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Abstract

Background: The ecological consequences of mercury (Hg) pollution—one of the major pollutants worldwide—on
microbial taxonomic and functional attributes remain poorly understood and largely unexplored. Using soils from two
typical Hg-impacted regions across China, here, we evaluated the role of Hg pollution in regulating bacterial
abundance, diversity, and co-occurrence network. We also investigated the associations between Hg contents and the
relative abundance of microbial functional genes by analyzing the soil metagenomes from a subset of those sites.

Results: We found that soil Hg largely influenced the taxonomic and functional attributes of microbial communities in
the two studied regions. In general, Hg pollution was negatively related to bacterial abundance, but positively related
to the diversity of bacteria in two separate regions. We also found some consistent associations between soil Hg
contents and the community composition of bacteria. For example, soil total Hg content was positively related to the
relative abundance of Firmicutes and Bacteroidetes in both paddy and upland soils. In contrast, the methylmercury
(MeHg) concentration was negatively correlated to the relative abundance of Nitrospirae in the two types of soils.
Increases in soil Hg pollution correlated with drastic changes in the relative abundance of ecological clusters within the
co-occurrence network of bacterial communities for the two regions. Using metagenomic data, we were also able to
detect the effect of Hg pollution on multiple functional genes relevant to key soil processes such as element cycles
and Hg transformations (e.g., methylation and reduction).

Conclusions: Together, our study provides solid evidence that Hg pollution has predictable and significant effects on
multiple taxonomic and functional attributes including bacterial abundance, diversity, and the relative abundance of
ecological clusters and functional genes. Our results suggest an increase in soil Hg pollution linked to human activities
will lead to predictable shifts in the taxonomic and functional attributes in the Hg-impacted areas, with potential
implications for sustainable management of agricultural ecosystems and elsewhere.
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Background
Environmental pollution resulting from human activities

has a great impact on the biodiversity and functioning of

terrestrial and aquatic ecosystems and is a major threat

for human health across the globe [1–4]. Importantly,

recent studies suggested that changing climate

exacerbates global mercury (Hg) pollution by releasing

historically stocked Hg in the permafrost [5, 6]. Such a

threat is of global concern as Hg can be transported glo-

bally [7]. The elevated Hg inputs into environments

could have significant effects on soil biodiversity and

their associated ecosystem functions [8, 9]. Studies con-

ducted at the local scale seemed to support the idea that

Hg pollution can alter soil microbial communities [10–

12]. Moreover, previous work based on short-term incu-

bation experiments demonstrated that Hg amendments

can alter the soil microbiome and its ecological func-

tions [13, 14]. However, much less is known on the role

of Hg pollution in shaping the taxonomic and functional
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attributes of microbial communities in natural ecosys-

tems across large spatial scale and different types of

croplands.

Recent studies suggested that microbial taxa strongly

co-occur within ecological network that often are called

ecological clusters or modules [15, 16]. Such ecological

clusters are expected to have multiple implications for

the maintenance of soil fertility, decomposition, and eco-

logical services in terrestrial environments [17–19]. The

reason is that different microbial ecological clusters

often follow very specific environmental preferences. For

example, taxa within some ecological clusters have been

found to strongly correlate with low or high pH, mesic

or arid ecosystem, and nutrient availability and processes

rates [15]. However, despite the importance of these eco-

logical clusters for the understanding of the soil micro-

biome, their response to long-term field Hg pollution

remains largely unexplored [20]. Increasing Hg concen-

trations could potentially impact the relative abundance

of major ecological clusters with implications for ecosys-

tem functioning. However, empirical evidence for such

assumptions is currently lacking.

Moreover, the response of the functional attributes of

the soil microbiome to Hg pollution has been rarely ad-

dressed. Such a task is challenging as soil microbial com-

munities are highly diverse, and most soil microbial taxa

remains uncharacterized [16, 21]. Recent advances in

metagenomic sequencing can infer the functional traits of

microbial communities [22, 23] and then determine which

are sensitive to increased soil Hg pollution. We expect

functional traits of soil microbial communities to follow

predictable responses to Hg pollution. Such an expect-

ation is based on the large body of literature reporting

consistent microbial responses to other global changes

such as climate change and nutrient additions [3, 23, 24].

Herein, we aimed to build a predictive understanding of

the response of multiple soil taxonomic and functional at-

tributes to increased Hg contents at the regional scale. Be-

cause Hg is a well-known pollutant with important

implications for life on Earth [25], we hypothesized that

soil Hg pollution will have consistent effects on taxonomic

and functional attributes (e.g., relative abundance of func-

tional genes) across different land use types. To do so, we

collected three replicated soils at each of 47 sites (24

paddy fields and 23 adjacent upland fields), resulting in a

total of 141 samples from Hg-impacted agricultural loca-

tions across two provinces in China. Most of the sites are

surrounded by historical Hg mining areas with varying soil

Hg contents, and their soils contained a wide range of Hg

concentrations under similar vegetation types. These sites

also included controls that are far away from the mining

sites, with Hg contents similar to local background levels.

As such, these locations provided a unique opportunity to

empirically evaluate the response of microbial taxonomic

and functional attributes to a gradient of soil Hg pollution.

We characterized soil bacterial community composition

via MiSeq Illumina platform. In addition, we investigated

potential shifts in the relative abundance of functional

genes linked to microbial communities by analyzing the

soil metagenomes from a subset of those sites. Finally, we

identified the associations between soil Hg concentrations

and bacterial diversity, abundance, and ecological clusters

(modules) using a combination of random forest analysis

and structure equation modeling, after accounting for

other critical environmental predictors.

Results
Mercury pollution altered soil bacterial abundance and

diversity

We found a consistent decrease in the abundance of

bacteria with increases in soil total Hg in both paddy

and upland soils (Fig. 1a, b). Bacterial abundance was

also negatively related to methylmercury (MeHg) in

paddy soils (d.f. = 1, 70, P = 0.008). In contrast, bacterial

diversity (Shannon index) was positively correlated to

total Hg (d.f. = 1, 70, P = 0.001) in the paddy soils and

tended to increase with elevated MeHg contents (d.f. = 1,

70, P = 0.08) (Fig. 1c, d). We also found a cubic negative

relationship (d.f. = 3, 65, P = 0.001) between total Hg and

bacterial diversity for the upland soils. As expected, land

use type had significant effects on soil bacterial abun-

dance and diversity (Additional file 1: Figure S1a, b), and

both bacterial abundance and diversity were higher

(ANOVA, d.f. = 1, 139, P < 0.05) in paddy soils than

those in upland soils.

Mercury pollution altered the relative abundance of

bacterial phyla

We found consistent associations between of Hg contents

and the relative abundance of some dominant bacterial

phyla in both paddy and upland fields, though the bacter-

ial community compositions were different between the

two types of land use (Additional file 1: Figure S2). For ex-

ample, increasing total Hg was positively related to the

relative abundance of Firmicutes and Bacteroidetes in both

paddy and upland soils (Fig. 2), while they were not re-

lated to MeHg. In contrast, increasing MeHg was nega-

tively correlated to the relative abundance of Nitrospirae

in the two soils, though it was not significantly correlated

to soil total Hg (P > 0.05). In addition, we found some cor-

relations, depending on land use type, between total Hg/

MeHg and the relative abundance of other dominant

phyla/classes (Additional file 1: Table S1). Random forest

analysis allowed us to further identify what genera of Fir-

micutes and Bacteroidetes were associated with increases

in Hg contents (Additional file 1: Figure S3a, P < 0.05).

Thus, the relative abundance of Chitinophagaceae Ferrugi-

nibacter, Sphingobacteriaceae Pedobacter, and Clostridium
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sensu stricto_1 were positively correlated to soil total Hg

(Additional file 1: Figure S3b, d.f. = 1, 139, P < 0.05), while

the relative abundance of Nitrospirae was negatively corre-

lated to MeHg contents (Additional file 1: Figure S4, d.f. =

1, 139, P < 0.01).

Mercury pollution shifted the relative abundance of

ecological clusters within the correlation network

The soil bacterial taxa could be grouped into five major

ecological clusters (modules), comprised of strongly

co-occurring bacterial taxa with one another (Fig. 3a).

Not surprisingly, the two different soils were dominated

by different ecological clusters in the two types of soil

(Fig. 3b). Particularly, the relative abundance of module

#0 was much higher (ANOVA, d.f. = 1, 139, P < 0.05) in

Fig. 1 Relationships between soil mercury (Hg, including total Hg and methylmercury, MeHg) and the bacterial abundance (a, b), and
diversity (c, d) in paddy and upland soils. Green and yellow dots represent samples from paddy and upland fields, respectively. Red lines
represent regressions with linear (straight) and cubic (curve) functions (P < 0.05)
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the paddy soils than that in the upland soils, while the

relative abundance of module #4 exhibited the opposite

trend. Even so, we found consistent relationships be-

tween soil total Hg/MeHg and the relative abundance of

the dominant ecological clusters (Fig. 3c). For example,

the relative abundance of module #0 was negatively re-

lated to MeHg in both of soils, where the relative abun-

dance of module #4 was positively related to MeHg. All

modules were formed by multiple phyla/classes, and the

membership of each module is shown in Additional file 2

(data S1). We also found some soil-type-specific effects

of Hg on the relative abundance of ecological clusters.

For instance, the relative abundance of modules #0 and

#4 decreased and increased, respectively, with increasing

total Hg in the paddy soil (Fig. 3c), but no similar trends

were observed in the upland soil. Meanwhile, the relative

abundance of module #2 and module #3 decreased and

increased, respectively, with increasing total Hg for the

upland soil, while no similar response was observed for

the paddy soil.

Mercury pollution is a significant predictor of soil

bacterial community and ecological clusters after

controlling for multiple environmental predictors

Random forest analysis suggested that, in general, Hg vari-

ables are major predictors of bacterial diversity and abun-

dance (Additional file 1: Figure S5a, b) and the relative

abundance of ecological clusters (Additional file 1: Figure

S6a, b). As expected, our results indicate that other environ-

mental factors were also important predictors of microbial

communities, although the relative importance of these pre-

dictors was highly taxa and module dependent. See Add-

itional file 1: Table S2 for correlations between microbial

attributes and environmental predictors.

We then used structural equation modeling (SEM), to

further clarify the role of Hg in predicting abundance, di-

versity, and the relative abundance of modules for both

paddy and upland soils, after controlling for multiple

other environmental predictors (Fig. 4a, b; Additional file 1:

Table S3, S4). Remarkably, we found a consistent negative

effect of total Hg on bacterial abundance in both soils.

Our SEM shows direct effects of MeHg on the relative

abundance of modules (Mod#3 and Mod#4) in upland

soils and effects of total Hg and MeHg on the relative

abundance of Mod#1 in paddy soils. Interestingly, we

Fig. 2 Linear relationships between soil Hg contents and the relative abundance of selected bacterial phyla in paddy (a) and upland (b) soils.
Correlations between Hg concentrations and the relative abundance of all major bacterial phyla are available in Additional file 1: Table S1
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detected multiple indirect effects of Hg on the relative

abundance of these modules via impacts on soil properties

and other modules, though there may be interactions be-

tween these microbial attributes. The SEM also shows a

direct effect of Hg on the bacterial diversity in upland

soils, while the effect was not significant in the paddy soils.

As expected, the SEM also shows strong effects of soil and

spatial properties on these microbial attributes across the

two types of land use.

Functional gene relates to soil Hg pollution

We conducted further random forest modeling to evaluate

the link between functional genes and Hg pollution, and 22

functional genes that significantly predicted changes in total

Hg across the soils were identified (Fig. 5a; Additional file 1:

Table S5). Most of those genes are likely involved in soil nu-

trient metabolisms (e.g., reduction of nitrate and phos-

phate) and Hg transformations (e.g., Hg uptake and

methylation). Furthermore, we found that the relative abun-

dance of genes encoding member protein, diphosphate

reductase, and dehydrogenase E1 component increased

along elevated soil Hg contents, while the gene encoding

3-deoxy-D-manno-octulosonic-acid transferase accounting

for glycan biosynthesis and metabolism, significantly de-

creased towards increased Hg (Fig. 5b). We also found 30

genes significantly predicting changes in soil MeHg, includ-

ing the genes involved in CoA synthetase and iron trans-

port, that are important enzymes involved in Hg uptake

and methylation (Additional file 1: Figure S7).

Discussion

Effects of Hg pollution on soil bacterial abundance and

diversity in agricultural ecosystems

Both regression analysis and SEM demonstrate that

long-term field Hg pollution had a negative effect on the

bacterial abundance from the two land use types. Such a

result is in contrast with a previous short-term incuba-

tion experiment where no effect of Hg pollution on bac-

terial abundance was found [13]. Both Hg and MeHg are

toxic to life, and thus, long-term field Hg pollution may

Fig. 3 Microbial correlation network. Panel a represents a network diagram with nodes (taxa) colored by each of the major five ecological
clusters (modules, Mod) within co-occurrence network of bacterial communities; Panel b includes the relative abundance of the five modules.
Capital letters indicate the significant differences between the paddy soils (P < 0.05). Lowercase letters indicate the significant differences between
the upland soils (P < 0.05); Panel c includes the linear relationships between soil Hg pollution (total Hg and MeHg) and the relative abundance of
the selected ecological clusters
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inhibit microbial growth and then cause a decrease in

soil microbial abundance across centuries [8]. Import-

antly, the lack of an effect of Hg pollution on bacterial

abundance in short-term experiments could be related

to the fact that relic DNA from dead bacteria is also ex-

tracted and then quantified by qPCR [26, 27], obscuring

the adverse effect of Hg on soil microbial abundance.

Such an artifact should be largely diluted in long-term

experiment and observational studies. Similarly, MeHg

as the most toxic Hg speciation also negatively corre-

lated to the bacterial abundance in the paddy soils, fur-

ther emphasizing the strong effect of Hg pollution on

bacterial abundance in soil. On the contrary, bacterial

diversity tended to increase under moderate Hg content

(< 53 mg kg−1, Fig. 1c), partially supporting the inter-

mediate disturbance or stress hypothesis [12, 28]. How-

ever, our observations are different from those from

short-term incubation experiments, in which Hg amend-

ment has been reported to reduce soil bacterial diversity

[13]. As such, our approach suggests that large-scale ob-

servational studies are needed to understand the re-

sponse of bacterial diversity to Hg pollution in

real-world ecosystems. The soils examined in this study

belong to Hg-mining areas which suffered serious Hg

pollution for more than 600 years [29]. Consequently,

the microbial community from these soils might have

had time to develop resistance to Hg stress [13]. Alter-

natively, increasing Hg pollution might increase bacterial

diversity by releasing subordinate microbial taxa via

competition. These results are partially supported by our

SEM suggesting a positive effect of MeHg on the diver-

sity in upland soils, while the effect became complicated

in paddy soils where no direct effect of total Hg or

MeHg on the diversity was observed. However, Hg pol-

lution may indirectly influence the bacterial diversity

through impacts on soil properties, which were import-

ant drivers of soil microbial diversity [17, 21]. All of

these observations illustrate the importance of Hg pollu-

tion in regulating the abundance and diversity of soil

bacteria. Importantly, these results were maintained after

accounting for multiple other drivers including soil and

spatial properties.

Mercury pollution altered soil bacterial community

composition and the distribution of ecological clusters

Importantly, we also found that Hg pollution consistently

related to the relative abundance of the dominant bacterial

phyla. For example, the relative abundance of Firmicutes

Fig. 4 Mechanistic modeling identifying the direct and indirect effects of Hg on bacterial abundance, diversity, and the relative abundance of
ecological clusters (modules, Mod) within co-occurrence networks in paddy (a) and upland (b) soils. The Hg box includes total Hg and
methylmercury, and the spatial box includes longitude and latitude. The soil box includes soil properties that were represented by the three
major components by performing principal component analysis of soil variables including pH, soil organic carbon (SOC), C: N, and others
(Additional file 1: Table S3). The thickness of the arrow represents the strength of the relationship when significant, while no arrow is showed
when the effect is not significant. Numbers adjacent to arrows are path coefficients with significant levels. R2 denotes the proportion of variance
explained. Spatial (latitude and longitude) influence was included to control spatial autocorrelation; however, in this case, path coefficients were
not included for simplicity. The BOX2 includes the significant correlations between modules, diversity, and abundance. The rest of significant
effects are available in Additional file 1: Table S4 (P < 0.05).*P < 0.05, **P < 0.01
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and Bacteroidetes increased in response to elevated total

Hg, but the relative abundance of Nitrospirae was nega-

tively related to MeHg contents. Firmicutes and Bacteroi-

detes are known to be fast-growing opportunistic types of

organisms that might benefit from environmental disturb-

ance by taking over niches commonly occupied by other

bacterial taxa. We also detected the genera of bacteria

within these groups influenced by Hg pollutions (Add-

itional file 1: Figure S3; Figure S4). For example, Sphingo-

bacteriaceae Pedobacter and Clostridium sensu stricto

have been reported to be resistant to Hg or heavy metals

[30, 31]; however, much less is known about the mecha-

nisms linking the responses of Chitinophagaceae Ferrugi-

nibacter to Hg pollution. In addition, our large-scale data

suggest a decrease in the relative abundance of Nitrospirae

with elevated soil MeHg. Previous studies have found

that this phylum is highly sensitive to heavy metal

stress at the local scale [12, 32]. The reduction in the

relative abundance of Nitrospirae was mainly attrib-

uted to a relative decrease in the genus Nitrospirales

0319.6A21sp. in response to elevated MeHg. Increased

Hg pollution is known to inhibit the processes of

nitrogen cycle driven by soil functional assembles [9,

33], which could be an important result of the inhi-

biting effect of Hg to nitrifying bacteria such as

Nitrospirae. These results suggest that the sensitive

taxa could be used as potential ecological indicators

for Hg pollution in terrestrial ecosystems.

Our random forest analysis suggested that Hg, in gen-

eral, is a significant predictor of the ecologically preferen-

tial modules within the bacterial co-occurrence network

after accounting for other key environmental predictors

(Additional file 1: Figure S6). Thus, increases in soil Hg

content also led to drastic changes in the co-occurrence

network of soil bacterial communities in the studied re-

gions. Interestingly, we found significant patterns of the

relative abundances in some modules along increased Hg

and MeHg pollution (Fig. 3c; Additional file 1: Table S6).

For example, the relative abundance of module #4 tended

to increase with elevated total Hg and MeHg in both

paddy and upland soils. This module mainly consisted of

potentially Hg-resistant microbes such as Proteobacteria,

Fig. 5 Random forest (RF) analyses identifying the significant (P < 0.05) gene predictors of soil total Hg (a). Panel b includes relationships between
total Hg contents and selected functional genes. These functional genes were annotated according to Kyoto Encyclopedia of Genes and
Genomes (KEGG) using metagenomic data derived from a subset of our soil samples. Additional information on the KEGG genes is available in
Additional file 1: Table S5
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Bacteroidetes, and Actinobacteria, which were reported to

contain the Hg-resistance gene merA [34, 35]. We also

provide a list of winner (positive effects) and loser (nega-

tive effects) community assemblies in response to Hg pol-

lution (Additional file 2: Data S1), which can be used to

test for similarities in the response of soil microbial com-

munities to Hg pollution worldwide.

Although SEM is quite a conservative procedure, the re-

sults support similar associations between Hg and the

relative abundance of modules across the two types of

land use. For example, soil Hg had direct effects on the

relative abundance of module #1 in paddy soils (Fig. 4a),

and a similar effect on this module in upland soils could

be reflected through indirect impacts of Hg on other mod-

ules (i.e., Mod#2, Mod#3, and Mod#4) due to their inter-

actions (Fig. 4b: BOX2). It is not surprising to note the

interactions between the modules in the co-occurrence

networks, because increases in a given ecological cluster

were often followed by declines in the relative abundance

of other ecological clusters [36]. These findings suggest

that variability of Hg contents in the ecosystem might

change the distributions of ecologically preferential clus-

ters. Of course, as expected, other environmental predic-

tors strongly associate with the relative abundance of

microbial ecological clusters (Fig. 4, Additional file 1:

Table S2; Additional file 1: Figure S6), which had been well

recognized in many previous studies [15–17].

Predicting soil Hg pollution from the variability of

microbial functional genes

We found that Hg pollution was also associated with im-

portant functional traits within microbial communities.

In fact, here, we provide a list of functional genes which

were strongly correlated to Hg contents across soils. Of

course, we acknowledge the current limitations for link-

ing genes to Hg pollution across large spatial scales due

to the correlative nature of these analyses (Fig. 5; Add-

itional file 1: Figure S7). Such results are in agreement

with previous studies emphasizing significant effects of

Hg stress on microbially driven processes (e.g., nitrifica-

tion potential and dehydrogenase enzyme activity)

driven by diverse soil microorganisms [9, 37]. For ex-

ample, the relative abundance of genes involved in mem-

ber protein tended to increase with the level of soil Hg

pollution, suggesting that moderated Hg stress may

stimulate the enzyme activities responsible for Hg trans-

portation through the cell membrane [38]. We also ob-

served a significant increase in the relative abundances

of genes associated with dehydrogenase with elevated

Hg. These findings are consistent with those of previous

studies showing upregulation of dehydrogenase activities

exposed to metals [39]. In addition, we identified some

genes that are relevant to Hg transport (i.e., iron trans-

port system) and methylation processes (i.e., CoA

synthetase) [40]. Previous studies has suggested that in-

organic Hg(II) could be transported into microbial cells

probably through ion transport system [41, 42], and the

cellular Hg(II) is subsequent methylated to highly neuro-

toxic MeHg by methylating genes hgcAB [43]. Thus, our

predicted iron transport system might be relevant to soil

MeHg formation. Furthermore, Hg methylation is an

enzyme-catalyzed process associated with the reductive

CoA pathway [44], which may explain our results that

the CoA synthetase is a significant predictor for MeHg

in the soil. Overall, these gene predictors are associated

with nutrient metabolisms and Hg transformations,

which are also important biomarkers of soil Hg

pollution.

Conclusions
Together, our study represents one of the first attempts to

empirically assess how the soil microbiomes respond to

long-term Hg pollution across large spatial scales and land

use type. We provides solid evidence that Hg pollution

has predictable and significant effects on multiple taxo-

nomic and functional microbial attributes including bac-

terial abundance, diversity, and the relative abundance of

ecological clusters and functional genes. Such results are

maintained after accounting for other important environ-

mental predictors of soil microbial communities. In gen-

eral, Hg pollution was negatively related to the bacterial

abundance. The relative abundance of Bateroidetes and

Firmicutes increased with elevated Hg pollution, while the

relative abundance of Nitrospirae was negatively corre-

lated to MeHg. Mercury-induced shifts in the ecological

clusters of co-occurrence network and functional traits of

microbial communities could have important implications

for soil biogeochemical cycling and service functioning of

the ecosystem. This work moves us towards a more pre-

dictable understanding of the response of microbial com-

munities and their potential function to Hg pollution—a

worldwide threat derived from both global warming and

intensive anthropogenic activities.

Methods

Study area and sampling

The soil samples were collected around two typical Hg

mining areas (Fenghuang, FH and Wanshan, WS) in

southwest China. Fenghuang is located in West Hunan

Province, and Wanshan in East Guizhou Province. Both

of them are the major grain-producing areas in China,

with a long history Hg mining for more than 600 years

[29]. Historical discharges from Hg mining operations

and ongoing atmospheric deposition has led to heavy Hg

pollution in these areas [45]. We collected soil samples

from 24 locations (Additional file 1: Figure S8) along

downstream the mining sites to obtain samples with a

large gradient of soil Hg concentrations (ranges from
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0.27 to 52.4 mg kg−1), and most of them were above risk

control value for paddy soils in China (0.6 mg kg−1) [46].

Two typical types of land use including paddy fields (24

sub-sites) and adjacent uplands (23 sub-sites, maize

planting) were chosen to compare the effects of land use

on the microbial responses to long-term soil Hg pollu-

tion. We tried to choose locations where both paddy

and upland fields are the main crop planting, and spor-

adic farmlands are excluded. Three replicated soil (0–

15 cm depth) samples were collected at each of the 47

sites to account for small scale variation in Hg pollution.

Consequently, a total of 141 soil samples were obtained

from the 24 paddy (72 samples) and upland (69 samples)

fields. These locations also included two control sites

(paddy and adjacent upland fields) located in the natural

reserve with little pollution (i.e., location no. 1 in Add-

itional file 1: Figure S8). Total Hg concentrations in the

control sites are similar the levels of local background

values (0.5~0.7 mg kg−1), which are similar to the Hg

risk control value for paddy soil in China [46]. We omit-

ted an upland site due to the lack of representative field

in the location. Sampling was conducted in August 2016

before harvesting. Collected soil samples were homoge-

nized and sieved (2.0 mm) to get a representative micro-

bial community [20, 47]. The sieved samples were

subsequently divided into two sub-samples. One

sub-sample was stored at − 20 °C for microbial analysis,

while the other sub-sample was air-dried for the analysis

of heavy metals and soil properties.

Measurement of soil heavy metals and chemical indexes

For Hg analysis, 0.20 g of each soil was digested with

10 mL mixed solution (2 mol L−1 HNO3 and 4 mol L−1

HCl) in a Teflon tube at 95 °C for 2 h. The total amount

of Hg in these extracts was determined via cold vapor

atomic fluorescence spectrometry (CVAFS) [45], and the

method detection limit was 0.2 ng L−1. For the analysis

of other heavy metals (i.e., Cu, Pb, Cd, Zn, Ni, and As),

0.30 g soil were digested by trace mixed acids (9.0 mL of

HNO3 and 3.0 mL of HF) in a MARS microwave diges-

tion system (CEM, USA). The concentrations of the

heavy metals in the final solution were measured using a

7700X Inductively Coupled Plasma-Mass Spectrometer

(Agilent, USA). For MeHg, 0.40 g soil was used for

MeHg extraction using CuSO4-methanol. The amount

MeHg was determined using an automated MeHg

analyzer (TEKRAN 2700 GC-CVAFS) [48]. Soil pH was

determined on a fresh soil to water ratio of 1: 2.5 using a

Delta pH-meter. Soil organic carbon (SOC) was mea-

sured using the K2CrO7 oxidation titration method [49].

Total carbon (TC) and total nitrogen (TN) in soils were

determined on a LECO TureMac Macro CN analyzer

(LECO, St. Joseph, MI, USA). Dissolved organic carbon

(DOC) in the soil was extracted with 0.5 M K2SO4 at a

ratio of 1:5 by shaking at 200 rpm for 1 h and filtering

through a 0.45-μm Millipore filter [50], and the DOC

concentration was measured by a TOC analyzer (TOC-L

Analyzer, Shimadzu, Japan). The ammonium and nitrate

concentrations in the filtered extracts were analyzed

within 24 h using a continuous flow analyzer (SAN++,

Skalar, Breda, Holland).

Analysis of soil bacterial communities through Illumina

MiSeq sequencing

The genomic DNA was isolated from 0.30 g of soil using

the MoBio PowerSoil DNA Isolation Kit (QIAGEN Inc.,

USA) following the manufacturer’s instructions. The

abundance of bacteria was estimated by quantifying the

16S rRNA gene copy number on an iCycler iQ5 thermocy-

cler (Bio-Rad, USA) using the primer pairs Eub338F/

Eub518R [51]. To evaluate the bacterial community com-

position, the V4 region of the bacterial 16S rRNA gene

was amplified using the primer pairs of 338F/806R [47].

The 50 μl PCR reaction mixtures consisted of 25 μl Pre-

mixTaq™ (Takara Biotechnology, Dalian, China), 1 μl of

each primer (10 μM), 3 μl of template DNA, and 20 μl of

sterilized ddH2O. The resultant PCR products were puri-

fied using the Wizard® SV Gel and PCR Clean-Up System

(Promega, San Luis Obispo, USA). The purified amplicons

were equimolarly mixed, and 2 × 250 bp paired-end se-

quencing was carried out on an Illumina Miseq sequencer

(Illumina Inc., San Diego, USA). Raw reads generated

from the MiSeq paired-end sequencing were merged to-

gether using the Fast Length Adjustment of Short reads

(FLASH). A chimera filtering approach UPARSE was

employed as the Operational Taxonomic Unit (OTU or

phylotype) picking strategy at 97% sequence similarity.

We randomly selected an even number (30,212) of reads

from each sample to account for variability in sequencing

depth before downstream analysis (Additional file 1: Fig-

ure S9). Representative sequences from individual OTUs

generated in UPARSE were processed using the Quantita-

tive Insights into Microbial Ecology (QIIME) pipeline.

The bacterial diversity index was calculated based on 97%

OTU similarity of obtained bacterial sequences. The taxo-

nomic identity of all phylotypes was determined using

The SILVA ribosomal RNA gene database project [52].

Shotgun metagenomic sequencing and gene analysis

Seven paddy soils and three upland soils were selected from

our 141 samples for metagenomic analysis. These samples

were chosen, after Hg analysis, to produce a wide range of

Hg concentrations (ranged from 0.84 to 32.43 mg kg−1). Se-

quencing was performed using an Illumina PE150 (Illumina

Inc.) at Majorbio, Inc., Shanghai, China. Raw reads (150 bp

in length) were trimmed to remove low-quality reads.

Paired reads of shotgun metagenomic sequences were

merged with FLASH using default parameters [53]. Using
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MBLASTX, merged reads were also mapped against the

protein sequence of the KEGG database (E value cutoff

1e−6), and the relative abundance of each KO gene was also

calculated. Additional details on methodology are provided

in the Additional file 3. To estimate the influence of ele-

vated Hg and MeHg contents on these genes, we focused

on the KO genes related to microbial metabolism, Hg

transformations, and other sensitive ones.

Correlation network analyses

We established a co-occurrence network to identify eco-

logical clusters of bacterial taxa across the collected 141 soil

samples. A single correlation network including all samples

was conducted so that the identified ecological clusters are

directly comparable across land use types. We kept those

taxa accounting for more than 80% of the relative abun-

dance of soil bacteria (1073 bacterial taxa in Additional file 2:

Data S1). We then calculated all pairwise Spearman’s rank

correlations (ρ) between all soil bacterial taxa using the

psych package of the R statistical software (http://cran.r--

project.org/) and focused exclusively on positive correla-

tions as they provide information on bacterial taxa that

may respond similarly to environmental conditions [54].

We considered a co-occurrence to be robust if the Spear-

man’s correlation coefficient was > 0.25 and P < 0.01 [17].

The network was visualized with the interactive platform

Gephi [55]. Finally, we used default parameters from the

interactive platform Gephi to identify ecological clusters

(i.e., modules) of soil taxa strongly interacting with each

other [55]. The relative abundance of each ecological clus-

ter was computed by averaging the standardized relative

abundances (z-score) of the taxa that belong to each eco-

logical cluster [17].

Statistical analysis

We first identified the correlations between total Hg and

MeHg with soil bacterial abundance, diversity (Shannon),

and the relative abundance of ecological clusters in both

paddy and upland soil, using linear or cubic models. We

used both regression analyses and Pearson correlation to

evaluate correlations between total Hg and MeHg and the

relative abundance of ecological clusters, and bacterial

community composition for two land use types using one

ANOVA, with land use type as the fixed factor. We con-

ducted a classification random forest analysis [56, 57] to

identify the statistically significant predictors of the bacterial

diversity, total abundance, and the relative abundance of

ecological clusters. The major aim of these analyses were to

test whether total Hg or MeHg pollution are significant

predictors of microbial attributes, after accounting for other

key environmental predictors including location, soil prop-

erties, heavy metals, and nutrient availability. We also used

random forest analysis to identify the genus predictors of

the phyla/classes that were significantly correlated to soil

Hg. The random forest model determined the importance

of each predictor variable via evaluating the decrease in

prediction accuracy (i.e., increase in the mean square error

between observations and OOB predictions) when the data

for that predictor are randomly permuted, as previously de-

scribed [58]. These analyses were conducted using the

rfPermute package [59] of the R statistical software (http://

cran.r-project.org/). Additionally, we used Spearman’s cor-

relation analyses to further evaluate the correlations be-

tween bacterial diversity (Shannon), total abundance, and

the relative abundance of ecological clusters with environ-

mental predictors. We also used random forest analysis to

identify the major functional genes predicting the concen-

trations of Hg and MeHg in our soils. In these analysis,

functional genes are used as predictors of Hg concentra-

tions. After this, we used linear regressions to evaluate the

direction of the relationships between the relative abun-

dance of selected genes and soil total Hg concentrations.

We then used structural equation modeling (SEM) [60]

to further clarify associations of Hg (total Hg and MeHg)

contents with the bacterial abundance, diversity, and the

relative abundance of ecological clusters (modules). Unlike

the analysis of regression or ANOVA, SEM allows the abil-

ity to separate multiple effect pathways and consider them

as parts of a system and thus is useful for isolating the com-

plex relationships among environmental factors commonly

found in natural ecosystems [60, 61]. The probability that a

path coefficient differs from zero was tested using bootstrap

resampling. Bootstrapping is preferred to the classical

maximum-likelihood estimation in these cases because in

bootstrapping, probability assessments are not based on the

assumption that the data match a particular theoretical dis-

tribution. Our model also includes spatial autocorrelation

(latitude and longitude) and soil properties, which were rep-

resented by the three major components by performing

principal component analysis of soil variables including pH,

soil organic carbon (SOC), C: N, and others (Additional file 1:

Table S3). We first established an a priori model according

to our current knowledge of environmental variable impacts

on soil microbiomes (Additional file 1: Figure S10). The

data matrix was fitted to the model using the

maximum-likelihood estimation method. There is no single

universally accepted test of overall goodness of fit for SEM.

Thus, we used the chi-square test (χ2; the model has a good

fit when 0 ≤ χ2/d.o.f ≤ 2 and 0.05 < P ≤ 1.00) and the root

mean square error of approximation (RMSEA; the model

has a good fit when RMSEA 0 ≤RMSEA ≤ 0.05 and 0.10 <

P ≤ 1.00 [62]. The SEM analyses were performed using

AMOS 21.0 (SPSS Inc., Chicago, IL, USA).
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