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This paper investigates the linearization, using perturbation methods,

of the structural deformations in the nonlinear flight dynamic response of

aircraft with slender, flexible wings. The starting point is the coupling of

a displacement-based geometrically-nonlinear flexible-body dynamics for-

mulation with a 3D unsteady vortex lattice method. This is followed by a

linearization of the structural degrees of freedom, which are assumed to be

small in a body-fixed reference frame. The translations and rotations of that

reference frame and their time derivatives, which describe the vehicle flight

dynamics, can still be arbitrarily large. The resulting system preserves all

couplings between rigid and elastic motions and can be projected onto a few

vibration modes of the unconstrained aircraft with geometrically-nonlinear

static deflections at a trim condition. Equally, the unsteady aerodynamics
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can be approximated on a fixed lattice defined by the deformed static geom-

etry. Numerical studies on a representative high-altitude, long-endurance

aircraft are presented to illustrate the approach. Results show an improve-

ment compared to those obtained using the mean-axes approximation.

Nomenclature

Symbols

C coordinate transformation matrix from frame A to B

C global tangent damping matrix

I unit matrix

K global tangent stiffness matrix

M global tangent mass matrix

p generalized displacements in modal basis

Q global vector of generalized forces, N

r inertial position of the origin of the body-fixed frame, m

R beam local position vector, m

s length of the arc along beam reference line, m

t physical time, s

T tangential operator

v inertial translational velocity of the body-fixed frame, m/s

V inertial translational velocity at a beam cross section, m/s

x state vector

β vector of global translational and rotational velocities

γ beam local force strain

Γ circulation strength of a vortex ring, m2/s

ζ quaternion for global orientation of the body-fixed frame
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η vector of nodal displacements and rotations

Θ Euler angles, rad

κ beam local moment strain, m−1

ν global displacements and rotations as time integral of β

ξ beam cross-sectional coordinates, m

Φ matrix of mode shapes

χ coordinates of the aerodynamic lattice, m

Ψ beam local Cartesian Rotation Vector

ω inertial angular velocity of the body-fixed frame, rad/s

Ω inertial angular velocity at a beam cross section, rad/s

Subscripts

A body-fixed reference frame

B local reference frame on flexible members

F fluid degrees of freedom

G inertial reference frame

R rigid-body degrees of freedom

S structural degrees of freedom

Superscripts

˙(•) derivatives with respect to time, t

(•)′ derivatives with respect to length, s

˜(•) skew-symmetric operator

¯(•) small perturbations around an equilibrium
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I. Introduction

The flight dynamics of flexible aircraft have been traditionally studied using linear meth-

ods. The standard approach in the flight simulation community is the mean-axes approxima-

tion,1–4 which decouples the structural and rigid-body dynamics degrees of freedom (DoF)

by assuming a superposition of the “free-free”modal vibrations of the structure to the dy-

namics of a floating frame linked to the aircraft center of gravity. The aerodynamic loads

are obtained as the generalized forces corresponding to the mode shapes of the structure,

including their rigid-body component.5 The resulting equations of motion (EoM), however,

neglect some gyroscopic coupling terms (which may have an important effect on both the

flight dynamics and the maneuver loads) and are therefore only valid for perturbations about

steady flight of relatively stiff vehicles. A more general solution has been proposed using

quasi-coordinates ,6–8 which directly solve the fully-coupled EoM of a flexible body (in a

body-attached reference frame) under the assumption of small structural deformations.

The coupled aeroelasticity/flight dynamics problem is often linked to large structural

deformations and most of the recent work9–14 has been concerned with developing fully

coupled models to include the effect of geometrically-nonlinear elastic deformations on the

flight dynamics of flexible aircraft. Typically, the displacements and rotations along a beam-

type structure are the primary variables in the numerical solution, where the elastic DoF are

defined in terms of a global body-fixed reference frame attached to the reference configuration

to include the rigid-body motion of the vehicle. Alternative solutions using directly the beam

stress resultants as primary variables13–16 or mixed methods based on local velocities and

strains (the so-called intrinsic description)17–19 have often provided numerical advantages

for aircraft-type geometries.

Whereas geometrically-nonlinear static aeroelastic effects can have a significant impact

on the vehicle response,20 using full nonlinear models to compute the flight dynamics of very

flexible aircraft comes at a numerical burden which makes them less suitable for efficient

control design and optimization studies. Model reduction of the system could solve this
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problem but its application is limited here because of the tightly-coupled, nonlinear nature

of the flexible-body dynamics subsystem. Recently, Da Ronch et al.21 have demonstrated

that third-order Taylor expansions with only a few DoF can be obtained directly from very-

high-dimensional nonlinear aeroelastic models of very flexible wings, but the validity of

those approximations can be hard to guarantee far from the reference conditions. In a

parallel effort, Su and Cesnik22 applied a modal approach to the strain-based, geometrically

nonlinear beam equations to solve the dynamics of flexible aircraft. However, the reduced

system matrices still depended on the modal amplitudes and the computational advantage

of that approach was small.

To compute the dynamic response of structures around a geometrically-nonlinear static

equilibrium, previous work by the first two authors23 demonstrated the consistent lineariza-

tion of the structural DoF in nonlinear flexible-body dynamics problems. This provides a

formulation which allows projection of the nonlinear EoM onto the vibration modes of the

unconstrained deformed structure at forward flight with possibly large trim deformations.

While keeping the nonlinearity in the rigid-body dynamics equations and preserving all

couplings between rigid-body and structural dynamics, this approach results in closed-form

expressions for all the modal coefficients which only need to be computed once.

The objective of this paper is to exercise this consistent structural linearization on the

dynamic analysis of flexible aircraft. Here, the emphasis is on small elastic deformations

around the aircraft trim configuration with possibly large static wing deformations. The

flexible-body dynamics formulation is coupled with a 3D unsteady vortex lattice method

(UVLM)24 in the framework for Simulation of High-Aspect-Ratio Planes (SHARP).12,20 Nu-

merical examples exercise the proposed formulation on the open-loop response of a represen-

tative high-altitude, long-endurance (HALE) aircraft subject to commanded control surface

inputs. Comparison to the mean-axes approximation will give an insight into the effect of

neglecting the coupling between the elastic deformations and aircraft flight dynamics.
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II. Flexible-Body Dynamics

The flexible vehicle will be modeled using geometrically-nonlinear composite beam ele-

ments on a moving (body-attached) frame of reference.25,26 The elastic DoF are the dis-

placements and the Cartesian Rotation Vector (CRV) at the element nodes, with respect

to a moving body-attached frame. The nonlinear EoM are then linearized with respect to

the elastic DoF using perturbation methods and projected onto a set of elastic modes of the

unrestrained system at some reference condition. This will give a compact form of the EoM

with large rigid-body motion. The details can be found in Hesse and Palacios23 and this

section will only present the main results.

II.A. Geometrically Exact Displacement-Based Formulation

As shown in Figure 1, the deformation of the structure is described in terms of a moving,

body-fixed reference coordinate system, A, which moves with respect to an inertial (ground)

frame, G, by the inertial translational and angular velocities, vA(t) and ωA(t), of its origin.

Subscripts are used to indicate the coordinate system in which each vector magnitude is

projected. The orientation of the global frame, A, with respect to the inertial frame, G,

is parameterized using quaternions, ζ (t). The local orientation along the beam reference

line is defined by a local coordinate system, B, and is parameterized by the CRV, Ψ(s, t).

The corresponding coordinate transformation matrix between the global body-fixed reference

frame, A, and the local deformed frame, B, will be referred to as C(Ψ).

The nodal positions, RA(s, t), and the cross-sectional orientations, Ψ(s, t), thus form the

set of independent variables. Note that the elastic displacements are given with respect to

the body-fixed frame of reference, A, such that the structure is attached to the origin of

the A frame (with the corresponding boundary conditions). The rigid-body velocities, vA

and ωA, are used to describe the overall motion of the unconstrained vehicle. Hence, the

deformation of the reference line going from the undeformed state at t = 0 to the current

state at time t is given by the force and moment strains,27 which are defined, respectively,
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Figure 1: Multi-beam configuration with the definition of reference frames.

as

γ(s, t) = C(Ψ(s, t))R′A(s, t)− C(Ψ(s, 0))R′A(s, 0),

κ(s, t) = T (Ψ(s, t))Ψ′(s, t)− T (Ψ(s, 0))Ψ′(s, 0),

(1)

where (•)′ is the derivative with respect to the length of the arc s, and T (Ψ) is the tangential

operator .26 Analogously, the local translational and angular inertial velocities are obtained,

respectively, as

VB(s, t) =C(Ψ(s, t))ṘA(s, t)+

C(Ψ(s, t)) [vA(t) + ω̃A(t)RA(s, t)] ,

ΩB(s, t) =T (Ψ(s, t))Ψ̇(s, t) + C(Ψ(s, t))ωA(t),

(2)

where (•̇) is the derivative with respect to time and (•̃) the cross-product (or skew-symmetric)

operator.25 This kinematic description serves to express the kinetic and potential energy of

the system in terms of the beam displacement and rotations.16,26 A 2-noded finite-element

discretization is then introduced on both variables which gives the discrete form of the

nonlinear EoM. If η is the column vector with all the nodal displacements and rotations and
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β> = {v>A ω>A}, the dynamic equations are written as23

M(η)

η̈β̇
+

Q
S
gyr

QR
gyr

+

Q
S
stif

0

 =

Q
S
ext

QR
ext

 , (3)

where structural and rigid-body components (denoted by superscripts S and R) have been

identified in the gyroscopic, elastic and external forces. These differential equations couple

the nonlinear beam dynamics and the nonlinear rigid-body dynamics through the fully-

populated mass matrix, M(η), and the discrete gyroscopic forces, Qgyr (η, η̇, β). Since this

formulation includes rotational DoF, the mass matrix depends on the current geometry, η,

to account for a change in rotational inertia on the structural and rigid-body dynamics.26

In addition to the inertial coupling, additional coupling can occur through follower forces

such as aerodynamic loads or thrust. Equation (3) is solved together with the propagation

equations that determine the position and orientation of the body-fixed reference frame.28

The equations are time-marched using an implicit, constant-acceleration Newmark integra-

tion scheme which was modified as in Eq. (7.3.23) in Géradin and Rixen29 to introduce

controlled positive algorithmic damping.

II.B. Linearization of Elastic Degrees of Freedom in Nonlinear Flexible-Body

Dynamics

The particular case of small structural deformations about a static equilibrium condition is

considered next. The possibly large elastic deformations at static equilibrium will be referred

to as η as before, whereas η̄(t) will be the small elastic deformations that occur together with

the (not-necessarily small) rigid-body velocities β(t). With those assumptions, perturbation

of the elastic DoF in Eq. (3) gives linear inertial and elastic terms, which only depend on

the deformed shape, whereas the gyroscopic forces require particular attention because of
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the coupling between rigid-body and elastic states. This results in23

M(η)


¨̄η

β̇

+ C̄(η, β)


˙̄η

β

+ K̄(η, β)

η̄0
 = Q̄ext(η̄, ˙̄η, β, ζ), (4)

where C̄ and K̄ are the damping and stiffness matrices which originate from the perturbation

of Qgyr and Qstif in the elastic DoF. It is important to note that the mass matrix M

only depends on the static deformations, η, but the damping and stiffness matrices are also

functions of the instantaneous rigid-body velocity, β.

To compute the vibration modes of the unconstrained structure around a geometrically-

nonlinear deformed reference condition, we can further linearize the dynamic system in Eq.

(4) with respect to the rigid-body velocities around the equilibrium β = 0. Note however that

the structural linearization is invariant with respect to translational velocities and the results

can be used for the dynamics in forward flight. The homogeneous form of the resulting linear

system of coupled EoM will also be the basis for the aeroelastic stability analysis presented

in Section III.B.

II.C. Modal Reduction of the Nonlinear System Equations

It is now possible to write the system of perturbation equations, Eq. (4), in terms of

global shape functions by projecting the dynamics equations on the natural modes of the

unconstrained structure at a reference condition. These vibration modes are obtained in the

body-fixed frame A from the unforced fully-linearized version of Eq. (4), such that

η̄ν̄
 = Φ

 p

ν̄∗

 =

ΦSS ΦSR

ΦRS ΦRR


 p

ν̄∗

 , (5)

where we have introduced the new variable ν̄ with ˙̄ν = β̄, such that the vector of rigid-body

displacements and rotations, ν̄∗, describes the motion of the body-fixed frame, A, and the

displacements of this frame due to the elastic mode shapes (ΦRS 6= 0). The vector of the
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projected modal coordinates is p and Φ is the matrix of the corresponding mode shapes,

which include the six zero-frequency rigid-body modes [Φ>SR Φ>RR]>.

Without loss of generality, the origin of the body frame A can be defined to initially

coincide with the center of mass (CM) and its axes to be aligned to the principal axes of

the structure. This simplifies the rigid-body modes, since ΦSR and ΦRR are then a null

and a unit matrix, respectively. Note that this is the same initial condition as for a mean-

axes description, but A is still a body-fixed frame. The remaining elastic mode shapes,

[Φ>SS Φ>RS]>, characterize the vibration modes of the unconstrained structure such that ΦSS

are the deformations with respect to frame A and ΦRS 6= 0 accounts for the corresponding

rigid-body motion of the body-fixed frame A.

However, using this modal basis for the projection of the linear-flexible/nonlinear-rigid

EoM, Eq. (4), requires a linear transformation at each sub-iteration to obtain the instan-

taneous rigid-body velocities needed in the perturbation damping and stiffness matrices. A

more convenient basis for projection is

Φ∗ =

ΦSS ΦSR

ΦRS ΦRR


 Im 0

−ΦRS I6

 , (6)

where m is the number of elastic modes used for the projection, which relieves the inertial

coupling between the rigid-body motion of the vehicle and the elastic deformations. This

approach is very similar to that followed by Rodden and Love5 to obtain the rigid-body

accelerations on the structure in a mean-axes framework and will allow us to separate elastic

from rigid-body modes in the following projection of the perturbation flexible-body EoM.

Note that in this formulation, the modal basis is computed for the deformed configuration

at trimmed flight, which is the same reference condition used for linearization of the elastic

DoF.
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II.C.1. Modal Reduction of the Perturbation Equations of Motion

The structural and rigid-body velocities/accelerations can first be expressed in terms of the

modal basis, Φ∗, such that


˙̄η

β

 = Φ∗

ṗβ
 and


¨̄η

β̇

 = Φ∗

p̈β̇
 , (7)

which is substituted in Eq. (4) to obtain the modal form of the coupled EoM for this system,

as

Φ∗>M(η)Φ∗

p̈β̇
+ Φ∗>C̄(η, β)Φ∗

ṗβ
+

Φ∗>K̄(η, β)Φ∗

p0
 = Φ∗>Q̄ext(η̄, ˙̄η, β, ζ).

(8)

The resulting modal EoM describes the arbitrarily-large rigid-body motion of the flexible

body subject to small elastic deformations which are captured using the modified vibration

modes of the unconstrained structure. Because of the linear mapping of the rigid-body

velocities, Eq. (6), the orthogonality property of the resulting vibration modes with respect

to the system mass and stiffness matrices is lost. However, the system is already coupled due

to the contribution of the gyroscopic forces to the modal damping and stiffness matrices.

The modal damping and stiffness matrices remain functions of the rigid-body DoF, β.

However, it is easy to see that they have, respectively, linear and quadratic dependencies

with β, and that it is possible to write them in terms of third- and fourth-order tensors,23

Φ∗ij C̄jkΦ∗kl = cilrβr (t) ,

Φ∗ijK̄jkΦ∗kl = kstifil + kgyrilrsβr (t) βs (t) ,

(9)

where we sum over repeated indices and have identified the contributions to the modal
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stiffness matrix from elastic and gyroscopic forces. The tensors c and k are constant in time

and their dimensions are i, l = {1, ...,m} and r, s = {1, ..., 6} for m number of modes used in

the expansion. These tensors are typically very sparse, and this approach generates efficient

numerical solutions that keep the nonlinearities in the rigid-body DoF and all couplings with

the linear structure at a low computational cost.

II.C.2. A Mean-Axes Approximation

In this section we give a brief description on the implementation of the mean-axes approx-

imation which will be exercised in the numerical studies in Section IV. As it will be seen,

the system size is similar to the proposed modal formulation, but it neglects the gyroscopic

couplings between the elastic and rigid-body dynamics.

The mean-axes system is enforced by projecting the linear EoM onto free-free modes.4,30

Here, we obtain the free-free modes in the inertial frame by solving the eigenvalue problem

given by the unconstrained, undamped elastic EoM as, MSS η̈f + KS
stifη

f = 0, where ηf is

the vector of elastic DoF without enforcing a constrained node at the origin of frame A.

The corresponding stiffness matrix, KS
stif , is obtained through linearization of the elastic

forces, QS
stif . The relative displacements of the flexible body can then be described in terms

of mode shapes, Φf , and generalized displacements, pf , such that ηf =
∑

i Φf
i p

f
i . Due to

orthogonality of the free-free modes and if we neglect the contribution of elastic deformations

to the gyroscopic forces in Eq. (3), it is possible to solve the mean-axes EoM,

p̈fi + ω2
i p

f
i =

(
Φf

i

)>
Qf

ext (η̄, β, ζ) , (10)

separately from the nonlinear rigid-body dynamics EoM, extracted from Eq. (3), as

MRR (η) β̇ +QR
gyr (η, β) = QR

ext (η̄, β, ζ) , (11)

where ωi is the vibration frequency of the ith mode and MRR the mass matrix of the rigid-

body at the CM and principal axes. Neglecting some gyroscopic terms in the damping matrix
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is a necessary assumption to diagonalize all modal system matrices. The implication of this

assumption will be investigated in this paper on a full aircraft application. Note that the

resulting set of EoM can still be coupled if the external forces, Qext, such as aerodynamic

loads, not only depend on rigid-body velocities, β, and orientation, ζ, of the aircraft, but

also on the instantaneous geometry due to deformation of the lifting surfaces, η̄.

III. Coupled Aeroelasticity and Flight Dynamic Models

The presented flexible-body dynamics description has been implemented in the framework

for Simulation of High Aspect Ratio Planes (SHARP)12,20 to study flexible aircraft, including

static aeroelastic analyses, trim, linear stability analyses, and fully nonlinear time-marching

simulations. The unsteady aerodynamics are given by the unsteady vortex lattice method,

which accounts for wing surfaces subject to large deformations. The implementation of the

aerodynamics follows Katz and Plotkin24 and the mapping between the aerodynamic and

structural grid has been presented by Murua et al.12 Only a summary is given here.

III.A. Direct Simulation of Nonlinear Flexible-Aircraft Dynamics

Time-domain simulation of very flexible aircraft dynamics is obtained via a loosely-coupled

implementation of Eq. (3) with the unsteady aerodynamic loads in the external forces,

Qext, given by the UVLM. In the UVLM, vortex-ring quadrilateral elements are used to

discretize both lifting surfaces and wakes. Each surface (bound) vortex-ring has an associated

circulation strength, Γk, and a collocation point, at which the impermeability boundary

condition is satisfied. In its general form, the UVLM is a geometrically nonlinear method

in which the shape of a force-free wake is obtained as part of the solution procedure. The

wake is therefore formed, shed, convected, and allowed to roll up according to the local flow

velocity. The vorticity distribution of the vortex elements is determined by applying the

non-penetration boundary condition at the discrete time step n+ 1, such that

AbΓ
n+1
b + AwΓn+1

w = wn+1, (12)
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where Γb and Γw are bound (surface) and wake circulation strengths, respectively, Ab and Aw

are the wing-wing and wing-wake aerodynamic influence coefficient matrices. Elements of

these matrices are obtained by projecting the velocity (computed using the Biot-Savart law)

over the vortex-ring normal vector. The vector of normal components of the non-vortical

velocities at the collocation points, w, can include deployment of control surfaces, gust-

induced velocities, wing deformations and rigid-body motions. Note that, as the influence

coefficients can account for large deflections of the aerodynamic surfaces, the method is

geometrically nonlinear.

Once the vorticity distribution is computed at each time step, the aerodynamic pressures

can be computed using Bernoulli’s equation. The resulting aerodynamic loads are finally

converted into forces and moments at the beam nodes through a mapping procedure as

outlined in Murua et al.,12 which in the current implementation uses coincident meshes. No

effort was done in the direct time-simulations in this paper to simplify the aerodynamic

description for small wing deformations.

III.B. Monolithic Description of Linearized Flexible-Aircraft Dynamics

Linearization of the UVLM formulation leads to a compact set of discrete-time state-space

equations that, coupled with the fully-linearized form of the flexible-body dynamics EoM,

Eq. (4), can be used for linear stability analysis of very flexible aircraft with possibly large

deformations at trimmed flight. To obtain the state-space form of the UVLM, the governing

equations are linearized on a frozen aerodynamic geometry.20,31 They are naturally written

in a descriptor state-space form as

EF∆xn+1
F + FF∆un+1

F = AF∆xnF +BF∆unF ,

∆ynF = CF∆xnF +DF∆unF ,

(13)

where superscripts n and n + 1 refer to the current and next time steps and subscript F

highlights the aerodynamic components. The outputs yF are the aerodynamic loads at panels
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and the states xF and inputs uF of the linearized aerodynamic system are given by

xF =
[
ΓT
b ΓT

w Γ̇T
b

]T
and uF =

[
χT
b χ̇

T
b

]T
, (14)

where the aerodynamic grid, χb, and the time derivative, χ̇b, can account for deployment

of control surfaces, gust-induced velocities, and wing deformations. This linearized formu-

lation enables rigid-body motions and elastic deformations to be incorporated in a unified

monolithic framework. However, as the linear UVLM is written in discrete time, temporal

discretization of the structural equations is also required before the fluid/structure coupling.

A standard Newmark-β discretization is used, which leads to the following equations for the

homogeneous problem32

Esys∆x
n+1 = Asys∆x

n, (15)

where the state vector that completely determines the linear system is

x =
[
xTF | xTS | xTR

]T
=
[
ΓT
b ΓT

w Γ̇T
b | ηT η̇T | βT ΘT

]T
, (16)

with the Euler angles, Θ, used to define the orientation of the body frame, A. As before,

subscripts S and R refer to the structural and rigid-body states. From Eq. (15) one obtains

a discrete-time generalized eigenvalue problem to determine the dynamic stability of the

vehicle which includes aeroelastic and flight dynamic modes.

IV. Numerical Studies

Previous work12,16,23 has included extensive verification studies of SHARP for static and

dynamic solutions of flexible-body configurations, with and without aerodynamics. The

linear-flexible/nonlinear-rigid dynamics formulation, outlined in Section II.B, was already

exercised in Hesse and Palacios23 on configurations with prescribed loads. Those results

served to evaluate the limits of applicability of the mean-axes approximation for a multi-

beam problem in spiral motion.
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In this work, we firstly return to the spiral dynamics problem to gain a deeper under-

standing of the effect of neglecting gyroscopic forces in the mean-axes approximation. Then,

a representative flexible HALE aircraft is introduced to exercise the linear-flexible/nonlinear-

rigid dynamics formulation coupled with the unsteady aerodynamics solver. The L2 relative

error norm, defined as ε = ||Xcom −Xref ||/||Xref ||, will be used throughout this section to

compare computed results, Xcom, with a reference solution, Xref .

IV.A. Assessment of the Mean-Axes Approximation on a Flexible Multi-Beam

Configuration

A flexible multi-beam configuration23 (FMB) in vacuum will be used to investigate the

effect of the gyroscopic forces on the mean-axes approximation. The geometry, material

properties, and load history of the FMB problem are defined in Figure 2, where x-z is a

plane of symmetry for the model. A set of follower loads is applied at the origin of the body-

fixed frame, A, such that the rigid structure follows a circular trajectory with radius RS.

The parameter pR is introduced in this study to vary the radius of the trajectory which is

prescribed by the tangential and centripetal forces, FT and FC , respectively, and the moment

MC . The total mass of the frame is m and Jz is the moment of inertia around the z axis at

the reference configuration. The body-fixed frame, A, is rigidly-linked to the FMB at point

PG and the CM of the undeformed geometry initially coincides with the origin of frame

A to simplify comparison with the mean-axes solution. At last, a dead load is applied at

PG to prescribe the spiral motion. Note that no gravity forces are acting on the structure

in this problem. A mesh size of 60 2-noded elements and a time step of ∆t = 0.1 s was

found to be sufficient to capture the predominantly rigid-body dynamics for 800 time steps.

The constant-acceleration Newmark scheme with algorithmic damping of 0.01 was used to

time-march the solution.

The stiffness properties of the structure, shown in Figure 2, result in maximum tip

displacements below 1% relative to the arm length L. It was shown before23 that for pR = 1

the relative error (of about 12%) in tip deformations using the mean-axes approximation is
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P
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FG

rigid 

linkPG

A
x,FT

y,FC

FC(t) = mvAy(t)
2/RS

FG(t) = 2 N/s·t

FT(t) = 5 N/s·t

Follower loads:

Dead loads:

Spiral radius:

RS = 16 L·pR

Geometry and material properties:

ρA = 13.5 m2, J = diag(1.41, 0.28, 1.13)×102

L = 5 m 

EA= 1.75×10 10 N, GAs = 5.61×109 N

GJ = 3.85×106 Nm2, EI2 = 3.65×106 Nm2, EI3 = 1.46×107 Nm2

 m4

MC(t) = JzFT(t)/(mRS)

Figure 2: Definition of the FMB problem. Cross-sectional properties are given in the local
material frame with local x axis acting along the beam reference line and local y axis is
normal to y − z plane of body-fixed frame A.

independent of the stiffness even for sufficiently stiff wings. To complete the analysis, this

study will investigate the effect of the vehicle kinematics (characterized by radius parameter

pR) on the error given by the mean-axes approximation.

The trajectory of the centroid is shown in Figure 3 for four different load cases. For this

very stiff problem the prescribed forces result in zero angular velocity components around

x and y axes and the maximum ωGz component at t = 80 s is inversely proportional to pR.

The translational velocity components vGx and vGy are oscillatory due to the circular motion

but the norm of vG remains independent of the prescribed spiral radius. This shows that

only the inverse proportionality of pR with the angular velocity ωGz dictates the effect of

gyroscopic forces on the tip deflections.

The centrifugal forces result in predominantly antisymmetric in-plane bending of the

frame, whereas the resulting normalized tip displacements, shown in Figure 4 for pR = 1 and

5, remain below 1% relative to the arm length L defined in Figure 2. Comparison between

the nonlinear, Eq. (3), linearized, Eq. (4), and mean-axes solutions, Eq. (10), in Figure 4

demonstrates that the elastic response is linear for this very stiff problem. However, it is

clear that application of the mean-axes approximation results in smaller deflections, which

converge to the nonlinear solution for larger radii and hence smaller angular velocities.
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radii. Displacement in the z-direction is the same for all cases and markers are plotted every
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Figure 4: Vertical displacement of point P, projected in the A frame, for the FMB problem
with different radii.

This behavior is demonstrated in detail in Figure 5 which shows the correlation between

the maximum relative error norm of the right tip deflection and its components with the

radius parameter pR. The error in in-plane bending (RAy and RAz) contributes the most

to the overall relative error norm. It is evident that there is a direct correlation between

the angular velocity ωGz, which is inversely proportional to pR, and the relative error of the

mean-axes approximation to predict the elastic response. The contribution of the gyroscopic

forces to damping and stiffness matrices are neglected under the mean-axes approximation in

order to decouple the modal system equations. The error of this approximation is dominated

by the angular velocity ωGz, as the norm of the translational velocity, vG, is constant for all

radii. This shows that the gyroscopic forces can have a noticeable impact on the structural

dynamics.
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IV.B. Flight Dynamics of a Flexible Aircraft

A similar study, this time also including aerodynamic effects, will be carried out on a full

aircraft configuration. The representative HALE aircraft, shown in Figure 6, consists of

large-aspect-ratio flexible wings, a rigid fuselage and a rigid empennage. It is similar to

those of Patil et al.10 and Murua et al.,20 but it includes dihedral members in the main wing

for lateral stability and the point mass of 50 kg (referred to as payload, even though it is just

a first approximation of the non-structural mass) was moved to the center of the main wing

to guarantee static pitch stability. The dihedral members are rigidly-linked to the main wing

at both ends at an angle of 20 deg. The length fraction of each dihedral member over the

semi-span of the main wing is defined as λ, which will be used in this work as a parameter

to study the impact of wing dihedral on the vehicle dynamics. The horizontal stabilizer and

the vertical fin are modeled as lifting surfaces without camber or pretwist, and the former

includes an elevator modeled as a quarter-chord-length control surface. The empennage is

raised by 1.25 m with respect to the main wing to avoid wake-tail collisions32 and it is rigidly

linked to the main wing by a non-lifting fuselage.

This basic aircraft configuration also includes two massless propellers, which are modeled

as point forces rigidly linked to the main wing. The mass per unit length of the fuselage

is the same as that of the horizontal and vertical tail planes, and thus the total mass of

this aircraft, including payload and structural mass, is 75.4 kg. The flight conditions are

V∞ = 30 m/s at an altitude of 20 km (air density 0.0889 kg/m3). The relevant properties of
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2 m (1−λ) ·16 m λ·16 m
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Figure 6: Undeformed HALE aircraft geometry with front and top view (not to scale).

the members are listed in Table 2. The stiffness parameter σ will be used in the following

studies to vary the stiffness properties of the main wing (decreasing σ results in a more

flexible wing).

Table 2: HALE aircraft properties.

Main wing Tail plane

Chord 1 m 0.5 m

Semi-span for λ = 0, B 16 m 2.5 m

Elastic axis 50% chord 50% chord

Center of gravity 50% chord 50% chord

Mass per unit length 0.75 kg/m 0.08 kg/m

Moment of inertia 0.1 kg·m 0.01 kg·m
Torsional stiffness 1σ×104 N·m2 ∞
Bending stiffness 2σ×104 N·m2 ∞
In-plane bending stiffness 4σ×106 N·m2 ∞
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Figure 7: Trim angle of attack, elevator deflection, thrust per propeller, and vertical tip
deflection of the main wing, ∆RAz/B, as a function of wing flexibility, σ, and dihedral
member ratio, λ.

IV.B.1. Trim for steady flight

As a first step, the vehicle is trimmed for steady level flight through three inputs, namely

angle of attack, elevator deflection, δtrime , and thrust per propeller. The trimming method is

a tightly-coupled process that is described in detail in Murua et al.20 The trim characteristics

of the HALE aircraft are presented in Figure 7 for dihedral member ratio, 0 ≤ λ ≤ 1/2,

and stiffness parameter of the main wing, 1.1 ≤ σ ≤ 1000. The tip deflection of the

main wing, non-dimensionalized with the overall semi-span of the main wing, B, is also

included in Figure 7. Parameter σ = 1 corresponds to the original stiffness properties from

Patil et al.,10 but it gives tip deflections over 40% at current flight conditions which were

deemed unrealistic. It can be seen that the angle of attack initially drops with increasing

flexibility due to favorable twisting of the wing. However, this is opposed by wing bending

for very flexible configurations (σ ≥ 2) resulting in loss of vertical forces because of the

additional wing dihedral and illustrates the importance of geometrically nonlinear effects

on the aircraft trim characteristics. Similarly, the increasing span ratio of the dihedral

members, λ, is also compensated by a larger angle of attack and elevator deflection. The

wing tip deflection decreases for increasing values of λ due to the smaller bending moment
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from the dihedral members, as the lift vector is increasingly pointing inwards. Figure 8

shows the trim deformations of the HALE configuration for a range of stiffness values σ and

for λ = 1/2, and demonstrates the large effective wing dihedral for the very flexible aircraft.

σ=1.1

σ=1.5

σ=2

σ=5

rigid

Figure 8: Trim deformation of HALE aircraft with λ = 1/2 and different stiffness parameters
σ. (Figure shows actual deformations.)

IV.B.2. Linear Stability Analysis

The dynamic stability of this HALE configuration is studied next to investigate the effect of

dihedral member ratio (λ) and flexibility (σ) on the vehicle flight dynamics. The stability

characteristics will be subsequently compared to the open-loop response of the aircraft. For

each trim solution, we can directly solve the generalized eigenvalue problem posed by the

linear aeroelastic system coupled with the flight dynamics of the flexible aircraft, derived

from Eq. (15). The aerodynamic mesh used to solve this problem is shown in Figure 8. The

wake is cut off after 20 m with a time step of 0.01 s. The beam elements coincide with the

aerodynamic panels in the spanwise direction. The resulting total system size is 1581 states

which includes 924 aerodynamic states, 648 structural states, and the 9 rigid-body states.

Figure 9 presents the root loci as a function of the wing stiffness, σ, for a dihedral ratio

of λ = 1/4. Note that the discrete-time eigenvalue analysis derived from Eq. (15) yields

as many roots as the number of states in the problem, but only the dominant modes are

presented here. The first few coupled modes of the flexible vehicle have been identified and

are designated by the names of their rigid-aircraft counterparts, e.g., phugoid, short period,
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parameter: (a) dominant flight dynamic (solid) and aeroelastic (dashed) modes, and (b-c)
zooms showing flight dynamic modes close to the origin. Aerodynamic modes highlighted
with dotted curves.

etc., although they also include vehicle deformations. The aeroelastic modes are labeled with

numbers where Modes 1, 2, and 5 have been identified as coupled symmetric bending/torsion

modes and Modes 3, 4, and 6 correspond to the anti-symmetric modes. Aerodynamic modes

can also be captured with this stability analysis but they are highly damped and mostly

fall beyond the boundaries of Figure 9(a). The stiffness values have been unevenly spaced,

as defined in Figure 9(a), where the two extreme cases are representative of a very flexible

(σ = 1) and a stiff (σ = 1000) wing. Note that the discrete-time eigenvalues have been

converted to continuous time for an easier interpretation.

Figure 9(a) demonstrates that for very flexible aircraft the frequency separation between

flight dynamic and aeroelastic modes can disappear. As the stiffness of the main wing is

increased, the higher-frequency aeroelastic modes become less stable while the low-frequency

flight dynamic modes show the opposite trend. The non-oscillatory spiral divergence on the

other hand, becomes less stable with increasing stiffness. This can be observed in detail in

Figure 9(b) which highlights two flight-dynamics lateral modes: Dutch roll and spiral diver-

gence. As flexibility increases, the less stable Dutch roll illustrates the detrimental impact

flexibility might have on the handling qualities of the vehicle. In contrast, the spiral mode
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stability margin substantially increases with flexibility due to the larger static deformations

of the main wing at trim conditions.

Figure 9(c) zooms further in the root loci in order to visualize the phugoid mode. For a

rigid aircraft it is a lightly damped mode. As flexibility is increased, this modes demonstrates

the complex interaction between the elastic and rigid-body DoF: as the aircraft pitches up

and climbs first, the wings undergo a downward flapping-like motion. As the vehicle pitches

down and descends, the wing bends upwards, reaching the maximum tip deflections before

the cycle is finished. Whereas rigid and stiff aircraft present stable phugoid modes, damping

drops with increasing wing flexibility resulting in an instability for 1.2 ≤ σ ≤ 1.7. However,

for highly flexible cases (σ < 1.2) this trend is reversed which results in stable configurations.

To investigate this reversal in stability behavior, we have included the extremely flexible case

of σ = 1 in Figure 9 and will examine the effect of the outboard dihedral in the following.
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Figure 10: Root loci of the eigenvalue analysis for σ = 1.1 (“flexible”) and σ = 1000
(“rigid”) with the dihedral ratio λ as parameter: (a) dominant roots, and (b) zoom near to
the origin.

Figure 10 shows the root loci for a very stiff (σ = 1000) and a very flexible (σ = 1.1)

aircraft for varying dihedral ratio, λ. Here, we only focus on the dominant flight dynamic

modes: Dutch roll, spiral divergence, and phugoid. Figure 10(a) shows that an increase of

the dihedral member ratio leads to a less stable Dutch roll, while it increases the resistance

against spiral divergence. This coincides with the trends observed in Figure 9(a) with in-

creased flexibility, that is, static deformations and dihedral ratio have the same effect on the
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lateral modes. As the dihedral ratio is varied, these trends are consistent for both the rigid

and flexible vehicles. As expected, wings with very small or no dihedral lead to unstable

spiral modes.

Figure 10(b) focuses on the region closer to the origin in order to expose the characteristics

of the phugoid mode. Interestingly, the trends are opposite for the rigid and flexible vehicles:

the increase of dihedral ratio leads to a more stable phugoid in the flexible aircraft (except

for λ = 0), but the damping of the rigid phugoid decreases with λ. From the trends of the

phugoid mode in Figures 9 and 10, it is clear that static and dynamic aeroelastic effects have

opposing contributions, such that an increase of effective wing dihedral due to wing bending

(static effect) decreases phugoid stability, as deduced from Figure 10, which explains the

trend for 1.2 ≤ σ ≤ 1.7 in Figure 9. For more flexible configurations the dynamic properties

result in increased damping which dominate over the static effects and tend to stabilize the

aircraft.

IV.B.3. Open-Loop Response of HALE Aircraft with Large Rigid-Body Motions

Finally, we can investigate the effect of the consistent linearization of the structural DoF on

the dynamic response of the vehicle defined in Figure 6 and Table 2. The aircraft is subject

to various excitations in the form of commanded inputs on ailerons and elevator and the

open-loop response is computed using the linearized and mean-axes solutions, as well as the

full nonlinear solver. To isolate the effect of linearization of the structural DoF only, the

aerodynamics were computed using the geometricallyn-onlinear time-marching description

of the UVLM for all results presented here. The stiffness parameter σ is also used in this

study to explore the effect of flexibility on the nonlinear flight dynamic response.
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Figure 11: Control inputs for ailerons (δ∗a) and elevator (δ∗e). Transients are sine functions.
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We will limit ourselves to the configuration with dihedral member ratio λ = 1/4, which

was shown to be stable for the whole range of stiffness values with lightly-damped spiral and

phugoid modes (see Figures 9-10). For the dynamic analysis, the control surface inputs of

ailerons and elevator (denoted by subscripts a and e, respectively) are prescribed such that

δa = ±δ∗a and δe = δtrime + δ∗e with the time histories of δ∗a,e shown in Figure 11. The elevator

inputs are prescribed around the trim inputs, δtrime , while the ailerons, as defined in Figure

6, are not used for trimming the aircraft but are deployed anti-symmetrically with ±δ∗a. The

open-loop response of the aircraft is computed for 50 s using a time step of 0.025 s.
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Figure 12: Rigid-body angular velocity components of the HALE aircraft: (a) time history
of the rigid vehicle and (b) maximum norm of ωA and its individual components for varying
stiffness computed using the geometrically nonlinear model.

Figure 12(a) shows the angular velocity components of the rigid vehicle expressed in the

body-fixed frame A. The time history of the angular velocity norm, |ωA|, indicates that the

aircraft response remains lightly damped even long after the command (t ≥ 20 s). This

finding is in agreement with the above stability analysis in Figure 9, which suggests that

the rigid aircraft is only marginally stable. It was also shown, however, that the spiral

mode becomes more stable with increasing flexibility due to wing dihedral. To demonstrate

this behavior Figure 12(b) compares the maximum norm of the angular velocity ωA and its

components for different values of the flexibility parameter, σ. The yaw rate, ωAz, is damped

much faster for the flexible platforms (σ < 5) as the response is dominated by the less stable

phugoid mode in this flexibility range.

In addition to the stability characteristics, flexibility impacts the controllability of the

26 of 33

American Institute of Aeronautics and Astronautics



−1500 −1000 −500 0 500

−1000

−800

−600

−400

−200

0

200

400

600

800

 

 

r G
y [m

]

r
Gx

 [m]

nonlinear
linearized
mean−axes

σ=10

σ=5

σ=1000

σ=1

σ=1.5 σ=1.1

σ=2

(a) x-y plane using different models

0 10 20 30 40 50
−100

−80

−60

−40

−20

0

20

40

 

 

r G
z [m

]

time [s]

σ=1000
σ=10
σ=5
σ=2
σ=1.5
σ=1.1
σ=1

(b) Time history of altitude, z, using the geo-
metrically nonlinear model

Figure 13: Trajectory of the HALE aircraft for λ = 1/4 with stiffness of the main wing as
parameter.

aircraft. Figure 13(a) shows its trajectory in the x-y plane (top view) for different stiffness

values σ and demonstrates control reversal with increasing flexibility of the main wing. For

the flexible configuration with σ = 2, wing twisting results in minimal control authority of

the ailerons. Controllability can be further explored on the linear system by evaluating the

controllability Gramians,33 but this will not be investigated here. Figure 13(b) shows the

effect of flexibility on the altitude response of the HALE aircraft. The frequency of the re-

sulting oscillatory motion matches closely the phugoid mode presented for this configuration

in Figure 9. The reduction in frequency with increasing flexibility is also captured in this

response.

To compare the effect of linearization of the elastic DoF, Figure 13(a) also presents the

dynamic behavior obtained using the linear-flexible/nonlinear-rigid formulation, Eq. (4),

which suggests that geometrically nonlinear deformations have a negligible effect on the

aircraft motion in the x-y plane. The effect of geometric nonlinearity is very different in

the altitude response of the aircraft. This is demonstrated in Figure 14, which shows the

maximum error of the linearized formulation to compute the vertical position for varying

flexibility of the main wing. The maximum norm of the HALE aircraft altitude was used to

normalize the error for each σ. The linearized solution accurately captures the rigid-body

response for mildly-flexible vehicles (σ ≥ 5 corresponding to 7% wing tip deflections), but

27 of 33

American Institute of Aeronautics and Astronautics



the geometrically nonlinear deformations dominate for more flexible configurations.
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Figure 14: Maximum relative error norm of aircraft altitude using linearized and mean-axes
approximations compared to the nonlinear solution for λ = 1/4 and varying stiffness σ.

Next, the open-loop response of the HALE aircraft was computed using the mean-axes

approximation, Eq. (10), but the aerodynamics in our implementation are still computed

on the actual instantaneous geometry. For small deformations this converges to the classical

mean-axes approximation as it is commonly found in flight dynamic simulations.4 The

mean-axes solution to the rigid-body response of the HALE aircraft is included in Figures

13-14 and compared with the fully-coupled, nonlinear reference solution. The error norm in

Figure 14 gives an insight into the effect of neglecting the gyroscopic forces due to elastic

deformations. One would expect the error to increase with flexibility, as is the case for σ < 2,

but a local maximum occurs around σ = 10, which represents a rather stiff configuration

with 5% maximum wing deformations. We saw from Figure 12(b) that the angular velocity

of the aircraft, and hence the contribution of the gyroscopic forces, reduces with increasing

flexibility. This competition between the opposing effects of gyroscopic forces and flexibility

results in the peak at around σ = 10.

The right wing tip deflection is presented in Figure 15 for a stiff (σ = 10) and a very

flexible (σ = 1.1) aircraft. Whereas the flexible case exhibits static equilibrium deformations

of 37% of the semi-span, the maximum amplitude in the transient around this equilibrium

is below 10% of the semi-span. As a result, the linearized formulation is able to capture

the amplitudes of the large deformations well even for the very flexible problem, which is

presented in Figure 15(b). However, as the mass matrix is assumed constant in the linearized

approach, the change in geometry due to the deformations and the resulting change in sta-
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Figure 15: Vertical tip deflection of the right main wing normalized with the semi-span of
B = 16 s for dihedral ratio of λ = 1/4.

bility behavior of the aircraft cannot be captured, which results in a frequency shift. Figure

16 shows the maximum error norm of the vertical wing tip displacement, which were nor-

malized with the maximum wing deformations for each σ. The linearized approach predicts

the displacements well even for very flexible aircraft with σ = 2 and wing deformations of

up to 26% of the semi-span. For more flexible configurations the resulting phase shift due

to geometric nonlinearity effects dominate.
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Figure 16: Maximum relative error norm of vertical wing tip deflections for λ = 1/4 and
varying σ.

At last, it is shown that the mean-axes approximation tends to overpredict the elastic

deformations in the open-loop dynamics. Figure 15(a) indicates that even for relatively stiff

problems (σ = 10), corresponding to maximum deflections below 5% of the semi-span, the

mean-axes approximations results in errors around 9% compared to the nonlinear reference

solution. Similar to the FMB problem, Figure 16 shows that even for near-rigid vehicles

(σ ≥ 100) the relative error remains constant around 1% for the commanded maneuver.

Whereas it was shown in Figure 14 that the mean-axes approximation can give a good
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estimate of the open-loop flight dynamic response for very stiff structures, it results in a

poor prediction of the elastic deformations even for very stiff aircraft. This makes it less

suitable for dynamic maneuver and gust load analysis.

V. Conclusions

This paper has presented a coupled aeroelastic and flight dynamics framework for flex-

ible aircraft with a consistent linearization of the structural dynamics around a nonlinear

static trim equilibrium. Starting from a displacement-based geometrically-nonlinear com-

posite beam model, coupled with an unsteady vortex lattice method, linearization in only

the structural degrees of freedom has resulted in flexible-body dynamics equations writ-

ten in matrix form, with coefficients that vary only with the vehicle rigid-body velocities.

Approximating the finite-element discretization in terms of a few vibration modes of the un-

constrained structure has been shown to result in closed-form expressions for the equations

of motion with constant coefficients that capture the gyroscopic couplings between the rigid-

body and the structural dynamics. The size of the resulting system is thus comparable to

that in mean-axes approximations, but it includes the gyroscopic couplings and vehicle dy-

namics which are written around a nonlinear aeroelastic equilibrium – including a deformed

aerodynamic lattice. Moreover, it is also not necessary to pre-compute frequency-domain

aerodynamics, as it is done in solutions based on the doublet lattice method.

Numerical results on a free-flying flexible multi-beam configuration have shown that the

mean-axes approximation results in a constant relative error independent of the extent of

deformations. More importantly, this error correlates directly to the angular velocity of the

flexible body. Neglecting the gyroscopic couplings may therefore have an important effect

in the dynamic maneuver loads. To test that, the proposed linearized framework has also

been exercised on a representative HALE configuration subject to commanded lateral control

inputs. A linear stability analysis and the open-loop response of the aircraft have confirmed

the dramatic effect of flexibility on the vehicle dynamics, and this was shown to be ade-
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quately captured even for rather flexible configurations using the linear-flexible/nonlinear-

rigid model. It has finally been shown that the mean-axes approximation fails to predict

appropriately the elastic deformations in this open-loop response even for stiff aircraft.

In summary, the linearized flexible-aircraft formulation provides a powerful tool to accu-

rately describe the flight dynamics of flexible high-aspect-ratio aircraft. The proposed model

captures all coupling terms due to gyroscopic forces, which implies that the resulting linear

elastic deformations can be captured accurately. This may be critical for the prediction of

maneuver loads on flexible vehicles, and, since a modal projection of the structural degrees

of freedom was also introduced, it has only a small computational burden.
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