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1

Introduction

1.1 Scope of this book

Quantum mechanics is a difficult subject, and this book is intended to help the
reader overcome the main difficulties in the way to understanding it. Thefirst part
of the book, Chs. 2–16, contains a systematic presentation of the basic principles of
quantum theory, along with a number of examples which illustrate how these prin-
ciples apply to particular quantum systems. The applications are, for the most part,
limited to toy models whose simple structure allows one to see what is going on
without using complicated mathematics or lengthy formulas. The principles them-
selves, however, are formulated in such a way that they can be applied to (almost)
any nonrelativistic quantum system. In the second part of the book, Chs. 17–25,
these principles are applied to quantum measurements and various quantum para-
doxes, subjects which give rise to serious conceptual problems when they are not
treated in a fully consistent manner.

The final chapters are of a somewhat different character. Chapter 26 on deco-
herence and the classical limit of quantum theory is a very sketchy introduction
to these important topics along with some indication as to how the basic princi-
ples presented in thefirst part of the book can be used for understanding them.
Chapter 27 on quantum theory and reality belongs to the interface between physics
and philosophy and indicates why quantum theory is compatible with a real world
whose existence is not dependent on what scientists think and believe, or the ex-
periments they choose to carry out. The Bibliography contains references for those
interested in further reading or in tracing the origin of some of the ideas presented
in earlier chapters.

The remaining sections of this chapter provide a brief overview of the material
in Chs. 2–25. While it may not be completely intelligible in advance of reading
the actual material, the overview should nonetheless be of some assistance to read-
ers who, like me, want to see something of the big picture before plunging into
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2 Introduction

the details. Section 1.2 concerns quantum systems at a single time, and Sec. 1.3
their time development. Sections 1.4 and 1.5 indicate what topics in mathematics
are essential for understanding quantum theory, and where the relevant material is
located in this book, in case the reader is not already familiar with it. Quantum
reasoning as it is developed in thefirst sixteen chapters is surveyed in Sec. 1.6.
Section 1.7 concerns quantum measurements, treated in Chs. 17 and 18. Finally,
Sec. 1.8 indicates the motivation behind the chapters, 19–25, devoted to quantum
paradoxes.

1.2 Quantum states and variables

Both classical and quantum mechanics describe how physical objects move as a
function of time. However, they do this using rather different mathematical struc-
tures. In classical mechanics thestate of a system at a given time is represented by a
point in aphase space. For example, for a single particle moving in one dimension
the phase space is thex, p plane consisting of pairs of numbers(x, p) representing
the position and momentum. In quantum mechanics, on the other hand, the state of
such a particle is given by a complex-valuedwave function ψ(x), and, as noted in
Ch. 2, the collection of all possible wave functions is a complex linear vector space
with an inner product, known as aHilbert space.

The physical significance of wave functions is discussed in Ch. 2. Of particular
importance is the fact that two wave functionsφ(x) andψ(x) represent distinct
physical states in a sense corresponding to distinct points in the classical phase
space if and only if they areorthogonal in the sense that their inner product is
zero. Otherwiseφ(x) andψ(x) representincompatible states of the quantum sys-
tem (unless they are multiples of each other, in which case they represent the same
state). Incompatible states cannot be compared with one another, and this relation-
ship has no direct analog in classical physics. Understanding what incompatibility
does and does not mean is essential if one is to have a clear grasp of the principles
of quantum theory.

A quantumproperty, Ch. 4, is the analog of a collection of points in a clas-
sical phase space, and corresponds to asubspace of the quantum Hilbert space,
or the projector onto this subspace. An example of a (classical or quantum)
property is the statement that the energyE of a physical system lies within some
specific range,E0 ≤ E ≤ E1. Classical properties can be subjected to various
logical operations: negation, conjunction (AND), and disjunction (OR). The same
is true of quantum properties as long as the projectors for the corresponding sub-
spaces commute with each other. If they do not, the properties are incompatible
in much the same way as nonorthogonal wave functions, a situation discussed in
Sec. 4.6.
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An orthonormal basis of a Hilbert space or, more generally, a decomposition of
the identity as a sum of mutually commuting projectors constitutes asample space
of mutually-exclusive possibilities, one and only one of which can be a correct de-
scription of a quantum system at a given time. This is the quantum counterpart
of a sample space in ordinary probability theory, as noted in Ch. 5, which dis-
cusses how probabilities can be assigned to quantum systems. An important differ-
ence between classical and quantum physics is that quantum sample spaces can be
mutually incompatible, and probability distributions associated with incompatible
spaces cannot be combined or compared in any meaningful way.

In classical mechanics aphysical variable, such as energy or momentum, corre-
sponds to a real-valued function defined on the phase space, whereas in quantum
mechanics, as explained in Sec. 5.5, it is represented by a Hermitian operator. Such
an operator can be thought of as a real-valued function defined on a particular sam-
ple space, or decomposition of the identity, but not on the entire Hilbert space.
In particular, a quantum system can be said to have a value (or at least a precise
value) of a physical variable represented by the operatorF if and only if the quan-
tum wave function is in an eigenstate ofF , and in this case the eigenvalue is the
value of the physical variable. Two physical variables whose operators do not com-
mute correspond to incompatible sample spaces, and in general it is not possible to
simultaneously assign values of both variables to a single quantum system.

1.3 Quantum dynamics

Both classical and quantum mechanics havedynamical laws which enable one to
say something about the future (or past) state of a physical system if its state is
known at a particular time. In classical mechanics the dynamical laws aredeter-
ministic: at any given time in the future there is a unique state which corresponds to
a given initial state. As discussed in Ch. 7, the quantum analog of the deterministic
dynamical law of classical mechanics is the (time-dependent) Schrödinger equa-
tion. Given some wave functionψ0 at a timet0, integration of this equation leads
to a unique wave functionψt at any other timet . At two times t and t ′ these
uniquely defined wave functions are related by a unitary map ortime development
operator T (t ′, t) on the Hilbert space. Consequently we say that integrating the
Schr̈odinger equation leads tounitary time development.

However, quantum mechanics also allows for astochastic or probabilistic time
development, analogous to tossing a coin or rolling a die several times in a row.
In order to describe this in a systematic way, one needs the concept of aquan-
tum history, introduced in Ch. 8: a sequence of quantumevents (wave functions
or subspaces of the Hilbert space) at successive times. A collection of mutually
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exclusive histories forms a sample space orfamily of histories, where each history
is associated with a projector on ahistory Hilbert space.

The successive events of a history are, in general, not related to one another
through the Schr̈odinger equation. However, the Schrödinger equation, or, equiva-
lently, the time development operatorsT (t ′, t), can be used to assign probabilities
to the different histories belonging to a particular family. For histories involving
only two times, an initial time and a single later time, probabilities can be assigned
using theBorn rule, as explained in Ch. 9. However, if three or more times are
involved, the procedure is a bit more complicated, and probabilities can only be
assigned in a consistent way when certainconsistency conditions are satisfied, as
explained in Ch. 10. When the consistency conditions hold, the corresponding
sample space or event algebra is known as aconsistent family of histories, or a
framework. Checking consistency conditions is not a trivial task, but it is made
easier by various rules and other considerations discussed in Ch. 11. Chapters 9,
10, 12, and 13 contain a number of simple examples which illustrate how the proba-
bility assignments in a consistent family lead to physically reasonable results when
one pays attention to the requirement that stochastic time development must be
described using asingle consistent family or framework, and results from incom-
patible families, as defined in Sec. 10.4, are not combined.

1.4 Mathematics I. Linear algebra

Several branches of mathematics are important for quantum theory, but of these
the most essential islinear algebra. It is the fundamental mathematical language
of quantum mechanics in much the same way that calculus is the fundamental
mathematical language of classical mechanics. One cannot even define essential
quantum concepts without referring to the quantum Hilbert space, a complex linear
vector space equipped with an inner product. Hence a good grasp of what quantum
mechanics is all about, not to mention applying it to various physical problems,
requires some familiarity with the properties of Hilbert spaces.

Unfortunately, the wave functions for even such a simple system as a quan-
tum particle in one dimension form aninfinite-dimensional Hilbert space, and the
rules for dealing with such spaces with mathematical precision, found in books on
functional analysis, are rather complicated and involve concepts, such as Lebesgue
integrals, which fall outside the mathematical training of the majority of physicists.
Fortunately, one does not have to learn functional analysis in order to understand
the basic principles of quantum theory. The majority of the illustrations used in
Chs. 2–16 are toy models with afinite-dimensional Hilbert space to which the
usual rules of linear algebra apply without any qualification, and for these mod-
els there are no mathematical subtleties to add to the conceptual difficulties of
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quantum theory. To be sure, mathematical simplicity is achieved at a certain cost,
as toy models are even less“realistic” than the already artificial one-dimensional
models onefinds in textbooks. Nevertheless, they provide many useful insights
into general quantum principles.

For the benefit of readers not already familiar with them, the concepts of linear
algebra infinite-dimensional spaces which are most essential to quantum theory
are summarized in Ch. 3, though some additional material is presented later: ten-
sor products in Ch. 6 and unitary operators in Sec. 7.2. Dirac notation, in which
elements of the Hilbert space are denoted by|ψ〉, and their duals by〈ψ |, the in-
ner product〈φ|ψ〉 is linear in the element on the right and antilinear in the one
on the left, and matrix elements of an operatorA take the form〈φ|A|ψ〉, is used
throughout the book. Dirac notation is widely used and universally understood
among quantum physicists, so any serious student of the subject willfind learn-
ing it well-worthwhile. Anyone already familiar with linear algebra will have no
trouble picking up the essentials of Dirac notation by glancing through Ch. 3.

It would be much too restrictive and also rather artificial to exclude from this
book all references to quantum systems with an infinite-dimensional Hilbert space.
As far as possible, quantum principles are stated in a form in which they apply to
infinite- as well as tofinite-dimensional spaces, or at least can be applied to the
former given reasonable qualifications which mathematically sophisticated readers
canfill in for themselves. Readers not in this category should simply follow the
example of the majority of quantum physicists: go ahead and use the rules you
learned forfinite-dimensional spaces, and if you get into difficulty with an infinite-
dimensional problem, go talk to an expert, or consult one of the books indicated in
the bibliography (under the heading of Ch. 3).

1.5 Mathematics II. Calculus, probability theory

It is obvious thatcalculusplays an essential role in quantum mechanics; e.g., the
inner product on a Hilbert space of wave functions is defined in terms of an inte-
gral, and the time-dependent Schrödinger equation is a partial differential equation.
Indeed, the problem of constructing explicit solutions as a function of time to the
Schr̈odinger equation is one of the things which makes quantum mechanics more
difficult than classical mechanics. For example, describing the motion of a classi-
cal particle in one dimension in the absence of any forces is trivial, while the time
development of a quantum wave packet is not at all simple.

Since this book focuses on conceptual rather than mathematical difficulties of
quantum theory, considerable use is made of toy models with a simple discretized
time dependence, as indicated in Sec. 7.4, and employed later in Chs. 9, 12, and
13. To obtain their unitary time development, one only needs to solve a simple
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difference equation, and this can be done in closed form on the back of an envelope.
Because there is no need for approximation methods or numerical solutions, these
toy models can provide a lot of insight into the structure of quantum theory, and
once one sees how to use them, they can be a valuable guide in discerning what are
the really essential elements in the much more complicated mathematical structures
needed in more realistic applications of quantum theory.

Probability theory plays an important role in discussions of the time develop-
ment of quantum systems. However, the more sophisticated parts of this discipline,
those that involve measure theory, are not essential for understanding basic quan-
tum concepts, although they arise in various applications of quantum theory. In
particular, when using toy models the simplest version of probability theory, based
on afinite discrete sample space, is perfectly adequate. And once the basic strategy
for using probabilities in quantum theory has been understood, there is no partic-
ular difficulty — or at least no greater difficulty than one encounters in classical
physics— in extending it to probabilities of continuous variables, as in the case of
|ψ(x)|2 for a wave functionψ(x).

In order to make this book self-contained, the main concepts of probability the-
ory needed for quantum mechanics are summarized in Ch. 5, where it is shown
how to apply them to a quantum system at a single time. Assigning probabilities
to quantum histories is the subject of Chs. 9 and 10. It is important to note that
the basic concepts of probability theory are the same in quantum mechanics as in
other branches of physics; one does not need a new“quantum probability”. What
distinguishes quantum from classical physics is the issue of choosing a suitable
sample space with its associated event algebra. There are always many different
ways of choosing a quantum sample space, and different sample spaces will often
be incompatible, meaning that results cannot be combined or compared. However,
in any single quantum sample space the ordinary rules for probabilistic reasoning
are valid.

Probabilities in the quantum context are sometimes discussed in terms of aden-
sity matrix, a type of operator defined in Sec. 3.9. Although density matrices are
not really essential for understanding the basic principles of quantum theory, they
occur rather often in applications, and Ch. 15 discusses their physical significance
and some of the ways in which they are used.

1.6 Quantum reasoning

The Hilbert space used in quantum mechanics is in certain respects quite dif-
ferent from a classical phase space, and this difference requires that one make
some changes in classical habits of thought when reasoning about a quantum sys-
tem. What is at stake becomes particularly clear when one considers the two-
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dimensional Hilbert space of a spin-half particle, Sec. 4.6, for which it is easy to
see that a straightforward use of ideas which work very well for a classical phase
space will lead to contradictions. Thinking carefully about this example is well-
worthwhile, for if one cannot understand the simplest of all quantum systems, one
is not likely to make much progress with more complicated situations. One ap-
proach to the problem is to change the rules of ordinary (classical) logic, and this
was the route taken by Birkhoff and von Neumann when they proposed a special
quantum logic. However, their proposal has not been particularly fruitful for re-
solving the conceptual difficulties of quantum theory.

The alternative approach adopted in this book, starting in Sec. 4.6 and sum-
marized in Ch. 16, leaves the ordinary rules of propositional logic unchanged, but
imposes conditions on what constitutes ameaningfulquantum description to which
these rules can be applied. In particular, it is never meaningful to combine incom-
patible elements— be they wave functions, sample spaces, or consistent families
— into a single description. This prohibition is embodied in thesingle-framework
rule stated in Sec. 16.1, but already employed in various examples in earlier chap-
ters.

Because so many mutually incompatible frameworks are available, the strategy
used for describing the stochastic time development of a quantum system is quite
different from that employed in classical mechanics. In the classical case, if one
is given an initial state, it is only necessary to integrate the deterministic equations
of motion in order to obtain a unique result at any later time. By contrast, an
initial quantum state does not single out a particular framework, or sample space
of stochastic histories, much less determine which history in the framework will
actually occur. To understand how frameworks are chosen in the quantum case,
and why, despite the multiplicity of possible frameworks, the theory still leads to
consistent and coherent physical results, it is best to look at specific examples, of
which a number will be found in Chs. 9, 10, 12, and 13.

Another aspect of incompatibility comes to light when one considers a tensor
product of Hilbert spaces representing the subsystems of a composite system, or
events at different times in the history of a single system. This is the notion of a
contextualor dependentproperty or event. Chapter 14 is devoted to a systematic
discussion of this topic, which also comes up in several of the quantum paradoxes
considered in Chs. 20–25.

The basic principles of quantum reasoning are summarized in Ch. 16 and shown
to be internally consistent. This chapter also contains a discussion of the intuitive
significance of multiple incompatible frameworks, one of the most significant ways
in which quantum theory differs from classical physics. If the principles stated in
Ch. 16 seem rather abstract, readers should work through some of the examples
found in earlier or later chapters or, better yet, work out some for themselves.
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1.7 Quantum measurements

A quantum theory of measurements is a necessary part of any consistent way of
understanding quantum theory for a fairly obvious reason. The phenomena which
are specific to quantum theory, which lack any description in classical physics,
have to do with the behavior of microscopic objects, the sorts of things which
human beings cannot observe directly. Instead we must use carefully constructed
instruments to amplify microscopic effects into macroscopic signals of the sort
we can see with our eyes, or feed into our computers. Unless we understand how
the apparatus works, we cannot interpret its macroscopic output in terms of the
microscopic quantum phenomena we are interested in.

The situation is in some ways analogous to the problem faced by astronomers
who depend upon powerful telescopes in order to study distant galaxies. If they
did not understand how a telescope functions, cosmology would be reduced to
pure speculation. There is, however, an important difference between the“tele-
scope problem” of the astronomer and the“measurement problem” of the quan-
tum physicist. No fundamental concepts from astronomy are needed in order to
understand the operation of a telescope: the principles of optics are, fortunately,
independent of the properties of the object which emits the light. But a piece of
laboratory apparatus capable of amplifying quantum effects, such as a spark cham-
ber, is itself composed of an enormous number of atoms, and nowadays we believe
(and there is certainly no evidence to the contrary) that the behavior of aggregates
of atoms as well as individual atoms is governed by quantum laws. Thus quan-
tum measurements can, at least in principle, be analyzed using quantum theory. If
for some reason such an analysis were impossible, it would indicate that quantum
theory was wrong, or at least seriously defective.

Measurements as parts of gedanken experiments played a very important role
in the early development of quantum theory. In particular, Bohr was able to meet
many of Einstein’s objections to the new theory by pointing out that quantum prin-
ciples had to be applied to the measuring apparatus itself, as well as to the particle
or other microscopic system of interest. A little later the notion of measurement
was incorporated as a fundamental principle in the standard interpretation of quan-
tum mechanics, accepted by the majority of quantum physicists, where it served
as a device for introducing stochastic time development into the theory. As von
Neumann explained it, a system develops unitarily in time, in accordance with
Schr̈odinger’s equation, until it interacts with some sort of measuring apparatus,
at which point its wave function undergoes a“collapse” or “reduction” correlated
with the outcome of the measurement.

However, employing measurements as a fundamental principle for interpreting
quantum theory is not very satisfactory. Nowadays quantum mechanics is applied
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to processes taking place at the centers of stars, to the decay of unstable particles
in intergalactic space, and in many other situations which can scarcely be thought
of as involving measurements. In addition, laboratory measurements are often of
a sort in which the measured particle is either destroyed or else its properties are
significantly altered by the measuring process, and the von Neumann scheme does
not provide a satisfactory connection between the measurement outcome (e.g., a
pointer position) and the corresponding property of the particlebeforethe mea-
surement took place. Numerous attempts have been made to construct a fully con-
sistent measurement-based interpretation of quantum mechanics, thus far without
success. Instead, this approach leads to a number of conceptual difficulties which
constitute what specialists refer to as the“measurement problem.”

In this book all of thefundamentalprinciples of quantum theory are developed,
in Chs. 2–16, without making any reference to measurements, though measure-
ments occur in some of the applications. Measurements are taken up in Chs. 17
and 18, and analyzed using the general principles of quantum mechanics intro-
duced earlier. This includes such topics as how to describe a macroscopic mea-
suring apparatus in quantum terms, the role of thermodynamic irreversibility in the
measurement process, and what happens when two measurements are carried out in
succession. The result is a consistent theory of quantum measurements based upon
fundamental quantum principles, one which is able to reproduce all the results of
the von Neumann approach and to go beyond it; e.g., by showing how the outcome
of a measurement is correlated with some property of the measured system before
the measurement took place.

Wave function collapse or reduction, discussed in Sec. 18.2, is not needed for a
consistent quantum theory of measurement, as its role is taken over by a suitable
use of conditional probabilities. To put the matter in a different way, wave function
collapse is one method for computing conditional probabilities that can be obtained
equally well using other methods. Various conceptual difficulties disappear when
one realizes that collapse is something which takes place in the theoretical physi-
cist’s notebook and not in the experimental physicist’s laboratory. In particular,
there is no physical process taking place instantaneously over a long distance, in
conflict with relativity theory.

1.8 Quantum paradoxes
A large number of quantum paradoxes have come to light since the modern form
of quantum mechanics wasfirst developed in the 1920s. A paradox is something
which is contradictory, or contrary to common sense, but which seems to follow
from accepted principles by ordinary logical rules. That is, it is something which
ought to be true, but seemingly is not true. A scientific paradox may indicate that
there is something wrong with the underlying scientific theory, which is quantum
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mechanics in the case of interest to us. But a paradox can also be a prediction
of the theory that, while rather surprising when onefirst hears it, is shown by
further study or deeper analysis to reflect some genuine feature of the universe
in which we live. For example, in relativity theory we learn that it is impossible
for a signal to travel faster than the speed of light. This seems paradoxical in
that one can imagine being on a rocket ship traveling at half the speed of light,
and then shining aflashlight in the forwards direction. However, this (apparent)
paradox can be satisfactorily explained by making consistent use of the principles
of relativity theory, in particular those which govern transformations to moving
coordinate systems.

A consistent understanding of quantum mechanics should make it possible to
resolve quantum paradoxes by locating the points where they involve hidden as-
sumptions orflawed reasoning, or by showing how the paradox embodies some
genuine feature of the quantum world which is surprising from the perspective of
classical physics. The formulation of quantum theory found in thefirst sixteen
chapters of this book is employed in Chs. 20–25 to resolve a number of quantum
paradoxes, including delayed choice, Kochen–Specker, EPR, and Hardy’s paradox,
among others. (Schrödinger’s cat and the double-slit paradox, or at least their toy
counterparts, are taken up earlier in the book, in Secs. 9.6 and 13.1, respectively,
as part of the discussion of basic quantum principles.) Chapter 19 provides a brief
introduction to these paradoxes along with two conceptual tools, quantum coins
and quantum counterfactuals, which are needed for analyzing them.

In addition to demonstrating the overall consistency of quantum theory, there
are at least three other reasons for devoting a substantial amount of space to these
paradoxes. Thefirst is that they provide useful and interesting examples of how
to apply the basic principles of quantum mechanics. Second, various quantum
paradoxes have been invoked in support of the claim that quantum theory is in-
trinsically nonlocalin the sense that there are mysterious influences which can, to
take an example, instantly communicate the choice to carry out one measurement
rather than another at pointA to a distant pointB, in a manner which contradicts
the basic requirements of relativity theory. A careful analysis of these paradoxes
shows, however, that the apparent contradictions arise from a failure to properly
apply some principle of quantum reasoning in a purely local setting. Nonlocal in-
fluences are generated by logical mistakes, and when the latter are corrected, the
ghosts of nonlocality vanish. Third, these paradoxes have sometimes been used to
argue that the quantum world is not real, but is in some way created by human con-
sciousness, or else that reality is a concept which only applies to the macroscopic
domain immediately accessible to human experience. Resolving the paradoxes, in
the sense of showing them to be in accord with consistent quantum principles, is
thus a prelude to the discussion of quantum reality in Ch. 27.


