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Abstract

In predicting hierarchical protein function annotations, such as terms in the Gene Ontology (GO),

the simplest approach makes predictions for each term independently. However, this approach has

the unfortunate consequence that the predictor may assign to a single protein a set of terms that

are inconsistent with one another; for example, the predictor may assign a specific GO term to a

given protein ('purine nucleotide binding') but not assign the parent term ('nucleotide binding').

Such predictions are difficult to interpret. In this work, we focus on methods for calibrating and

combining independent predictions to obtain a set of probabilistic predictions that are consistent

with the topology of the ontology. We call this procedure 'reconciliation'. We begin with a baseline

method for predicting GO terms from a collection of data types using an ensemble of discriminative

classifiers. We apply the method to a previously described benchmark data set, and we

demonstrate that the resulting predictions are frequently inconsistent with the topology of the GO.

We then consider 11 distinct reconciliation methods: three heuristic methods; four variants of a

Bayesian network; an extension of logistic regression to the structured case; and three novel

projection methods - isotonic regression and two variants of a Kullback-Leibler projection method.

We evaluate each method in three different modes - per term, per protein and joint -

corresponding to three types of prediction tasks. Although the principal goal of reconciliation is

interpretability, it is important to assess whether interpretability comes at a cost in terms of

precision and recall. Indeed, we find that many apparently reasonable reconciliation methods yield

reconciled probabilities with significantly lower precision than the original, unreconciled estimates.

On the other hand, we find that isotonic regression usually performs better than the underlying,

unreconciled method, and almost never performs worse; isotonic regression appears to be able to

use the constraints from the GO network to its advantage. An exception to this rule is the high

precision regime for joint evaluation, where Kullback-Leibler projection yields the best

performance.
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Introduction
The computational prediction of protein function can provide

an essential tool for the biologist, because many biological

questions are directly answered when we understand the role

of a protein in a biological process, how it interacts with other

proteins and DNA, and where in the cell it operates. Given the

limitations of current predictive methods, however, the pur-

pose of such technology cannot be to replace experimenta-

tion, but rather to assist the biologist either by directly

generating hypotheses to be verified experimentally or by

suggesting a restricted set of candidate functions that can

guide the exploration of promising hypotheses.

Our general strategy, which is similar to that of several other

groups that participated in the MouseFunc assessment [1],

involves first predicting protein function (that is, Gene Ontol-

ogy [GO] terms) on a per-term and per-data set basis and

then combining the predictions in a post-processing stage.

For the individual predictions, we employed the support vec-

tor machine (SVM) [2], using kernel methods to convert the

different data sources (sequence motifs, experimental pheno-

types, protein-protein interactions, differential gene expres-

sion levels, and orthology relationships) into a numerical

format appropriate for the SVM. Our focus in the current

paper, however, is not the SVM methodology per se, but

rather the methodology for combining per-term predictions.

Indeed, very little in our presentation hinges on the choice of

the SVM and kernel methods for the individual prediction.

Any method that can return a probabilistic estimate could be

substituted in place of the SVM.

Let us consider some of the general desiderata for any method

that yields predictions of protein function. First, we aim for

any such method to be consistent with the GO. Specifically, a

set of predictions is consistent with the GO if the predictions

increase in confidence (for example, in posterior probability)

as we ascend from more specific to more general terms in the

GO. For example, a protein that is predicted to be in the

nucleolus should also be predicted to be in the nucleus, and as

a result the confidence in the latter prediction should always

be higher. Second, we aim for such methods to be well cali-

brated, in the sense that the confidence assigned to a predic-

tion provides a good estimate of the prediction being correct;

in other words, we wish to construct confidence values that

can be interpreted as probabilities that a protein has a certain

function given the information provided by the data. Third,

and most importantly, we desire a method whose predictions

are accurate. To measure accuracy, we use two complemen-

tary metrics: precision (or positive predictive value), which

measures the fraction of predictions made that are correct,

and recall (or sensitivity), which measures the fraction of the

correct answers that are predicted. In this work, we fix four

specified recall values (R = 1%, 10%, 50%, 80%) and measure

the corresponding precisions.

In addition to these general aims, the quality of a prediction

method's output depends upon the particular prediction task

at hand. Therefore, in this work, we distinguish three predic-

tion tasks and define three corresponding modes of evalua-

tion: per protein, per term and joint annotation. In the per-

protein mode, for example, a developmental biologist has

determined a few genes that are activated by a particular reg-

ulator, and the biologist wants to understand which biological

process is regulated and how it relates to the phenotype

observed. Given a certain protein, a prediction for its function

is needed. In the per-term mode, for example, a drug designer

has determined which biological process is involved in a path-

ological condition and is now looking for a drug target in that

pathway. Given a function, a prediction for which proteins

have that function is needed. In the joint annotation mode,

for example, a bioinformatician is annotating a new genome

and wants to guarantee a high level of accuracy in the predic-

tions made. To achieve this goal, some proteins that are

harder to classify or some functions that are harder to predict

should be subject to a smaller number of predictions. In par-

ticular, if the confidence for all predictions can be estimated

on the same scale, then only the most confident predictions

should be considered, assigning proteins to functions. Given

protein-function pairs, correct associations have to be pre-

dicted.

To match these three different types of tasks, we propose

three performance evaluation modes: per protein, the aver-

age, across proteins, of the precision at a fixed term recall; per

term, the average, across terms, of the precision at a fixed pro-

tein recall; and joint annotation, the precision at fixed recall

for assignments of proteins to functions.

In addition to these three evaluation modes, our analyses fol-

low the distinctions used by Peña-Castillo and coworkers [1].

In particular, we consider separately the three ontologies that

comprise GO: biological process, cellular component and

molecular function. We also subdivide predictions into four

groups on the basis of the number of proteins assigned to a

GO term (3 to 10, 11 to 30, 31 to 100, and 101 to 300 proteins).

Overall, we consider 12 different protein function prediction

methods. These include the baseline, unreconciled predic-

tions, and three heuristic methods that return consistent

probabilistic predictions (that is, predictions that increase

numerically as we ascend the GO hierarchy). We also consider

four variants on the Bayesian approach first applied to GO

term prediction by Barutcuoglu and colleagues [3]. We con-

sider one discriminative method that extends logistic regres-

sion to the case of interrelated outputs. Finally, inspired by

the work of Wu and coworkers [4] for multi-class classifica-

tion, we also propose three methods, based on Kullback-Lei-

bler projections, that transform probabilistic values obtained

separately for each GO term into probabilistic values that

yield predictions consistent with the GO network topology.
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Given the large number of prediction methods considered

and the resulting multiple testing problem, we employ a two-

pass strategy to identify statistically significant trends. Before

testing the methods on the test set, we perform a preliminary

evaluation on a held-out portion of the training set. When we

draw conclusions about the various methods in our experi-

ments, we retain only conclusions confirmed to generalize to

the test set, which should be expected to be a more difficult set

than the held-out set, because the latter has exactly the same

distribution as the training set.

Following this strategy, we reach the following primary con-

clusions. Isotonic regression generally performs well across

evaluation modes, term sizes, ontologies and recall levels. In

particular, isotonic regression usually performs better than

the underlying, unreconciled logistic regression method. This

implies that reconciliation need not yield a decrease in per-

formance; indeed, the structure of the GO network can yield

valuable information that improves classification. Isotonic

regression also typically performs better than many other rec-

onciliation methods, which frequently yield reconciled prob-

abilities with significantly lower precision than the original,

unreconciled estimates. If the high precision regime of the

joint annotation mode is of interest, then the Kullback-Lei-

bler projection should be preferred, because it performs sig-

nificantly better than isotonic regression, and thus better

than logistic regression as well. This evaluation regime is of

particular interest because it yields predictions with the high-

est precision of all evaluation modes. Overall, the Kullback-

Leibler projection is a competitive reconciliation method. For

'small' GO terms - to which few proteins have been assigned -

this method also yields better performance in comparison

with all other methods.

Overall approachFigure 1

Overall approach. (1) A kernel matrix is computed for each available data type, and (2) these kernels are used to train one support vector machine (SVM) 
for each term and each data type. (3) The SVM predictions are combined and calibrated via a collection of logistic regressions. (4) Finally, the calibrated 
predictions are reconciled with respect to the Gene Ontology (GO) topology.
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Results
Independent predictions are frequently inconsistent

Our approach consists of four steps, schematized in Figure 1.

Initially, we consider only the first three steps, omitting the

reconciliation in step four. In the first step, each data set is

transformed into several 'kernel matrices'. The SVM algo-

rithm uses a generalized notion of similarity, known as a ker-

nel function, to implicitly map data objects (vectors, strings,

nodes in a graph, and so on) into a high-dimensional vector

space [5]. A kernel matrix is a sufficient representation of the

data for the SVM and is computed using the kernel function.

The ten data sets in the benchmark are summarized briefiy in

Table 1, and the corresponding collection of 31 kernel func-

tions is listed in Table 2. In most cases, we compute three ker-

nels: a linear kernel, a Gaussian kernel, and a kernel

specifically tailored to the given type of data. In addition, we

build four kernels that are linear combinations of the previ-

ously described ones. Details of the various kernel transfor-

mations are given in the Kernels section of Materials and

methods.

In step two, SVMs are trained for each GO term and kernel.

However, in order to use SVM outputs for a further learning

step, we need to simulate with training data the distribution

of SVM outputs on new data. This prevents us from using the

whole training set to learn just one SVM per term and per ker-

nel, because the distribution of scores that the SVM assigns to

the training and testing points differ. We therefore proceed as

in cross-validation, repeatedly holding out data on which the

SVM is tested and using the remaining training points to train

the SVM. Details of this procedure are given in the SVM train-

ing section in Materials and methods. We consider all terms

with 3 to 300 annotated proteins, leading to a total of approx-

imately 780,000 trained SVMs.

We use a logistic regression in the third step to produce indi-

vidual probabilistic outputs from the set of SVM outputs cor-

responding to one GO term. To handle missing data, we

cluster the held-out (or test) proteins into groups of proteins

with similar patterns of missing data, and we train a logistic

regression for each of these groups, following the scheme

described in the Missing data section in Materials and meth-

ods.

The assessment described in [1] was conducted in two stages:

a training phase where only labeled training data were avail-

able and a subsequent test phase in which unlabeled test data

were distributed to the participants. Although we performed

many of our analyses after the official training phase had

ended, we restricted our initial analyses to a held-out portion

of the training set, composed of a fixed set of 2,000 randomly

selected proteins.

We applied our three-step procedure to the held-out data set,

generating predictions across all three ontologies (2,931

terms) for each of the 2,000 proteins. Among the resulting set

of 8.83 × 106 parent-child term relationships, 10.96% are

inconsistent, and a significant number (4,645) of these incon-

sistencies - more than two on average per protein - are large,

with a difference in parent and child probabilities greater

than 0.5. Figure 2 plots the distribution of large differences in

probability between child and parent terms. An example of

this type of inconsistency is shown in Figure 3. For this par-

ticular protein, we observe three false negative annotations in

the left half of the plot: 'catalytic activity,' 'transferase activ-

ity', and 'protein-tyrosine kinase activity.' However, these

false negatives are offset by a block of strongly confident, cor-

rect predictions for four intermediate terms, colored in dark

green. Ideally, a good reconciliation scheme would propagate

the high-confidence predictions from these four terms to

overturn the two parental false negative predictions. Con-

versely, on the right side of the plot, we observe a single false

positive prediction for 'protein homodimerization activity,'

which is a child of two very confident true negative predic-

tions. Again, a good reconciliation scheme should fix this false

negative annotation, using the two high-confidence parents

to modify the prediction on the child term.

Previous work has shown that reconciling independent GO

term predictions can yield improved accuracy [3]. However,

note that, in addition to being inaccurate, the predictions

shown in Figure 3 are difficult to interpret because they are

inconsistent with one another. A method that claims, for

example, that a protein has homodimerization activity but

does not have dimerization activity is clearly incorrect, and a

biologist attempting to interpret these results would likely not

trust either prediction. Thus, even if reconciliation fails to

improve the accuracy of our independent predictors, recon-

ciled predictions are more desirable than unreconciled pre-

dictions.

Reconciliation methods

Motivated by the inconsistencies produced by our independ-

ent GO term predictors, we proceed to the final step of the

pipeline shown in Figure 1. In step four, the outputs of step

three are processed by a 'reconciliation method'. The goal of

this stage is to combine predictions for each term to produce

predictions that are consistent with the ontology, meaning

that all probabilities assigned to the ancestors of a GO term

are larger than the probability assigned to that term. This

fourth step is the core of our experiment, in which we con-

sider 11 different methods, summarized briefiy in Figure 4

and described in detail in Additional data file 1. We can dis-

tinguish four types of methods: heuristic methods; Bayesian

networks; cascaded logistic regression - a discriminative

method that extends logistic regression to the structured out-

put case; and projection methods.

We selected the 11 reconciliation methods to provide a variety

of complementary approaches. In general, the problem of rec-

onciliation arises for any structured prediction problem, in

which a set of interdependent labels have to be predicted.
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Depending upon the structure being predicted, the interde-

pendence relations among terms may be more or less compli-

cated. In the case of GO terms, although the GO is a complex

directed acyclic graph, the term relationships consist of sim-

ple deterministic implications, making the problem very intu-

itive. Several naïve heuristics are therefore natural. Beyond

these heuristics, methods using Bayesian networks have been

proposed by Barutcuoglu and coworkers [3]. However, dis-

criminative methods usually perform better in classification

problems; we therefore considered the cascaded logistic

regression, which is the simplest of our structured discrimi-

native models. Cascaded logistic regression itself has short-

Table 1

Summary of data types

Data type Description BP CC MF

Phenotype

MGI Mammalian phenotype ontology terms (33) 1,994 2,157 1,898

OMIM Diseases (2,488) associated with human homologs 998 1,166 978

Phylogenetic profile

Inparanoid Orthologs across 21 species 6,131 7,092 6,556

Biomart Orthologs across 18 species 6,269 7,242 6,695

Protein domain

Interpro Functional sites and domains 7,131 8,027 7,603

PfamA Protein domains 6,790 7,648 7,239

Protein-protein interaction

PPI Transferred via orthology from human (OPHID) 3,273 3,690 3,509

Gene expression data

Su et al. [9] Oligonucleotide arrays (55 tissues) 6,555 7,587 7,029

Zhang et al. [7] Affymetrix arrays (61 tissues) 5,097 5,716 5,447

SAGE Tag counts from SAGE library (99% cutoff) 6,323 7,231 6,753

Total 7,968 9,005 8,427

The table lists the ten data types from [1], along with the number of proteins that are annotated with at least one term of each ontology and for 
which that data type is available. BP, biological process; CC, cellular component; MF, molecular function.

Table 2

Kernel transformations

Name Linear Normalized linear Linear2 Normalized linear2 RBF Diffusion Parameters

MGI ✓ ✓

OMIM ✓ ✓ ✓ σ = 1

Inpar ✓ ✓ ✓ σ = 1

Biomart ✓ ✓ ✓ σ = 1

Inter ✓ ✓ ✓ σ = 1

PfamA ✓ ✓ ✓ σ = 1

PPI ✓ ✓ ✓✓✓ τ ∈ {0.1, 1, 10}

Su ✓

Zhang ✓ ✓ ✓ ✓ ✓ σ = 1

SAGE ✓ ✓ ✓ σ = 1

Each row in the table corresponds to one of the ten data types listed in Table 1. Check marks indicate which kernels were computed for each data 
set. The kernels are described in the Kernels section in Materials and methods. 'Linear2' and 'Normalized linear2' refer to the squared version of the 
original kernel matrix, as described in Materials and methods. The three check marks for the PPI data indicate that three diffusion kernels were 
computed using τ ∈ {0.1, 1, 10}. RBF, radial basis function.
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comings, which motivated us to propose new methods based

on projections. These projection methods are close in spirit to

some of the naive heuristics, compatible with a discriminative

framework, and related to a variational formulation of belief

propagation. The remaining methods considered result from

reversing the direction of the relationship between parent and

children GO terms or were hybrid methods that we included

in the evaluation in order to provide insights into the proper-

ties of the other methods.

All methods except the Bayesian networks and the cascaded

logistic regression take as input the logistic regression esti-

mates of the posterior probability for GO term i:

where Yi is a binary variable indicating whether the protein

has the function corresponding to GO term i, and xi contains

the outputs of the 35 SVMs trained for term i; the Bayesian

networks explicitly model the likelihood P(Xi = xi|Yi = yi). The

cascaded logistic regression uses individual regressions that

estimate  or , where

πi and ci are the set of parents or children of term i.

In the experiments described below, we performed analyses

in the three modes described in the Introduction: per term,

per protein, and jointly. For each of these evaluation modes,

we considered the three different ontologies - biological proc-

ess, molecular function and cellular component - and four dif-

ferent ranges of term sizes: 3 to 10 proteins, 11 to 30 proteins,

31 to 100 proteins, and 101 to 300 proteins. Furthermore, we

˘ ( | )p P Y Xi i i i= = x

P Y Y X xi i ii
( | , )π = P Y Y X xi c i ii

( | , )=

Distribution of large positive differences between child and parent GO term estimated probabilitiesFigure 2

Distribution of large positive differences between child and parent GO term estimated probabilities. The figure shows a histogram of the top 5% of the 
distribution of differences between the probability assigned to the child term and the probability assigned to the parent term by the logistic regression, 
corresponding to differences that are larger than 0.05. GO, Gene Ontology.
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compare methods at four specified recall levels: 1%, 10%,

50%, and 80%. In the following, we first describe systemati-

cally the three evaluation modes, and then proceed to more

general conclusions.

Per-term evaluation

The primary results from the per-term evaluation are shown

in Figure 5. The bar charts in this figure show average preci-

sion (y-axis) as a function of four fixed recall values (x-axis)

for all 11 reconciliation methods, plus the unreconciled logis-

tic regression. Some general trends are evident. In all three

ontologies and at all four recall levels, at least one reconcilia-

tion method performs better than the baseline logistic regres-

sion. Top performers include the three projection methods

(isotonic regression and the two Kullback-Leibler projec-

tions), as well as two of the heuristic methods ('And' and 'Or').

The belief propagation methods work consistently poorly,

and belief propagation with logistic regression (BPLR) as well

as the 'flipped' versions of both the belief propagation method

with asymmetric Laplace (BPAL) and BPLR perform worst

among all the methods.

Making qualitative observations about the results in Figure 5

immediately begs the question, which of the apparent differ-

ences in the figure are statistically significant? To address this

question, we use a Z-test procedure, described in the Statisti-

cal testing section in Materials and methods, which measures

the average amount of improvement from one method to the

next. The directed graphs in Figure 6 summarize these statis-

tical tests. In each graph, an edge from node A to node B indi-

cates that method A performs significantly better than

method B according to the Z-test. These graphs confirm that

the three projection methods perform well across ontologies

and term sizes. For example, isotonic regression never per-

forms significantly worse than any other method, and the two

Kullback-Leibler projections (KLP and KLP with edges

flipped [KLPf]) are each bested by a single method in one case

(KLP by 'And' for the biological process ontology at 50%

recall, and KLPf by 'And' in the same ontology at 80% recall).

'And' also performs very well overall; like isotonic regression,

it never performs significantly worse than any other method.

Thus far, we have ignored one dimension of our analysis: the

subdivision of terms according to their specificity. Intuitively,

some methods may be good at predicting very specific terms,

for which few training examples are available, whereas other

methods may excel at making predictions for very broad

terms. When we subdivide the GO terms into four groups,

based on the number of proteins in the training set that are

annotated with that term, we obtain 48 directed graphs like

Inconsistent predictions for the s domain of casein kinase 1Figure 3

Inconsistent predictions for the s domain of casein kinase 1. The graph shows a portion of the molecular function Gene Ontology (GO), corresponding to 
positive labels and labels predicted with probability larger than 0.1. Each term's outline is colored according to the label with respect to the target term 
'protein-tyrosine kinase activity'. A green outline corresponds to a positive label, and a purple outline corresponds to a negative label. For a given protein 
from the held-out data set, the interior of each node is colored following a similar color scheme (green = 1 and purple = 0), according to the probability 
produced by several data specific support vector machines (SVMs) combined into a logistic regression.
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the ones shown in Figure 6 (three ontologies, four recall lev-

els, and four term sizes). These plots are shown in Figure 7.

The 48 separate directed graphs in Figures 6 and 7 are diffi-

cult to summarize concisely. We therefore performed an addi-

tional processing step, in which we count how many times

each method wins and loses with respect to each of the other

methods. Specifically, for a given directed graph from the Z-

testing procedure, and for a given method A, we count (in the

original, transitively closed graph) the number of outgoing

edges (wins) and the number of incoming edges (losses), and

we subtract losses from wins. The resulting win-loss score

Summary of reconciliation methodsFigure 4

Summary of reconciliation methods. Given a set of probabilistic values obtained from logistic regression ( , i ∈ I), and Ai and Di denoting the set of 

ancestors and descendants, respectively, of Gene Ontology (GO) term i, we compute reconciled probabilistic predictions pi using the 11 strategies 

described in the text. Detailed descriptions of each method are given Additional data file 1. Colored boxes indicate the color that is used to represent this 

method on all subsequent plots.

Heuristic methods

Max Reports the largest logistic regression (LR) value of self and all descendants: pi = maxj∈Di
p̂j.

And Reports the product of LR values of all ancestors and self. This is equivalent to computing the
probability that all ancestral GO terms are ‘on’ assuming that, conditional on the data, all predictions
are independent: pi =

∏
j∈Ai

p̂j.

Or Computes the probability that at least one of the descendant GO terms is ‘on’ assuming again that,
conditional on the data, all predictions are independent: 1 − pi =

∏
j∈Di

(1 − p̂j).

Bayesian networks

BPAL Belief propagation with asymmetric Laplace likelihoods. The GO is viewed as a graphical model
with edges directed from more general terms to more specific terms, and a joint Bayesian prior is put
on the binary GO term variables Yi [3]. Given Yi, the distribution of each SVM output Xi is modeled
as an independent asymmetric Laplace distribution. We use a variational inference algorithm described
in the supplement.

BPALf Same as BPAL, but with edges ‘flipped’ and directed from more specific terms to more general
terms.

BPLR A heuristic variant of BPAL where in the inference algorithm, we replace the Bayesian log
posterior ratio for Yi by the marginal log posterior ratio obtained from the LR.

BPLRf The same as BPLR, but with flipped edges.

Cascaded logistic regression

CLR In the third stage, a LR is fit to the SVM output only for those proteins that belong to all parent
terms, modeling the conditional distribution of the term given all parents, instead of the normal LR.
The final probability pi is obtained as the product of these conditionals p̌i through pi =

∏
j∈Ai

p̌i, as
in ‘And.’

Projections

IR Isotonic regression. Consider the squared Euclidian distance
∑

i(pi − p̂i)
2 between two sets of

probabilities. For that distance, the isotonic regression finds the closest set of probabilities p i to the
LR values p̂i that verify all the inequality constraints pj ≤ pi for (i, j) such that i is a parent term of
j.

KLP Kullback-Leibler projection. The GO is viewed as a graphical model, corresponding to a set of dis-
tributions PG, that in particular verify the aforementioned constraints. The algorithm finds the closest
element in that set from the LR values according to the Kullback-Leibler divergence minP∈PG D(P‖P̂ ).

KLPf Same as KLP but with edges flipped.

p̆i
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ranges from 11 (all wins and no losses) to -11 (vice versa), with

a score of zero indicating that the method is approximately in

the middle of the pack. This win-loss counting procedure has

the advantage that it handles ties gracefully; when all meth-

ods tie, each method receives a win-loss score of zero. The

win-loss score allows us to summarize the results for all three

ontologies, all four term sizes, and all four recall levels in the

left-most three columns of Figure 8. In addition to scores for

the three separate ontologies, we ran the Z-testing procedure

across all terms for all three ontologies and computed corre-

sponding win-loss scores. These scores are shown in the col-

umn labeled 'All'.

Qualitatively, the most obvious trend in these heatmaps is the

division of methods into winners (cyan) and losers

(magenta). For five methods - the four belief propagation

methods and the 'Max' heuristic - nearly all of the corre-

sponding win-loss scores are either zero or negative. In the

few cases where one of these methods achieves a positive win-

loss score (for example, BPLR for the molecular function cat-

egory and small GO terms), it does so by outperforming the

other loser methods and tying with the winners. The second

most obvious trend is that the biological process ontology

provides more discrimination among methods than the other

two ontologies. Indeed, for the cellular component ontology,

so many methods tie with one another that most of the win-

Per-term evaluation, irrespective of term sizeFigure 5

Per-term evaluation, irrespective of term size. Each panel plots the average precision across all Gene Ontology (GO) terms (y-axis), using four fixed recall 
levels (x-axis). The bars are colored according to the 12 methods, as described in Figure 4.
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Statistical significance testing of per-term evaluation, irrespective of term sizeFigure 6

Statistical significance testing of per-term evaluation, irrespective of term size. Each panel shows a directed graph in which nodes are methods and a 
directed edge from node A to node B indicates that method A performs significantly better than method B according to the Z-test described in the 
Statistical testing section of Materials and methods. Because Z-tests are transitive - unlike other tests such as the Wilcoxon signed-rank test - we 
represent the graphs as transitive reductions, that is, removing edges that are already implied transitively by other edges. BP, biological process; CC, 
cellular component; MF, molecular function; Ont, ontology.
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loss scores are zero. Among the six winning reconciliation

methods, no clear trend emerges.

Thus far, we have described only results on the held-out data

set. We can gain additional confidence in our conclusions if

they are upheld by the results from the test set. Figure 9

shows the win-loss scores for the test set. Again, we can

immediately divide the methods into the same categories of

winners and losers. However, it is also clear that the test set

yields far fewer significant differences among methods. Once

Statistical significance testing of per-term evaluationFigure 7

Statistical significance testing of per-term evaluation. Each panel shows a directed graph in which nodes are methods and a directed edge from node A to 
node B indicates that method A performs significantly better than method B according to the Z-test described in the Statistical testing section of Materials 
and methods. Because Z-tests are transitive - unlike other tests such as the Wilcoxon signed-rank test - we represent the graphs as transitive reductions, 
that is, removing edges that are already implied transitively by other edges. BP, biological process; CC, cellular component; MF, molecular function; Ont, 
ontology.

Ont Size Recall = 1% Recall = 10% Recall = 50% Recall = 80%

BP 3–10

MF 3–10

CC 3–10

BP 11–30

MF 11–30

CC 11–30

BP 31–100

MF 31–100

CC 31–100

BP 101–300

MF 101–300

CC 101–300

BPAL BPALf BPLR BPLRf CLR And Or IR LR KLP KLPf Max
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again, among the five winning reconciliation methods, no

clear best method emerges.

Per-protein evaluation

The per-protein evaluation proceeds in a similar fashion to

the per-term evaluation. Figure 10 shows bar plots similar to

those in Figure 5, but with precision averaged across proteins

rather than across terms. Statistical tests performed on these

results yield directed graphs (Additional data file 2), which

are then summarized using win-loss scores. These statistics

are summarized in the middle four columns of Figure 8.

For the per-protein evaluation, the story is quite different

from in the per-term evaluation. The two methods that clearly

dominate in terms of precision are the unreconciled logistic

regression and the isotonic regression. Other reasonable con-

tenders are the BPAL and the heuristic 'Or' methods. How-

ever, an inspection of the individual tests (Additional data file

2) reveals that most of the time in the biological process and

in the molecular function ontologies, the isotonic regression

performs significantly better than BPAL. Isotonic regression

also performs systematically significantly better than 'Or',

which is also significantly outperformed most of the time by

the logistic regression. On the other hand, the 'And' heuristic,

Summary of the entire experiment on the held-out data set by win-loss scoreFigure 8

Summary of the entire experiment on the held-out data set by win-loss score. Each heatmap entry represents the win-loss score for a given reconciliation 
method (row) and recall level (column). BP, biological process; CC, cellular component; MF, molecular function.
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which performed quite well in the per-term evaluation, is now

a losing method, and even the Kullback-Leibler projections

are borderline. The hybrid BPLR method and its flipped vari-

ant (BPLRf) are still losing methods. The only consistent win-

ner among the reconciliation methods is the isotonic

regression. Except for small term sizes, where many methods

tie, isotonic regression nearly always performs as well or bet-

ter than 'Or' and BPLR. These observations are confirmed in

the test set (Figure 9).

Joint evaluation

Finally, we performed a joint evaluation across terms and

proteins simultaneously. In this assessment, we rank all

(term, protein) pairs according to their predicted probability

and then plot the resulting precision-recall curve. Figure 11

shows the resulting curves for all twelve methods for each of

the three ontologies.

These plots are difficult to interpret, both because they con-

tain many series and because the series cross one another so

Summary of the entire experiment on the test data set by win-loss scoreFigure 9

Summary of the entire experiment on the test data set by win-loss score. Each heatmap entry represents the win-loss score for a given reconciliation 
method (row) and recall level (column). BP, biological process; CC, cellular component; MF, molecular function.
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frequently. We therefore used a bootstrap analysis (Boot

strap procedure for joint evaluation section in Materials and

methods) to evaluate the statistical significance of differences

between these curves. The resulting tests give rise to win-loss

scores, which are summarized in the right-most four columns

of Figures 8 and 9.

Perhaps the most striking difference between the win-loss

scores for the joint evaluation, as compared with the win-loss

scores for the other two evaluations, is the variation in per-

formance as we examine different recall values. In the previ-

ous two evaluation modes, a method generally performed

well across all recall levels or poorly across all recall levels.

This is not the case for joint evaluation. Here, some methods,

such as BPAL, perform very poorly at low recall but very well

at high recall. This change in performance arises because well

calibrated methods can concentrate their best predictions on

the left-most part of the precision-recall curve, leading to

higher precision at low recall; however, the performance of

these high precision methods at high recall can be quite dif-

ferent, and in that regime they can be significantly outper-

formed by other methods. An example is KLP, which obtains

very high precision at low recall (R = 1%, 10%) and outper-

forms significantly, in that regime, both logistic regression

and isotonic regression, according to our bootstrap tests

(Additional data file 2). KLP also has higher win-loss scores at

1% recall than isotonic regression. For intermediate recall val-

ues, isotonic regression is again typically the best performing

method, with higher win-loss scores than all other methods,

both on average and individually for each group of terms,

with the exception of the group of smaller molecular function

and cellular components terms, for which KLP is better.

Intermediate methods

In an attempt to understand what factors influence the per-

formance of two important methods, belief propagation

(BPAL) and the logistic regression, we considered several

methods that are variants or intermediates between these

two. In doing so, we wanted to separate the gain or loss in per-

formance due to different aspects of Bayesian modeling from

Per protein evaluation, irrespective of term sizeFigure 10

Per protein evaluation, irrespective of term size. Each panel plots the average precision across all protein in the held-out set (y-axis), using four fixed recall 
levels (x-axis). The bars in the top row and the nodes in the second row of panels are colored according to the 12 methods, as described in Figure 4.
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Joint evaluation, irrespective of term sizeFigure 11

Joint evaluation, irrespective of term size. Each panel plots expected precision as a function of recall produced by ranking all (protein, term) pairs according 
to their predicted probability. The curves have been bootstrapped as described in the Bootstrap procedure for joint evaluation section in Materials and 
methods.
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the gain or loss due to exploiting the constraints of the ontol-

ogy.

First we considered independent naïve Bayes classifiers that

use the same asymmetric Laplace likelihoods as BPAL but

with independent priors for each term, in contrast to the gen-

eral directed acyclic graph that BPAL uses as a structured

prior. We did not describe these naïve Bayes results above

because this is not a reconciliation method. However, its per-

formance in these experiments (not shown) is informative.

Naïve Bayes typically performs worse than unreconciled

logistic regression but better than BPAL. This observation

indicates that both of these Bayesian methods are worse than

a discriminative method, and that BPAL suffers most from

the arbitrary directed acyclic graph prior.

The other two intermediate methods that we considered have

already been described: BPLR and BPLRf. These methods

arise from the following considerations. The algorithm that

we use to perform the Bayesian inference in BPAL is a varia-

tional algorithm, which is described in Additional data file 1.

This variational formulation minimizes a Kullback-Leibler

divergence that is slightly different from that used in KLP.

However, the bigger difference between these two methods is

that the former uses a structured prior and models the evi-

dence with a likelihood term, both of which are subjective,

whereas KLP uses the discriminative predictions of the logis-

tic regression. In KLP, the log-odds for each node is the ratio

of the logistic regression conditional probabilities, but in

BPAL this log-odds is a ratio of likelihoods weighted by the

prior. In the hybrid BPLR method, the latter is substituted by

the log-odds ratio of the KLP. BPLR and BPLRf typically per-

form much better than BPAL, which demonstrates the advan-

tage of using discriminatively estimated likelihood ratios.

However, the hybrid methods typically perform worse than

KLP, probably because the formulation of BPLR uses another

term that contains the Bayesian prior.

Isotonic regression performs well overall

Among the 11 reconciliation methods that we considered, the

only one that is consistently among the winning methods for

all three evaluation modes is isotonic regression. Further-

more, considering both the held-out set and the test set, all

modes of evaluation, all three ontologies, all four term sizes,

and all recall levels, isotonic regression consistently achieves

a higher win-loss score than the unreconciled logistic regres-

sion estimates, except in 4 cases out of 360. It should be noted

that, even if the improvement is not significant for individual

tests (that heavily correct for multiple testing errors on the

complete graph of twelve nodes), all the projections (isotonic

regression, KLP, and KLPf) systematically improve over the

logistic regression in the per-protein evaluation for each term

size group and each recall level and in most of the configura-

tions for the two other modes of evaluation. Furthermore, per

protein, the improvement of isotonic regression is significant

at all recall levels for the held-out set and at 1% recall on the

test set. In addition, at high recall per protein (80%), isotonic

regression improves significantly over logistic regression in

both the held-out and test sets. In the per-protein evaluation,

isotonic regression is significantly better than all other recon-

ciliation methods on the biological process ontology, and bet-

ter than the non-projection methods for the molecular

function ontology at recall levels up to 50%.

Figure 12 illustrates the effect of applying isotonic regression

to the logistic regression estimates shown in Figure 3. The

single false positive prediction ('protein homodimerization

activity') has been corrected, and two of the three false nega-

tive annotations ('catalytic activity' and 'transferase activity')

have also been corrected. The remaining false negative ('pro-

tein-tyrosine kinase activity') has no children in the term set

and, hence, would not be corrected by any reconciliation

method.

Small terms

The group of smallest terms deserves a specific analysis,

because it is an important one; these terms represent 50% of

all terms 'of interest' selected by Peña-Castillo and coworkers

[1], and they also are the most specific and, hence, frequently

the hardest to predict. However, for these smaller terms, the

relative performance of the methods in our study is more var-

iable, and as a consequence, we observe fewer statistically sig-

nificant differences in performance. Furthermore, many of

the differences apparent in the hold-out set are not supported

by the results on the test set. Considering only the smallest

terms, the per term evaluation does not discriminate among

five reconciliation methods ('And,' 'Or,' isotonic regression,

and the two Kullback-Leibler projections). In the per protein

evaluation, 'And' does poorly on the hold-out set and well on

the test set, and conversely isotonic regression and 'Or' do

well on the hold-out set and poorly on the test set. Thus, for

the per-term evaluation, only the two Kullback-Leibler pro-

jection methods perform well in both of these evaluation

modes. It should be noted also that in the per-protein evalua-

tion, KLP does not perform well on the held-out set but per-

forms systematically well on small terms on the test set, with

significant improvement over logistic regression. Finally,

KLP also performs well for small terms under the joint evalu-

ation mode.

Joint evaluation at very high precision

One of the motivations for considering the joint annotation

regime is that the precision of the prediction almost doubles

at low recall compared with the two other modes of evalua-

tion. This effect is illustrated in Figure 13, which compares the

recall achieved at 10% precision across all 12 methods and all

3 evaluation modes. The figure shows that, for the held-out

set at recall = 10%, the precision levels jump from approxi-

mately 20% to 35% for biological processes, approximately

40% for molecular function and approximately 15% to 35%

for cellular component in the per-term and per-protein eval-

uations to 60%, 80% and 55%, respectively, in the joint eval-
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uation. Thus, a labeling that is adaptively parsimonious can

improve the precision considerably. It is important to note

that, in this regime, which corresponds to the high precision/

low recall regime for the joint annotation evaluation, isotonic

regression does not perform particularly well. In spite of the

fact that the isotonic regression improves, on average, over

logistic regression at low recall, it is often outperformed by

the Kullback-Leibler projection. The latter is indeed signifi-

cantly better than isotonic regression, on average, over the

biological process ontology and the molecular function ontol-

ogy at precision and recall less than 10% both on the held-out

and test sets.

Discussion
Overall, our experiments suggest that, among the reconcilia-

tion methods that we considered, isotonic regression is the

most generally useful. Across a range of evaluation modes,

term sizes, ontologies and recall levels, isotonic regression

yields consistently high precision. On the other hand, isotonic

regression is not always best, and a biologist with a particular

goal in mind may wish to consult our experiments to select

the most appropriate method. For small terms, we suggest

using Kullback-Leibler projections rather than isotonic

regression. Several other specific cases might be of interest;

for example, for joint annotation, if precision will be evalu-

ated at high recall values, then BPAL yields very good per-

formance.

One striking overall observation is that reconciliation can

yield a decrease in performance; thus, beating unreconciled

logistic regression is nontrivial. Intuitively, the structure of

the GO seems to be quite informative, and a biologist examin-

ing graphs like the one in Figure 3 might expect that any rea-

sonable reconciliation will lead to a performance

improvement. This assumption turns out to be incorrect. In

many cases, the reconciled probabilities have lower precision

than the original, unreconciled probabilities. This can be

explained by the fact that estimating well the degree of confi-

dence associated with a prediction is much harder than decid-

ing whether a prediction is roughly correct or not. Because

reconciliation methods essentially combine all of the confi-

dences (or the strength of the evidence) obtained at each

node, those individual confidence values must be carefully

estimated. We have argued that, for equal levels of precision,

reconciled predictions are clearly preferable to unreconciled

predictions, because they are not self-contradictory. Our

results show that although some methods do quite poorly

compared with unreconciled logistic regression, we can

essentially always do as well or better using one of the projec-

Predictions for the ε domain of casein kinase 1 reconciled by isotonic regressionFigure 12

Predictions for the ε domain of casein kinase 1 reconciled by isotonic regression. The figure is the same as Figure 3, but the predicted probabilities have 
been reconciled by isotonic regression. The graph shows a portion of the molecular function GO, corresponding to positive labels and labels predicted 
with probability larger than 0.1. Each term's outline is colored according to the label with respect to the target term 'protein-tyrosine kinase activity'. A 
green outline corresponds to a positive label, and a purple outline corresponds to a negative label. The interior of each node is colored following a similar 
color scheme (green = 1 and purple = 0), according to the predicted probability.
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tion methods. Hence, it is never necessary to weigh the

advantage of reconciled predictions against the disadvantage

of a loss in precision due to reconciliation.

In terms of complexity and ease of implementation several of

these methods are fairly comparable. The fastest methods are

the naïve methods 'Max,' 'And,' and 'Or,' whose complexity is

at worst (hn), where n is the number of nodes and h is the

height of the graph. The complexity of the cascaded logistic

regression is the same as that of the logistic regression. Also,

the complexity of performing the inference in the Bayesian

network or the Kullback-Leibler projection is the same; both

are iterative methods, and each iteration has a complexity

equal to that of the naïve methods. An exact algorithm for iso-

tonic regression is (n4); however, the approximation that

we employ is an iterative algorithm with iterations of com-

plexity (hm), where h is the height of the graph and m is the

number of edges. For the GO, the height of the ontology

graphs is small, h ≤ 12, and, moreover, the number of parents

is at most 6 so that m ≤ 6n. This reduces significantly the com-

plexity of most of the algorithms: the complexity of each iter-

ation for the Bayesian inference or the projection is (n). In

practice, the iterative algorithm for the isotonic regression

seemed to require slightly more iterations to converge than

the projection algorithm. The projection algorithms as well as

the inference in the Bayesian network are typically executed

in a few minutes on the entire training set.

One of the advantages of logistic regression is that it is trained

discriminatively, in a way that directly optimizes the decision

function, which models a probability for the binary term var-

iable Yi given the evidence Xi. In comparison, a Bayesian net-

work models the same conditional probability only indirectly,

through the likelihood of the evidence Xi given Yi. Moreover,

the logistic regression explicitly optimizes the 'calibration' of

the decision function, that is, how well the probabilistic val-

ues returned by the algorithm match the actual empirical suc-

cess of correct prediction. In contrast, the probabilistic values

returned by a Bayesian algorithm depend not only on the

prior but crucially on the accuracy of the likelihood, which

typically is very far from being a reasonable approximation of

the actual underlying distribution. Because the logistic

regressions are trained per term, it is not surprising that they

perform better than many other methods in that regime.

A question often asked when 'probabilizing' GO, that is, treat-

ing it as a graphical model that encodes some conditional

independencies between functions rather than just determin-

istic relations between terms, is which orientation of the

edges of the graph is most reasonable. Whereas we see a big

difference in performance when changing the orientation of

the edges for the Bayesian network, the difference is much

smaller in the case of Kullback-Leibler projection. It still

seems, however, that generally a top-down parameterization

leads to the best results.

Isotonic regression uses a similar notion of projection, but

does not make probabilistic assumptions on the GO, only tak-

ing into account marginal probabilities for each term and

deterministic implications between terms. The method's

good performance might be explained by the fact that it

makes fewer assumptions than other methods and corre-

sponds to the smallest distortion of the logistic regression

probabilities satisfying the deterministic constraints. We did

not mention cascaded logistic regression, which has two weak

points: that a prediction mistake somewhere in the cascade

might be difficult to compensate for and that the conditional

logistic regression might be difficult to estimate for lack of

positive examples.

Finally, it is worth mentioning that in spite of being fairly sim-

ple, both the 'And' and 'Or' methods perform well in some sit-

uations. In particular, 'And' tends to perform better for

smaller terms, whereas 'Or' performs better for larger terms.

This observation is consistent with the semantics associated

with these terms: for small terms, checking that all ancestral

terms agree with the prediction is a good guarantee, and for









All three evaluation modes at fixed recallFigure 13

All three evaluation modes at fixed recall. Each panel plots the precision achieved at recall = 10% across the three different evaluation modes. The bars are 
colored according to the 12 methods, as described in Figure 4.
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larger terms, considering the evidence coming from the

descendant term is relevant. It should be noted that 'And' and

'Or' are, in principle, very similar to cascaded logistic regres-

sion and its flipped variant, respectively.

Overall, this work aims to address three essential points. The

first point concerns the goals of protein function prediction;

we propose three distinct modes of evaluation, corresponding

to three different uses of prediction methods. The second

point concerns calibration - the estimation of a confidence

level for prediction that is common to all classifiers. Although

we have emphasized the need for calibration only in the joint

annotation mode of evaluation, it should be clear that calibra-

tion is more generally desirable, regardless of the evaluation

mode, because calibration leads to higher levels of precision.

Finally, the third point concerns reconciliation. The main

goal of a reconciliation is to obtain interpretable output. It is

important, however, to assess the extent to which interpreta-

bility is obtained at a cost in terms of accuracy; indeed, as we

have seen, several apparently reasonable reconciliation algo-

rithms lead to a decrease in accuracy. Our results allay this

concern - we have identified a class of projection methods

that maintains accuracy while producing predictions that are

consistent and, therefore, interpretable to the biologist.

Materials and methods
Kernels

The representation of the data used by a SVM is determined

by the choice of a kernel function. For each data type, we train

SVMs using three or more different kernel functions. Three

are common to all data types.

The first kernel function common to all data types is the linear

kernel:

K(x, y) = x·y

where x and y are standardized data vectors; that is, each var-

iable in the data matrix is centered to have mean 0 and scaled

to have variance 1.

The second is the normalized version  of the linear kernel:

The third is the Gaussian kernel or radial basis function ker-

nel:

In addition, for two data types we compute a data-specific

kernel. These kernels are described below.

For the protein-protein interaction data, we compute a diffu-

sion kernel [6] on the graph of proteins connected by interac-

tions. Diffusion kernels correspond to embeddings of the

vertices in a Hilbert space, where the inner product between

two vertices approximates the probability of traveling from

one vertex to the other in time τ by random walk on the graph.

Nodes connected by shorter paths therefore contribute more

to the similarity. We compute three diffusion kernels with τ ∈
{0.1, 1, 10}.

For the Zhang expression data, Zhang and coworkers [7] con-

clude from their study that patterns of co-expression across

tissues are 'more predictive of function than tissue-specific

expression levels.' To use the large amount of unlabeled data,

we use a representation of genes in terms of co-expressed

genes; consider the columns of the linear kernel matrix con-

structed from gene expression data as a new vector represen-

tation of the genes, and then compute a linear kernel from

those vectors. This corresponds to squaring the original ker-

nel matrix. Note that this is different from a Hadamard prod-

uct of the matrix with itself corresponding to a quadratic

kernel, which would not use unlabeled data.

We finally compute four kernels that are linear combinations

of the previously described ones. More specifically, we con-

sider two combinations of the data types with the largest cov-

erage: PfamA, Interpro, Inparanoid, Biomart, Zhang, Su,

SAGE; and PfamA, Interpro, Inparanoid, Biomart, PPI,

Zhang, Su, SAGE (see Table 1 for a summary of these data

types).

For each of these combinations, we renormalize the corre-

sponding linear kernels (restricted to the set of genes they

have in common) either by their trace or by the ratio of their

trace to their Frobenius norm. This yields four additional ker-

nels.

SVM training

In the second stage of the pipeline shown in Figure 1, we train

a collection of SVM classifiers for each GO term, building one

SVM for each combination of kernel and GO term. Thus, the

output of this stage is a matrix of SVM discriminant scores

with three dimensions: gene, GO term, and kernel. Note that,

typically, not all data types are available for a given gene, so

that some of the entries in this matrix are missing. We handle

these missing values in the subsequent stages.

For each SVM, proteins annotated with the target GO term or

a descendant term are labeled as positive examples. Proteins

annotated with an ancestor term are ignored. All remaining

proteins are labeled as negative examples. Let the numbers of

positive and negative examples be n+ and n-, respectively.

Each SVM is trained from a randomly selected 60% of the

training points. The SVMs are trained using two soft-margin

parameters C+ and C-, penalizing, respectively, false positives

and false negatives, and chosen, respectively, proportional to

1/n+ and 1/n-. For the third stage, we need samples of the dis-

tribution of SVM outputs on new data. To simulate these sam-

K

K K x y K x y K x x K y y: ( , ) ( , )/ ( , ) ( , )=

K x y e
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ples from the training data, we use fivefold cross-validation,

and we store all evaluations on held-out data for use during

the third stage. The discriminant function used on any new

gene is the average of the five discriminants from the cross-

validation.

Missing data

In the third step of Figure 1, SVM outputs are either mapped

to probabilistic outputs using a logistic regression or, if the

fourth step is Bayesian inference, to their likelihood in a mix-

ture of fitted asymmetric Laplace distributions. For the Baye-

sian network, we use the approach of Barutcuoglu and

coworkers [3], except that we use asymmetric Laplace distri-

butions and a variational inference algorithm described in

Additional data file 1, rather than exact inference. In the

Bayesian network framework, data types are considered con-

ditionally independent given the GO term assignments, and

missing values are, therefore, accommodated naturally. We

refer the reader to Bennett [8] for details of the likelihood

parameter estimation.

Missing data are more problematic for the logistic regression.

Each protein exhibits a certain pattern of missing data across

the ten data types. This pattern can be represented as a bit

string of length 10. In practice, most patterns occur very

rarely; therefore, we consider only the 15 most frequent pat-

terns. Each protein is associated with the pattern most similar

to its own, provided there is at most one data type difference

between their data type patterns. Otherwise, it is considered

an orphan. When one data type is actually missing in the pro-

tein pattern compared with its group pattern, we fill in the

corresponding value with the average value of the SVM out-

put for that type. For each of the 15 groups, we then fit an

unregularized logistic regression, whose output on the test set

gives a confidence measure for the prediction. A few exam-

ples, the orphans, are not matched to any clusters; for these,

first, individual logistic regressions are learned from the out-

put of each kernel specific SVM using the training data; then

those logistic regressions are evaluated on the orphan points

if they have the corresponding data type. Finally, for each

orphan point we average the output of the logistic regressions

corresponding to the data types available and use the

obtained probability as a confidence measure for the predic-

tion.

Logistic regression and naive Bayes

To investigate the loss of precision incurred specifically by

modeling SVM outputs in a generative fashion as in the Baye-

sian network, we consider the unstructured counterpart of

the Bayesian network that treats each term independently.

For each term, this is a naïve Bayes model based on asymmet-

ric Laplace likelihoods (we use the NBAL acronym for this

method). The SVM outputs are modeled as in the Bayesian

network and the marginal frequency of terms is used as a

prior for each of them. The probabilistic value returned is the

posterior probability obtained by Bayes rule.

Statistical testing

From the point of view of testing whether a method is signifi-

cantly more precise at fixed recall than another, we use a Z-

test on the difference of average precisions, which measures

the average amount of improvement from one method to the

next. This test is appropriate if the number of observations is

large enough that the average can be assumed approximately

distributed as a Gaussian variable. This is the case both in

per-term and per-protein evaluations, where there are typi-

cally several hundreds of proteins or terms and in any case no

less than 35.

To perform simultaneous comparisons of different methods

with Z-tests, we determine first a 95% ellipsoidal confidence

region for the vector of means of the methods we are compar-

ing, and then we ask for which pairs of methods (k, l) the ellip-

soid is entirely on one side of the hyperplane with equation xk

= xl. The latter question matches the Gaussian rejection

region for the one dimensional statistic T defined as the dif-

ference of average precisions for methods k and l renormal-

ized by the empirical standard deviation of the difference. In

the tests reported in the Results section, we report the Gaus-

sian p-value for T.

Bootstrap procedure for joint evaluation

The two sample Z-tests used for the per-protein and per-term

evaluations are based on observations corresponding to the

value of the precision for different terms at a fixed recall

value. In the case of the joint evaluation, we a priori get a sin-

gle precision value for a fixed recall instead of a whole sample

of such precision values. To obtain a whole sample, we should

be allowed to draw several test (or held-out) sets from a larger

distribution of known proteins. The theory of the bootstrap is

based on the idea that the empirical distribution of the sample

is in itself a good approximation of the distribution that it is

sampled from, and that, therefore, an estimator of a function

of the distribution can be obtained by plugging the sample

empirical distribution into the function. Applying the concept

of the bootstrap to our situation, we can estimate the distribu-

tion of precision values at a fixed recall value by constructing

repeatedly precision-recall curves from bootstrap samples

and computing the precision at that fixed recall. In particular,

the mean of that distribution approximates the mean preci-

sion-recall curve of a sample. If the precision-recall curve for

several methods are bootstrapped based on the same boot-

strap sample, then the probability that one method beats

another can be estimated or tested. We perform multiple tests

to find pairs of methods (A, B) such that A outperforms B with

probability 0.9. The result of the tests based on 315 bootstrap

samples can be shown to guarantee a confidence level higher

than 95%, after correction for multiple testing.
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