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Consistent metagenes from cancer expression
profiles yield agent specific predictors of
chemotherapy response
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Abstract

Background: Genome scale expression profiling of human tumor samples is likely to yield improved cancer
treatment decisions. However, identification of clinically predictive or prognostic classifiers can be challenging
when a large number of genes are measured in a small number of tumors.

Results: We describe an unsupervised method to extract robust, consistent metagenes from multiple analogous
data sets. We applied this method to expression profiles from five “double negative breast cancer” (DNBC) (not
expressing ESR1 or HER2) cohorts and derived four metagenes. We assessed these metagenes in four similar but
independent cohorts and found strong associations between three of the metagenes and agent-specific response
to neoadjuvant therapy. Furthermore, we applied the method to ovarian and early stage lung cancer, two tumor
types that lack reliable predictors of outcome, and found that the metagenes yield predictors of survival for both.

Conclusions: These results suggest that the use of multiple data sets to derive potential biomarkers can filter out
data set-specific noise and can increase the efficiency in identifying clinically accurate biomarkers.

Background
Microarray gene expression profiling provides an
unbiased, comprehensive view of an entire molecular sys-
tem, and is well suited to identify the relevant factors that
define the cancer phenotype. However, the success of this
method can be impeded by problems arising from the par-
allel measurements of tens of thousands of gene expres-
sion levels sampled in a far lower number of tumor
specimens, typically a few hundred at most. Two specific
problems have impacted cancer research: First, overfitting
has produced several seemingly promising diagnostic pat-
terns that have not been verifiable in independent studies
[1,2]. Second, redundant information in the form of
strongly correlated genes has led to the repeated “discov-
ery” of diagnostic patterns detecting a single robust

phenomenon, such as the cell proliferation pattern that is
prognostic in estrogen receptor (ER) positive breast cancer
[3]. One approach to these problems is to reduce the
dimensionality of the data by combining (usually corre-
lated) genes into a small number of metagenes.
Several gene combinations have been used to character-

ize the cancer phenotype [4-7]. For example, the linear
combination of proliferation associated genes and estrogen
regulated genes provides a better predictor of outcome in
tamoxifen treated ER-positive breast cancer than does
either class of genes alone [8]. Although several supervised
methods to find biologically relevant linear gene combina-
tions are available, finding such predictive metagenes in an
unsupervised fashion remains a challenge [5,9]. In breast
cancer, expression profiles can easily discriminate between
ER-negative and ER-positive tumors, which have very
different clinical behavior. For this reason it is also easy,
but not clinically useful, to develop trivial predictors of
outcome in cohorts of mixed ER subtype. Within the
ER-positive subgroup, several predictors of response to
chemotherapy have been described [10-12]. However,
supervised methods have not yielded highly accurate
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predictors of chemotherapy response in DNBC [3,13,14].
This molecularly and clinically distinct subset of breast
cancers represents approximately 20-25% of all breast
cancers and can be treated only with chemotherapy.
About 25-30% of these cancers respond favorably to treat-
ment, but the remainder has very poor survival despite
current best therapies [15].
Here we describe an unsupervised method to derive

metagenes by leveraging the consistent expression pat-
terns found in multiple gene expression data sets of the
same cancer subtype. Our approach is based on the pos-
tulate that analogous microarray data sets, such as those
from patient cohorts selected under similar criteria, are
representative collections from a larger population
“expression space”. In this expression space, individual
samples are robustly separated by a set of metagenes,
some of which may be clinically relevant. However, each
individual data set may be adulterated by sampling arti-
facts and with data set specific noise. Therefore, our
approach is to derive metagenes that are consistently
observed in several cohorts and are likely representative
of the entire population. By first identifying metagenes in
an unsupervised fashion, and then evaluating association
between the metagenes and clinical outcome, we reduce
the risk of overfitting.
Using this method we derived metagenes from expres-

sion profiles of DNBC, stage III ovarian cancer and early
stage lung cancer, respectively. Then we verified the asso-
ciation of these metagenes with clinical outcome in inde-
pendent validation cohorts of the three cancer types.

Results
Derivation of DNBC-specific consistent expression indices
(CEIs)
We created a reference data set of DNBC from five pre-
viously published breast cancer cohorts that were all
profiled on the same microarray platform (HG-U133A)
and were without neoadjuvant drug response data
[3,16-21] (Additional file 1). From a total of 1037
tumors we identified a subset of 218 DNBC based on
expression levels of ESR1 and ERBB2 [3,4,22-24] (Addi-
tional file 2).
First, we used principal component analysis (PCA) as

an unsupervised method to identify a subset of genes
representing highly variable patterns in DNBC expression
profiles. In PCA, each principal component (PC) is
defined by a vector of gene expression weights. We
hypothesize that the between-sample variability of tumor
is driven by a finite number of biological effects, which
are summarized into the principal components. Hence a
finite number of components will explain the majority of
the variation of the data matrices. Therefore, we define
the likelihood as the fraction of total variance that is
explained by the given number of principal components.

For each individual data set, we performed PCA and used
the Bayesian information criterion (BIC) to select a set of
3-6 PCs that best represent the predominant variation in
the data without including components that are likely to
represent noise (Figure 1a, b; see methods). We expected
to find any clinically relevant information enriched in
these top PCs, since as the variance diminishes it
becomes more difficult to distinguish signal from noise.
For each reference data set, we distilled the PCs to
include only the genes with a substantial contribution, as
determined by the correlation between gene expression
levels and PC scores across all samples. Hierarchical clus-
tering of these distilled PCs revealed six distinct groups,
or consistent principal components (CPCs), with at least
two members. We identified 108 genes with a substantial
contribution to at least two PCs in any of these clusters,
hypothesizing that these genes are likely to capture con-
sistent biologically-relevant information about DNBC
(CPC genes) (Figure 1c).
To validate the consistency of these CPC genes, we col-

lected four independent DNBC data sets and subjected
them to PCA using only the 108 CPC genes [13,25-27].
As result, the first and the second principal components
of the CPC genes are highly consistent across the four
test data sets, suggesting that these genes correspond to
conserved biological variation in DNBC (Figure 2a).
When we applied this gene set to the ER-positive HER2-
negative subset of the same cohorts, we found that the
resulting top PCs were distinct from those of the DNBC
samples (Figure 2b). Thus, the CPC genes represent a
specific type of variation of gene-expression within
DNBC, which is highly conserved in multiple different
cohorts.
Next we used factor analysis (FA) to distill the informa-

tion in the CPC genes into six biologically relevant meta-
genes (Figure 1d, e). FA can be considered an extension of
PCA in which an additional rotation maximizes variance
of the gene weights. This additional rotation step results in
a more even distribution of variance among components
than does PCA alone. In general, FA is often preferred
when the goal of the analysis is to understand and explain
the structure in the data [28]. Using only the CPC genes
in the combined reference data sets, we identified six fac-
tors that together explained 57% of the variance in the
CPC genes (Additional file 3). In order to estimate the
contribution of these factors in other data sets, we defined
six consistent expression indices (CEIs) based on the sign
of the non-trivial gene weights from each factor; thus each
CEI comprises between 23 and 80 of the CPC genes
(Additional file 3). At this point the CEIs were finalized,
and in all subsequent analysis the CEIs were applied to the
data sets without further adjustment. Thus, the CEIs were
derived entirely from expression data, without considera-
tion of any functional annotation or clinical outcome.
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Association between CEIs and clinical outcome in double-
negative breast cancer
We hypothesized that the six CEIs, which account for
highly conserved biological variation among DNBC
cases in the five reference data sets, are also associated
with certain clinical phenotypes of the tumors. We

investigated whether the CEIs were predictive of
response to specific treatment regimens in four indepen-
dent test cohorts in which expression profiles were
obtained from DNBC samples prior to neoadjuvant
therapy (Table 1). Two of these cohorts, MDA1 [26]
and MDA/MAQC [13], were similar: the samples were
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Figure 1 Schematic of CPC analysis and CEI derivation, showing results from DNBC.
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Figure 2 The CPC genes yield consistent, subtype-specific PCs in gene expression data sets. In each panel, PCA was performed separately
on each data set using only the CPC genes, and the resulting first and second PCs from each data set were compared by hierarchical clustering.
(a) The first two PCs of the 108 CPC genes in the DNBC subset of four validation data sets. (b) The first two PCs of the 108 CPC genes in the
DNBC subset (black) and the ER-positive HER2-negative subset (red) of the four validation data sets.
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acquired by fine needle aspiration, and the patients
received paclitaxel, fluorouracil, doxorubicin, and cyclo-
phosphamide (TFAC). In contrast, the two other data
sets were derived from core biopsies; one cohort,
EORTC, received fluorouracil, epirubicin and cyclopho-
sphamide (FEC) [25], whereas the other cohort, JBI2,
received only epirubicin [27] (Table 1).
We evaluated the association between pathologic com-

plete response (pCR) and each of the six CEIs using area
under the receiver operating characteristic (ROC) curves
(AUC). In the MDA1 data set we observed a strong posi-
tive association between CEI1, CEI3 and pCR (AUC =
0.78, P = 0.005 for CEI1, AUC = 0.77, P = 0.009 for CEI3,
Table 1). Similar associations were also observed in the
second TFAC data set, MDA/MAQC (AUC = 0.77, P =
0.02 for CEI1, AUC = 0.78, P = 0.001 for CEI3, Table 1,
Figure 3a, b).
In the two cohorts in which patients received neoadju-

vant chemotherapy without taxane, we found CEI1 is
significantly associated with residual disease (RD), a
typical poor pathological response (AUC = 0.73, P =
0.01 in EORTC, AUC = 0.85, P = 0.02 in JBI2). On the
other hand, there is no detectable association between
CEI3 and response to either FEC or epirubicin treat-
ment (Table 1, Figure 3c, d). These associations between
CEIs and pathological responses in the validation
cohorts was stronger than any we observed using pub-
lished predictors [25,26] or using predictors we derived
using conventional methods (Additional file 4).
Since pathological response to chemotherapy is based

only on short-term follow-up, we also examined the asso-
ciation of these CEIs and long-term clinical outcome
after chemotherapy. In a pooled DNBC cohort of 236
patients for which follow-up data is available (Additional
file 1), of all the six CEIs, we found that binary classifica-
tion based on CEI5 was significantly associated with dis-
ease-free survival of patients who received adjuvant
chemotherapy within 10 years of follow-up (HR = 2.70,
P = 0.026, Figure 4).
To test whether the CEIs were simply capturing known

metagenes, we compared the six CEIs with 38 signatures

reflecting tumor-associated biological processes or infil-
trating cell types [25]. We used a meta-analysis based on
seven data sets and found CEI1 was negatively correlated
with ER/luminal-basal metagenes and ERBB2-molecular
apocrine tumor metagenes; whereas CEI3 was positively
correlated with the proliferation/AURKA metagene (Addi-
tional file 5). We also observed other correlations: CEI3
negatively correlated with the stroma and adipocyte meta-
genes. However, none of these metagenes was reported to
hold similarly strong and consistent predictive power in
the original studies as that of CEI1 and CEI3 [25] (Addi-
tional file 4). This may suggest that synergistic effects of
multiple biological processes are more deterministic of the
response to therapy than any single ones. In addition,
CEI5 and CEI6 were not correlated with any of the known
metagenes. Therefore, these two CEIs may reflect some
biological processes relevant to DNBC but not yet
described as such in any previous study.

Comparison with existing methods
In order to compare the performance of the CPC
approach to existing algorithms, we assessed several
supervised and unsupervised methods for their ability to
generate metagenes predictive of treatment response.
For supervised methods, we first selected genes that are

significantly associated with pathological response to tax-
ane-based neoadjuvant therapy in the MDA1 data set
based on Pearson’s correlation coefficients, diagonal linear
discrimination analysis [26,29], student’s t-test, Wilcoxon’s
rank sum test, or nearest shrunken centroids [30]. We
validated the predictive power of these metagenes in two
other cohorts, MDA2 and EORTC. Metagenes based on
Pearson correlation coefficients and nearest shrunken
centroids yielded consistently significant predictions in the
test data sets whereas the rest of the methods did not
(Additional file 4). However, the predictive power repre-
sented by the area under the curves (AUCs) of all gene-
by-gene methods decrease in the validation cohorts,
suggesting overfitting..
For unsupervised methods, we pooled the five DNBC

data sets and subjected it to independent component

Table 1 DNBC-derived CEIs are associated with tumor response to neoadjuvant chemotherapy in DNBC cohorts

AUC

cohort regimen patients responders CEI1 CEI2 CEI3 CEI4 CEI5 CEI6

EORTC FEC 37 16 0.73R* 0.57 0.51R 0.61 0.56 0.54

MDA1 TFAC 27 13 0.78 ** 0.62 0.77** 0.61R 0.53 0.61

MDA/MAQC TFAC 30 9 0.77* 0.66 0.78* 0.62R 0.58 0.54

DFCI2 P 24 4 0.73 0.72R 0.50 0.52R 0.52R 0.57R

JBI2 E 43 4 0.85R* 0.73R 0.53 0.88** 0.58R 0.72

Each CEI was evaluated as a univariate predictor of pathological complete response or residual disease using the area under the ROC curve (AUC). Chemotherapy
regimens are indicated: A, doxorubicin; C, cyclophosphamide; E, epirubicin; F, 5-fluorouracil; P, either cisplatin or carboplatin; T, either paclitaxel or docetaxel. The
CEIs were derived from four independent DNBC cohorts not shown in this table. * P < 0.05; ** P < 0.01. R: AUC is estimated based on association to residual
disease (RD).
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analysis (ICA) [31] or sparse principal component analy-
sis (SPCA) [32]. Three of the six top ICA components
were predictive of pathological response in MDA1 and
MDA2 data sets; and three of the six top SPCA compo-
nents were predictive of pathological response in MDA1
and JBI2 data sets; whereas with the same number of
components, consistent expression indices were predic-
tive in four cohorts. More importantly, these methods
produced less consistent results in terms of their

predictive power in the two cohorts with similar treat-
ment regimen. None of the components derived by ICA
and SPCA, predicted the pathological response in the
two taxane-based neoadjuvant trials (MDA1 and MDA/
MAQC) in a consistent fashion. In particular, the third
and fifth independent components (ICA3 and ICA5)
predicted outcome the opposite direction, high values
predicting favorable response in one and unfavorable
response in the other cohort (Additional file 6).
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Figure 3 High CEI1 and CEI3 scores are associated with agent-specific response to neoadjuvant therapy. DNBC patients were given
neoadjuvant TFAC (MDA1, MDA/MAQC), FEC (EORTC) or epirubicin only (JBI2). ROC curves indicate the association between (a) high CEI1 or (b)
high CEI3 and pathological complete response (pCR) to taxane-based chemotherapy; and (c) high CEI1 or (d) high CEI3 and non-pCR to non-
taxane-based chemotherapy.
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Other cancer types
ER-positive HER2-negative breast cancer
The ER-positive HER2-negative tumor is another major
subtype of breast cancer and differs from DNBC in both
transcriptional and genomic features [4]. Since some of
the DNBC-derived CEIs may capture consistent biologi-
cal variations common to both subtypes, we examined
the association between the DNBC-derived CEIs and
clinical outcome in ER-positive HER2-negative subsets
of the validation cohorts. In a pooled cohort of 858 ER-
positive HER2-negative tumors [9,21,33-36], binary clas-
sification based on CEI3 was significantly associated
with disease-free survival in tamoxifen-treated patients
(HR = 3.20, P = 0.016) as well as in patients not given
tamoxifen treatment (HR = 1.8, P = 0.0004) (Additional
file 7). Compared to DNBC, where CEI3 was associated
with only pathological response to TFAC therapy but
not long-term clinical outcome, the prognostic power of
CEI3 in ER-positive HER2-negative tumors suggests that
the same biological process, proliferation, may have dif-
ferent effects in the two different subtypes, which is
concordant with previous translational studies per-
formed in ER-positive tumors [3,37,38].

Ovarian cancer
Ovarian cancer is represented in only a limited number
of microarray data sets and to the best of our knowledge
there are no two analogous ovarian cancer data sets for
which the same type of clinical outcome data is publicly
available. Therefore, this type of cancer offered an
opportunity to test our proposition that clinically rele-
vant predictors can be extracted from data sets not asso-
ciated with (and trained on) clinical outcome data.
We tested whether the CEIs derived from three stage

III ovarian cancer data sets, EXPO‡, AOC and DU
[39-41], predict treatment response or clinical outcome
in other independent ovarian cancer cohorts (Additional
file 3). In the BIDMC cohort [42], CEI1 derived from
ovarian cancer was significantly associated with overall
survival in 5 years after chemotherapy (HR = 8.36, P =
0.011, Additional file 8). Additionally, in the CRUK
cohort [43], in which patients were assigned randomly
to two groups treated with either paclitaxel or carbopla-
tin monotherapy, CEI2 was associated with good
response (pCR) to paclitaxel (AUC = 0.82, P = 0.02) but
with poor response (RD) to carboplatin (AUC = 0.78,
P = 0.09, Figure 5).
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Lung adenocarcinoma
Finally, we turned our attention to lung adenocarcinoma,
for which at least five microarray data sets are publicly
available [39,44]. In a recent multi-site blinded validation
study, at least eight gene expression based survival pre-
dictors were tested in two validation data sets, but none
of these predicted clinical outcome in stage I cases in
more than one data set unless clinical covariates were
included [44]. Therefore, we applied the same strategy to
early stage lung cancer. In order to test our method
within the same analytical framework of the original
study we applied a cross-validation approach in the four
lung cancer cohorts by extracting CEIs from each combi-
nation of three cohorts (using early stage samples only)
and testing for association between these lung cancer-
derived CEIs and outcome in the remaining cohort (for
stage I only). In three of the four rounds of the validation,
at least one of the CEIs were significantly predictive of
outcome in stage I lung cancer in the validation cohort,
without the use of further clinical variables and without
any training on outcome (Additional file 8). Furthermore,
we derived four CEIs from all four lung cancer data sets
(early stage only, Additional file 3) and tested them on a
fifth independent lung cancer cohort [39] and found that
CEI1 was predictive of 5-year overall survival in stage I
samples (HR = 7.73, P = 0.034, Additional file 8).
To understand the biology underlying the predictive

power of these CEIs, we tested for enrichment of Gene
Ontology (GO) annotations for biological processes in
the CPC genes. For the CPC genes of the DNBC derived
CEIs, the most enriched GO categories included

immune and inflammatory response. For the lung can-
cer derived CEIs, the top categories included digestion,
response to external stimulus, and oxidation/reduction
(Additional file 9). While the GO category analysis did
not provide an easy interpretation of the observed pre-
dictive power of clinical behavior, a literature analysis
identified several genes that were linked to specific che-
motherapy response or resistance mechanisms, including
GPX3 [45], HPGD [46], AKR1C1, and AKR1C2 [47].

Discussion
We have presented a method to extract metagenes that
consistently distinguish among individual double-negative
breast cancers in multiple gene expression data sets. We
found a strong association between three of the six CEIs
and the efficacy of various neoadjuvant treatments in
DNBC. This association was stronger than that of pre-
viously published predictors and suggests that these gene
sets reflect important biological processes that influence
sensitivity to chemotherapy. Importantly, different CEIs
were predictive of different regimens. Furthermore, some
CEIs were predictive only in DNBC and not in ER-positive
tumors.
An attractive feature of the method presented here is

that it is unsupervised; i.e. the CEIs are derived without
information about clinical response or outcome. This
holds particular importance for cancer types with only a
few existing clinical outcome matched microarray based
cohorts [48]. In the case of cancer types of higher inci-
dence and easier access to clinical material (e.g. breast,
lung), multiple analogous cohorts complete with clinical
outcome data, often up to six or seven independent data
sets, are available for supervised analysis to identify indivi-
dually informative genes. These genes could then be com-
bined into multi-gene prediction models and
independently validated on the various cohorts. In the
case of other cancer types (pancreas, prostate, etc.), lower
incidence, difficulties with obtaining appropriate RNA
material, or the specific clinical course of the disease
results in a lack of clinical outcome matched microarray
data sets. In such cases a method that is able to extract
potential outcome predictors without training on outcome
data may provide a potential solution. Given the observa-
tion that CEIs may already hold predictive value without
being fitted to the actual clinical outcome, CPC-based
methods may extract testable predictors from microarray
data without matched clinical outcome, and the few out-
come matched microarray cohorts could then be used for
independent validation. For example, prostate cancer is
represented by at least fourteen microarray cohorts, but
only three of these have clinical outcome published as well
[49-52].
Although biological functions of the CEIs can be par-

tially understood by methods such as GO analysis, our
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Figure 5 Consistent expression indices derived from stage III
ovarian cancer are associated with treatment response. Ovarian
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to paclitaxel monotherapy and non-pCR to carboplatin
monotherapy in CRUK ovarian cancer cohort.
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knowledge about these genes still remains very limited.
There might be several reasons for this. First, many of
the genes listed in the CEIs have not been investigated
in detail for direct involvement in drug resistance
mechanisms. Second, drug resistance might be the result
of a distinct but complex biological feature which
involves a concert of relevant biological mechanisms,
such as increased expression of multidrug resistance
genes, low proliferation rate, and the combination of
these mechanisms might be best quantified by common
upstream and downstream markers that reflect the
expression level the relevant biological mechanisms. In
general, it is desirable for clinical predictors to be asso-
ciated with uniquely identifiable biological mechanisms
so as for therapeutic targetability. However, we empha-
size that our approach was designed to overcome the
failure of single gene, single biological mechanism pre-
diction of clinical outcome [53]. We aimed at determin-
ing and testing the utility of the most robust and
consistent information in high throughput data sets,
which is more likely to capture the most comprehensive
and dominant biological variations in human tumors
rather than any single unique biological process from
limited prior knowledge.
The predictors presented in this paper would need to

be refined before introduction into clinical practice.
Currently each CEI comprises up to 235 genes, a num-
ber that might be impractical for a clinical test such as
multiple quantitative PCR. Also, treatment decisions are
dichotomous; a patient either receives a particular treat-
ment or does not. Therefore, the most useful clinical
tests have decision thresholds, which will need to be
determined for the CEIs and will need to be validated in
independent cohorts to establish the sensitivity and spe-
cificity of a future treatment response test.

Conclusion
The approach we described in this analysis is well-suited
to identify linear gene combinations that express consis-
tent variations in a set of independent but biologically
similar datasets, regardless of the observed clinical out-
come. The ability of these metagenes to predict response
to chemotherapy has been evaluated in completely inde-
pendent set of cohorts. Unlike other existing unsupervised
methods, by mandating the consistency of the weights of
genes in the loading matrix, the consistent principal com-
ponents are more likely to yield reproducible predictive
power.

Methods
Data sets
All microarray data sets used in this study were pre-
viously published and are available from several public
data repositories, except for the BIDMC ovarian cancer

data set, which was obtained from the authors [42].
Each microarray data set was processed with RMA [54].
For each cohort, a list of samples used in the analysis is
provided in Additional file 1.
To determine the double-negative breast cancer

(DNBC, not expressing ESR1 or HER2), we clustered
each data set based on the probe levels of ESR1 and
HER2 using the Partitioning Around Medoids (PAM)
algorithm. The DNBC is determined by the cluster with
consistent low expression of both genes.

Consistent Principal Components Analysis
For each of the reference data sets independently, we
computed the coefficient of variation (CV) based on the
anti-logarithm of RMA probe levels and kept probe sets
with a CV greater than one and less than 1000; thus we
selected 614 to 1714 probe sets from each data set.
Next we performed PCA on these highly variable probe
sets in each data set, and selected an optimal number k
of top PCs by the minimum of the BIC:

BIC = nln
(ν

n

)
+ kln(n)

Here, n is the number of samples, k is the number of
components selected, and ν is the unexplained variance
which equals the residual sum of squares, given by:

ν =
p∑
i=1

σ 2
i −

k∑
j=1

ω2
j

Here, si is the standard deviation of probe set i, p is
the number of probe sets, and ωj is the standard devia-
tion explained by PC j (equal to the square root of the
j’th eigenvalue). For each PC, we calculated the Pearson
correlation coefficient (PCC) between its component
scores and the expression level of each probe set and
the significance of the correlation is assessed by Stu-
dent’s t-test. Probe sets with a P < 0.01 for PCC were
selected to represent the PC. After the selection, each
PC contains 42 to 211 representative probe sets.
To compare PCs derived from various data sets, we

defined the following measure of the dissimilarity
between PCs i and j:

Dij = (1− Jij)× (1− Cij)

Where Jij is the Jaccard index (the ratio between size
of the intersection and the size of the union of the
representative probe sets of component i and j) and Cij

is the cosine correlation coefficient between the weights
of the common representative probe sets of component
i and j.
We used this distance function to perform average

linkage hierarchical clustering on the selected PCs from
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all reference data sets. For each distinct cluster, we
selected the set of genes found in at least two members.

Factor analysis and CEI calculation
We retrieved the RMA expression profile of the CPC
genes from the reference data sets. When a gene was
represented by multiple probe sets, we selected the
probe set with largest standard deviation to represent
that gene. For each of the expression matrices retrieved,
we computed the standard z-scores for each gene and
merged the matrices into one.
We performed factor analysis of the merged z-scores

using the “varimax” rotation and with the number of
factors set to six [28]. For each factor we estimated the
gene coefficients using the least-square method. Coeffi-
cients with an absolute value below 0.1 were set to zero,
and the signs of the coefficients were used as the gene
weights in the corresponding CEI.

Prediction and prognosis
The ROC curves were based on individual CEI scores
and treatment response. We calculated the area under
the curve (AUC) using the trapezoidal rule [55] and
estimated statistical significance using the Wilcoxon
rank sum test. Survival curves were generated using
the Kaplan-Meier method. Hazard ratios were esti-
mated for 5 year or 10 year follow-up by Cox regres-
sion in which the patients were stratified into two
groups of equal size according to the median of the
CEI score. Statistical significance was estimated using
the log rank test.
Further details are available in Additional file 2.

Additional material

Additional file 1: Summary of the tumor expression data sets used
in this study. (a) Summary of all data sets used in this manuscript; (b)
The number of DNBC samples from each data set used in each figure;
(c) The number of ER-positive/Her2-negative breast cancer samples from
each data set used in each figure; (d) The number of ovarian cancer
samples from each data set used in each figure; (e) The number of lung
cancer samples from each data set used in each figure.

Additional file 2: Supplementary methods. Supplementary methods.

Additional file 3: CEIs derived from three tumor types. CEIs derived
from DNBC, Stage III ovarian cancer and early-stage lung cancer by
consistent principal component analysis.

Additional file 4: AUCs and P values for prediction of TFAC
response. Summary of AUCs and P values for prediction of TFAC
response in DNBC using published metagenes and signatures derived
using various supervised methods.

Additional file 5: Correlation between DNBC-derived CEIs and
known metagenes. Colorgram showing the pooled Pearson correlation
coefficients between DNBC-derived CEIs and known metagenes.

Additional file 6: AUCs for prediction of pathological response in
five DNBC cohorts which received neoadjuvant chemotherapy of
different regimens using various unsupervised methods. (a) CEIs
derived from consistent principal components; (b) Components derived
using independent component analysis; (c) Components derived using

sparse principal component analysis. The pooled correlation coefficients
were estimated from seven breast cancer data sets based on a meta-
analysis.

Additional file 7: DNBC-derived CEI3 predict clinical outcome of in
ER-positive HER2-negative breast cancer. (a) ER-positive HER2-negative
samples which received endocrine or radio-therapy from the EMC, JBI1,
GIS, KUH, UCSF and NKI cohorts; (b) ER-positive HER2-negative samples
which received no systematic therapy.

Additional file 8: Validation of the association between CEIs and
clinical outcomes in ovarian cancers and lung cancers. (a) Hazard
ratios based on 5-year follow-up of three ovarian cancer-derived CEIs in
the validation cohort (DU) based on univariate and multivariate Cox
regression; (b) Summary cross-validation of CEIs derived from three early-
stage lung cancer data sets and validated in the fourth for the
association to clinical outcomes; (c) hazard ratios based on 5-year follow-
up of seven lung cancer-derived CEIs in the validation cohort (DU) based
on univariate and multivariate Cox regression.

Additional file 9: Gene Ontology (GO) annotation analysis. Gene
Ontology of CEIs derived from (a) DNBC, from (b) stage III ovarian
cancer, and from (c) early stage lung cancer.
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