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Two fundamental axioms in social choice theory are consistency with re-
spect to a variable electorate and consistency with respect to components
of similar alternatives. In the context of traditional non-probabilistic social
choice, these axioms are incompatible with each other. We show that in the
context of probabilistic social choice, these axioms uniquely characterize a
function proposed by Fishburn (Rev. Econ. Stud., 51(4), 683–692, 1984).
Fishburn’s function returns so-called maximal lotteries, i.e., lotteries that
correspond to optimal mixed strategies in the symmetric zero-sum game in-
duced by the pairwise majority margins. Maximal lotteries are guaranteed
to exist due to von Neumann’s Minimax Theorem, are almost always unique,
and can be efficiently computed using linear programming.

1. Introduction

Many important properties in the theory of social choice concern the consistency of
aggregation functions under varying parameters. What happens if two electorates are
merged? How should an aggregation function deal with components of similar alterna-
tives? How should choices from overlapping agendas be related to each other? These
considerations have led to a number of consistency axioms that these functions should
ideally satisfy.1 Unfortunately, social choice theory is rife with impossibility results which
have revealed the incompatibility of many of these properties. Young and Levenglick
(1978), for example, have pointed out that every social choice function that satisfies
Condorcet-consistency violates consistency with respect to variable electorates. On the
other hand, it follows from results by Young (1975) and Laslier (1996) that all Pareto-
optimal social choice functions that are consistent with respect to variable electorates
are inconsistent with respect to components of similar alternatives.

1Consistency conditions have found widespread acceptance well beyond social choice theory and feature
prominently in the characterizations of various concepts in mathematical economics such as propor-
tional representation rules (Balinski and Young, 1978), Nash’s bargaining solution (Lensberg, 1988),
the Shapley value (Hart and Mas-Colell, 1989), and Nash equilibrium (Peleg and Tijs, 1996). Young
(1994) and Thomson (2014) provide excellent overviews and give further examples.
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The main result of this paper is that, in the context of probabilistic social choice,
consistency with respect to variable electorates and consistency with respect to compo-
nents of similar alternatives uniquely characterize an appealing probabilistic social choice
function, which furthermore satisfies Condorcet-consistency. Probabilistic social choice
functions yield lotteries over alternatives (rather than sets of alternatives) and were
first formally studied by Zeckhauser (1969), Fishburn (1972), and Intriligator (1973).
Perhaps one of the best known results in this context is Gibbard’s characterization of
strategyproof probabilistic social choice functions (Gibbard, 1977). An important corol-
lary of Gibbard’s characterization, attributed to Hugo Sonnenschein, is that random
dictatorships are the only strategyproof and ex post efficient probabilistic social choice
functions. In random dictatorships, one of the voters is picked at random and his most
preferred alternative is implemented as the social choice. While Gibbard’s theorem might
seem as an extension of classic negative results on strategyproof non-probabilistic social
choice functions (Gibbard, 1973; Satterthwaite, 1975), it is in fact much more positive
(see also Barberà, 1979). In contrast to deterministic dictatorships, the uniform random
dictatorship (henceforth, random dictatorship), in which every voter is picked with the
same probability, enjoys a high degree of fairness and is in fact used in many subdo-
mains of social choice that are concerned with the fair assignment of objects to agents
(see, e.g., Abdulkadiroğlu and Sönmez, 1998; Bogomolnaia and Moulin, 2004; Che and
Kojima, 2010; Budish et al., 2013).

Summary of Results

In this paper, we consider two consistency axioms, non-probabilistic versions of which
have been widely studied in the literature. The first one, population-consistency, re-
quires that, whenever two disjoint electorates agree on a lottery, this lottery should also
be chosen by the union of both electorates. The second axiom, composition-consistency,
requires that the probability that an alternative receives is unaffected by introducing new
variants of another alternative. Alternatives are variants of each other if they form a
component, i.e., they bear the same relationship to all other alternatives. On top of that,
composition-consistency prescribes that the probability of an alternative within a com-
ponent should be directly proportional to the probability that the alternative receives
when the component is considered in isolation. Apart from their intuitive appeal, these
axioms can be motivated by the desire to prevent a central planner from strategically
partitioning the electorate into subelectorates or by deliberately introducing similar vari-
ants of alternatives, respectively. Our first result shows that there is no non-probabilistic
social choice function that satisfies both axioms simultaneously. We then move to proba-
bilistic social choice and prove that the only probabilistic social choice function satisfying
these properties is the function that returns all maximal lotteries for a given preference
profile. Maximal lotteries, which were proposed independently by Fishburn (1984) and
other authors, are equivalent to mixed maximin strategies of the symmetric zero-sum
game given by the pairwise majority margins. Whenever there is an alternative that
is preferred to any other alternative by some majority of voters (a so-called Condorcet
winner), the lottery that assigns probability 1 to this alternative is the unique maxi-
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mal lottery. In other words, maximal lotteries satisfy Condorcet-consistency. At the
same time, maximal lotteries satisfy population-consistency which has been identified
by Young (1974a), Nitzan and Rubinstein (1981), Saari (1990b), and others as the defin-
ing property of Borda’s scoring rule. As such, the characterization can be seen as one
possible resolution of the historic dispute between the founding fathers of social choice
theory, the Chevalier de Borda and the Marquis de Condorcet, which dates back to the
18th century.2

Random dictatorship, the most prevalent probabilistic social choice function, satisfies
population-consistency, but fails to satisfy composition-consistency. For this reason,
we also consider a weaker version of composition-consistency called cloning-consistency,
which is satisfied by random dictatorship, and provide an alternative characterization
of maximal lotteries using population-consistency, cloning-consistency, and Condorcet-
consistency (see Remark 5).

Acceptability of Social Choice Lotteries

Clearly, allowing lotteries as outcomes for high-stakes political elections such as those for
the U.S. presidency would be highly controversial and considered by many a failure of
deliberative democracy. If, on the other hand, a small group of people repeatedly votes
on where to hold their next meeting, randomization would likely be more acceptable and
perhaps even desirable. The use of lotteries for the selection of officials interestingly goes
back to the world’s first democracy in Athens where it was widely regarded as a principal
characteristic of democracy (Headlam, 1933). It has also been early observed in the
social choice literature that “unattractive social choices may result whenever lotteries
are not allowed to compete. [. . . ] Refusal to entertain lotteries on alternatives can
lead to outcomes that to many appear to be inequitable and perhaps even inefficient”
(Zeckhauser, 1969).3 In contemporary research, probabilistic social choice has gained
increasing interest in both social choice (see, e.g., Ehlers et al., 2002; Bogomolnaia et al.,
2005; Chatterji et al., 2014) and political science (see, e.g., Goodwin, 2005; Dowlen,
2009; Stone, 2011).
Whether lotteries are socially acceptable depends on many factors, only some of which

are based on formal arguments. In our view, two important factors are (i) the effective
degree of randomness and (ii) risk aversion on behalf of the voters.

2In this sense, our main theorem is akin to the characterization of Kemeny’s rule by Young and Le-
venglick (1978). Young and Levenglick considered social preference functions, i.e., functions that
return sets of rankings of alternatives, and showed that Kemeny’s rule is characterized by strong
versions of population-consistency and Condorcet-consistency.
Interestingly, all three rules—Borda’s rule, Kemeny’s rule, and maximal lotteries—maximize aggre-
gate score in a well-defined sense. For maximal lotteries, this is the case because they maximize social
welfare according to the canonical skew-symmetric bilinear (SSB) utility functions representing the
voters’ ordinal preferences (Brandl et al., 2019). SSB utility theory goes back to Fishburn (1982) and
is a generalization of von Neumann-Morgenstern utility theory.

3It is interesting to note that the “intransitivity difficulties” that Zeckhauser (1969) examines in the
context of probabilistic social choice disappear when replacing majority rule with expected majority
rule. This directly leads to Fishburn’s definition of maximal lotteries.
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As to (i), it is easily seen that certain cases call for randomization or other means
of tie-breaking. For example, if there are two alternatives, a and b, and exactly half
of the voters prefer a while the other half prefers b, there is no deterministic way of
selecting a single alternative without violating basic fairness conditions. There are several
possibilities to extend the notion of a tied outcome to three or more alternatives. An
important question in this context is whether ties are a rare exception or a common
phenomenon. A particularly rigorous and influential extension due to Condorcet declares
a tie in the absence of a pairwise majority winner. According to Condorcet, it is the
intransitivity of social preferences, as exhibited in the Condorcet paradox, that leads to
situations in which there is no unequivocal winner. As it turns out, maximal lotteries are
degenerate if and only if there is a Condorcet winner. Our main result thus establishes
that the degree of randomness entailed by our axioms is precisely in line with Condorcet’s
view of equivocality. Interestingly, there is strong empirical and experimental evidence
that most real-world preference profiles for political elections do admit a Condorcet
winner (see, e.g., Regenwetter et al., 2006; Laslier, 2010; Gehrlein and Lepelley, 2011).4

Maximal lotteries only randomize in the less likely case of cyclical majorities. Brandt
and Seedig (2014) specifically analyzed the support of maximal lotteries and found that
the average support size is less than four under various distributional assumptions and
up to 30 alternatives. By contrast, random dictatorship randomizes over all alternatives
in almost all elections.
As to (ii), risk aversion is strongly related to the frequency of preference aggregation.

If an aggregation procedure is not frequently repeated, the law of large numbers does not
apply and risk-averse voters might prefer a sure outcome to a lottery whose expectation
they actually prefer to the sure outcome. Hence, probabilistic social choice seems partic-
ularly suitable for novel preference aggregation settings that have been made possible by
technological advance. The Internet, in particular, allows for much more frequent pref-
erence aggregation than traditional paper-and-pencil elections. In recurring randomized
elections with a fixed set of alternatives, voters need not resubmit their preferences for
every election; rather preferences can be stored and only changed if desired. For exam-
ple, maximal lotteries could help a group of coworkers with the daily decision of where
to have lunch without requiring them to submit their preferences every day. Another
example are automatic music broadcasting systems, such as Internet radio stations or

4Analytical results for the likelihood of Condorcet winners are typically based on the simplistic “im-
partial culture” model, which assumes that every preference relation is equally likely. According to
this model, a Condorcet winner, for example, exists with a probability of at least 63% when there are
seven alternatives (Fishburn, 1973). The impartial culture model is considered highly unrealistic and
Regenwetter et al. (2006) argued that it significantly underestimates the probability of Condorcet
winners. Gehrlein and Lepelley (2011) summarized 37 empirical studies from 1955 to 2009 and con-
cluded that “there is a possibility that Condorcet’s Paradox might be observed, but that it probably
is not a widespread phenomenon.” Laslier (2010) and Brandt and Seedig (2014) reported concrete
probabilities for the existence of Condorcet winners under various distributional assumptions using
computer simulations. A common observation in these studies is that the probability of a Condorcet
winner generally decreases with increasing number of alternatives. For example, Brandt and Seedig
found that, for 15 voters and a spatial distribution of preferences that is commonly used in political
science, the probability of a Condorcet winner ranges from 98% (for three alternatives) to 59% (for
50 alternatives).
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software DJs, that decide which song should be played next based on the preferences of
the listeners. In contrast to traditional deterministic solutions to these problems such
as sequential dictatorships, the repeated execution of lotteries is a memoryless process
that guarantees ex ante fairness after any number of elections.

Finally, it should be noted that the lotteries returned by probabilistic social choice
functions do not necessarily have to be interpreted as probability distributions. They
can, for instance, also be seen as fractional allocations of divisible objects such as time
shares or monetary budgets. The axioms considered in this paper are equally natural
for these interpretations as they are for the probabilistic interpretation.

2. Preliminaries

Let U be an infinite universal set of alternatives. The set of agendas from which alterna-
tives are to be chosen is the set of finite and non-empty subsets of U , denoted by F(U).
The set of all linear (i.e., complete, transitive, and antisymmetric) preference relations
over some set A ∈ F(U) will be denoted by L(A).
For some finite set X, we denote by ∆(X) the set of all probability distributions

with rational values over X. A (fractional) preference profile R for a given agenda
A is an element of ∆(L(A)), which can be associated with the (|A|! − 1)-dimensional
(rational) unit simplex. We interpret R(<) as the fraction of voters with preference
relation < ∈ L(A). Preference profiles are depicted by tables in which each column
represents a preference relation < with R(<) > 0. The table below shows an example
profile on three alternatives.5

1/2 1/3 1/6

a a b
b c c
c b a

(Example 1)

The set of all preference profiles for a fixed agenda A is denoted by R|A and R is defined
as the set of all preference profiles, i.e., R =

⋃

A∈F(U)R|A. For B ⊆ A and R ∈ R|A, R|B
is the restriction of R to alternatives in B, i.e., for all < ∈ L(B),

R|B(<) =
∑

<′∈L(A) : <⊆<′

R(<′).

For all x, y ∈ A, R(x, y) = R|{x,y}({(x, y)}) is the fraction of voters who prefer x to y
(the set {(x, y)} represents the preference relation on two alternatives with x ≻ y). In
Example 1, R(a, b) = 5/6.

Elements of ∆(A) are called lotteries and will be written as convex combinations of
alternatives. If p is a lottery, px is the probability that p assigns to alternative x.

5Our representation of preference profiles implicitly assumes that aggregation functions are anonymous
(i.e., all voters are treated identically) and homogeneous (i.e., duplication of the electorate does
not affect the outcome). Similar models (sometimes even assuming a continuum of voters) have
for example been considered by Young (1974b, 1975), Young and Levenglick (1978), Saari (1995),
Dasgupta and Maskin (2008), Che and Kojima (2010), and Budish and Cantillion (2012).
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A probabilistic social choice function (PSCF) f is an (upper hemi-) continuous function
that, for any agenda A ∈ F(U), maps a preference profile R ∈ R|A to a non-empty
convex subset of ∆(A).6 A PSCF is thus a collection of mappings from high-dimensional
simplices to low-dimensional simplices. Two further properties that we demand from any
PSCF are unanimity and decisiveness. Unanimity states that in the case of one voter
and two alternatives, the preferred alternative should be chosen with probability 1.7

Since we only consider fractional preference profiles, this amounts to for all x, y ∈ U and
R ∈ R|{x,y},

f(R) = {x} whenever R(x, y) = 1. (unanimity)

Decisiveness requires that the set of preference profiles where f is multi-valued is negli-
gible in the sense that for all A ∈ F(U),

{R ∈ R|A : |f(R)| = 1} is dense in R|A. (decisiveness)

In other words, for every preference profile that yields multiple lotteries, there is an
arbitrarily close preference profile that only yields a single lottery.
Probabilistic social choice functions considered in the literature usually satisfy these

conditions and are therefore well-defined PSCFs. For example, consider random dicta-
torship (RD), in which one voter is picked uniformly at random and his most-preferred
alternative is returned. Formally, RD returns the unique lottery, which is determined
by multiplying fractions of voters with their respective top choices, i.e., for all A ∈ F(U)
and R ∈ R|A,

RD(R) =







∑

<∈L(A)

R(<) ·max
<

(A)






, (random dictatorship)

where max<(A) denotes the unique alternative x such that x < y for all y ∈ A. For the
preference profile R given in Example 1,

RD(R) = {5/6 a+ 1/6 b}.

RD is single-valued and therefore trivially decisive and convex-valued. It is also easily
seen that RD satisfies unanimity and continuity and thus constitutes a PSCF.

A useful feature of our definition of PSCFs is that traditional set-valued social choice
functions (SCFs) (also known as social choice correspondences) can be seen as a special
case, namely as those PSCFs that map every preference profile R ∈ R|A on some agenda
A ∈ F(U) to ∆(X) for some X ⊆ A. Such PSCFs will be called (non-probabilistic)
SCFs.
6Fishburn (1973, pp. 248–249) argued that the set of lotteries returned by a probabilistic social choice
function should be convex because it would be unnatural if two lotteries are socially acceptable while
a randomization between them is not (see also Fishburn, 1972, p. 201).

7This is the only condition we impose that actually interprets the preference relations. It is equivalent
to ex post efficiency for agendas of size 2 and is slightly weaker than Young’s faithfulness (Young,
1974a). Our results still hold when replacing unanimity with the even less controversial condition
that merely requires that f(R) 6= {y} whenever R(x, y) = 1.
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3. Population-consistency and Composition-consistency

The consistency conditions we consider are generalizations of the corresponding condi-
tions for SCFs, i.e., the axioms coincide with their non-probabilistic counterparts.
The first axiom relates choices from varying electorates to each other. More precisely,

it requires that whenever a lottery is chosen simultaneously by two electorates, this
lottery is also chosen by the union of both electorates. For example, consider the two
preference profiles R′ and R′′ given below.

1/2 1/2

a b
b c
c a

R′

1/2 1/2

a b
c c
b a

R′′

1/4 1/4 1/2

a a b
b c c
c b a

1/2R′ + 1/2R′′

(Example 2)

Population-consistency then demands that any lottery that is chosen in both R′ and
R′′ (say, 1/2 a + 1/2 b) also has to be chosen when both preference profiles are merged.
Formally, a PSCF satisfies population-consistency if for all A ∈ F(U), R′, R′′ ∈ R|A, and
any convex combination R of R′ and R′′, i.e., R = λR′ + (1− λ)R′′ for some λ ∈ [0, 1],

f(R′) ∩ f(R′′) ⊆ f(R). (population-consistency)

Population-consistency is arguably one of the most natural axioms for variable elec-
torates and is usually considered in a slightly stronger version, known as reinforcement
or simply consistency, where the inclusion in the equation above is replaced with equality
whenever the left-hand side is non-empty (see also Remark 4). Note that population-
consistency is merely a statement about abstract sets of outcomes, which makes no
reference to lotteries whatsoever. It was first considered independently by Smith (1973),
Young (1974a), and Fine and Fine (1974) and features prominently in the characteri-
zation of scoring rules by Smith (1973) and Young (1975). Population-consistency and
its variants have found widespread acceptance in the social choice literature (see, e.g.,
Young, 1974b; Fishburn, 1978; Young and Levenglick, 1978; Saari, 1990a, 1995; Myerson,
1995; Congar and Merlin, 2012).

The second axiom prescribes how PSCFs should deal with decomposable preference
profiles. For two agendas A,B ∈ F(U), B ⊆ A is a component in R ∈ R|A if the
alternatives in B are adjacent in all preference relations that appear in R, i.e., for all
a ∈ A \ B and b, b′ ∈ B, a < b if and only if a < b′ for all < ∈ L(A) with R(<) > 0.
Intuitively, the alternatives in B can be seen as variants or clones of the same alternative
because they have exactly the same relationship to all alternatives that are not in B.
For example, consider the following preference profile R in which B = {b, b′} constitutes
a component.
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1/3 1/6 1/2

a a b
b′ b b′

b b′ a

R

1/2 1/2

a b
b a

R|A′

1/3 2/3

b′ b
b b′

R|B

(Example 3)

The ‘essence’ of R is captured by R|A′ , where A′ = {a, b} contains only one of the
cloned alternatives. It seems reasonable to demand that a PSCF should assign the same
probability to a (say, 1/2) independently of the number of clones of b and the internal
relationship between these clones. This condition will be called cloning-consistency and
was first proposed by Tideman (1987) (see also Zavist and Tideman, 1989). Its origins
can be traced back to earlier, more general, decision-theoretic work by Arrow and Hur-
wicz (1972) and Maskin (1979) where it is called deletion of repetitious states as well as
early work on majoritarian SCFs by Moulin (1986). For a formal definition of cloning-
consistency, let A′, B ∈ F(U) and A = A′ ∪B such that A′ ∩B = {b}. Then, a PSCF f
satisfies cloning-consistency if, for all R ∈ R|A such that B is a component in R,

{
(px)x∈A\B : p ∈ f(R)

}
=

{
(px)x∈A\B : p ∈ f(R|A′)

}
.

When having a second look at Example 3, it may appear strange that cloning-
consistency does not impose any restrictions on the probabilities that f assigns to the
clones. While clones behave completely identical with respect to uncloned alternatives,
they are not indistinguishable from each other. It seems that the relationships between
clones (R|B) should be taken into account as well. For example, one would expect that f
assigns more probability to b than to b′ because two thirds of the voters prefer b to b′. An
elegant and mathematically appealing way to formalize this intuition is to require that
the probabilities of the clones b and b′ are directly proportional to the probabilities that
f assigns to these alternatives when restricting the preference profile to the component
{b, b′}. This condition, known as composition-consistency, is due to Laffond et al. (1996)
and was studied in detail for majoritarian SCFs (see, e.g., Laslier, 1996, 1997; Brandt,
2011; Brandt et al., 2011; Horan, 2013).8

For a formal definition of composition-consistency, let p ∈ ∆(A′) and q ∈ ∆(B) and
define

(p×b q)x =

{

px if x ∈ A \B,

pbqx if x ∈ B.

The operator ×b is extended to sets of lotteries X ⊆ ∆(A′) and Y ⊆ ∆(B) by applying
it to all pairs of lotteries in X × Y , i.e., X ×b Y = {p×b q ∈ ∆(A) : p ∈ X and q ∈ Y }.
Then, a PSCF f satisfies composition-consistency if for all R ∈ R|A such that B is a

component in R,

f(R|A′)×b f(R|B) = f(R). (composition-consistency)

8More generally, modular decompositions of discrete structures have found widespread applications in
operations research and combinatorial optimization (see, e.g., Möhring, 1985).
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In Example 3 above, 1/2 a + 1/2 b ∈ f(R|A′), 2/3 b + 1/3 b′ ∈ f(R|B), and composition-
consistency would imply that 1/2 a+ 1/3 b+ 1/6 b′ ∈ f(R).

4. Non-probabilistic Social Choice

In the context of SCFs (i.e., PSCFs that only return the convex hull of degenerate lotter-
ies), there is some friction between population-consistency and composition-consistency.
In fact, the conflict between these notions can be traced back to the well-documented
dispute between the pioneers of social choice theory, the Chevalier de Borda and the Mar-
quis de Condorcet (see, e.g., Black, 1958; Young, 1988, 1995; McLean and Hewitt, 1994).
Borda proposed a score-based voting rule—Borda’s rule—that can be axiomatically char-
acterized using population-consistency (Young, 1974a). It then turned out that the entire
class of scoring rules (which apart from Borda’s rule also includes plurality rule) is char-
acterized by population-consistency (Smith, 1973; Young, 1974b, 1975). Condorcet, on
the other hand, advocated Condorcet-consistency, which requires that an SCF selects a
Condorcet winner whenever one exists. As Condorcet already pointed out, Borda’s rule
fails to be Condorcet-consistent. Worse, Young and Levenglick (1978) even showed that
no Condorcet-consistent SCF satisfies population-consistency (the defining property of
scoring rules).9 Laslier (1996), on the other hand, showed that no Pareto-optimal rank-
based rule—a generalization of scoring rules—satisfies composition-consistency while
this property is satisfied by various Condorcet-consistent SCFs (Laffond et al., 1996).
One of the few SCFs that satisfies both properties is the rather indecisive Pareto rule
(which returns all alternatives that are not Pareto-dominated). Since our definition of
PSCFs already incorporates a certain degree of decisiveness, we obtain the following
impossibility. (The proofs of all theorems are deferred to the Appendix.)

Theorem 1. There is no SCF that satisfies population-consistency and composition-
consistency.10

In light of this result, it is perhaps surprising that, for probabilistic social choice, both
axioms are not only mutually compatible but even uniquely characterize a PSCF.

5. Characterization of Maximal Lotteries

Maximal lotteries were first considered by Kreweras (1965) and independently proposed
and studied in more detail by Fishburn (1984). Interestingly, maximal lotteries or vari-
ants thereof have been rediscovered again by economists (Laffond et al., 1993b),11 math-

9Theorem 2 by Young and Levenglick (1978) actually uses the strong variant of population-consistency,
but their proof also holds for population-consistency as defined in this paper.

10Theorem 1 still holds when replacing composition-consistency with the weaker condition of cloning-
consistency.

11Laffond et al. (1993b, 1996), Dutta and Laslier (1999), and others have explored the support of
maximal lotteries, called the bipartisan set or the essential set, in some detail. Laslier (2000) has
characterized the essential set using monotonicity, Fishburn’s C2, regularity, inclusion-minimality,
the strong superset property, and a variant of composition-consistency.
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ematicians (Fisher and Ryan, 1995), political scientists (Felsenthal and Machover, 1992),
and computer scientists (Rivest and Shen, 2010).12

In order to define maximal lotteries, we need some notation. For A ∈ F(U), R ∈ R|A,
x, y ∈ A, the entries MR(x, y) of the majority margin matrix MR denote the difference
between the fraction of voters who prefer x to y and the fraction of voters who prefer y
to x, i.e.,

MR(x, y) = R(x, y)−R(y, x).

Thus, MR is skew-symmetric and MR ∈ [−1, 1]A×A. A (weak) Condorcet winner is an
alternative x that is maximal in A according to MR in the sense that MR(x, y) ≥ 0 for
all y ∈ A. If MR(x, y) > 0 for all y ∈ A \ {x}, x is called a strict Condorcet winner. A
PSCF is Condorcet-consistent if x ∈ f(R) whenever x is a Condorcet winner in R.
It is well known from the Condorcet paradox that maximal elements may fail to

exist. As shown by Kreweras (1965) and Fishburn (1984), this drawback can, however,
be remedied by considering lotteries over alternatives. For two lotteries p, q ∈ ∆(A),
the majority margin can be extended to its bilinear form pTMRq, the expected majority
margin. The set of maximal lotteries is then defined as the set of “probabilistic Condorcet
winners.” Formally, for all A ∈ F(U) and R ∈ R|A,

13

ML(R) = {p ∈ ∆(A) : pTMRq ≥ 0 for all q ∈ ∆(A)}. (maximal lotteries)

As an example, consider the preference profile given in Example 1 of Section 2. Al-
ternative a is a strict Condorcet winner and ML(R) = {a}. This is in contrast to
RD(R) = {5/6 a + 1/6 b}, which puts positive probability on any first-ranked alternative
no matter how small the corresponding fraction of voters.

The Minimax Theorem implies that ML(R) is non-empty for all R ∈ R (von Neumann,
1928). In fact, MR can be interpreted as the payoff matrix of a symmetric zero-sum game
and maximal lotteries as the mixed maximin strategies (or Nash equilibrium strategies) of
this game. Hence, maximal lotteries can be efficiently computed via linear programming.

12Felsenthal and Machover (1992) and Rivest and Shen (2010) also discussed whether maximal lotteries
are suitable for real-world political elections. Rivest and Shen concluded that “[the maximal lotteries
system] is not only theoretically interesting and optimal, but simple to use in practice; it is probably
easier to implement than, say, IRV [instant-runoff voting]. We feel that it can be recommended for
practical use.” Felsenthal and Machover wrote that “an inherent special feature of [maximal lotteries]
is its extensive and essential reliance on probability in selecting the winner [. . . ] Without sufficient
empirical evidence it is impossible to say whether this feature of [maximal lotteries] makes it socially
less acceptable than other majoritarian procedures. It is not at all a question of fairness, for nothing
could be fairer than the use of lottery as prescribed by [maximal lotteries]. The problem is whether
society will accept such an extensive reliance on chance in public decision-making. Different societies
may have differing views about this. For example, it is well known that the free men of ancient
Athens regarded it as quite acceptable to select holders of public office by lot. Clearly, before [the
maximal lotteries system] can be applied in practice, public opinion must first be consulted, and
perhaps educated, on this issue.”

13Several authors apply the signum function to the entries of MR before computing maximal lotteries.
This is, for example, the case for Kreweras (1965), Felsenthal and Machover (1992), Laffond et al.
(1993a), and Fisher and Ryan (1995). Maximal lotteries as defined in this paper were considered by
Dutta and Laslier (1999), Laslier (2000), and Rivest and Shen (2010). Fishburn (1984) allowed the
application of any odd function to the entries of MR, which covers both variants as special cases.
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Interestingly, ML(R) is a singleton in almost all cases. In particular, this holds if there is
an odd number of voters (Laffond et al., 1997; Le Breton, 2005). Moreover, we point out
in Appendix C.1 that the set of preference profiles that yield a unique maximal lottery
is open and dense, which implies that the set of profiles with multiple maximal lotteries
is nowhere dense and thus negligible. As a consequence, ML satisfies decisiveness as well
as the other properties we demand from a PSCF (such as unanimity, continuity, and
convex-valuedness) and therefore constitutes a well-defined PSCF.

In contrast to the non-probabilistic case where majority rule is known as the only rea-
sonable and fair SCF on two alternatives (May, 1952; Dasgupta and Maskin, 2008), there
is an infinite number of such PSCFs even when restricting attention to only two alterna-
tives (see, e.g., Saunders, 2010). Within our framework of fractional preference profiles,
a PSCF on two alternatives can be seen as a convex-valued continuous correspondence
from the unit interval to itself. Unanimity fixes the function values at the endpoints
of the unit interval, decisiveness requires that the points where the function is multi-
valued are isolated, and population-consistency implies that the function is monotonic.
Two natural extreme cases of functions that meet these requirements are a probabilistic
version of simple majority rule and the proportional lottery (Figure 1).14 Interestingly,
these two extreme points are taken by maximal lotteries and random dictatorship as for
all x, y ∈ U and R ∈ R|{x,y},

ML(R) =







{x} if R(x, y) > 1/2,

{y} if R(x, y) < 1/2,

∆({x, y}) otherwise,

and RD(R) = {R(x, y)x+R(y, x) y}.

0 1/2 1
0

1

R(x, y)

px

(a) Maximal lotteries

0 1/2 1
0

1

R(x, y)

px

(b) Random dictatorship

Figure 1: Maximal lotteries and random dictatorship on two-element agendas.

When considering up to three alternatives and additionally taking composition-
consistency into account, any such PSCF coincides with majority rule on two-element

14Fishburn and Gehrlein (1977) compared these two-alternative PSCFs on the basis of expected voter
satisfaction and found that the simple majority rule outperforms the proportional rule.
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agendas.15 When allowing an arbitrary number of alternatives, the axioms completely
characterize ML.

Theorem 2. A PSCF f satisfies population-consistency and composition-consistency if
and only if f = ML.

The proof of Theorem 2 is rather involved yet quite instructive as it rests on a number
of lemmas that might be of independent interest (see Appendix C). The high-level struc-
ture is as follows. The fact that ML satisfies population-consistency and composition-
consistency follows relatively easily from basic linear algebra.
For the converse direction, we first show that population-consistency and composition-

consistency characterize ML on two-element agendas. For agendas of more than two
alternatives, we assume that f is a population-consistent and composition-consistent
PSCF and then show that f ⊆ ML and ML ⊆ f . The first statement takes up the bulk
of the proof and is shown by assuming for contradiction that there is a preference profile
for which f yields a lottery that is not maximal. We then identify a set of preference
profiles with full dimension for which f returns the uniform lottery over a fixed subset
of at least two alternatives and which has the uniform profile, i.e., the preference profile
in which every preference relation is assigned the same fraction of voters, in its interior.
Along the way we show that f has to be Condorcet-consistent for all preference profiles
that are close to the uniform profile. It follows that there has to be an ε-ball of profiles
around some strict Condorcet profile (close to the uniform profile), for which f returns
the uniform lottery over a non-singleton subset of alternatives as well as the lottery with
probability 1 on the Condorcet winner. This contradicts decisiveness. For the inclusion
of ML in f , we take an arbitrary preference profile and an arbitrary vertex of the set of
maximal lotteries for this profile and then construct a sequence of preference profiles that
converges to the original profile and whose maximal lotteries converge to the specified
maximal lottery. From f ⊆ ML and continuity, we obtain that f has to select this lottery
in the original preference profile. Finally, convexity implies that ML ⊆ f .

6. Remarks

We conclude the paper with a number of remarks.

Remark 1 (Independence of axioms). The axioms used in Theorem 2 are inde-
pendent from each other. RD satisfies population-consistency, but violates composition-
consistency (see also Remark 5). The same is true for Borda’s rule. When defining
ML3 via the third power of majority margins (MR(x, y))

3, ML3 satisfies composition-
consistency, but violates population-consistency.16 Also the properties implicit in the
definition of PSCFs are independent. The PSCF that returns all maximal lotteries for
the profile in which all preference relations are reversed violates unanimity but satisfies
decisiveness, population-consistency, and composition-consistency. When not requiring

15This also shows that RD violates composition-consistency, which can be seen in Example 3 in Section 3.
However, RD does satisfy cloning-consistency (see Remark 5).

16Such variants of ML were already considered by Fishburn (1984). See also Footnote 13.
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decisiveness, returning all ex post efficient lotteries is consistent with the remaining ax-
ioms.17

Remark 2 (Size of Universe). The proof of Theorem 2 exploits the infinity of the
universe. As stated in the previous remark, ML3 satisfies composition-consistency and
violates population-consistency. However, ML3 does satisfy population-consistency when
there are only up to three alternatives. This implies that the statement of Theorem 2
requires a universe that contains at least four alternatives.

Remark 3 (Uniqueness). The set of profiles in which ML is not single-valued is
negligible in the sense specified in the definition of PSCFs. When extending the set of
fractional profiles to the reals, it can also be shown that maximal lotteries are almost
always unique by using an argument similar to that of Harsanyi (1973a).

Remark 4 (Strong population-consistency). ML does not satisfy the stronger ver-
sion of population-consistency in which the set inclusion is replaced with equality (see
Section 3).18 This can be seen by observing that every lottery is maximal for the union
of any two electorates whose preferences are completely opposed to each other. When
there are at least three alternatives, it is possible to find two such preference profiles
which yield the same unique maximal lottery and strong population-consistency is vio-
lated. However, whenever ML is single-valued (which is almost always the case), strong
population-consistency is equivalent to population-consistency and therefore satisfied by
ML.

Remark 5 (Cloning-consistency and Condorcet-consistency). Requiring
cloning-consistency instead of composition-consistency suffices for the proof of The-
orem 2 when additionally demanding Condorcet-consistency. It is therefore possible
to alternatively characterize ML using population-consistency, cloning-consistency, and
Condorcet-consistency. As above, the axioms are independent from each other. ML3, as
defined in Remark 1, satisfies all axioms except population-consistency. The PSCF that
is identical to ML3 for agendas of size 3 and otherwise identical to ML satisfies all axioms
except cloning-consistency. RD satisfies all axioms except Condorcet-consistency.

Remark 6 (Agenda-consistency). ML also satisfies agenda-consistency, which re-
quires that the set of all lotteries that are chosen from two overlapping agendas should be
identical to the set of lotteries that are chosen from the union of both agendas (and whose
support is contained in both agendas). The inclusion from left to right is known as Sen’s
γ or expansion, whereas the inclusion from right to left is Sen’s α or contraction (Sen,
1971).19 Numerous impossibility results, including Arrow’s well-known theorem, have
revealed that agenda-consistency is prohibitive in non-probabilistic social choice when

17Continuity and convexity can also be seen as implicit assumptions. Continuity is needed because the
relative interior of ML satisfies all remaining axioms. Whether convexity is required is open.

18Strong population-consistency is quite demanding. It is for example violated by rather basic functions
such as the Pareto rule.

19Sen’s α actually goes back to Chernoff (1954) and Nash (1950), where it is called independence of

irrelevant alternatives (not to be confused with Arrow’s IIA). We refer to Monjardet (2008) for more
details.
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paired with minimal further assumptions such as non-dictatorship and Pareto-optimality
(e.g., Sen, 1977, 1986; Campbell and Kelly, 2002).20

Remark 7 (Domains). In contrast to RD , which at least requires that every voter has
a unique top choice, ML does not require the asymmetry, completeness, or even transitiv-
ity of individual preferences (and still satisfies population-consistency and composition-
consistency in these more general domains). In the restricted domains of matching
and house allocation, on the other hand, maximal lotteries are known as popular mixed
matchings (Kavitha et al., 2011) or popular random assignments (Aziz et al., 2013b).

Remark 8 (Efficiency). It has already been observed by Fishburn (1984) that ML
is ex post efficient, i.e., Pareto-dominated alternatives always receive probability zero
in all maximal lotteries. Aziz et al. (2013a) strengthened this statement by showing
that ML even satisfies SD-efficiency (also known as ordinal efficiency) as well as the
even stronger notion of PC -efficiency (see Aziz et al., 2015). While RD also satisfies
SD-efficiency, random serial dictatorship (the canonical generalization of RD to weak
preferences) violates SD-efficiency (Bogomolnaia and Moulin, 2001; Bogomolnaia et al.,
2005).

Remark 9 (Strategyproofness). RD is the only ex post efficient strategyproof PSCF
(Gibbard, 1977). However, RD and ML violate group-strategyproofness (in fact, there
exists no ex post efficient group-strategyproof PSCF). RD and ML satisfy the signifi-
cantly weaker notion of ST -group-strategyproofness, which is violated by probabilistic
extensions of most common voting rules (Aziz et al., 2014). A very useful property of ML
is that it cannot be manipulated in all preference profiles that admit a strict Condorcet
winner (see Peyre, 2013).
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APPENDIX

A. Preliminaries

As stated in Section 2, U is an infinite set of alternatives. For convenience we will
assume that N ⊆ U . For n ∈ N, [n] is defined as [n] = {1, . . . , n}. For two sets A
and B, let Π(A,B) denote the set of all bijections from A to B (where Π(A,B) = ∅ if
|A| 6= |B|). Let Π(A) = Π(A,A) be the set of all permutations of A. We will frequently
work with profiles in which alternatives are renamed according to some bijection from
one set of alternatives to another. For all A,B ∈ F(U), < ∈ L(A), and π ∈ Π(A,B), let
π(<) = {(π(x), π(y)) : (x, y) ∈ <} ∈ L(B) and, for R ∈ R|A, let π(R) ∈ R|B such that
R(<) = (π(R))(π(<)). A well-known symmetry condition for PSCFs is neutrality, which
requires that all alternatives are treated equally in the sense that renaming alternatives
is appropriately reflected in the outcome. Formally, a PSCF is neutral if

π(f(R)) = f(π(R)) for all A,B ∈ F(U), R ∈ R|A, and π ∈ Π(A,B). (neutrality)

We show that composition-consistency implies neutrality by replacing all alternatives
with components of size 2.

Lemma 1. Every composition-consistent PSCF satisfies neutrality.

Proof. Let f be a composition-consistent PSCF, A,B ∈ F(U), R ∈ R|A, and π ∈
Π(A,B). We have to show that π(f(R)) = f(π(R)). To this end, let pA ∈ f(R). First,
choose A = {a1, . . . , an} and B = {b1, . . . , bn} such that bi = π(ai) for all i ∈ [n]. Since
U is infinite, there is C = {c1, . . . , cn} ∈ F(U) such that C ∩ A = ∅ and C ∩ B = ∅.
Now, let R′ ∈ R|A∪C such that R′|A = R and {ai, ci} is a component in R′ for all i ∈ [n].
Thus, we have that pA ∈ f(R′|A). We now apply composition-consistency to ai and the
components {ai, ci} for all i ∈ [n], which by definition implies that

f(R′|A)×a1 f(R
′|{a1,c1})×a2 f(R

′|{a2,c2}) · · · ×an f(R′|{an,cn}) = f(R′|A∪C).

Hence, for pAC ∈ f(R′|A∪C) we have pAC
ai + pAC

ci = pAai for all i ∈ [n]. Ap-
plying composition-consistency analogously to ci and {ai, ci} for all i ∈ [n] yields
pCci = pAC

ai + pAC
ci = pAai for all pC ∈ f(R′|C) and i ∈ [n]. Finally, let R′′ ∈ R|B∪C such

that R′′|C = R′|C and {bi, ci} is a component in R′′ for all i ∈ [n]. Hence, we have that
pC ∈ f(R′′|C). As before, it follows from composition-consistency that pB ∈ f(R′′|B)
where pBbi = pCci for all i ∈ [n]. Notice that pB = π(pA) and B = π(A). Since R′′|B = π(R)

by construction of R′′, we have pB ∈ f(π(R)). Hence, π(f(R)) ⊆ f(π(R)). The fact
that f(π(R)) ⊆ π(f(R)) follows from application of the above to π(R) and π−1.

The following notation is required for our proofs. For some set X, uni(X) denotes
the uniform distribution over X. In particular, for A ∈ F(U), uni(A) is the uniform
lottery over A, i.e., uni(A) = 1/|A|

∑

x∈A x. The support of a lottery p is the set of all
alternatives to which p assigns positive probability, i.e., supp(p) = {x ∈ A : px > 0}.
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The 1-norm of x ∈ Qn is denoted by ‖x‖, i.e., ‖x‖ =
∑n

i=1 |xi|. For X ⊆ Qn, the convex
hull conv(X) is the set of all convex combinations of elements of X, i.e.,

conv(X) =

{

λ1a
1 + · · ·+ λka

k : ai ∈ X,λi ∈ Q≥0,

k∑

i=1

λi = 1

}

.

X is convex if X = conv(X). The affine hull aff(X) is the set of all affine combinations
of elements of X, i.e.,

aff(X) =

{

λ1a
1 + · · ·+ λka

k : ai ∈ X,λi ∈ Q,
k∑

i=1

λi = 1

}

.

X is an affine subspace if X = aff(X). We say that a1, . . . , ak ∈ Qn are affinely inde-
pendent if, for all λ1, . . . , λk ∈ Q with

∑k
i=1 λi = 0,

∑k
i=1 λia

i = 0 implies λi = 0 for all
i ∈ [k]. The dimension of an affine subspace X, dim(X), is k−1, where k is the maximal
number of affinely independent vectors in X. The dimension of a set X is the dimension
of aff(X). The linear hull lin(X) is the set of all linear combinations of elements of X,
i.e.,

lin(X) =
{

λ1a
1 + · · ·+ λka

k : ai ∈ X,λi ∈ Q

}

.

Bε(x) = {y ∈ Qn : ‖x− y‖ < ε} denotes the ε-ball around x ∈ Qn. The interior of X ⊆
Qn in Y ⊆ Qn is intY (X) = {x ∈ X : Bε(x) ∩ Y ⊆ X for some ε > 0}. The closure of
X ⊆ Qn in Y ⊆ Qn, clY (X), is the set of all limit points of sequences inX which converge
in Y , i.e., clY (X) = {limk→∞ ak : (ak)k∈N converges in Y and ak ∈ X for all k ∈ N}. X
is dense in Y if clY (X) = Y . Alternatively, X is dense at y ∈ Qn if for every ε > 0 there
is x ∈ X such that ‖x− y‖ < ε. X is dense in Y if X is dense at y for every y ∈ Y .

B. Non-Probabilistic Social Choice

Theorem 1. There is no SCF that satisfies population-consistency and composition-
consistency.

Proof. Assume for contradiction that f is an SCF that satisfies population-consistency
and composition-consistency. Let A = {a, b, c} and consider the profiles R1, . . . , R6 as
depicted below.

1/3 1/3 1/3

a b c
b c a
c a b

R1

1/2 1/2

a c
b b
c a

R2

1/2 1/2

a b
c c
b a

R3

1/2 1/2

b c
a a
c b

R4

1/2 1/2

a b
b c
c a

R5

1/2 1/2

b a
a c
c b

R6
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We claim that ∆({a, b}) ⊆ f(Ri) for all i ∈ {1, . . . , 6}. It follows from neutrality
that f(R1) = ∆(A). Again, by neutrality, f(R2|{a,b}) = ∆({a, b}) and f(R2|{a,c}) =
∆({a, c}). Notice that {a, b} is a component in R2. Hence, by composition-consistency,

f(R2) = f(R2|{a,c})×a f(R
2|{a,b}) = ∆({a, c})×a ∆({a, b}) = ∆(A).

A similar argument yields f(Ri) = ∆(A) for i = 3, 4. Unanimity implies that
f(R5|{b,c}) = {b} and, by neutrality, we have f(R5|{a,b}) = ∆({a, b}). Furthermore,
{b, c} is a component in R5. Hence, by neutrality and composition-consistency,

f(R5) = f(R5|{a,b})×b f(R
5|{b,c}) = ∆({a, b})×b {b} = ∆({a, b}).

Similarly, f(R6) = ∆({a, b}).
Every profile Ri is a vector in the five-dimensional unit simplex R|A in Q6. The

corresponding vectors are depicted below.











R1

R2

R3

R4

R5

R6











=











1/3 1/3 1/3 0 0 0
1/2 0 0 0 1/2 0
0 1/2 0 1/2 0 0
0 0 1/2 0 0 1/2
1/2 1/2 0 0 0 0
0 0 0 1/2 0 1/2











It can be checked that R1, . . . , R6 are affinely independent, i.e., dim({R1, . . . , R6}) =
5. It follows from population-consistency that ∆({a, b}) ⊆ f(R) for every R ∈
conv({R1, . . . , R6}). Hence, {R ∈ R|A : |f(R)| = 1} is not dense in R|A at 1/6R1 +
· · ·+ 1/6R6, which contradicts decisiveness of f .

C. Probabilistic Social Choice

In this section we prove that every PSCF that satisfies population-consistency and
composition-consistency has to return maximal lotteries. The high-level structure of
the proof is described after Theorem 2 in Section 5.

C.1. ML Satisfies Population-Consistency and Composition-Consistency

We first show that ML is a PSCF that satisfies population-consistency and composition-
consistency. This statement is split into two lemmas.

Lemma 2. ML is a PSCF.

Proof. ML is continuous, since the correspondence that maps a matrix M to the set of
vectors x such that Mx ≥ 0 is (upper-hemi) continuous.

The fact that f(R) is convex for every R ∈ R follows from convexity of the set of
maximin strategies for all (symmetric) zero-sum games.
ML obviously satisfies unanimity by definition.
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ML satisfies decisiveness. Let A ∈ F(U) and R ∈ R|A. It is easy to see that, for every
ε > 0, we can find R′ ∈ Bε(R)∩R|A and k ∈ N such that kR′(x, y) is an odd integer for
all x, y ∈ A with x 6= y. Laffond et al. (1997) have shown that every symmetric zero-
sum game whose off-diagonal entries are odd integers admits a unique Nash equilibrium.
Hence, |f(R′)| = 1 and f is decisive.

Moreover, the set of symmetric zero-sum games with a unique maximin strategy in-
herits openness from the set of all zero-sum games with a unique maximin strategy
(Bohnenblust et al., 1950, pp. 56–58). Hence, the set of profiles with a unique maximal
lottery is open and dense in the set of all profiles and the set of profiles with multiple
maximal lotteries is nowhere dense.

Lemma 3. ML satisfies population-consistency and composition-consistency.

Proof. To simplify notation, for every v ∈ Qn and X ⊆ [n], we denote by vX the
restriction of v to indices in X, i.e., vX = (vi)i∈X .

ML satisfies population-consistency. Let A ∈ F(U), R′, R′′ ∈ R|A, and p ∈ ML(R′) ∩
ML(R′′). Then, by definition of ML, pTMR′q ≥ 0 and pTMR′′q ≥ 0 for all q ∈ ∆(A).
Hence, for all λ ∈ [0, 1],

pT (λMR′ + (1− λ)MR′′) q = λ pTMR′q
︸ ︷︷ ︸

≥0

+(1− λ) pTMR′′q
︸ ︷︷ ︸

≥0

≥ 0,

for all q ∈ ∆(A), which implies that p ∈ ML(λR′ + (1− λ)R′′).
ML satisfies composition-consistency. Let A′, B ∈ F(U) such that A′ ∩ B = {b},

A = A′ ∪ B, and R ∈ R|A such that B is a component in R. To simplify notation, let
C = A\B and M = MR,MA′ = MR|A′ ,MB = MR|B , and MC = MR|C . Notice first that

M and MA′ take the following form for some v ∈ QA\B:

M =












MC

| |
v . . . v
| |

− (−vT ) −
MB

...
− (−vT ) −












, MA′ =







MC

|
v
|

− (−vT ) − 0







.

Let p ∈ ML(R|A′) ×b ML(R|B). Then, there are pA
′
∈ ML(R|A′) and pB ∈ ML(R|B)

such that p = pA
′
×b p

B. Let q ∈ ∆(A). Then,

pTMq = pTCMCqC + ‖pB‖(−v)T qC + pTCv‖qB‖+ pTBMBqB

= (pC , ‖pB‖)
TMA′(qC , ‖qB‖)

T + pTBMBqB

= (pA
′
)TMA′(qC , ‖qB‖)

T

︸ ︷︷ ︸

≥0

+‖pB‖ (p
B)TMBqB

︸ ︷︷ ︸

≥0

≥ 0,

since pA
′
∈ ML(R|A′) and pB ∈ ML(R|B), respectively. Hence p ∈ ML(R).
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For the other direction, let p ∈ ML(R). We have to show that there are pA
′
∈ ML(R|A′)

and pB ∈ ML(R|B) such that p = pA
′
×b p

B.
First, if ‖pB‖ = 0 let pA

′
= pA′ and pB ∈ ML(R|B) be arbitrary. Let q ∈ ∆(A′).

Then,

(pA
′
)TMA′q = pTCMCqC + pTCvqb = pTM(q, 0)T ≥ 0,

since p ∈ ML(R). Hence, pA
′
∈ ML(R|A′).

Otherwise, let pA
′
= (pC , ‖pB‖) and pB = pB/‖pB‖. Let q ∈ ∆(A′). Then,

(pA
′
)TMA′q = pTCMCqC + ‖pB‖(−v)T qC + pTCvqb

= pTCMCqC + ‖pB‖(−v)T qC + pTCvqb +
qb

‖pB‖
pTBMBpB
︸ ︷︷ ︸

=0

= pTM(qC ,
qb

‖pB‖
pB)

T ≥ 0.

Hence, pA
′
∈ ML(R|A′). Let q ∈ ∆(B). Then,

‖pB‖
2(pB)TMBq = ‖pB‖p

T
BMBq

= ‖pB‖p
T
BMBq + pTCMCpC

︸ ︷︷ ︸

=0

+ ‖pB‖(−v)T pC + ‖pB‖p
T
Cv

︸ ︷︷ ︸

=0

= (pC , pB)
TM(pC , ‖pB‖q) = pTM(pC , ‖pB‖q) ≥ 0.

Hence, pB ∈ ML(R|B).

C.2. Binary Choice

The basis of our characterization of ML is the special case for agendas of size 2. The
following lemma states that, on two alternatives, whenever a composition-consistent
PSCF returns a non-degenerate lottery, it has to return all lotteries. Interestingly, the
proof uses composition-consistency on three-element agendas, even though the statement
itself only concerns agendas of size 2. In order to simplify notation, define

pλ = λa+ (1− λ)b.

Lemma 4. Let A = {a, b} and f be a PSCF that satisfies composition-consistency.
Then, for all R ∈ R|A and λ ∈ (0, 1), pλ ∈ f(R) implies f(R) = ∆(A).

Proof. Let R ∈ R|A and assume pλ ∈ f(R) for some λ ∈ (0, 1). Define R′ ∈ R|{a,b,c} as
depicted below.

R(a, b) R(b, a)

a c
b b
c a

R′
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Notice that R′|A = R and thus, pλ ∈ f(R′|A). Neutrality implies that λa+ (1− λ)c ∈
f(R′|{a,c}). Since A is a component inR′, we have λpλ+(1−λ)c ∈ f(R′|{a,c})×af(R

′|A) =
f(R′). Since {b, c} is also a component in R′, composition-consistency implies that
λpλ + (1 − λ)c ∈ f(R′) = f(R′|A) ×b f(R

′|{b,c}). Observe that λpλa = pλ
2

a and hence

pλ
2

∈ f(R′|A) = f(R).

Applying this argument repeatedly, we get pλ
2k

∈ f(R) for all k ∈ N. Since λ2k → 0
for k → ∞ and f is continuous, we get p0 = b ∈ f(R). Similarly, it follows that
p1 = a ∈ f(R). The fact that f is convex-valued implies that f(R) = ∆(A).

The characterization of ML for agendas of size 2 proceeds along the following lines.
By unanimity, neutrality, and Lemma 4, we know which lotteries have to be returned
by every composition-consistent PSCF for three particular profiles. Then population-
consistency implies that every such PSCF has to return all maximal lotteries. Last, we
again use population-consistency to show that the function is not decisive if it addition-
ally returns lotteries that are not maximal.

Lemma 5. Let f be a PSCF that satisfies population-consistency and composition-
consistency and A = {a, b}. Then f(R) = ML(R) for every R ∈ R|A.

Proof. First, note that R ∈ R|A is fully determined by R(a, b). Let R ∈ R|A be the
profile such that R(a, b) = 1/2. Since f(R) 6= ∅, there is λ ∈ [0, 1] such that pλ ∈ f(R).
Neutrality implies that p1−λ ∈ f(R) and hence, by convexity of f(R), p1/2 = 1/2 (pλ +
p1−λ) ∈ f(R). If follows from Lemma 4 that f(R) = ∆(A).

Now, let R ∈ R|A be the profile such that R(a, b) = 1. Unanimity implies that
a ∈ f(R). By population-consistency and the first part of the proof, we get a ∈ f(R′)
for all R′ ∈ R|A with R′(a, b) ∈ [1/2, 1]. Similarly, b ∈ f(R′) for all R′ ∈ R|A with
R′(a, b) ∈ [0, 1/2]. This already shows that ML(R) ⊆ f(R) for every R ∈ R|A.

Finally, let R ∈ R|A be a profile such that R(a, b) = r > 1/2. If f(R) 6= {a}, there is
λ ∈ [0, 1) such that pλ ∈ f(R). We have shown before that f(R′) = ∆(A) if R′(a, b) = 1/2.
Hence, it follows from population-consistency that pλ ∈ f(R′) for every R′ ∈ R|A with
R′(a, b) ∈ [1/2, r]. But then {R ∈ R|A : R(a, b) ∈ [1/2, r]} ⊆ {R ∈ R|A : |f(R)| > 1} and
hence, {R ∈ R|A : |f(R)| = 1} is not dense in R|A. This contradicts decisiveness of f .
An analogous argument shows that f(R) = {b} whenever R(a, b) < 1/2.

In summary, we have that f(R) = {a} if R(a, b) ∈ (1/2, 1], f(R) = {b} if R(a, b) ∈
[0, 1/2), and f(R) = ∆(A) if R(a, b) = 1/2. Thus, f = ML (as depicted in Figure 1(a)).

C.3. f ⊆ ML

The first lemma in this section shows that every PSCF that satisfies population-
consistency and composition-consistency is Condorcet-consistent for profiles that are
close to the uniform profile uni(L(A)), i.e., the profile in which every preference relation
is assigned the same fraction of voters. We prove this statement by induction on the
number of alternatives. Every profile close to the uniform profile that admits a Con-
dorcet winner can be written as a convex combination of profiles that have a component
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and admit the same Condorcet winner. For these profiles we know from the induction
hypothesis that the Condorcet winner has to be chosen.

Lemma 6. Let f be a PSCF that satisfies population-consistency and composition-
consistency and A ∈ F(U). Then, f satisfies Condorcet-consistency in a neighborhood
of the uniform profile uni(L(A)).

Proof. Let f be a PSCF that satisfies population-consistency and composition-
consistency and A ∈ F(U) with |A| = n. Let, furthermore, R ∈ R|A be such that
a ∈ A is a Condorcet winner in R and ‖R− uni(L(A))‖ ≤ εn = (4nΠn

k=1k!)
−1. We show

that a ∈ f(R) by induction over n. An example for n = 3 illustrating the idea is given
after the proof. For n = 2, the claim follows directly from Lemma 5.
For n > 2, fix b ∈ A\{a}. First, we introduce some notation. For < ∈ L(A), we denote

by <−1 the preference relation that reverses all pairwise comparisons, i.e., x <−1 y iff
y < x for all x, y ∈ A. By <b→a we denote the preference relation that is identical to <

except that b is moved upwards or downwards (depending on whether a < b or b < a)
until it is next to a in the preference relation. Formally, let

X< =

{

{x ∈ A : a ≻ x ≻ b} if a < b, and

{x ∈ A : b ≻ x ≻ a} if b < a,

and

<
b→a =

{

< \ (X< × {b}) ∪ ({b} ×X<) if a < b, and

< \ ({b} ×X<) ∪ (X< × {b}) if b < a.

Notice that for every <′ ∈ L(A), there are at most n− 1 distinct preference relations <
such that <′ = <b→a. Furthermore, we say that {a, b} is a component in < if X< = ∅.
We first show that composition-consistency implies Condorcet-consistency for a par-

ticular type of profiles. For < ∈ L(A), let S ∈ R|A such that S(<) + S(<b→a) =
S(<−1) = 1/2. We have that S(a, x) = 1/2 for all x ∈ A\{a} and hence, a is a Condorcet
winner in S. We prove that a ∈ f(S) by induction over n. For n = 2, this follows from
Lemma 5. For n > 2, let x ∈ A \ {b} such that x < y for all y ∈ A or y < x for all
y ∈ A. This is always possible since n > 2. Notice that A \ {x} is a component in S
and S(x, y) = 1/2 for all y ∈ A \ {x}. If x = a, it follows from composition-consistency
and Lemma 5 that a ∈ f(S). If x 6= a, it follows from the induction hypothesis that
a ∈ f(S|A\{x}). Lemma 5 implies that a ∈ f(S|{a,x}) as S(a, x) = 1/2. Then, it follows
from composition-consistency that a ∈ f(S|{a,x})×a f(S|A\{x}) = f(S).

Now, for every < ∈ L(A) such that {a, b} is not a component in < and 0 < R(<) ≤
R(<−1), let S< ∈ R|A such that

S<(<) + S<(<b→a) = S<(<−1) = 1/2 and S<(<)/S<(<−1) = R(<)/R(<−1).

From what we have shown before, it follows that a ∈ f(S<) for all < ∈ L(A).
The rest of the proof proceeds as follows. We show that R can be written as a

convex combination of profiles of the type S< and a profile R′ in which {a, b} is a
component and a is a Condorcet winner. Since R is close to the uniform profile, R(<′)
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is almost identical for all preference relations <′. Hence S<(<′) is close to 0 for all
preference relations <′ in which {a, b} is a component. As a consequence, R′(<′) is
almost identical for all preference relations <′ in which {a, b} is a component and R′|A\{b}

is close to the uniform profile for n − 1 alternatives, i.e., uni(L(A \ {b})). By the
induction hypothesis, a ∈ f(R′|A\{b}). Since {a, b} is a component in R′, it follows from
composition-consistency that a ∈ f(R′).
We define

S = 2
∑

<

R(<−1)S<,

where the sum is taken over all < such that {a, b} is not a component in < and 0 <
R(<) ≤ R(<−1) (in case R(<) = R(<−1) we pick one of < and <−1 arbitrarily). Now,
let R′ ∈ R|A such that

R = (1− ‖S‖)R′ + S.

Note that, by definition of S, R′(<) = 0 for all < ∈ L(A) such that {a, b} is not a
component in <. Hence, {a, b} is a component in R′. By the choice of R, we have that

‖S‖ =
∑

<∈L(A)

S(<) ≤
n!− 2(n− 1)!

n!
+ εn = 1−

2

n
+ εn.

Using this fact, a simple calculation shows that

R′(<) ≤
R(<)− S(<)

2
n − εn

≤
1
n! + εn
2
n − εn

≤
1

2(n− 1)!
+

εn−1

4(n− 1)!
.

Since, for every preference relation < where {a, b} is a component, there is exactly one
other preference relation identical to < except that a and b are swapped, we have that

R′|A\{b}(<) ≤
1

(n− 1)!
+

εn−1

2(n− 1)!
,

for every < ∈ L(A \ {b}). By the above calculation, we have that

∥
∥R′|A\{b} − uni(L(A \ {b}))

∥
∥ ≤ εn−1.

Since S<(a, x) = 1/2 for all x ∈ A \ {a} and < ∈ L(A), we have that R′(a, x) ≥ 1/2 for all
x ∈ A \ {a}. Thus, a is a Condorcet winner in R′|A\{b}. From the induction hypothesis
it follows that a ∈ f(R′|A\{b}). Using the fact that R′(a, b) ≥ 1/2, Lemma 5 implies that
a ∈ f(R′|{a,b}). Finally, composition-consistency entails a ∈ f(R′|A\{b})×a f(R

′|{a,b}) =
f(R′).

In summary, a ∈ f(S<) for all < ∈ L(A) and a ∈ f(R′). Since R is a convex
combination of profiles of the type S< and R′, it follows from population-consistency
that a ∈ f(R).

We now give an example for A = {a, b, c} which illustrates the proof of Lemma 6.
Consider the following profile R, where 0 ≤ ε ≤ ε3.
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(1+2ε)/6 1/6 1/6 (1−ε)/6 (1−ε)/6 1/6

a a b b c c
b c a c a b
c b c a b a

R

Then, we have that ‖R−uni(L(A))‖ ≤ ε3. Now consider < with b ≻ c ≻ a, which yields
S< as depicted below.

1/2 (1−ε)/2 ε/2

a b c
c c b
b a a

S<

Here, y < a for all y ∈ A. Hence, it follows from what we have shown before that
a ∈ f(S<). No other profiles of this type need to be considered, as < and <−1 are the
only preference relations in which {a, b} is not a component. Thus S = 1/3S<.

Then, we have R′, R′|{a,c}, and R′|{a,b} as follows.

(1+2ε)/4 1/4 (1−ε)/4 (1−ε)/4

a b c c
b a a b
c c b a

R′

(1+ε)/2 (1−ε)/2

a c
c a

R′|{a,c}

(2+ε)/4 (2−ε)/4

a b
b a

R′|{a,b}

It follows from Lemma 5 that a ∈ f(R′|{a,c}) and a ∈ f(R′|{a,b}). Then, composition-
consistency implies that a ∈ f(R′) = f(R′|{a,c})×a f(R

′|{a,b}).
In summary, we have that

R = 2/3R′ + 1/3S<,

a ∈ f(R′), and a ∈ f(S<). Thus, population-consistency implies that a ∈ f(R).

Lemma 7. Every PSCF that satisfies population-consistency and composition-
consistency returns the uniform lottery over all Condorcet winners for all profiles in
a neighborhood of the uniform profile uni(L(A)).

Proof. Let f be a PSCF that satisfies population-consistency and composition-
consistency and A ∈ F(U) with |A| = n. Moreover, let R ∈ R|A such that
‖R − uni(L(A))‖ ≤ εn and A′ ⊆ A be the set of Condorcet winners in R. We actu-
ally prove a stronger statement, namely that ∆(A′) ⊆ f(R). Every alternative in A′ is a
Condorcet winner in R. Thus, it follows from Lemma 6 that x ∈ f(R) for every x ∈ A′.
Since f(R) is convex, ∆(A′) ⊆ f(R) follows.
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For the remainder of the proof, we need to define two classes of profiles that are based
on regularity conditions imposed on the corresponding majority margins. Let A ∈ F(U)
and A′ ⊆ A. A profile R ∈ R|A is

regular on A′ if
∑

y∈A′

MR(x, y) = 0 for all x ∈ A′, and

strongly regular on A′ if MR(x, y) = 0 for all x, y ∈ A′.

By R|A
′

A and S|A
′

A we denote the set of all profiles in R|A that are regular or strongly
regular on A′, respectively.
In the following five lemmas we show that, for every A′ ⊆ A, every profile on A can

be affinely decomposed into profiles of three different types: profiles that are strongly
regular on A′, certain regular profiles, and profiles that admit a strict Condorcet winner
in A′.21 Lemmas 8, 9, and 10 do not make any reference to population-consistency,
composition-consistency, or maximal lotteries and may be of independent interest.
First, we determine the dimension of the space of all profiles that are strongly regular

on A′.

Lemma 8. Let A′ ⊆ A ∈ F(U). Then, dim(S|A
′

A ) = |A|!−
(
|A′|
2

)
− 1.

Proof. We will characterize S|A
′

A using a set of linear constraints. By definition, S|A
′

A =
{R ∈ R|A : MR(x, y) = 0 for all x, y ∈ A′}. Recall that MR(x, y) =

∑

< : x<y R(<) −
∑

< : y<xR(<). Since MR(x, x) = 0 for all R ∈ R|A and x ∈ A, S|A
′

A can be characterized

by
(
|A|′

2

)
homogeneous linear constraints in the (|A|!− 1)-dimensional space R|A, which

implies that dim(S|A
′

A ) ≥ |A|! −
(
|A|′

2

)
− 1. Equality holds but is not required for the

following arguments. We therefore omit the proof.

Second, we determine the dimension of the space of all skew-symmetric n×n matrices
that correspond to regular profiles and vanish outside their upper left n′×n′ sub-matrix,
i.e.,

Mn′ =
{
M ∈ Qn×n : M = −MT ,

n∑

j=1

M(i, j) = 0 if i ∈ [n], and M(i, j) = 0 if {i, j} 6⊆ [n′]
}
.

In Lemma 10, we then proceed to show that every matrix of this type can be decom-
posed into matrices induced by a subset of regular profiles for which we know that every
PSCF has to return the uniform lottery over the first n′ alternatives (possibly among
other lotteries).

Lemma 9. dim(Mn′) =
(
n′

2

)
− (n′ − 1).

21Similar decompositions of majority margin matrices have been explored by Zwicker (1991) and Saari
(1995).
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Proof. First note that the space of all n× n matrices has dimension n2. We show that
Mn′ can be characterized by a set of (n2 − (n′)2) + (

(
n′

2

)
+ n′) + (n′ − 1) homogeneous

linear constraints. Let M ∈ Qn×n and observe that (n2−(n′)2) constraints are needed to

ensure that M vanishes outside of [n′]× [n′],
(
n′

2

)
+ n′ constraints are needed to ensure

skew-symmetry of M on [n′] × [n′], i.e., M(i, j) = −M(j, i) for all i, j ∈ [n′], j ≥ i,
and (n′ − 1) constraints are needed to ensure that the first n′ rows (and hence also the
columns) of M ′ sum up to 0, i.e.,

∑n
j=1M(i, j) = 0 for all i ∈ [n′ − 1]. It follows from

skew-symmetry and the latter n′ − 1 constraints that the n′th row of M sums up to 0,
since

n∑

j=1

M(n′, j) =
n∑

i,j=1

M(i, j)−
n′−1∑

i=1

n∑

j=1

M(i, j) = 0.

The last n − n′ rows of M trivially sum up to 0. Hence, dim(Mn′) ≥ (n′)2 − (
(
n′

2

)
+

n′) − (n′ − 1) =
(
n′

2

)
− (n′ − 1). Equality holds but is not required for the following

arguments. We therefore omit the proof.

Let Π◦
B([n]) be the set of all permutations that are cyclic on B and coincide with the

identity permutation outside of B.22 We denote by M◦
n′ the space of all matrices in Mn′

induced by a permutation in Π◦
B([n]) for some B ⊆ [n′], i.e.,

M◦
n′ =

{
M ∈ Mn′ : M(i, j) =







1 if j = π(i), i ∈ B,

−1 if i = π(j), j ∈ B,

0 otherwise,

for some π ∈ Π◦
B([n]), B ⊆ [n′]

}
,

with the convention that M◦
2 = {0}. We now show that the linear hull of M◦

n′ is Mn′ .

Lemma 10. lin(M◦
n′) = Mn′.

Proof. The idea underlying the proof is as follows: every matrix M ∈ Mn′ corresponds
to a weighted directed graph with vertex set [n] where the weight of the edge from i to
j is M(i, j). If M 6= 0, there exists a cycle along edges with positive weight of length at
least 3 in the subgraph induced by [n′]. We obtain a matrix M ′ with smaller norm than
M by subtracting the matrix in M◦

n′ from M that corresponds to the cycle identified
before.
Let M ∈ Mn′ and κ ∈ Q \ {0} such that κM ∈ Nn×n. We show, by induction over

κ‖M‖, that M =
∑ℓ

i=1 λiM
i for some λi ∈ Q and M i ∈ M◦

n′ for all i ∈ [ℓ]\{1} for some
ℓ ∈ N. If κ‖M‖ = 0 then M = 0. Hence, the induction hypothesis is trivial.

If κ‖M‖ 6= 0, i.e., M 6= 0, we can find B ⊆ [n′] with |B| ≥ 3 and π ∈ Π◦
B([n]) such

that M(i, j) > 0 if π(i) = j and i ∈ B. Note that π defines a cycle of length at least 3
in the graph that corresponds to M . We define M1 ∈ M◦

n′ by letting

M1(i, j) =







1 if π(i) = j and i ∈ B,

−1 if π(j) = i and j ∈ B, and

0 otherwise.

22A permutation π ∈ Π([n]) is cyclic on B if π|B| is the smallest positive power of π that is the identity
function on B.
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Let λ = min{M(i, j) : i, j ∈ [n] and M1(i, j) > 0} and M ′ = M−λM1. By construction,
we have that M ′(i, j) = M(i, j) − λ if π(i) = j and i ∈ B, M ′(i, j) = M(i, j) + λ if
π(j) = i and j ∈ B, and M ′(i, j) = M(i, j) otherwise. Note that M(i, j) ≥ λ if
π(i) = j and i ∈ B and M(i, j) ≤ −λ if π(j) = i and j ∈ B by definition of λ.
Recall that κM ∈ Nn×n and, in particular, κλ ∈ N. Hence, κM ′ ∈ Nn×n. Moreover,
κ‖M ′‖ = κ‖M‖ − 2κλ|B| ≤ κ‖M‖ − 1. From the induction hypothesis we know that
M ′ =

∑ℓ
i=2 λiM

i with λi ∈ Q and M i ∈ M◦
n′ for all i ∈ [ℓ] for some ℓ ∈ N. By

construction of M ′, we have that M =
∑ℓ

i=1 λiM
i with λ1 = λ.

Lemma 11 leverages Lemmas 7, 8, 9, and 10 to show two statements. First, it identifies
the dimension of the space of all profiles that are regular on A′ ⊆ A. Second, it proves
that there is a full-dimensional subset of the space of all profiles that are regular on A′

for which every PSCF that satisfies population-consistency and composition-consistency
returns the uniform lottery over A′.

Lemma 11. Let f be a PSCF that satisfies population-consistency and composition-
consistency and A′ ⊆ A ∈ F(U). Then, there is X ⊆ R|A

′

A of dimension |A|!− |A′| such
that uni(A′) ∈ f(R) for every R ∈ X.

Proof. To simplify notation, we assume without loss of generality that A = [n] and
A′ = [n′]. For M ∈ Qn×n and π ∈ Π(A), let π(M) be the matrix that results from M by
permuting the rows and columns of M according to π, i.e., (π(M))(i, j) = M(π(i), π(j)).

From Lemma 8 we know that we can find a set S = {S1, . . . , Sn!−( n′

2 )} ⊆ R|
[n′]
[n] of

affinely independent profiles. Since S can be chosen such that every S ∈ S is close to
uni(L([n])), it follows from Lemma 7 that uni([n′]) ∈ f(S) for all S ∈ S. Therefore, it

suffices to find a set of profiles T = {R1, . . . , R( n′

2 )−(n′−1)} ⊆ R|
[n′]
[n] such that uni([n′]) ∈

f(R) for every R ∈ T and S ∪ T is a set of affinely independent profiles. If n′ = 2, we
can choose T = ∅. For n′ ≥ 3 we construct a suitable set of profiles as follows.
For every B ⊆ [n′] with |B| = k ≥ 3 and π ∈ Π◦

B([n]), let [n] \B = {a1, . . . , an−k} and
Rπ

B be defined as follows: Rπ
B(<) = 1/(2k) if

π0(i) < π1(i) < π2(i) < . . . < πk−1(i) < a1 < . . . < an−k or

an−k < . . . < a1 < πk−1(i) < . . . < π2(i) < π0(i) < π1(i),

for some i ∈ B. Note that Rπ
B is regular on [n′], since

Rπ
B(i, j) =







λ if π(i) = j and i ∈ B,

−λ if π(j) = i and j ∈ B, and

0 otherwise,

where λ = 1/k > 0. Hence, for every M ∈ M◦
n′ , there are B ⊆ [n′] and π ∈ Π◦

B([n])
such that λM = MRπ

B
. Notice that B and [n] \ B are components in Rπ

B. For j ∈ B,
we have by construction that Rπ

B(j, a1) = 0. Hence, it follows from Lemma 5 that j ∈
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f(Rπ
B|{j,a1}) and a1 ∈ f(Rπ

B|{j,a1}). Moreover, neutrality, convexity, and composition-
consistency imply that uni(B) ∈ f(Rπ

B) by the symmetry of Rπ
B with respect to B.

Now let ai ∈ {a1, . . . , an−k}. Observe that {a1, . . . , ai−1} is a component in Rπ
B and

Rπ
B(a1, ai) = 0. Thus, composition-consistency and Lemma 5 imply that

ai ∈ f(Rπ
B|{a1,ai})×a1 f(R

π
B|{a1,...,ai−1}) = f(Rπ

B|{1,...,i}).

Furthermore, {ai+1, . . . , an−k} is a component in Rπ
B and Rπ

B(ai, an−k) = 0. As before,
we get

ai ∈ f(Rπ
B|{ai,an−k})×an−k

f(Rπ
B|{ai+1,...,an−k}) = f(Rπ

B|{i,...,n−k}).

Also {ai, . . . , an−k} is a component in Rπ
B and thus,

ai ∈ f(Rπ
B|{a1,...,ai})×ai f(R

π
B|{ai,...,an−k}) = f(Rπ

B|[n]\B).

As B is a component in S and Rπ
B(j, a1) = 0, we get

ai ∈ f(Rπ
B|{j,a1,...,ai})×j f(R

π
B|B) = f(Rπ

B).

Then, it follows from convexity of f(Rπ
B) that

uni([n′]) =
k

n′
uni(B) +

1

n′

∑

ai∈[n′]\B

ai ∈ f(Rπ
B),

since uni(B) ∈ f(Rπ
B) and ai ∈ f(Rπ

B) for every i ∈ [n− k].
We know from Lemma 10 that lin(M◦

n′) = Mn′ and, by Lemma 9, dim(M◦
n′) ≥

(
n′

2

)
− (n′ − 1). Thus, we can find a basis {M1, . . . ,M( n′

2 )−(n′−1)} of M◦
n′ and a set

of corresponding profiles

T = {R1, . . . , R( n′

2 )−(n′−1)} ⊆ {Rπ
B : B ⊆ [n′] and π ∈ Π◦

B}.

We claim that S ∪ T is a set of affinely independent profiles. Let S1, . . . , Sl ∈ S and
R1, . . . , Rm ∈ S be pairwise disjoint. Assume that

∑

i λiS
i +

∑

j µjR
j = 0 for some

λi, µj ∈ Q such that
∑

i λi +
∑

j µj = 0. This implies that
∑

j µjM
j = 0, which

in turn implies µj = 0 for all j ∈ [m], since the M j ’s are linearly independent. Hence,
∑

i λiS
i = 0 and

∑

i λi = 0, which implies that λi = 0 for all i ∈ [l], since S1, . . . , Sn!−( n′

2 )

are affinely independent. Thus, S∪T is a set of affinely independent profiles and dim(S∪
T) = |S ∪ T| − 1 = n! − n′. The above stated fact that uni([n′]) ∈ f(Rπ

B) for every
B ⊆ [n′] and π ∈ Π◦

B([n
′]) finishes the proof.

We now consider PSCFs that may return a lottery that is not maximal. The following
lemma shows that for every such PSCF there is a set of profiles with a strict Condorcet
winner for which it returns the uniform lottery over a fixed subset of alternatives if we
additionally require population-consistency and composition-consistency. Furthermore,
this set of profiles has only one regular profile in its linear hull. Later this statement
is leveraged to show that every population-consistent and composition-consistent PSCF
returns a subset of maximal lotteries.
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Lemma 12. Let f be a PSCF that satisfies population-consistency and composition-
consistency. If f 6⊆ ML, there are A′ ⊆ A ∈ F(U) and Y ⊆ R|A of dimension |A′| − 1
such that uni(A′) ∈ f(R) for every R ∈ Y and dim(lin(Y) ∩ lin(R|A

′

A )) = 1.

Proof. If f 6⊆ ML, there are A ∈ F(U), R ∈ R|A, and p ∈ f(R) such that p 6∈ ML(R).
Since p is not a maximal lottery, by definition, there is q ∈ ∆(A) such that qTMRp > 0.
Linearity of matrix multiplication implies that there is x ∈ A such that (MRp)x >
0, where (MRp)x is the entry of MRp corresponding to x. We first use composition-
consistency to “blow up” alternatives such that the resulting lottery is uniform. Let κ
be the greatest common divisor of {py : y ∈ A}, i.e., κ = max{s ∈ Q : py/s ∈ N for all y ∈
A}. For every y ∈ A, let Ay ∈ F(U) such that |Ay| = max{1, py/κ}, Ay ∩ A = {y}, and
all Ay are pairwise disjoint. Moreover, let Au =

⋃

y∈AAy. Now, choose Ru ∈ R|Au such
that Ru|A = R, Ay is a component in Ru for every y ∈ A, and Ru|Ay = uni(L(Ay)) for
every y ∈ Ay. Hence, uni(Ay) ∈ f(Ru|Ay) for all y ∈ A as f is neutral and f(Ru|Ay)
is convex. To simplify notation, let Ap =

⋃

y∈supp(p)Ay. By composition-consistency, it

follows that p′ = uni(Ap) ∈ f(Ru). Observe that

(MRup′)x =
∑

y∈supp(p)\{x}

|Ay|

|Ap|
MRu(x, y) =

∑

y∈A\{x}

pyMR(x, y) > 0.

We now construct a profile R′ ∈ R|Au such that x is a strict Condorcet winner in R′

and uni(Ap) ∈ f(R′). To this end, let R′ ∈ R|Au be the uniform mixture of all profiles
that arise from Ru by permuting all alternatives in Ap \ {x}, i.e.,

R′ =
1

|Ap \ {x}|!

∑

π∈Π(Au) : π(y)=y
for all y∈Au\Ap∪{x}

π(Ru).

Then, MR′(x, y) = MR′(x, z) > 0 for all y, z ∈ Ap \ {x}. Neutrality and population-
consistency imply that p′ ∈ f(R′).

Let Runi = uni(L(Au)) and define, for λ ∈ [0, 1],

Rλ = λR′ + (1− λ)Runi.

It follows from Lemma 6 that y ∈ f(Runi) for all y ∈ Au. Convexity of f(Runi) implies
that f(Runi) = ∆(Au). Hence, by population-consistency, p′ ∈ f(Rλ) for all λ ∈ [0, 1].
Now, let S ∈ R|Au such that MS(y, z) = 0 for all y, z ∈ Ap ∪{x} and MS(y, z) = 1 for

all y ∈ Ap ∪ {x}, z ∈ Au \ (Ap ∪ {x}). For λ ∈ [0, 1], let

Sλ = λS + (1− λ)Runi.

Note that every y ∈ Ap ∪ {x} is a Condorcet winner in Sλ. It follows from population-
consistency and Lemma 6 that, for small λ > 0, y ∈ f(Sλ) for all y ∈ Ap ∪ {x} and, by
convexity of ∆(Ap ∪ {x}) ⊆ f(Sλ). In particular, p′ ∈ f(Sλ) for small λ > 0.
Finally, let

Rx = 1/3Rλ + 2/3Sλ,
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for some small λ > 0. Population-consistency implies that p′ ∈ f(Rx). Moreover,
MRx(x, y) > 0 for all y ∈ Au \ {x}, i.e., x is a strict Condorcet winner in Rx, and hence,
it follows from Lemma 6 that x ∈ f(Rx).

If px > 0 then, by construction, p′ = uni(Ap ∪ {x}) ∈ f(Rx). If px = 0 then p′ =
uni(Ap) ∈ f(Rx). In this case it follows from convexity of f(Rx) that uni(Ap ∪ {x}) =
1/(|Ap|+1)x+ |Ap|/(|Ap|+1) uni(Ap) ∈ f(Rx).

Hence, in either case, we get a profile Rx such that uni(Ap ∪ {x}) ∈ f(Rx) and
Mx = MRx restricted to Ap ∪ {x} takes the form

Mx = λ ·















0 . . . 0 −1 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 −1 0 . . . 0
1 . . . 1 0 1 . . . 1
0 . . . 0 −1 0 . . . 0
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. . .
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. . .
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0 . . . 0 −1 0 . . . 0















for some λ > 0 where all entries except the xth row and column are zero. Let n′ =
|Ap ∪ {x}|. For every y ∈ Ap, let My ∈ Qn′×n′

such that My(y, z) = −My(z, y) = λ for
all z 6= y and 0 otherwise. Let πy ∈ Π(Au) such that πy(x) = y and πy(z) = z for all
z ∈ Au \ (Ap ∪ {x}) and Ry = πy(Rx). Then, for every y ∈ Ap ∪ {x}, MRy = My and,
by neutrality, uni(Ap ∪ {x}) ∈ f(Ry).
Let Y = {Ry : y ∈ Ap ∪ {x}}. We have that dim(Y) = |Ap ∪ {x}| − 1 since Y is a

set of affinely independent vectors. Now we determine dim(lin(Y) ∩ lin(R|
Ap∪{x}
Au )). To

this end, let λR ∈ lin(Y) ∩ lin(R|
Ap∪{x}
Au ) with λ ∈ Q and R ∈ R|Au . Then λMR =

∑

z∈Ap∪{x} λzM
z and λ

∑

z∈Ap∪{x}MR(y, z) = 0 for all y ∈ Ap ∪ {x}. This implies that

(n′−1)λy =
∑

z∈Ap∪{x}\{y} λ
z for all y ∈ Ap∪{x}. Hence, λy = λz for all y, z ∈ Ap∪{x}

and lin(Y) ∩ lin(R|
Ap∪{x}
Au ) = {λ

∑

y∈Ap∪{x}R
y : λ ∈ Q}.

In Lemma 13, we finally show that every PSCF that satisfies population-consistency
and composition-consistency has to yield maximal lotteries. The structure of the proof
is as follows. We assume for contradiction that a PSCF satisfies population-consistency
and composition-consistency, but returns a lottery that is not maximal. Then we can
find a set of profiles with full dimension for which the uniform lottery over a fixed subset
of at least two alternatives is returned and the uniform profile is in its interior. Thus,
this set contains a profile with a strict Condorcet winner that is close to the uniform
profile. For every profile in an ε-ball around this strict Condorcet profile, the function
has to return the uniform lottery over a non-singleton subset as well as the lottery with
probability 1 on the Condorcet winner, which contradicts decisiveness.

Lemma 13. Every PSCF f that satisfies population-consistency and composition-
consistency has to yield maximal lotteries, i.e., f ⊆ ML.

Proof. Let f be a PSCF that satisfies population-consistency and composition-
consistency and A ∈ F(U). For |A| = 2 the statement follows from Lemma 5. For
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|A| > 2, assume for contradiction that f 6⊆ ML. By Lemma 12, there is A′ ⊆ A
and Y ⊆ R|A of dimension |A′| − 1 such that uni(A′) ∈ f(R) for every R ∈ Y and
lin(Y) ∩ lin(R|A

′

A ) has dimension 1. By Lemma 11, there is X ⊆ R|A
′

A of dimension
|A|!− |A′| such that uni(A′) ∈ f(R) for every R ∈ X. Since 0 6∈ X and 0 6∈ Y, lin(X) has
dimension |A|!− |A′|+ 1 and lin(Y) has dimension |A′|. Thus, lin(X ∪ Y) has dimension
|A|!. This implies that X ∪ Y has dimension |A|!− 1.

Furthermore, it follows from population-consistency that uni(A′) ∈ f(R) for every
R ∈ conv(X ∪ Y). Since uni(L(A)) is in the interior of conv(X ∪ Y), there are x ∈ A′

and Rx ∈ intR|A(X ∪ Y) such that x is a strict Condorcet winner in Rx. Hence, there
is ε > 0 such that, for every R′ ∈ Bε(R

x) ∩ R|A, R
′ ∈ conv(X ∪ Y) and x is a strict

Condorcet winner in R′. Then, we get that x ∈ f(R′) and uni(A′) ∈ f(R′) for every
R′ ∈ Bε(R

x) ∩ R|A. Thus, {R′ ∈ R|A : |f(R′, A)| = 1} is not dense in R|A at Rx. This
contradicts decisiveness of f .

C.4. ML ⊆ f

In this section we show that every PSCF f that satisfies population-consistency and
composition-consistency has to yield all maximal lotteries. To this end, we first prove
an auxiliary lemma. It was shown by McGarvey (1953) that every complete and anti-
symmetric relation is the majority relation of some profile with a bounded number of
voters. We show an analogous statement for skew-symmetric matrices and fractional
preference profiles.

Lemma 14. Let M ∈ Qn×n be a skew-symmetric matrix. Then, there are R ∈ R|[n]
and c ∈ Q>0 such that cM = MR. Furthermore, if there is π ∈ Π([n]) such that
M(i, j) = M(π(i), π(j)) for all i, j ∈ [n], then R = π(R).

Proof. For all i, j ∈ [n] with i 6= j, let Rij ∈ R|[n] be the profile such that Rij(<
) = 1/(n−1)! if i ≻ j and {i, j} is a component in Rij and Rij(<) = 0 otherwise. By
construction, we have that Rij(i, j) = 1 and Rij(x, y) = 0 for all {x, y} 6= {i, j}. Let c =
1/

∑

i,j : M(i,j)>0M(i, j) and R = c
∑

i,j : M(i,j)>0M(i, j)Rij . Then, we have that MR =
cM . The second part of the lemma follows from the symmetry of the construction.

For profiles which admit a unique maximal lottery, it follows from Lemma 13 that
f = ML. It turns out that every maximal lottery that is a vertex of the set of maximal
lotteries in one of the remaining profiles is the limit point of a sequence of maximal
lotteries of a sequence of profiles with a unique maximal lottery converging to the original
profile. The proof of Lemma 15 heavily relies on the continuity of f .

Lemma 15. Let f be a PSCF that satisfies population-consistency and composition-
consistency. Then, ML ⊆ f .

Proof. Let f be a PSCF that satisfies population-consistency and composition-
consistency, A ∈ F(U), and R ∈ R|A. If follows from Lemma 13 that f ⊆ ML. By
neutrality, we can assume without loss of generality that A = [n] and for simplicity
M = MR. We want to show that f(R) = ML(R). If ML(R) is a singleton, it follows
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from f ⊆ ML that f(R) = ML(R). Hence, consider the case where ML(R) is not a
singleton. Let p ∈ ML(R) and assume without loss of generality that supp(p) = [k].
We first consider the case where k is odd. By Lemma 14, there are S ∈ R|A and

c ∈ Q>0 such that

MS = c
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Intuitively, MS defines a weighted cycle on [k]. Note that (pTMS)i = 0 for all i ∈ supp(p)
and (pTMS)i > 0 for all i ∈ A \ supp(p), i.e., p is a quasi-strict maximin strategy in MS

in the sense of Harsanyi (1973b). Since p is a maximin strategy in MS , it follows that
p ∈ ML(S). For ε ∈ [0, 1], we define Rε = (1 − ε)R + εS and M ε = MRε . Population-
consistency implies that p ∈ ML(Rε) for all ε ∈ [0, 1]. Observe that p is a quasi-strict
maximin strategy in M ε for every ε ∈ (0, 1]. Hence, for every maximin strategy q in M ε,
it follows that (qTM ε)i = 0 for every i ∈ [k] and qi = 0 for every i 6∈ [k]. It follows from
basic linear algebra that

det
(

(MS(i, j))i,j∈[k−1]

)

= ck−1
k−1∏

i=1

(
1

pi

)2

6= 0,

and hence, (MS(i, j))i,j∈[k] has rank at least k − 1. More precisely, (MS(i, j))i,j∈[k]
has rank k − 1, since skew-symmetric matrices of odd size cannot have full rank.23

Furthermore, det((M ε(i, j))i,j∈[k−1]) is a polynomial in ε of order at most k − 1 and
hence, has at most k− 1 zeros. Thus, we can find a sequence (εl)l∈N which converges to
zero such that (M εl(i, j))i,j∈[k] has rank k−1 for all l ∈ N. In particular, if (qTM ε)i = 0
for all i ∈ [k], then q = p. This implies that p is the unique maximin strategy in M εl for
all l ∈ N and hence, {p} = ML(Rεl) ⊆ f(Rεl) for all l ∈ N. It follows from continuity of
f that p ∈ f(R).

Now we consider the case where k is even. ML(R) is a polytope because it is the
solution space of a linear feasibility program. Assume that p is a vertex of ML(R). We
first show that p is not quasi-strict.24 Assume for contradiction that p is quasi-strict,
i.e., (pTM)i > 0 for all i 6∈ [k]. Then, supp(q) ⊆ [k] for every maximin strategy q of

23A skew-symmetric matrix M of odd size cannot have full rank, since det(M) = det(MT ) = det(−M) =
(−1)n det(M) = − det(M) and, hence, det(M) = 0.

24The proof of this statement does not make use of the fact that k is even and therefore also holds (but
is not needed) for odd k.
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M . But then (1 + ε)p − εq is also a maximin strategy in M for small ε > 0 as p is a
quasi-strict maximin strategy in M . This contradicts the assumption that p is a vertex
of ML(R).
Hence, we may assume without loss of generality that (pTM)k+1 = 0. Let e1 =

M(k + 1, 1)/p2 and ei = (M(k + 1, i) + pi−1ei−1)/pi+1 for i ∈ {2, . . . , k − 1}. By
Lemma 14, there are S ∈ R|A and c ∈ Q>0 such that

MS = c





















0 e1 0 . . . 0 0 1 . . . 1

−e1
. . .

...
... ...

. . .
...0

. . . 0
...

. . . ek−1

0 . . . 0 −ek−1 0 0
0 . . . 0 0 1 . . . 1

−1 . . . −1 0 . . . 0
...

. . .
...

...
. . .

...
−1 . . . −1 0 . . . 0





















Note that MS(1, k) = MS(k, 1) = 0. For ε > 0, let Rε = (1− ε)R+ εS and M ε = MRε .
We claim that pε defined as follows is a maximin strategy in M ε. To this end, let
sε =

εc
1−ε+εc .

pεi =







(1− sε)pi if i ∈ [k],

sε if i = k + 1, and

0 otherwise.

Note that 1/c (pTMS)1 = −p2e1 = −M(k + 1, 1) and, for i ∈ {2, . . . , k − 1},

1

c
(pTMS)i = pi−1ei−1 − pi+1ei = pi−1ei−1 − (M(k + 1, i) + pi−1ei−1) = −M(k + 1, i).

To determine (pTMS)k, we first prove inductively that piei = 1/pi+1

∑i
j=1M(k + 1, j)pj

for all i ∈ [k − 1]. For i = 1, this follows from the definition of e1. Now, let i ∈
{2, . . . , k − 1}. Then,

piei =
pi
pi+1

(M(k + 1, i) + pi−1ei−1) =
pi
pi+1

(M(k + 1, i) +
1

pi

i−1∑

j=1

M(k + 1, j)pj)

=
1

pi+1

i∑

j=1

M(k + 1, j)pj ,

where the second equality follows from the induction hypothesis. Now,

1

c
(pTMS)k = pk−1ek−1 =

1

pk

k−1∑

j=1

M(k + 1, j)pj = −
1

pk
M(k + 1, k)pk = −M(k + 1, k),
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where the third equality follows from the fact that (pTM)k+1 = 0.
For i ∈ [k], it follows from (pTM)i = 0 that ((pε)TM)i = sεM(k + 1, i). Then, for

i ∈ [k],

((pε)TM ε)i = (1− ε)sεM(k + 1, i) + εc(1− sε)(−M(k + 1, i)) = 0.

Furthermore, it follows from (pTM)k+1 = 0 that ((pε)TM ε)k+1 = 0 asM(k+1, k+1) = 0,
and, for i ∈ A \ [k + 1],

((pε)TM ε)i ≥ (1− ε)sεM(k + 1, i) + εc ≥ −(1− ε)sε + εc > 0.

This shows that pε is a maximin strategy inM ε and hence, pε ∈ ML(Rε). Since |supp(pε)|
is odd, it follows from the first case that pε ∈ f(Rε). Note that sε goes to 0 as ε goes to
0. Hence, pε goes to p as ε goes to 0. It now follows from continuity of f that p ∈ f(R).
Together, we have that p ∈ f(R) for every vertex p of ML(R). Since every lottery in

ML(R) can be written as a convex combination of vertices, convexity of f(R) implies
that f(R) = ML(R).

Theorem 2 then follows directly from Lemmas 13 and 15.

Theorem 2. A PSCF f satisfies population-consistency and composition-consistency if
and only if f = ML.
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