geo-referenced positions. 

�e mean global error was 0.65  m. A significant result 

for mapping consistency was 0.17 m near buildings and 

0.08 m near sparsely placed oil tanks. Results also showed 

that both maps had consistency with an aerial map [2]. 

Our method could reproduce map consistency results 

for ten runs with a variance of ± 0.3  m. Our method 

reproduced map consistency results in low RTK-Fix-

GPS environment, which was a factory with a building 

layout similar to petrochemical complexes with 20.9% of 

RTK-Fix-GPS data availability. �e best global accuracy 

achieved was 0.52 m (Additional file 1).
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