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Abstract

In this report we describe a consistent set of metrics for conducting
verification analysis. These metrics are based on the procedure known
as asymptotic convergence analysis. This process provides the primary
metric used in code verification, viz., the asymptotic convergence rate.
This value quantifies the convergence properties, relative to an exact or
semi-exact solution, of a specific software implementation of a numerical
algorithm for solving the discretized forms of continuum equations. Eval-
uation of this metric provides unambiguous demonstration of the code
convergence properties, representing the essence of verification analysis
and forming a foundational part of the evidence by which software qual-
ity is established. We provide the necessary background to implement
convergence analysis on a variety of problems and give examples of this
process. This report contains sufficient information to extend the basic
approach provided herein to a broad spectrum of applications.

1 Introduction

In this report we provide a brief description of asymptotic convergence analy-
sis, which forms the primary metric by which to demonstrate evidence of code
verification. This metric is the fundamental tool used in code verification, as it
allows one to quantify the convergence rate of a specific software implementa-
tion of a given numerical algorithm. Such software is used to obtain numerical
solutions of a set of discretized equations corresponding to the equations that
describe some continuous process. The demonstration of code convergence rep-
resents the essence of verification analysis and forms a foundational part of the
evidence by which software quality is established.

Virtually all of the description provided herein is couched in the framework
of analyzing algorithms for the discretization of partial differential equations
(PDEs), specifically, the PDEs used in hydrocodes (see [1] for an overview of
hydrocodes). The analysis provided herein is applicable to a range of numerical
algorithms based on the discretization of continuous models; moreover, these
procedures are applicable to computational investigations including calculation
verification and the experimental simulation that underpins validation.

The primary nomenclature and procedures are presented in §2, which de-
scribes pointwise asymptotic convergence analysis in one dimension. The no-
tions, relations, and approach given in this section are modified in the subse-
quent sections, which deal with, respectively, global analysis in 1-D (§3), point-
wise analysis in higher dimensions (§4), and global analysis in higher dimen-
sions (8§5). In §6 we discuss possible avenues by which this analysis can be
extended to non-uniform meshes, such as may be obtained in Lagrangian or
adaptive mesh refinement (AMR) calculations. We exercise this process on a
selected number of problems of relevance to the ASC V&V community in §7,



demonstrating aspects of problem complexity on the fidelity of the metrics. We
summarize the contents of this report in §8.

2 Pointwise Convergence Analysis in 1-D

In this section, we lay out the fundamental notions regarding convergence anal-
ysis in the simplest scenario: pointwise comparison of quantities in one spatial
dimension. For any variable £ computed at a given uniform grid spacing Ax;
and uniform timestep At;, the fundamental Ansatz of pointwise convergence
analysis is that the difference between the exact and computed solutions can be
expanded as a function of the spatial and temporal zone sizes:

&~ =8 + A (Az)" + B (Ay)T +C (Azy)" (AL)®
+o((Az)”, (At)" (Az)” (A1), (1)

where ¢* is the exact value, 524 is the value computed on the grid of spatial
zone size Ax; and timestep At;, & is the zeroth-order error, A is the spatial
convergence coefficient, p is the spatial convergence rate, B is the temporal con-
vergence coefficient, q is the temporal convergence rate, C is the spatio-temporal
convergence coefficient, and r + s is the spatio-temporal convergence rate. By

the notation “0((Ami)p (AT, (Azy)" (Atl)s)” we mean terms that approach

zero faster than (Ax;)”, (At;)?, and (Ax;)" (At;)® as both Az; and At; be-
comes vanishingly small (i.e., as Ax;, At; — 07). In the following, we also refer
to these vanishingly small terms as “higher order terms” or H.O.T.

There are four canonical cases, depending on the relative magnitudes of
various parameters in Eq. 1.

o |&| > |A (Ax)P |, |B (At)? ], |C (Ax;)" (At;)°|. In this case, there is
zeroth-order convergence, i.e., the error is independent of both the spatial
grid size and the timestep.

e p <q,r+ s with & = 0. In this case, the convergence is dominated by
spatial errors.

e g < p, r+ s with & = 0. In this case, the convergence is dominated by
temporal errors.

epmqg=r+sorprg<r+sorr+s<p,q, al with & = 0. In this
case, the convergence is dominated by mixed, spatio-temporal errors.

Numerical methods commonly used in hydrocodes are constructed from funda-
mental algorithms that are typically either first or second order in space and
time for smooth problems.!

ISome higher-than-second-order spatial methods are being implemented in certain codes.



Pointwise convergence analysis can be performed for a variable defined at
each point in a computational grid, e.g., a field variable (such as density), in
which case convergence parameters are obtained throughout the computational
grid. Importantly, pointwise convergence analysis in 1-D can also be performed
on a functional of the computed solution, e.g., a quantity defined in terms of val-
ues computed at each point of the computational grid (e.g., total kinetic energy)
or an algorithmically defined local feature (e.g., shock position). This consider-
ation also applies to the comparison of computed cell-averaged quantities (such
as are employed in certain algorithms) with their appropriately evaluated exact
solution counterparts. In this case, a set of convergence parameters related to
such quantity is obtained for the support of that functional, which may be a
strict subset of the entire computational grid.

2.1 Pointwise Spatial Convergence Analysis in 1-D

Experience with spatial and temporal integrators indicates that the spatial error
is often much greater than the temporal error for the numerical integration of
spatial- and time-dependent PDEs dominated by hyperbolic behavior. In other
circumstances, this is not the case. In the following analysis, we assume this to
be true, so that the following relation holds:

Ex, = A (Ax)"| > |B (AL)" | = & (2)

The opposite case is discussed in §2.2, and the more general case of simultaneous
spatio-temporal convergence is described in §2.3.

To determine the parameters in these expressions, we eliminate &, in the
Ansatz; we may do this without loss of generality, for, if a zeroth-order error
exists, this behavior will be manifested in the solution for the other order param-
eters. Restricting the Ansatz of Eq. 1 to spatial convergence only, we suppress
the temporal index [, and assume that

& —¢& = A (Az;)? + HO.T. . (3)

For the solution on a “coarse” grid, denoted with the subscript ¢, Az, = Az,
and Eq. 3 implies

& —&=AAn)’ +--. (4)
Consider now the computed solution on a less-coarse, i.e., “medium”, grid with
cell size Az, such that Az./Ax,, = Az/Az, =0 > 1, ie., Az, = Az /o =
Azx/c. In many applications, ¢ = 2, corresponding to “halving” the grid; while
this value of ¢ is often used, it need not necessarily be set to this value. For
this solution, Eq. 3 implies

—bm=0"AAx)" +---. (5)



2.1.1 1-D Pointwise Spatial Convergence, Exact Solution Known

Let us now assume that we know a priori the exact solution £* at any location.
With this assumption, Eqs. 4 and 5 form a system of two equations in the two
unknowns A and p. This system can be solved explicitly for these quantities:

[log(§* — &) —log(§* —&m)] /loga,
(& —¢&)/(Ax)’.

p

A (6)

Obtaining these values, the convergence rate p and convergence coefficient A,
represents the essence of verification analysis. These two scalars constitute met-
rics, available at each zone on the coarse grid, that provide unambiguous local
measures of the code (i.e., algorithm) convergence properties. It is important
to note that these metrics are computed at each coarse grid location; the rela-
tionship of the coarse and medium grids is discussed further in §2.1.4

2.1.2 1-D Pointwise Spatial Convergence, No Exact Solution

We now assume that we do not (or, perhaps, cannot) know the exact solution
&* at any location. In this case, we cannot measure the absolute local conver-
gence properties of the algorithm; we can, however, quantify the relative local
convergence properties, namely the self-convergence behavior of the algorithm.
This procedure forms the basis of calculation wverification, which is the pro-
cess whereby one demonstrates convergence of a calculation in configurations
for which no exact solution exists. Such cases occur, e.g., where complex ge-
ometry exists or when the equations contain multiple mathematical operators,
representing interacting physical processes.

In this case, Egs. 4 and 5 now form a system of two equations in three
unknowns: A, n, and the unknown solution value £*. Unlike the previous case,
we now additionally consider the solution on a “fine” grid with uniform zone
size Azy, for which Az, /Azy =7 > 1, le., Azy = Axy /T = Az./(0T).
As with o, in practice 7 often assumes the value two, though this need not
necessarily be so. For this solution, Eq. 3 implies

& =0T A (D) + - (7)

Equations 4, 5, and 7 form a system of three equations in the three unknowns
A, p, and &*. Taking the difference of Egs. 4 and 5 implies that

bn—&=AAz) 1-077); (8)
similarly, the difference of Egs. 5 and 7 yields
§—Em=0TPA(Az) (1-777). 9)



Taking the ratio of these last two expressions yields

Em — & - of —1
fffgm S l—7P

This is a nonlinear equation in one unknown, p, that can be solved numerically
(i.e., not analytically) at each point on the coarse grid. Once that value is
calculated, the convergence coefficient can be evaluated at each location by
taking the difference of Eqgs. 8 and 9 and solving for A to obtain:

5f - 2§m + fc
Az [1—oP) —c P (1—17)]" (11)

(10)

A=—

Significant simplification is possible if we assume that o = 7, i.e., that the
ratio of grid spacing between the medium and coarse grids equals the ratio of
grid spacing between the fine and medium grids. In this case, Eq. 10 simplifies

to
% — o, (12)

which can be solved explicitly for the convergence rate p:

|p = [log(€m — &) — log(&5 — &m)] /log 0. (13)

Eq. 11 for the convergence coefficient simplifies to

A== (& =2%n+&) [ |2 (1-07)]. (14)

The two scalars in Egs. 13 and 14 are, again, convergence metrics, available at
each point in the coarse computational grid, that quantify the self-convergence
properties of the underlying numerical algorithm.

2.1.3 1-D Mean Pointwise Spatial Convergence

The above expressions provide pointwise values of the two metrics given by the
convergence coefficient 4 and convergence rate p. To obtain a more extensive
metric, one can construct, e.g., mean values of these convergence parameters
over a given spatial interval. For example, a mean convergence rate over the
entire domain is constructed by taking the arithmetic average of the (local)
convergence rate at each gridpoint, i.e.,

_ 1 ,
p—NZi:pz, (15)

where p; is the asymptotic convergence rate computed at gridpoint z;, i =
1,...,N. We indicate the total number of points in this average as N and



not as N, since all points on the computational grid might not be used in the
evaluation of the mean pointwise convergence rate [3, 7, 8]. For example, if
the numerical values of the cell-averaged quantities from the fine and medium
meshes are identical, then the expression for n in Eq. 13 either diverges (if those
values do not equal the value on the coarse mesh) or is undefined (if all values
are identical). Similarly, the computed value of the argument of the logarithm
in the numerator of Eq. 13 could be negative, leading to an imaginary value for
p. Therefore, one should include only well-defined pointwise convergence rates
in Eq. 15, so that, in general, N # N.

In addition to the statistic given by Eq. 15, further characterization of the
distribution of convergence rates over the mesh is give by the sample variance
of these values:

1 .
Var(py,...,pg) = —— > (0i —5). (16)
N-17%
The standard deviation of convergence rates can be computed as the square
root of this quantity. Higher moments by which to characterize the distribution
can be similarly evaluated.

2.1.4 Comment: Values at Identical Space-time Locations

Implicit in the preceding manipulations of pointwise values are the assumptions
that the results are (1) spatially located at identical gridpoints and (2) at the
same time. Empirical evidence suggests that convergence results depend sensi-
tively on these constraints; that is, applying the above analysis to values that are
not spatially and temporally co-located may result in erroneous or misleading
convergence results.

If the computational mesh is such that the points on the corresponding grids
under consideration are not at the identical positions, then spatial interpolation
must be performed. For example, assume that the ratio of grid sizes is taken to
be two, in which case the following procedure applies. The spatially-weighted
means of the two bracketing values of the medium solution and the four bracket-
ing values of the fine solution are calculated and used to obtain the cell-averaged
values at the corresponding coarse gridpoint. Using density as the variable of
interest and assuming the coarse grid has N points, values p}' from the 'th
zone (which has spatial extent V" [i.e., length in 1-D, area in 2-D, or volume in
3-D]) of the medium-grid solution, i’ = 1,...,2N, are interpolated to the value

pST™ at locations z;, 4 =1,..., N, on the coarse grid as
piT" = (Vaiipsioy + Vo) [ (Vaioy + Vay') (17)
Similarly, values from the fine solution, p{ ,2=1,...,4N, are interpolated to

f

the locations p;~ ' at the corresponding position on the coarse grid as

f f f f f f I f
cf _ Vii—aPai—3 + Vii2P1ia + Vii1P2i-1 + Vi1
7 .

Vi + Vo + Vi1 + Vi,

(18)



These values are used in Eq. 13 and 14 to determine the pointwise convergence
characteristics.

2.1.5 Comment: Review of Assumptions

It is important to review the assumptions embedded in the general error Ansatz
of Eq. 1. First, the algorithm’s total discretization error is assumed to be the
summation of independent terms. For PDEs that discretize both the space and
time continua, this assumption is frequently confirmed through rigorous verifi-
cation studies. This assumption, however, is not universally true for all existing
(or future) numerical methods. The form and functionality of the error Ansatz
must, therefore, also be confirmed through the verification process. Second, all
solution calculations must fall within the regime of validity of the spatial and
temporal asymptotic behavior encapsulated in the error Ansatz. This tacitly
requires that any associated initial or boundary conditions be consistent with
this assumption.

An additional assumption is invoked for conducting verification studies in-
tended to elicit either the spatial convergence metrics alone or the temporal
convergence metrics alone but not both simultaneously. This third assumption
is that the error-of-interest either dominates or can be separated from all other
discretization errors. For example, spatial convergence analysis using Eq. 3
assumes that the temporal error is much smaller than the spatial error. As dis-
cussed in the following section, a similar error Ansatz can be made for temporal
convergence, using either the assumption that the spatial error is negligible but
unknown or that the spatial error dominates but has known behavior. To our
knowledge there exists no method by which to ensure the relative levels of dis-
cretization error prior to commencing any such analysis. There is, however, a
simple methodology for conducting separate spatial or temporal convergence
analysis that acknowledges the three assumptions described above.

For example, for 1-D pointwise spatial convergence analysis when no exact
solution is known, a minimum of three simulations are required to compute
the convergence metrics in Eqs. 13 and 14. A series of three calculations, each
with unique spatial zoning, is required. In contrast, an identical timestep is
commonly used for each simulation in the convergence series. Furthermore, this
timestep is generally held constant throughout each simulation. This practice,
viz., using an identical and constant timestep, represents a conservative strategy
for the timestep because the only assumption placed on At in Eq. 3 is that the
temporal discretization error be negligibly small relative to the spatial error. By
enforcing that each simulation use the same, constant timestep, one attempts
to ensure that the simulation series uniformly satisfies this assumption.

This situation is depicted in the schematic in Fig. 1, which contains a plotted
idealization of the error as a function of the spatial grid size for a set of three
simulations. The symbols identify the errors (E; . > Eym > E; f) associated
with each calculation (on grids of zone size Az, > Az,, > Axy). The solid line
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Figure 1: Schematic plot of the computational error plotted against the spatial
grid size for a set of three simulations, all conducted with the same timestep.
The symbols identify the errors associated with each calculation. The solid line
represents the error of the calculations across the continuum of possible mesh
spacings.

represents the error of the calculations across the continuum of possible mesh
spacings. The behavior depicted in this figure is predicated upon the assump-
tions that the spatial error of the simulations is greater than the temporal error
(E:) and that the spatial and temporal errors are separable to leading order.
This plot suggests that the approach described above is valid for simulations
so long as the temporal error is less than the spatial error. More specifically,
the timestep need not necessarily be kept constant, provided that the greatest
temporal error from any simulation considered is less than the smallest spatial
error.

From these simulations (i.e., with three distinct spatial zonings and one uni-
form timestep), the convergence metrics are computed using Egs. 13 and 14.
Additional simulations, however, may also be required, e.g., if the initial al-
gorithmic convergence rate does not approach the theoretical value; this can
happen, e.g., if one is not within the range of asymptotic validity of the error
Ansatz for the algorithm or if the solution under investigation does not comply
with the requirements for the theoretical convergence behavior (e.g, the solution
contains discontinuous features). From these subsequent simulations, together
with the three initial simulations, multiple convergence coefficients and rates
are then computed and compared. The entire verification analysis is completed
and the convergence metrics are established only when these metrics are un-
changing in this iterative process: one is then in asymptotic range of validity of
the fundamental error Ansatz. If such an iterative verification process fails to
agree with the theoretical estimates or fails to converge, then one must revisit



the software implementation and, perhaps, the mathematical foundation of the
algorithm.

2.2 Pointwise Temporal Convergence Analysis in 1-D

For the algorithms and discretization parameters chosen, the temporal error
may dominate the spatial error. If this is the case, then the requisite temporal
convergence analysis is exactly analogous to spatial convergence analysis pre-
sented in the previous section. Quantitative measures of temporal convergence
are given, e.g., by the analogues of Eqs. 6, 13, and 14.

We now assume the typical case, with dominant spatial error. Under this
assumption, quantitative estimates of the spatial error can be obtained. The
general error Ansatz of Eq. 1 can be re-written as

& - - &, =B (A +HO.T., (19)

3

where &, = A (Az)" represents the corresponding spatial error, and we have
absorbed any possible constant error into the time-dependent term.

2.2.1 Pointwise Temporal Convergence: Exact Solution Known

With a solution on a “coarse” temporal grid, with At = At., and a solution on
a “medium” temporal grid, with At,, = At./7 for some 7 > 1, one can solve
for the convergence parameters g and B as

q = [log(§ —& — &) —log (& —&m — &) /logT,

| (20)
= (& -t/ (.

Three observations regarding these results are warranted. First, an identical
spatial grid is used in both of these calculations, which are on “coarse” and
“medium” temporal grids. Second, one must first have performed the corre-
sponding spatial convergence analysis to obtain estimates of £ and &), which,
despite being indexed as such, are presumably independent of the timestep. And
third, the identical test probem is used for all the calculations used in these spa-
tial and temporal convergence analyses.

2.2.2 Pointwise Temporal Convergence: Exact Solution Unknown

If no exact solution is available, then we use a fine grid solution in its place.
Under the assumptions analogous to those mentioned above, this case leads to
the following estimates of the (self-)convergence metrics:

g = [log(¢f —& —&2) —log (¢f =& —EM)] /logT,

(6 — € — £5) ) (A1), 2!




2.3 Pointwise Spatio-temporal Convergence Analysis in
1-D

The analysis for simultaneous spatio-temporal convergence is significantly more
complicated than the previous cases. In the case of a known exact solution,
the simplest form of the Ansatz given in Eq. 1 for spatio-temporal convergence
contains four unknowns (A, p, B, and ¢), while the case of an unknown exact
solution contains five unknowns (the previous four plus the exact solution £*).
Here, we tacitly assume that the individual spatial and temporal error terms
dominate the mixed spatio-temporal term. To solve for these unknowns, one
must have an identical number of equations, each of which contains computed
solution values. The resulting set of four or five equations cannot be solved
in closed form, even for the case of uniform zoning ratios. To solve for the
convergence parameters, therefore, one must resort to numerical methods for
finding the solutions of a set of coupled nonlinear equations. Anecdotally, we
have found the numerical solution of these sets of equations to be fairly sensitive
to, e.g., the initial solution guess. In the following sections, we outline possible
solution procedures in these cases.

2.3.1 1-D Pointwise Spatio-Temporal Convergence, Exact Solution
Known

Let us now assume that we know a priori the exact solution £* at any location.
As stated above, we restrict ourselves to the case with p, ¢ < r + s (see the
Ansatz and description on p. 2). With these assumptions, we obtain computed
solutions with the following four combinations of spatial and temporal zoning;:
{Ax, At}, {Az/o, At}, {Azx,At/7}, and {Az/o,At/7}. From Eq. 1, these
solutions satisfy the following equalities:

-6 = A(Ax)+ B(AY +---,

& —&b=AAx/o) + B(AH)! +---, (22)
=& = A(Ax)” + B (At/7)" +---,

& —& = A (Ax/o)? + B (At/7)? +

These equations form the system of four equations in the four unknown A, B,
p, and g. The subsequent algebra can be simplified somewhat by considering
the following linear combinations of the first and second, and first and third of
these equations:

-6 =(1-0F) A(Az)’ 4 - (23)
G—&=01-79B(A) +--- (24)

We consider the system of four equations given by the first and last equations
in Eq. 22 together with the above two equations. These relations are considered
to depend on the variable a = [a1, as, as, a4]T = [A,p, B, q]T:

10



fl(a) = aq (A.’E)a2 + as (At)a4 - (f* —51) = 0,
f2(a) = o7 a; (Ax)*™ + T % a3 (AH)™ — (& = &) =0,
fa(@) = (1 —07) a1 (Az)*™ —(—&) =0,
fa(a) = (I—=717%) a3 (A)™ — (& — &) = 0.
(25)

The typical method of solution of the set of nonlinear equations f(a) = 0 is
Newton’s method or some variant thereof. The basic Newton iteration estimate
of the k-th iterative approximation a* to the solution is

of\ !
k_ k=1 _ (9%
ab —a (aa)

The Jacobian 0f /0a, the inverse of which is typically evaluated numerically, is
given below for the above set of equations:

f(ah 1), (26)

ak—1

(Ax)*2 ai (Az)** log Az (At)™ az (At)* log At
s as ajo~% (Ax)* s aa asT % (At)™
o~ (Az) x [log Az — log o] T (A x [log At — log 7]
(1 —07) (Ax)™ a1(Az)" o2 log 0 0

+ (1 — 072)log Az]
0 0 (1—7794) (At)

as az(A)™ [T7% log T
+(1— ) log At)
(27)
One difficulty involved in solving Eq. 25 is assigning an initial guess that is
within the domain of convergence of the iteration. An additional issue is the
possibility of obtaining multiple solutions to this set of nonlinear equations.
These issues must be dealt with on a case-by-case basis.

2.3.2 1-D Pointwise Spatio-Temporal Convergence, Exact Solution
Unknown

In this case, Eq. 1 contains five unknown quantities: A, B, p, ¢, and the exact so-
lution £*. A nonsingular system of five results may obtained by using solutions
computed with the following pairs of spatial zoning: {Az, At}, {Az/o, At},
{Ax,At/7}, {Ax/o, At/7}, and {Ax/0?, At}. These solutions satisfy the fol-
lowing equalities:

& —& = A (Az)’ + B (AH)? +-- -,

& —&b= AAz/o) + B(AHT +---,

& —§&3 = A (Az)? + A (A7) +-- -, (28)
=& = A(Az/o)’ + A (At)T)T +--

& =& =A(Ax/o®)" + B(AY) +---,




The subsequent algebra can be simplified somewhat by considering the following
linear combinations of the first and second, first and third, and first and fifth of
these equations:

fg—glz(l—aip)A(AQf)p—F"' (29)
G-—6=01-7"9B(At)" +--- (30)
G—&=01-0"?)AAz)’ +---. (31)

Consider the system of five equations given by the first and last equations in
Eq. 28 together with the above three equations. These relations are considered
to depend on the variable a = [a1, as, a3, a4, a5]T = [A,p, B, q7§*]T:

f1<a) = ay (Ax)'” + as (At)a4 — (a5 — 51) =0,
fa(a) = o7 ay (Ax)™ + 7% a3 (AH)™ — (a5 — &) =0,
fra) = (1—-07%) a; (Ax)™ —(&—-&) =0,
fa(a) = (L—=77%) az (A)™ — (& —&) =0
fs(a) = (1 —072%) a; (Az)™ - (& &) =0,

(32)
As in the previous section, Newton’s method can be used to solve this nonlinear
set of equations. The Jacobian of this set of equations is more complex than
in the previous case. This derivation illustrates the even greater complexity of
this case and provides the basis by which to implement this analysis, for which
we know of no published results.

3 Global Convergence Analysis in 1-D

For global convergence analysis, we make the Ansatz that the norm of the
difference between the exact and computed solutions can be expanded as a
function of the spatial and temporal zone sizes:

e —&lll = A (Aa)” + B (At)" +o((Azi)”, (At)") . (33)

where, again, &* is the exact value, Sg is the value computed on the grid of
spatial zone size Az; and timestep At;, A and p are the spatial convergence
coefficient and rate, and B and ¢ are the temporal convergence coefficient and
rate. Following the discussion of §2, here we neglect the constant and mixed
error terms present in the more general Ansatz corresponding to Eq. 1. In
Eq. 33 we are making an assumption regarding a non-local relation between the
exact and computed solutions. We discuss below the implications of using the
non-local norm, which characterizes the global behavior, in this equation.
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3.1 Definition of Norms in 1-D

The standard definition for the L, functional norm of the function f defined
on the interval [a,b] is

b 1/?
1]y = [ / dxlf(x)p] | (34)

Based on this definition, the L, Lo, and L., norms are defined as

b
17l = [ dolfa). (35)
b
Ifll. = / dr|f@)? , and (36)
Ml = w170 (37)

Note that the Lo, norm is independent of any integral and is straightforward to
evaluate numerically.

To approximate the integral on the interval [a,b], assume that there are N
points z;, ¢ = 1,..., N, each being the center of a zone of length Axz;. Then,
the simplest quadrature scheme is to approximate the the integral as follows:

b N
/ dz g(x) = Zg(xi) Ax;. (38)

With this assumption, the L; and Ly norms become:

N

Il = Z\f(wi)lﬁwm (39)
N

Al = Zlf(xi)\ZAl’i- (40)

For uniform zoning, Az; = Az = (b — a)/N, and the above approximations
simplify further:

£l

N
Ax )y |f (@), (41)
i=1

Al =




3.2 Global Spatial Convergence Analysis in 1-D

Restricting the global Ansatz of Eq. 33 to spatial convergence only, we again
assume that the spatial error is dominant, which is often the case. Suppressing
the temporal index [, we assume that

16" = &l = A (Az)” + o (Azi)") . (43)

For the solution on a coarse grid, denoted with the subscript ¢, Az, = Ax and
Eq. 3 implies
16" = Ecll = A (Az)P + -+ (44)

Consider now the computed solution on a less-coarse, i.e., medium, grid, so that
Ax./Ax,, =0 > 1, ie., Az, = Az./o. For this solution,

16" = &mll =07 A (Ax)P +---. (45)

3.2.1 1-D Global Spatial Convergence, Exact Solution Known

Assume that one can calculate a priori the exact solution £* at any location.
With this assumption, the norms of the differences on the left-hand side (LHS)
of Egs. 44 and 45 can be calculated, since &*, &., and &, are known at the
quadrature points, so that the norms can be evaluated explicitly. Eqs. 44 and
45 form a system of two equations in the two unknowns A and p. This system
can be solved explicitly for these quantities:

[log[|6* — & — log ||€* — &ml| ]/ log o,
1€ = &I / (Ax)P.

These two scalar metrics quantify the global convergence characteristics of a
given numerical algorithm.

p

4 (46)

3.2.2 1-D Global Spatial Convergence, No Exact Solution

As in §2.1.2, we again assume that we do not (or, perhaps, cannot) know the
exact solution £* at any location. Such is the case in calculation verification,
as mentioned above. Egs. 44 and 45 now form a system of two equations in
three unknowns: A, n, and the unknown solution value £*. Without the exact
solution, we cannot evaluate the norms on the LHS of these equations. As in
the pointwise case, we must use an approximation to the exact solution, which
we take to be the solution on a fine grid; using this solution, we are effectively
characterizing the self-convergence of the underlying algorithm. In this case, we
modify the standard convergence Ansatz of Eq. 43 to be

€ = &l = A (Az)” + o (Azi)") . (47)
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That is, we substitute {; for £* in Eqgs. 44 and 45. Those equations form a
system of two equations in the two unknowns A4 and p. That system has the
solution given as:

p = [logllgs — &ll —log s — &mll] /log o,

(48)
A 165 = &l / (Az)".

3.2.3 Comment: Identical Space-time Locations and Timesteps

The issues raised in §§2.1.4 and 2.1.5 apply as well in the present case of global
convergence analysis. Specifically, the computed data being analyzed must be
at locations and times that are identical to (approximately) machine precision;
otherwise, the convergence analysis can produce meaningless results. Addition-
ally, the underlying assumption is that the spatial discretization and timestep
yield temporal errors that are negligible compared to the spatial errors in all
computed solutions. A conservative strategy by which this may be achieved is
to keep the timestep identical and constant for all simulations. Refer to §2.1.5
for a further discussion of these issues.

3.3 Global Temporal Convergence Analysis in 1-D

The global analysis in the previous section can be combined with the temporal
convergence analysis of §2.2 to obtain global temporal convergence parameters.
This analysis is based on the assumption that the the spatial error dominates
the temporal error for the algorithm and discretization parameters chosen. In
the next two subsections, we present the results for the convergence parameters
without derivation.

3.3.1 1-D Global Temporal Convergence, Exact Solution Known

If an exact solution is known, then the analysis outlined in §2.2.1 can be followed
to obtain the results in this case. We provide the following results without
derivation:

[log ([1€" = &ell = &) —log (116" — &ml[ — &) ] /log T,

(49)
(llg" = &ell = £2) / (At)*.

(SN IS
1l

3.3.2 1-D Global Temporal Convergence, No Exact Solution

If an exact solution is not known, we use a solution on a fine grid as the fidu-
cial exact solution and modify the error Ansatz accordingly. This leads to the
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following expressions for the convergence parameters:

[log ([1¢/ — €°|| — £5) — log ([|€7 — €™|| — £7) ] [ log T,
(¢! — ¢l —€2) / (At)?.

=
I

(50)

3.4 Global Spatio-temporal Convergence Analysis in 1-D

As in the pointwise case, the analysis for simultaneous global spatio-temporal
convergence is significantly more complicated than the previous cases. The anal-
ysis for this case can be derived following the procedure for the corresponding
pointwise case, given in §2.3.

4 Pointwise Convergence Analysis in n-D

The analysis presented in §2 extends naturally to higher spatial dimensions. For
such higher dimensional cases, we consider a variable £ computed on a given
uniform, logically rectangular grid, with zoning Awz;, Ayj, ..., and uniform
timestep At;. An example of this case is a 3-D Eulerian hydrocode on a uniform
mesh. The fundamental Ansatz of pointwise convergence analysis is again that
the difference between the exact and computed solutions can be expanded as a
function of the spatial and temporal zone sizes:

& =& = AL (Az)™ + Ap (Ayy)™ + -+ B (A)

+o((Aw) Ay, (AW, (51)
where £* is the exact value; féj,.. is the value computed on the grid of spatial
zone sizes Az;, Ayj,..., and timestep At;; Ay, Asa,...are the spatial conver-
gence coefficients; p1, pa,...are the spatial convergence rates; B is the temporal
convergence coefficient; and g is the temporal convergence rate. Consistent with
the preceding exposition, this assumption presupposes that the constant error
term is absent and that the mixed spatio-temporal terms are negligibly small.
4.1 Pointwise Spatial Convergence Analysis in n-D

We here restrict the above Ansatz to spatial convergence only under the assump-
tion that the spatial error is much greater than the temporal error. Suppressing
the temporal index [, the following Ansatz obtains:

£ - 55]‘... = Ay (Az))" + Ay (Ay;)P? + -+
+ o((Am)p1 , (Ay;)P? ,...,) ) (52)
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4.1.1 Uniform Variables, Differencing, and Zoning

In the case that (1) the independent variables represent fundamentally identical
quantities, (2) the differencing in each of these variables is identical, and (3) the
calculations are conducted on a spatially uniform grid (i.e., Az; = Ay; = ---),
significant simplification occurs. For example, in the case of an algorithm for
discretized equations formulated on a 3-D Cartesian grid, (1) each of the coor-
dinate directions has the same units, (2) the equations are typically differenced
in an identical fashion in each independent spatial variable, and (3) calculations
can be run on a spatially uniform grid. Under these assumptions, the difference
between the exact and computed solutions depends only on the grid spacing,
which is identical in each direction. The above expansion can be compressed
into the Ansatz of Eq. 3, viz.,

¢ -l = A (Aa) +o((Aw),). (53)
The analysis presented in §2.1 applies in this case.

4.1.2 Non-uniform Variables, Differencing, or Zoning

In the case that (1) the independent variables represent fundamentally different
quantities, or (2) the differencing in each of these variables varies, or (3) the
calculations are conducted on a spatially non-uniform grid (e.g., Az; # Ay;),
then the above simplification cannot be assumed. For example, in the case of
3-D spherical coordinates, although the differencing in each independent vari-
able may be virtually identical, the zoning almost always differs in the various
coordinates, i.e., Ar # Af # Ap. Properly, therefore, a full analysis using all
independent variables must be performed.

To illustrate this situation, we consider the case of two independent variables,
x and y. The Ansatz of Eq. 52 assumes the following form:

€ =l = A (Aag) + Ay (Ayy)"™ + o (Awe) (Ay;)*) . (54)

Two separate analyses result, depending upon whether an exact solution is or
is not available.

4.1.3 Example: 2-D Non-uniform Case, Exact Solution Known

In this case, Eq. 54 contains four unknown quantities: A, p1, Az, and ps.
The following derivation is analogous to that given in §2.3.1 for spatio-temporal
convergence. A nonsingular system of four results, each satisfying Eq. 54, is
obtained by using solutions computed with the following pairs of spatial zoning;:
{Az, Ay}, {Az/o1, Ay}, {Ax, Ay/os}, and {Ax /o1, Ay/os}. From the Eq. 54,
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these solutions satisfy the following equalities:

& -4 = A (Am)pl + Az (Ay)P? +-- ]

€A Bofn )+ Az (B (55)
=& = A (Ax)” +A2 (Ay/og)?? +---,

& —&=A (Aﬂc/Ul) + Az (Ay/o2)” +--

These equations form the system of four equations in the four unknown A;, p1,
Az, and py. The subsequent algebra can be simplified somewhat by considering
the following linear combinations of the first and second, and first and third of
these equations:

E—&=(1-0") A (A2)" +--- (56)
G—&=(1-0"") A (Ay)” +---. (57)

We consider the system of four equations given by the first and last equations
in Eq. 55 together with the above two equations. These relations are considered
to depend on the variable a = [aq, as, as, a4]T = [Al,pl,Ag,pg]T:

fi(a) = a1 (Az)™ + az (Ay)™ — ("= &) =0
fa(a) = o1 ap (Ax)™ + oy “ag (Ay)™ — (&= &) =0,
f3(a) = (1—07™) a1 (Az)* —(—&) =0
fa(a) = (1—03%) az (A)™ — ( ) =0.
(58)
The typical method of solution of the set of nonlinear equations f(a) = 0 is
Newton’s method or some variant thereof. The basic Newton iteration scheme is
given in Eq. 26. The required Jacobian Of /da, the inverse of which is typically
evaluated numerically, is given below for the above set of equations:

(Az)e a1 (Az)** log Az (Ay)™ az (Ay)™ log Ay
R e L s
e LR e v B :
0 0 (1= 05%) (Ay)™ T((?g):}gg)j‘;lgoif
(59)

One difficulty involved in solving Eq. 58 is assigning an initial guess that is
within the domain of convergence of the iteration. An additional issue is the
possibility of obtaining multiple (i.e., nonunique) solutions to this set of nonlin-
ear equations.

These issues, which must be dealt with on a case-by-case basis, illustrate
the complications inherent to this approach. In particular, these aspects have
conspired to preclude the writing of software sufficiently general to automatically
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perform this analysis, which, consequently, is rarely pursued in practice. As
suggested by this complexity, we are unaware of any published results along
these lines. Nonetheless, analysis of this nature would be required to rigorously
demonstrate convergence in the case of non-uniform variables, differencing, or
zoning,.

4.1.4 Example: 2-D Non-uniform Case, No Exact Solution

In this case, Eq. 54 contains five unknown quantities: A, p1, As, p2, and the ex-
act solution £*. The following derivation is analogous to that given in §2.3.2 for
the 1-D spatio-temporal case. A nonsingular system of five results, each satisfy-
ing Eq. 54, may obtained by using solutions computed with the following pairs
of spatial zoning: {Az, Ay}, {Ax/oy, Ay}, {Ax, Ay/os}, {Ax/o1, Ay/os}, and
{Ax/a?, Ay}. From the Eq. 54, these solutions satisfy the following equalities:

—bi= A (A" + Ay (Ay)” +

=& =M (Am/crl)pl + Ay (A 4,

& —& = A (Ax)"™ + Ay (Ay/oa)?? +---, (60)
& -t = A (Ax/al)pl + Ay (Ay/oy)?? +- -

& =& = A (Az/od)” + Ay (Ay)P 4+,

These equations form the system of five equations in the five unknown Aj,
p1, Az, p2, and £*. The subsequent algebra can be simplified somewhat by
considering the following linear combinations of the first and second, first and
third, and first and fifth of these equations:

L—&=1—0/") A (A)™ +--- (61)
G—&=(1-07) A (Ay)”> +--- (62)
&= (1-0™) A (A2)" + - (63)

Consider the system of five equations given by the first and last equations in
Eq. 60 together with the above three equations. These relations are considered

to depend on the variable a = [a1, as, a3, aq, a5]T = [Al,p1,A27p27§*]T

fi(a) = a1 (Az)* + az (Ay)™ — (a5 —&1) =0,
fa(a) = o7 a; (Ax)™ + oy “az (Ay)™ — (a5 — &) =0,
fs(a) = (1-0,") a; (Az)™ —(&—-&) =0,
f4(a) = (1 — 0’2 4) as (At)a4 - (63 —51) = 0
fs(a) = (1—07%%) a1 (Az)™ — (& — &) =0,

As mentioned in the previous section, Newton’s method can be used to solve
this nonlinear set of equations. The Jacobian of this set of equations is more
complex than in the previous case; due to the algebraic complications, further
details are omitted. This derivation illustrates the even greater complexity of
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this case and provides the basis by which to implement this analysis, for which,
as in the previous subsection, we know of no published results.

4.1.5 Comment: Identical Space-time Locations and Timesteps

The caveats and assumptions raised in §§2.1.4, 2.1.5, and 3.2.3 hold as well
in the multidimensional case. Specifically, the computed data being analyzed
must be at locations and times identical to (approximately) machine precision;
otherwise, the convergence analysis can produce meaningless results. Refer to
those sections for a more complete discussion.

4.2 Pointwise Temporal Convergence Analysis in n-D

The analysis provided in section 2.2 for pointwise 1-D temporal convergence
properties translates directly into temporal convergence characteristics in the
n-dimensional case. Recall that the results of that analysis are based on the
assumption that the spatial error dominates temporal error. In the n-D case,
one must account for the higher dimensional spatial errors in the term &, in
Eq. 19. Once this difference is accounted for, however, the resulting expressions
for the convergence parameters in Egs. 20 and 21 remain identical.

4.3 Pointwise Spatio-temporal Convergence Analysis in
n-D

Adding temporal dependence further complicates the analysis for n-dimensional
convergence. Adding temporal variability to the examples given in §4.1 increases
both the algebraic dimensionality and associated solution complexity.

In the case of uniform variables, differencing, and zoning (§4.1.1), the analy-
sis reduces to that of the 1-D spatio-temporal analysis, discussed in §2.3; recall
that this case does not have a closed-form solution. For non-uniform variables,
differencing, or zoning, the analysis of §4.1.2 is further complicated yet. For
example, the analyses discussed in §§4.1.3 and 4.1.4 are increased by one di-
mension, leading to larger sets of simultaneous nonlinear equations, which do
not have closed-form solutions. One can derive the relevant equations, which
we do not present, by following the procedures given in those sections.

5 Global Convergence Analysis in n-D

In analogy with the 1-D analysis of §3, we now make the global convergence
analysis Ansatz that the norm of the difference between the exact and computed
solutions can be expanded as a function of the spatial and temporal zone sizes:

167 = &ij. |1 = Av (Da)™ + Az (Ayy)™ + -+ B (At)*
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o((Az)™ , (Mg ... (Aw)T),  (65)

where, again, £* is the ezract value; §Zl-j_” is the value computed on the grid
of spatial zone sizes Ax;, Ayj,,. .., and timestep At;; A;, As,...are the spatial
convergence coefficients; p1, pa,...are the spatial convergence rates; B is the
temporal convergence coefficient; and q is the temporal convergence rate. We
again neglect the constant and mixed error terms in this assumption regarding
the form of the error.

5.1 Definition of Norms in n-D

The definitions given in section 3.1 extend naturally to higher dimensions.
Specifically, the definition for the L, functional norm of the function f de-
fined on the set 2 € R" is

1, = Lz;d"x|f<x>w}1/p, (66)

where the differential notation d"x is used to indicate that the argument x is
an n-vector, i.e., x € R". Based on this definition, the L, Lo, and L., norms
are defined as

£ thMMﬂwu (67)

fll = /Wﬂﬂ@P,mﬂ (68)
Uflle = max|fGol. (69)

Note that the Lo, norm is independent of any integral.

We illustrate the multidimensional case by considering the case n = 2. In
this case, Q = { (z,y) | (z,y) € [a,b] X [¢,d]}. Assume that there are N, points
z;, i=1,..., Ny, in [a,b], and that there are N, points y;, j =1,..., Ny, in
[c,d]. Let each of these points be the center of a zone of area Axz;Ay;. Then,
the simplest quadrature scheme is to approximate the the 2D integral as follows:

N, Ny
/d2xg /dx/dyg:):y : ZZQ (x:,y5) Ax; Ay; . (70)

i=1 j=1

With this assumption, the L; and Ly norms become:

N, Ny
Il = D> If (i y))| Aw Ay, (71)
i=1 i=1
Nm Ny
fll2 = |f (@i, y5)|* Az Ay (72)
i=1 i=1
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For uniform zoning, Az; = Az = (b—a)/N, and Ay; = Ay = (d—c¢)/N,, and
the above approximations simplify further:

N.T, Ny
1l = Awdy Y > |f(zy)l, (73)
i=1 j=1
N, Ny
1fll: = (|AzAy > Y [flanyy)? (74)
i=1 j=1

These cases have obvious generalizations to n-dimensional functions.

5.2 Global Spatial Convergence Analysis in n-D

Assuming the spatial error is dominant, we restrict the global Ansatz to spatial
convergence only, suppress the temporal index [, and obtain

[|€* — & || = A1 (Axy)P* + Ag (Ay;)P? + -
+o((An)™ Ay, L) (1)

As in the pointwise global spatial analysis in n-D as described in §4.1, the subse-
quent analysis varies as to whether (1) there are uniform variables, differencing,
and zoning, or (2) at least one of these criteria is not met.

5.2.1 Uniform Variables, Differencing, and Zoning

In the former case, the spatial multi-dimensional case reduces to the 1-D case,
the analysis of which is given in §3.2. In this case, the analysis is based on the
assumption that the above Ansatz reduces to

6" = €ll = A (Aa)? + o (A2)"), (76)

where we assume that Az; = Ay; = --- = Az. By virtue of the assumed differ-
encing and zoning, the dependence of the full error Ansatz of Eq. 75 contracts
down onto the single independent spatial variable. For the case of a known exact
solution, there is an asymptotically valid expression for both the convergence
rate p and the convergence coefficient A; if the exact solution is not known,
one approximates the exact solution with a solution computed on a fine grid to
obtain an estimate of the convergence parameters.

5.2.2 Non-uniform Variables, Differencing, or Zoning

In the case of non-uniformity in the variables, differencing, or zoning, the above
simplifications do not obtain, and a full, multi-variate analysis, as described in
§64.1.2, 4.1.3, and 4.1.4, must be undertaken. A complicated analysis obtains
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in this case, independent of whether or not an exact solution is available; if not,
then a finely zoned computed solution is used as the fiducial “exact” solution
and calculation verification analysis can be performed.

5.3 Global Temporal Convergence Analysis in n-D

As for the pointwise temporal convergence analysis in n-D discussed in §4.2,
the case of global temporal convergence in n-D reduces to the 1-D temporal
case, since there is no spatial variations in the computed solutions. The global
analogue of the pointwise procedure outlined in §4.2 can be carried out following
the 1-D global spatial convergence analysis given in §3.2. That analysis, based
on different spatial grid sizes in 1-D, translates directly into the present case by
exchanging spatial and temporal dependences, so that one uses normed values
evaluated with different (uniform) timesteps and identical spatial grids in all
simulations.

5.4 Global Spatio-temporal Convergence Analysis n-D

As in the pointwise n-D case, the analysis for simultaneous global spatio-temporal
convergence is significantly more complicated than the previous cases. The de-
tails of this case follows naturally from the analysis given in §2.3, with suitable
generalization.

6 Convergence Analysis with Arbitrarily Struc-
tured Data

Convergence analysis of non-uniformly structured data, such as might be ob-
tained from Lagrangian [4], alternating Lagrangian-Eulerian (ALE) [13], or
adaptive mesh refinement (AMR) [15] hydrodynamics code, presents a signifi-
cantly knottier problem than the uniformly structured data heretofore consid-
ered. In this section, we discuss some options for performing such an analysis.
The most straightforward manner by which to perform this analysis is to in-
terpolate the non-uniformly structured data onto a uniformly zoned mesh. That
is, one transforms the data to a form that is consistent with the convergence
analysis algorithm that has been developed. This approach introduces the issue
of remeshing data, which, while relatively straightforward for smooth data, is
significantly more perilous for discontinuous data (for which conservative re-
zoning strategies may be appropriate [14]). We suspect—although we offer no
explicit proof—that, if the remeshing is of order greater than or equal to that of
the convergence, then this procedure should produce valid convergence results.
Alternatives to this approach follow from revisiting the fundamental notions
underpinning convergence analysis. Recall that the entire convergence analysis
procedure is based upon the Ansatz that the error in the computed solution
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varies as some power of the discretized grid size (see, e.g., Eq. 1). This equation
codifies the intuitively appealing assumption, made a priori, that the discrep-
ancy between the exact and computed solution is related to the resolution of the
computed solution in some prescribed, direct manner. This assumption follows,
of course, from the fundamental numerical analysis of the solution algorithms
for the underlying equations (ODEs and PDEs). This notion can be generalized
to the concept that the solution error is related to the resources used to obtain
that solution in a prescribed, inverse manner. That is, a convergent situation is
characterized as one for which the greater the resources applied to the solution,
the smaller the solution error. We expand upon these ideas in the following
subsections, restricting our consideration to the canonical case of spatial con-
vergence analysis in 1-D; these notions can be naturally extended to temporal
convergence and higher spatial dimensions.

6.1 1-D Convergence Analysis of Arbitrarily Data Assum-
ing Direct Dependence

For the case of 1-D unstructured data (with Lagrangian, ALE, or AMR grids
being the tacit archetypes), in which any temporal dependence is neglected, we
again assume spatial error dominates and make the Ansatz that

€ — & = A (A7) + 0((Air)p> , (77)

where, as before, £* is the exact value, &; is the value computed on the grid with
characteristic spatial zone size AZ, A is the spatial convergence coefficient, and
p is the spatial convergence rate. Here we explicitly assume that the inaccuracy
of the solution depends only on the characteristic scale used in the calculation,
AZ. There are many different ways this characteristic value may be defined; in
the following, we suggest the two most obvious. This quantity may be defined
as the mean zone size:

- 1
A = N Z Az, (78)

where N, is the total number of zones in the mesh; this value has obvious
higher-dimensional analogues. Alternatively, AZ may be defined as the mini-
mum zone size:

AZ = min Az, (79)

The minimum mesh spacing in 1-D generalizes naturally to higher dimensions:
for AMR meshes, the corresponding quantity is obvious, while for more general
(e.g., Lagrangian) meshes, this quantity could be taken, e.g., in 2-D as the
square root of the zone with minimum area and in 3-D as the cube-root of the
zone with minimum volume.
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For the solution on a coarse grid, denoted with the subscript ¢, AZ. = A%,

and Eq. 3 implies
& —te=AAD)"+-- (80)

The machinery developed in the previous sections then applies. We omit the
details and provide the following formulas for (generalized) convergence metrics,
viz., the convergence rate p and convergence coefficient A.

In the case of an available exact solution £*, the pointwise estimators of
convergence are:

p = [log[¢r—&] —log[¢" —&n]]/logs, 1)
A = [ =&/ (Ax)F.
The corresponding global convergence metrics are:
p = [logll¢* — &l —log|l¢* = &mll]/loga, (&)
A = lgF =&l (AD)”.

In the above expressions, ¢ is the ratio of the characteristic zone sizes, i.e.,
o = AZ./AZ,,. When no exact solution is available, the fundamental Ansatz
is modified, resulting in replacement of the exact solution ¢* in Egs. 81 and 82
with a fine-grid solution &;.

The convergence metrics obtained from Egs. 81 and 82 may differ from those
obtained from the uniform-grid case, even for identical problems. The error
Ansatz of Eq. 3 is a relation based on a uniform cell size, Az. In contrast, the
convergence properties assumed in Eq. 77 are related to the solution algorithm
behavior on the scale of some characteristic zone size, AZ. The convergence
metrics obtained from these two assumptions may be quite different for simula-
tions of the identical problem computed on uniform and non-uniform grids. We
know of no mathematical foundation for making a comparison between uniform
and non-uniform convergence metrics; nevertheless, these two verification anal-
yses should provide identical convergence metrics in the limit as the two zone
sizes approach a uniform value.

Using the mean or minimum zone size represent only two of many possible
characterizations for the convergence behavior. In addition to using either of
these length scales for arbitrarily structured grids, an additional characteris-
tic scale is obtained by multiplying the mean length scale by the ratio of the
minimum to maximum grid spacings:

AT = Axmean X (A.Z‘mln/Aﬂfmax) . (83)

The convergence metrics obtained from this Ansatz may differ from others, even
for the same problem. Further investigation for optimally representative error
Ansdatze (which may be problem-dependent) and the relationship between the
corresponding convergence metrics is warranted.

25



6.2 1-D Convergence Analysis of Arbitrarily Data Assum-
ing Indirect Dependence

An alternative viewpoint is to assume that the solution error varies inversely as
the amount of resources used in the calculation. Intuitively, convergent behav-
ior is characterized by a more accurate solution on a finely zoned calculation
than on a coarsely zoned calculation, i.e., from a calculation that uses more
resources. For the case of 1-D unstructured data in which temporal dependence
is neglected, this approach suggests the Ansatz that

& —&=A /NP +o((1/N)"), (84)

where N is the total number of zones used in the calculation. This assumption
bears similarity to the approach used in the finite element community, in which
the the solution error is assumed to vary inversely with the degrees of freedom of
the solution method (so that a convergent solution with more degrees of freedom
implies smaller error). The previous analysis may be applied in this case, too,
resulting in the following convergence metrics:

p o= [logler —&] ~logle” —&nl]/logd, )
A = [¢F—¢&] NI
The corresponding global convergence metrics are:
p = [logllgr — &l —log[|€" — &mll] /loga, )
A = ||g" = &lINE.

In these expressions, ¢ is the ratio of the number of zones in the medium mesh
to the number in the coarse mesh, i.e., 6 = N,,/N. > 1. As in the previous
case, when no exact solution is available, the fundamental Ansatz is modified,
resulting in replacement of £* in Eqgs. 85 and 86 with ;.

As in the previous section, the error Ansatz of Eq. 84 represents only one
possible description of convergence behavior. The convergence metrics obtained
using this assumption may differ from the uniform-grid case, even for identical
problems. Convergence metrics obtained from Eqs. 85 or 86 should approach
the corresponding values for the uniform-grid case as the zone sizes approach
a uniform value. Further investigation of the various error Ansdatze and the
relationship among convergence metrics is warranted.

7 Examples

In this section, we present examples of the foregoing analysis. Specifically, in
§7.1 we present analysis of a 1-D uniform grid coupled physics problem, in §7.2
we analyze a 1-D nonuniform grid single physics problem, and in §7.3 we present
verification results for a 3-D uniform grid single physics problem.
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7.1 1-D Uniform Grid Case

In this section, we demonstrate the verification metrics described above for
the case of a 1-D problem coupling hydrodynamics coupled with radiation-
conduction on a uniform grid, using an Eulerian formation of the underlying
equations. The problem considered is that originally published by Reinicke and
Meyer-ter-Vehn (RMtV)[18]. We provide a brief description of the problem
and analysis and refer to [9] for more information regarding this problem, its
solution, and convergence analysis of it.

The set of evolution equations governing this problem is given in physical
space as

ot +upr+ o (rmt u)r =0, (87)
1

ut+uur+;pr :03 (88)

ertue,— L (ptup) = —— (1771S), (59)
p2 pT"_l r

where r is the spatial variable, p is the density, u is the velocity, p is the
pressure, e is the specific internal energy, S = —x T, is the heat flux with
conductivity x, and T is the temperature. The parameter n = 1, 2, or 3 is
the dimensionality index for one-dimensional planar, cylindrical, or spherical
geometry, respectively.

Three additional assumptions are made. First, the polytropic gas equation
of state holds, so that

(v=1)e=p/p=GT, (90)

where « is the adiabatic exponent (equal to the ratio of specific heats in this
case) and G is the product of the specific heat at constant volume ¢, and the
Griineisen coefficient I'. Second, the heat conductivity x has the form

X = x0p*T" where a<0 and b>1. (91)

Third, the flow is evolving into a cold (i.e., T'= 0) gas with a power-law initial
density profile given by

po(r) o< r’, (92)

where k is a negative real number.

We consider solutions to these equations for the case of a spherically sym-
metric, blast-wave-like problem with an initial delta-function energy source that
is located at the origin. The initial energy is assumed to be of sufficient mag-
nitude so that conduction dominates hydrodynamics, i.e., so that the thermal
front leads the hydrodynamic shock. As shown by RMtV, the solution of the
PDEs in Eqs. 87-89 reduces to the solution to a set of coupled nonlinear ODES;
see [18] for details. The solution to this problem contains two discontinuities:
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at the heat front and at the hydrodynamics shock. These discontinuities make
obtaining an accurate solution to the reduced ODEs a challenge; this hurdle,
however, can be overcome, as discussed in [9]. That reference contains a de-
scription of the procedure by which a solution of the reduced ODEs is related
to a hydrocode solution to the full PDEs; this correspondence procedure, while
straightforward, requires careful attention to solution details.

50 \\\:\\\:\\\:\\\:\\\|1E+2

m
[\)
[RMtV-RAGE Density|

_2(} \\\i\\\i\\\i\\\i\\\l
0 02 04 06 08 1

Figure 2: Density results for the RMtV problem described in [9, 18]. The solid
lines are the Crestone project code results with 3200 points on [0, 1]; the dashed
lines are the RMtV reduced-ODE results at the same locations as the hydrocode
results; the dotted lines, plotted against the right axes, are the absolute differ-
ences between the solutions.

Figure 2 contains a plot of the “exact” (i.e., ODE-based) and hydrocode
solutions for the density as a function of radius at for the RMtV configuration
described in [9, 18]. The solid line in this figure shows the Crestone project
code results with 3200 equally-spaced zones on the interval 0 < r < 1, the
dashed line represents the solution to the reduced RMtV ODEs, and the dotted
line (plotted against the right ordinate) gives the absolute difference between
the two solutions. As shown, the greatest discrepancy is at the hydrodynamic
shock (located at r = 0.45).

Figure 3 contains a plot of the global L; norm of the difference between
the “exact” (i.e., ODE-based) and hydrocode solutions for the density of the
same RMtV configuration. Since this is a three-dimensional problem that is
spherically symmetric, the L; norm of the errors is evaluated based on Eq. 67;
due to the symmetry, however, these integrals analytically reduce to integration
over radius (r) only. The abscissae in this plot are (i) the cell size (bottom)
and (ii) the number of cells per unit coordinate interval (top). The convergence
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Figure 3: Errors in the density, reckoned with the L; norm on a 1-D spherically
symmetric mesh, for the RMtV problem results. The solid dots are the L; error
(see Eq. 67) plotted against the cell size (bottom abscissa) or, equivalently, the
number of zones per unit coordinate (top abscissa).

rates corresponding to these errors are given in Table 1, which shows that the
positive convergence rates on the coarser grids decreases to effectively zeroth-
order at the finger grids. This lack of convergence on the finer zones is related to
the non-zero error in shock position evident in Fig. 2. This error remains finite
under mesh refinement—hence the zeroth order convergence result suggested in
Fig. 3 and quantified in Table 1.

Cell Size 1072 [ 5x 1073 [ 25 x 1073 | 1.25 x 1073 | 6.25 x 1073

Cells on [0,1] | 100 200 400 800 1600

Ly Error 1.27 0.908 0.722 0.656 0.658
100 — 200 | 200 — 400 | 400 — 800 | 800 — 1600

Ly Convergence Rate 0.49 0.33 0.14 —4.2x1073

Table 1: L; norm of the density errors at different grid resolutions (top) and
associated convergence rates (bottom) for the RMtV problem.
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7.2 1-D Non-Uniform Grid Case

In this section, we demonstrate the verification metrics proposed above for the
case of a 1-D pure hydrodynamics calculation on a non-uniform grid, using a
Lagrangian formation of the underlying hydrocode equations. The numerical
method is taken from the compatible Lagrangian method of Caramana et al. [4]
using a flux-limited artificial viscosity.

We examine the results on Sod’s shock tube problem [23] using four different
mesh resolutions: 100, 200, 400 and 800 zones on the unit interval. Sod’s shock
tube problem is defined by and 8:1 jump in density and a 10:1 jump in pressure
in an initially stationary v = 1.4 polytropic gas. We take the higher pressure and
density equal to unity and compute the solution to a uniform time of ¢t = 0.2.
The exact solution is available using the techniques described by Gottlieb and
Groth [6].

While the calculations are compared at exactly the same temporal location,
the Lagrangian mesh does not allow the solution to be compared at identical
spatial locations. To overcome this difficulty, the mesh locations of the La-
grangian mesh are used to compute the analytic solution at the identical set of
locations. For the L; norm, the error must be computed as weighted by the
mesh spacing, because that spacing is nonuniform. For example, the L norm is
computed according to Eq. 39. These norms are used to infer the convergence
rate, which is computed according to Eq. 82, where the mean zone size is used.
That is, the value of AZ in the error Ansatz is taken to be the length of the
total computational interval divided by the total number of zones.

Table 2 shows the L; errors as computed using the actual and simulated
densities. These values indicate that the code converges at approximately first-
order in this measure. These results are entirely consistent with other shock
capturing methods for this problem. The plots in Fig. 4 show the actual solu-
tions for density and the corresponding errors at each resolution. In the density
plot, the exact solution is a solid line; in both the density and error plots, finely
dashed lines corresponding to the solution with 800 zones on the unit, with in-
creasingly more coarsely dashed lines representing solutions with 400, 200, and
100 zones. The error plot shows that the greatest error is incurred at the shock,
with the contact discontinuity and the rarefaction wave (specifically, the head
and tail thereof) being the prime additional error sites. Together, these plots
demonstrate that error quantification reveals much more information than can
be discerned from the plot of the computed solution alone.

This analysis demonstrates that verification of a code against an exact so-
lution on a nonuniform mesh can be a matter of slight complication over the
uniform case. On the other hand, conducting self-convergence analysis may
considerably more difficult because the data are at differing locations.
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Figure 4: The left image shows the solutions compared with the exact solution,
and the right image shows the errors in the same set of calculations.

7.3 3-D Uniform Grid Case

In this section, we demonstrate the verification metrics proposed above for the
case of a 3-D pure hydrodynamics calculation on a uniform grid, using an Eu-
lerian formation of the underlying equations. We consider the Sedov problem
for a point-blast in a uniform medium [2, 22, 24]. We offer a brief description of
the problem and analysis and refer to [10] for more information regarding this
problem, its solution, and convergence analysis based on it.

The set of evolution equations governing this problem is given in physical
space as

pr+upr + = (ri-t “)r = 0, (93)
Initial Cell Size 102 5x 1073 25 x107% | 1.25 x 1073
Cells on [0, 1] 100 200 400 800
L, Error 5.76 x 1073 | 290 x 1073 | 1.47 x 1073 | 7.49 x 1073
100 — 200 200 — 400 400 — 800
Ly Convergence Rate 0.99 0.98 0.97

Table 2: Ly norm of the density errors at different grid resolutions (top) and
associated convergence rates (bottom) for the Lagrangian Sod problem.
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Figure 5: Density field for the Sedov problem described in [10, 22] as computed
by the Crestone project code results with 1.728 x 106 cells in [0, 1.2] x [0, 1.2] x
[0,1.2].

ut+uv,«+%pr = 0, (94)
(p/p’y)t +u (p/p'y)r = 0, (95)

where p is the density, u is the speed, and p is the pressure. The parameter
j =1, 2, or 3 is the dimensionality index for one-dimensional planar, cylindrical,
or spherical geometry, respectively. In the spherical case we consider, u is
magnitude of the radial velocity. Implicit in these evolution equations is the
assumption of a polytropic gas equation of state (Eq. 90). The flow is assumed
to evolve into an initially zero-pressure, uniform (constant) density gas. The
more general case of an initial power-law density is discussed in [22, 10].

We consider solutions to these equations for the case of a spherically sym-
metric problem with an initial delta-function energy source at the origin. As
shown by Sedov [22], the solution of the PDEs in Eqgs. 93-95 reduces to explicit
expressions involving polynomial and transcendental functions; evaluation of the
parameters involved in that solution, however, does require numerical quadra-
ture. A description of the closed-form solution to this problem, together with a
pseudo-code algorithm by which to obtain solutions, is given in [10].

Figure 5 contains a plot of the Crestone project code results for this prob-
lem run in full 3-D geometry with 120 equally-spaced zones on the domain
{(z,y,2)| (x,y,2) €[0,1.2] x [0,1.2] x [0,1.2]}. The values near a radius of unity
correspond to the shock position. The computed solution is for the 3-D Cartesian-
geometry problem; by the symmetry of the initial conditions, the governing
equations are identical to the 1-D spherically symmetric form of the PDEs given
in Egs. 93-95. Figure 6 shows a plot of the global L; norm of the difference
between the “exact” and hydrocode solutions for the density for this problem.
Since this is a genuinely three-dimensional problem, the L norm of the errors is
calculated according to the full 3-D integral form of Eq. 67. The abscissae in this
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Figure 6: Errors in the density, reckoned with the L; norm on the 3-D mesh, for
the Sedov problem results. The solid dots are the L; error (see Eq. 67) plotted
against the cell size (bottom abscissa) or, equivalently, the number of zones per
unit coordinate (top abscissa).

plot are (i) the cell size (bottom) and (ii) the number of cells per unit coordinate
interval (top). The convergence rates corresponding to these errors are given in
Table 3, which shows positive convergence rates across the entire domain con-
sidered. This problem indirectly illustrates the challenge of multidimensional
verification problems: to perform the 3-D calculations needed for this analysis
requires considerable computational resources—and finer grid resolution would
require even more.

Cell Size 4x1072 2x 1072 1072
Cells on [0, 1] 25 50 100
Cells on [0,1] x [0,1] x [0,1] | 1.5625 x 10* | 1.25 x 10° 106
Ly Error 0.283 0.192 0.120

25 — 50 50 — 100
Ly Convergence Rate 0.56 0.68

Table 3: L; norm of the density errors at different grid resolutions (top) and
associated convergence rates (bottom) for the Sedov problem.
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7.4 Pointers to Other Examples

The problems considered in the preceding sections exemplify some aspects of
convergence analysis for the numerical solution of PDEs. Additional examples
are given in previously cited works [7, 8, 9, 10]. As the following references
(and the citations therein) suggest, there are additional examples of convergence
studies and verification analysis available in the literature.

No discussion of hydrocode verification is complete without reference to the
pioneering work of Roache, compiled in Roache [19]. This book offers a com-
plete introduction to verification analysis. A thorough discussion of conver-
gence analysis, with detailed descriptions of underlying assumptions and their
implications, is provided in the comprehensive report of Oberkampf & Tru-
cano [16]. This carefully written and researched work, which we recommend
highly, contains an extensive and valuable bibliography of relevant references
as well as a useful exposition on the complementary issue of code validation.
Further overview material is contained in the document summarizing a recent
ASCI/NNSA Verification Workshop [11]. Additional ASC-relevant examples
are given in [17]. Salari & Knupp [21] discuss the method of manufactured so-
lutions approach, which provides an avenue by which to ascertain convergence
properties for smooth problems in the absence of known exact solutions. Many
problems of interest, however, contain complex flow discontinuities; as pointed
out by Oberkampf & Trucano, such problems violate the foundational assump-
tion of solution smoothness, which affects the subsequent convergence analy-
sis. Theoretical aspects of this topic are addressed by Kimoto & Chernoff [12]
and Engquist & Sjogreen [5]. Practical aspects of the effects of shocks on the
convergence computed flows and how to quantify the subsequent behavior are
examined in the work of Roy [20].

8 Summary

In this note we have shown how to perform convergence analysis for verifying
algorithms for PDEs used in hydrocodes. This analysis plays a principal role in
code physics verification, which, as a component of verification and validation,
is one of the main tenets necessary for establishing credibility of a computer-
algorithm-based simulation process. We have derived explicit metrics, viz., the
values characterizing the convergence properties of an algorithm implemented
to obtain numerical solutions of discretized approximations to PDEs. These
metrics provide repeatable gauges that quantify the convergence of the software
implementation of the underlying algorithms. The process of evaluating these
metrics represents the essence of verification analysis.

The fundamental assumption of this analysis is that the error in the com-
puted solution varies as the computational cell sizes and timestep raised to some
power; these exponents are the convergence rates. The analysis provided herein
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can, however, also be applied to the analysis of more general algorithms and
physics, including but not limited to the convergence characteristics of solution
functionals (e.g., shock position). These quantities can be used as well in mesh
resolution studies in the absence of exact solutions; such calculation verification
is a critical component by which to quantify software behavior for complicated
configurations or complex equations (e.g., those of coupled physics).

The results for 1-D spatial convergence analysis are spelled out in detail in
82. The spatial error in PDE solutions typically dominates the temporal error,
so characterization of these properties is particularly important. Key results of
82 include: Eq. 6, which gives the pointwise convergence results when the exact
solution is known; Eqgs. 13 and 14, which give the pointwise convergence results
when the exact solution is not known; and Eq. 46, which gives the global con-
vergence rate when the exact solution is known. The approach to convergence
analysis of the analogous 1-D cases for temporal and spatio-temporal behavior
is also described, as are the higher-dimensional cases. As shown in §4.1.3, the
analysis of spatial convergence for the simplest higher-dimensional (viz., 2-D)
case leads to a set of complicated nonlinear equations that do not possess a
closed-form solution.

In §6 we describe approaches to convergence analysis on irregular, nonuni-
form meshes, as seen, e.g., in Lagrangian, ALE, or AMR meshes. We discuss
three different assumptions by which the solution error can be quantified in
these cases. The meaningful quantitative verification analysis of such cases is,
however, an open research topic. Our proposed approaches provide verifica-
tion metrics consistent with those provided elsewhere in this report; however,
future research may reveal more suitable gauges of code convergence in such
cases. Section 7 contains examples of this analysis method. Results are given
for convergence rates for different computer codes on single- and multi-physics
problems, and for both 1-D and 3-D simulations.

Using the methodology presented herein, one can implement a consistent
convergence analysis procedure by which to verify software implementations of
discrete numerical methods for the simulations of continuous phenomena.
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