
 Open access  Journal Article  DOI:10.1007/S00161-014-0361-X

Consistent tangent operator for an exact Kirchhoff rod model — Source link 

Leopoldo Greco, Massimo Cuomo

Institutions: University of Catania

Published on: 01 Sep 2015 - Continuum Mechanics and Thermodynamics (Springer Berlin Heidelberg)

Topics: Tangent stiffness matrix, Tangent vector, Tangent cone, Tangent space and Tangent

Related papers:

 An implicit multi patch B-spline interpolation for Kirchhoff–Love space rod

 
At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An
underestimated and still topical contribution of Gabrio Piola

 Truss modular beams with deformation energy depending on higher displacement gradients

 B-Spline interpolation of Kirchhoff-Love space rods

 Isogeometric analysis of plane-curved beams:

Share this paper:    

View more about this paper here: https://typeset.io/papers/consistent-tangent-operator-for-an-exact-kirchhoff-rod-model-
380954erz7

https://typeset.io/
https://www.doi.org/10.1007/S00161-014-0361-X
https://typeset.io/papers/consistent-tangent-operator-for-an-exact-kirchhoff-rod-model-380954erz7
https://typeset.io/authors/leopoldo-greco-246joymedz
https://typeset.io/authors/massimo-cuomo-1toe079c3x
https://typeset.io/institutions/university-of-catania-jxinksja
https://typeset.io/journals/continuum-mechanics-and-thermodynamics-7yc8pgjq
https://typeset.io/topics/tangent-stiffness-matrix-35wcbonk
https://typeset.io/topics/tangent-vector-1th1h3ir
https://typeset.io/topics/tangent-cone-3w398bz1
https://typeset.io/topics/tangent-space-2lhfxhxa
https://typeset.io/topics/tangent-1nlxz2vo
https://typeset.io/papers/an-implicit-multi-patch-b-spline-interpolation-for-kirchhoff-4dhesk9mq9
https://typeset.io/papers/at-the-origins-and-in-the-vanguard-of-peridynamics-non-local-2mcbx56i5x
https://typeset.io/papers/truss-modular-beams-with-deformation-energy-depending-on-5inpzh80xt
https://typeset.io/papers/b-spline-interpolation-of-kirchhoff-love-space-rods-5ivhbnihsg
https://typeset.io/papers/isogeometric-analysis-of-plane-curved-beams-3bbsh22cju
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/consistent-tangent-operator-for-an-exact-kirchhoff-rod-model-380954erz7
https://twitter.com/intent/tweet?text=Consistent%20tangent%20operator%20for%20an%20exact%20Kirchhoff%20rod%20model&url=https://typeset.io/papers/consistent-tangent-operator-for-an-exact-kirchhoff-rod-model-380954erz7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/consistent-tangent-operator-for-an-exact-kirchhoff-rod-model-380954erz7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/consistent-tangent-operator-for-an-exact-kirchhoff-rod-model-380954erz7
https://typeset.io/papers/consistent-tangent-operator-for-an-exact-kirchhoff-rod-model-380954erz7


HAL Id: hal-01009187
https://hal.archives-ouvertes.fr/hal-01009187

Submitted on 17 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consistent tangent operator for an exact Kirchhoff rod
model

L. Greco, M. Cuomo

To cite this version:
L. Greco, M. Cuomo. Consistent tangent operator for an exact Kirchhoff rod model. Continuum
Mechanics and Thermodynamics, Springer Verlag, 2014, 17 p. hal-01009187

https://hal.archives-ouvertes.fr/hal-01009187
https://hal.archives-ouvertes.fr




more recently discrete differential geometry has also been proposed as a tool for developing consistent exact
numerical models of rods [8].

Beam theories can be obtained employing a reduction process from the 3D continuum, or introducing
specific assumptions for the kinematics, and for the strain energy, the latter models usually are referred to
as structural models. In the paper, we will follow the latter strategy. The definition of the structural model
implies therefore the specification of its configuration space, the set of the possible geometrical configurations
V of the model endowed with a smooth chart (generally, an atlas). Smoothness indicates that the change of
coordinates between any two charts defined on the set V is differentiable. The dimension of the configuration
space characterizes the structural model at hand. The space of the admissible variations of the configuration,
necessary for setting up the principle of virtual work, is given by the tangent bundle to V . This aspect is
fundamental in the nonlinear analysis of space rods, since the tangent operator is needed in the implementation
of the iterative method of solution of the nonlinear equilibrium equations.

In a geometrically exact beam model, the configuration of the space rod is mapped by the position of
the centerline and by the finite rotations of three directors attached to the beam axis. In this way, spatial rod
models represent a one-dimensional particularization of the general polar continuum, also known as Cosserat

continuum. In the case when the rotations of the directors are independent, we get the Timoshenko beam or
its generalization to the spatial case ([53–56]). Analogously, a three-dimensional nonlinear polar model with
drilling rotations was developed for shells in [22–24,28,33,34,47], and without drilling rotation in [3,9,60,61].
The space SO(3) of finite rotational degrees of freedom is, however, noncommutative, so that their increments
cannot be simply added, for details see [6,7,52,57]. This problem has been strongly addressed in computational
mechanics by Crisfield and Jelenic [12] and by Jelenic and Crisfield [36] who, in order to overcome the problem,
proposed to interpolate the local rotations with respect to a corotational frame. They also pointed out that the
strain measures must remain unaffected by a superimposed rigid rotation of the configuration (objectivity)
also in the interpolation scheme. Later alternative methods to the corotational scheme have been proposed
(see [25,32]). A representation based on the natural (Bishop) frame for shear undeformable space rods under
Kirchhoff-Love hypotheses has been introduced by Langer and Singer [37] and subsequently used by Bergou
et al. as starting point for an exact rod model built up on discrete differential geometry [8].

As a consequence of the fact that the configuration space for the rod model is a non-Euclidean manifold,
the structural coefficients of the space (i.e., the Christoffel symbols of the connection) do not vanish; therefore,
the directional Gateaux derivative loses the covariant character. The Gateaux derivative is usually employed
in continuum mechanics for obtaining the variation of the configuration, while the second Gateaux derivative
of the total potential energy yields the tangent stiffness operator needed in incremental analyses. Since the
latter does not represent the second covariant gradient, the tangent operator calculated in this way loses its
symmetry properties.

The issue was raised by Simo [58,59], who first noted that the tangent operator evaluated using the Gateaux
derivative is symmetric only at an equilibrium configuration, if the load is conservative. He also described a
procedure for evaluating the Hessian of the total potential energy that does not require the explicit knowledge
of the symbols of the connection that amounts to a straightforward symmetrization of the operator obtained
performing the directional derivative. These facts are indicated in detail in [13]. Later, Jelenic [35] and others
authors afterward used this conclusion. The evaluation of the symmetric tangent operator for an exact structural
model is a necessary requirement in order to extend the formulation to beams composed by materials with
local symmetries, as occurs in functionally graded beams (see for instance [21] for the use of material local
symmetry groups in structural models, and [11] for the theory of functionally graded beams).

In a general sense, in order to obtain the consistent tangent operator of the energy functional, it is needed
to define a connection on the tangent bundle to the configuration manifold and then to calculate the second
covariant gradient. It is symmetric only if the connection is torsion-free; therefore, the unique torsion-free
connection consistent with the adopted metric has to be chosen (i.e., the Levi-Civita connection). This fact,
consisting in the fundamental theorem of the Riemman’s geometry, already present in [13,58,59], allows to
overcome the noncommutative nature of the rotation group.

The cited works refer to shear deformable rods, whose numerical implementation in a finite element (FE)
scheme presents, as it is well-known, shear locking. Kirchhoff -Love rod models are able to avoid shear locking,
so they can be effectively used in modeling bending and torsion-dominated nonlinear problem. However,
membrane and torsional locking may be present, as it has been illustrated in [15] where a family of mixed
finite elements for curved elements, based on isogeometric interpolation, has been introduced that avoids both
membrane locking and the effect of flexure locking on the twisting energy terms. Recently, it has been shown
in [26] that using a hierarchic shell approach, it is possible to develop a numerical model free of shear locking,



(obtaining a sort of switch element) affected only by membrane locking. On this line, the unshearable model
used in this work can be considered an interesting base for developing efficient numerical models for rods.
Kirchhoff -Love model offers several other advantages, since there is no need of assuming any constitutive
behavior for the shear that would introduce significant errors in the theory. Among the many new interesting
problems of mechanical engineering that can be effectively modeled in this way, we recall the simulation of
living tissues, like cilia, of wind-induced loads on eolic turbines, the analysis of micro piezoelectric actuators,
etc.[1,4,14,16,17,19,29,45,49,50,62].

The configuration manifold of a Kirchhoff -Love model is different from the one used in the Timoshenko
model, since the bending rotations are not independent and are obtained from the position field. Therefore,
the configuration space that in the former case is R

3 × SO(3) becomes R
3 × S1, so that the derivation of the

Hessian outlined in Simo’s paper cannot be directly applied and needs some adjustments.
In this work, we analyze in detail and obtain the tangent stiffness operator for the exact spatial Kirchhoff-

Love rod model presented in [30,31] that is characterized by intrinsically enforcing the Kirchhoff-Love con-
straints through a split of the rotation operator that defines the unit triad attached to the centroid curve.
Differently from standard approaches that adopts the Frenet triad, we consider a more general intrinsic triad
that in general is not torsion-free. In particular, we introduce a first rotation operator, indicated with � ∈ S2,
defined as a rotation from the reference to the current unit tangents (i.e., this first unit operator is a finite rotation
without drilling around the reference centroid axis). By means of the � operator, it is defined a service unit
triad that successively can be rotated, through the operator R ∈ S1, around the current unit tangent vector in
order to define the current unit triad. The rotation operator � is fully characterized by the displacement field.
In this way, the strain energy of the rod, in particular the bending energy term, depends on the second covari-
ant derivative of the centroid displacement, differently from what happens in shear deformable beams. The
required generalization is obtained on the basis of arguments generalizing or paralleling those presented for
instance in [5,18,20,27]. The tangent operator obtained in this way is fundamental for the iterative incremental
analysis; further, higher expansion of the potential is necessary for the study of the post-critical behavior, by
means of perturbation methods, as shown in the many contributes given by Luongo and coworkers, [38–42].
The method described in the paper can be usefully employed for these higher expansions.

2 Kinematics

In this section, a brief summary of the finite kinematics of a Kirchhoff-Love rod and of its tangent form is
given, which is described in detail in [30,31]. Following this approach, the rod is defined by its centroid curve
and by the directors lying in the plane orthogonal to the centroid line.

2.1 Reference configuration

The centroid line of the rod is mapped from an interval A by means of the position vector p0 : A ⊂ R → R
3.

The tangent to the reference position is

t̂0 := d p0

dS
, ‖ t̂0‖ = 1, (1)

where S is the arc length of the reference centroid curve. Let n̂0 : A → R
3 be a director orthogonal to t̂0, and

ν̂0 := t̂0 × n̂0, so that the intrinsic unit triad of the rod in the reference configuration is given by { t̂0, n̂0, ν̂0}.
The normal vector field n̂0(S) is chosen arbitrarily. In particular, the natural frame, defined as a torsion-free
frame, can be selected, or any other convenient choice is possible. In the paper, we refer to a generic reference
frame, with an initial twist.

The curvatures of the centerline are defined on the reference configuration as

χn0 = −d t̂0

dS
· ν̂0, χν0 = d t̂0

dS
· n̂0, χt0 = dn̂0

dS
· ν̂0 (2)

The position of the generic point of the rod is given by

∗
p0 = p0 + ϑn n̂0 + ϑν ν̂0, (3)

where ϑn and ϑν are the quota functions, independent of the arc length.



2.2 Current configuration

The position vector for the points of the centerline is p : A → R
3. Denoting by u : A → R

3 the displacement
field of the centroid curve, the position vector is given by

p := p0 + u (4)

and the tangent vector is

t := d p

dS
, t̂ := t

‖t‖ , ‖t‖ :=
√

t · t. (5)

The orientation of the current triad is obtained applying two subsequent rotations. The first rotation

�( t̂0, t̂)(S) brings the unit tangent vector { t̂0(S) on t̂(S)}; that is, it is a rotation without drilling around
the tangent to the reference centroid line. The axial vector of this rotation is t̂0 × t̂ , and Rodrigues formula
gives the representation:

�( t̂0, t̂) :=
(

t̂0 · t̂
)

I +
(

t̂0 × t̂
)

× I +
(

t̂0 × t̂
)

⊗
(

t̂0 × t̂
)

1 + t̂0 · t̂
. (6)

The rotation operator, �, defines an intermediate unit triad on the orthogonal plane to the current centroid
curve as

{ t̂, n̂
♭
, ν̂

♭} := {� t̂0, � n̂0,� ν̂0}, (7)

An additional rotation operator, R( t̂, φ)(S), is then applied, given by a rotation φ(S) of the intermediate
triad around the current tangent to the rod,

R( t̂, φ) := I + sin[φ]
(

t̂ × I
)

+ (1 − cos[φ])
(

t̂ ×
(

t̂ × I
))

. (8)

Notice that in this way, the Kirchhoff-Love constraints are automatically enforced. The spatial triad for
the Kirchhoff rod is then

{ t̂, n̂, ν̂} := { t̂, R n̂
♭
, R ν̂

♭} = {� t̂0, R � n̂0, R � ν̂0}. (9)

The curvatures of the spatial configuration are defined in a similar way to Eq. (2):

χt = dn̂

dS
· ν̂, χn = − dt

dS
· ν̂, χν = dt

dS
· n̂

b = t̂ × dt

dS
= χn n̂ + χν ν̂. (10)

The spatial position of a generic point of the rod is obtained as

∗
p = p + ϑn n̂ + ϑν ν̂. (11)

The configuration space of the Kirchhoff rod is then given by

M := {ϕ = ( p, �, R) : [0, L] → (R3 × S2) × S1}. (12)

Notice that the dimension of the manifold M is 4, since the position p and the rotation � can both be
expressed as functions of the displacement field u.



2.3 Tangent kinematics

In this section, we derive the variation field for the configuration of the rod. If pǫ is a 1-parameter admissible
family of positions of the centerline, such that pǫ=0 = p, the variation of the centerline position ũ : M → T pM

is defined as

ũ := d pǫ

dǫ

∣
∣
∣
∣
ǫ=0

. (13)

The variations of the rotations are defined in a similar way. Let Qǫ = Rǫ�ǫ be a curve of admissible

rotations for the rod, with �ǫ = �( t̂0, t̂ǫ) and Rǫ = R(φǫ, t̂ǫ), then the variations are given by

Q̃ := d Qǫ

dǫ

∣
∣
∣
∣
ǫ=0

= R̃� + R�̃, R̃ := dRǫ

dǫ

∣
∣
∣
∣
ǫ=0

, �̃ := d�ǫ

dǫ

∣
∣
∣
∣
ǫ=0

. (14)

whose spatial representation is given by (see [31] for details)

Q̃ QT = R�̃�T RT + R̃RT ,

=
(
˜̂t ⊗ t̂ − t̂ ⊗ ˜̂t

)

+ φ̃ t̂ × I, (15)

with

φ̃ := dφǫ

dǫ

∣
∣
∣
∣
ǫ=0

,
˜̂t := d t̂ǫ

dǫ

∣
∣
∣
∣
∣
ǫ=0

. (16)

The axial vector of the rotation (15) is the spin:

ω̃ = φ̃ t̂ + ω̃b, ω̃b = ω̃n n̂ + ω̃ν ν̂. (17)

The bending rotation ω̃b, accounting for the Kirchhoff constraints, is given by the following:

ω̃n = − 1

‖t‖
dũ

dS
· ν̂, ω̃ν = 1

‖t‖
dũ

dS
· n̂. (18)

The tangent space to a configuration ϕ is then

TϕM := {ϕ̃ := (ũ, ω̃b, φ̃) : [0, L] → (R3 × SO(2)) × SO(1)}. (19)

3 Equilibrium operator

Assuming a linear elastic constitutive behavior (as it is done in [30,54]) and approximating the transport
operator for the stresses along the normal directors with the identity, the elastic potential energy of the rod
takes the form

ψint(ϕ) = 1

2

L∫

0

(

E A ε2(ϕ) + E In �χ2
n (ϕ) + E Iν�χ2

ν (ϕ) + G Jt �χ2
t (ϕ)

)

dS, (20)

where the finite strain measures are respectively

ε(ϕ) := t · t − 1

2
, �χt (ϕ) := dn̂

dS
· ν̂ − dn̂0

dS
· ν̂0

�χn(ϕ) := dν̂

dS
· t − dν̂0

dS
· t̂0, �χν(ϕ) := −

(
dn̂

dS
· t − dn̂0

dS
· t̂0

)

. (21)

A conservative potential ψext is assumed for the external loads.



3.1 Weak formulation

The first Gateaux derivative of the total potential energy ψint + ψext gives the weak formulation of the
equilibrium equations. In the following, in order to simplify the notation, the symbol indicating the directional
Gateaux derivative is substituted with

∂(•) = d(•)

dǫ

∣
∣
∣
∣
ǫ=0

(22)

The internal virtual power is then

∂ϕψint(ϕ) =
L∫

0

(N (ϕ)ε̃(ϕ) + Mn(ϕ)χ̃n(ϕ) + Mν(ϕ)χ̃ν(ϕ) + Mt (ϕ)χ̃t (ϕ)) dS (23)

where the constitutive relations and the variations of the strain measures are

N (ϕ) = E Aε(ϕ), ε̃(ϕ) := dε(ϕǫ)

dǫ

∣
∣
∣
∣
ǫ=0

= dũ

dS
· t

Mn(ϕ) = E In�χn(ϕ), χ̃n(ϕ) := dχn(ϕǫ)

dǫ

∣
∣
∣
∣
ǫ=0

=
(

−d2ũ

dS2
+ φ̃ b

)

· ν̂

Mν(ϕ) = E Iν�χν(ϕ), χ̃ν(ϕ) := dχν(ϕǫ)

dǫ

∣
∣
∣
∣
ǫ=0

=
(

d2ũ

dS2
− φ̃ b

)

· n̂

Mt (ϕ) = G Jt�χt (ϕ), χ̃t (ϕ) := dχt (ϕǫ)

dǫ

∣
∣
∣
∣
ǫ=0

= dφ̃

dS
+ 1

‖t‖2
b · dũ

dS
(24)

in which the second covariant line gradient is defined as

d2ũ

dS2
= ‖t‖ d

dS

(
1

‖t‖
dũ

dS

)

,

= d

dS

(
dũ

dS

)

−
(

1

‖t‖
d‖t‖
dS

)
dũ

dS
. (25)

The variation of the strain measures can be cast in the equivalent form:

⎛

⎝

ε̃

t̂ × χ̃

χ̃t

⎞

⎠ =

⎛

⎜
⎝

t · d

dS
0

−(I − t̂ ⊗ t̂) d2

dS2 b
b

‖t‖2 · d

dS

d

dS

⎞

⎟
⎠

(

ũ

φ̃

)

(26)

Notice that the Gateaux derivative that we have performed coincides with the covariant derivative, since
ψint is a scalar.

3.2 Strong formulation

Applying the Green-Gauss-Ostrogradsky’s formula to the internal power, we obtain the first directional deriva-
tive of the strain energy potential ψ along the generic tangent direction ϕ̃ ∈ TϕM, whose stationarity conditions
yield the equilibrium equations of the rod:

{

∂ũψ, ∂
φ̃
ψ

}
(

ũ

φ̃

)

= {0, 0}, ∀ũ, ∀φ̃. (27)



The strong form of the equations is as follows:

∂ũ(ψ) =
L∫

0

{

− d

dS

[

N t + 1

‖t‖

(
d

dS

(

‖t‖ t̂ × M
)

+ Mt

b

‖t‖

)]

− f

}

dS

∂
φ̃
(ψ) =

L∫

0

{

−d Mt

dS
+ t̂ × M · b − mt

}

dS. (28)

with the boundary conditions

Neff(L) = ft (L), or u̇t (L) = 0,

−Neff(0) = ft (0), or u̇t (0) = 0,

Tn(L) = fn(L), or u̇n(L) = 0, (29)

−Tn(0) = fn(0), or u̇n(0) = 0,

Tν(L) = fν(L), or u̇ν(L) = 0,

−Tν(0) = fν(0), or u̇ν(0) = 0,

where ft = t̂ · f , fn = n̂ · f , and fν = ν̂ · f , the effective axial stress resultant for the rod Neff and the two
shear components are given by

Neff := ‖t‖N + Mn

χn

‖t‖ + Mν

χν

‖t‖ , (30)

−Tn := 1

‖t‖
d

dS
(‖t‖Mν) + Mnχt − Mt

‖t‖2
χn,

Tν := 1

‖t‖
d

dS
(‖t‖Mn) − Mνχt + Mt

‖t‖2
χν, (31)

and

Mt (L) = mt (L), or φ̇(L) = 0,

−Mt (0) = mt (0), or φ̇(0) = 0,

‖t‖Mn(L) = mn(L), or ω̇n(L) = 0, (32)

−‖t‖Mn(0) = mn(0), or ω̇n(0) = 0,

‖t‖Mν(L) = mν(L), or ω̇ν(L) = 0,

−‖t‖Mν(0) = mν(0), or ω̇ν(0) = 0.

4 Tangent equilibrium operator

As illustrated in [58], the tangent stiffness operator is defined as the second (covariant) gradient (the Hessian)
of the internal energy on the tangent space to the generic configuration of the rod. In general, it is not easy
to define a parallel transport operator on the state space, but if it is introduced a Riemmanian’s metric by
means of the Kozsul formula, it is possible to define the Levi-Civita connection for the configuration space
induced by the assumed metric. We stress that the Gateaux derivatives does not represent the components of
the (covariant) gradient in the tangent space of the structural model, i.e., the Gateaux derivative is not a tensor
and plays the role of the partial derivative in the Riemann’s geometry.

4.1 Second Gateaux derivative: loss of symmetry

In order to show the noncommutative nature of the second Gateaux derivative, in this section we derive the
second Gateaux derivatives of the vectors of the intrinsic triad, which turn out to be nonsymmetric. As it will
be evident from the results obtained, the cause of the nonsymmetry stands in the noncommutativity of the �

rotation operator. This observation will be of great importance in the subsequent developments.



Let ϕ̄ and ϕ̇ be any two elements of TϕM. Then, the second Gateaux derivatives of the cross section
directors are given by

∂ϕ̄∂ϕ̇ t̂(ϕ) = ∂ϕ̇∂ϕ̄ t̂(ϕ),

∂ϕ̄∂ϕ̇ n̂(ϕ) 	= ∂ϕ̇∂ϕ̄ n̂(ϕ), (33)

∂ϕ̄∂ϕ̇ ν̂(ϕ) 	= ∂ϕ̇∂ϕ̄ ν̂(ϕ),

where, clearly, symmetry holds only on for the second directional derivative of the unit tangent vector. In
particular, the second Gateaux derivative of the unit vector n̂ splits in

∂ϕ̄∂ϕ̇ n̂(ϕ) =
(

∂ū∂u̇ + ∂ū∂φ̇ + ∂φ̄∂u̇ + ∂φ̄∂φ̇

)

n̂(ϕ) (34)

where the first addend is given by

∂ū∂u̇(n̂(ϕ)) =
[

dū

dS
·
(

t̂ ⊗ n̂

‖t‖2
+ n̂ ⊗ t̂

‖t‖2

)

· du̇

dS

]

t̂ +

−
(

dū

dS
· n̂ ⊗ n̂

‖t‖2
· du̇

dS

)

n̂ +

−
(

dū

dS
· ν̂ ⊗ n̂

‖t‖2
· du̇

dS

)

ν̂. (35)

From the Eq. (35), it appears that the components along the vector t̂ and n̂ are symmetric, while the component
along ν̂ is nonsymmetric. The remaining terms of the right-hand side of the Eq. (35) are given by

∂ū∂φ̇(n̂(ϕ)) = − φ̇

‖t‖

(
dū

dS
· ν̂

)

t̂,

∂φ̄∂u̇(n̂(ϕ)) = − φ̄

‖t‖

(
du̇

dS
· ν̂

)

t̂, (36)

∂φ̄∂φ̇(n̂(ϕ)) = −φ̄φ̇ n̂,

and are symmetric.
The second Gateaux derivative of the unit vector ν̂ splits in

∂ϕ̄∂ϕ̇ ν̂(ϕ) =
(

∂ū∂u̇ + ∂ū∂φ̇ + ∂φ̄∂u̇ + ∂φ̄∂φ̇

)

ν̂(ϕ) (37)

where the first term is given by

∂ū∂u̇(ν̂(ϕ)) =
[

dū

dS
·
(

t̂ ⊗ ν̂

‖t‖2
+ ν̂ ⊗ t̂

‖t‖2

)

· du̇

dS

]

t̂ +

−
(

dū

dS
· n̂ ⊗ ν̂

‖t‖2
· du̇

dS

)

n̂ +

−
(

dū

dS
· ν̂ ⊗ ν̂

‖t‖2
· du̇

dS

)

ν̂. (38)

From the Eq. (38), it appears that the components along t̂ and ν̂ are symmetric, while the component along
n̂ is nonsymmetric. The remaining terms of the right-hand side of the Eq. (38) are given by

∂ū∂φ̇(ν̂(ϕ)) = φ̇

‖t‖

(
dū

dS
· n̂

)

t̂,

∂φ̄∂u̇(ν̂(ϕ)) = φ̄

‖t‖

(
du̇

dS
· n̂

)

t̂,

∂φ̄∂φ̇(ν̂(ϕ)) = −φ̄φ̇ ν̂, (39)

and are symmetric.



In the following sections, we define the connection for the tangent space to the configuration space of the
structural model considered, i.e., we define the connection for the Kirchhoff rod model; in particular, we adopt
the unique torsion-free connection compatible with the assumed metric.

4.2 The Koszul formula: the Levi-Civita connection

Let {M, Gϕ} be a Riemannian manifold, equipped with the metric Gϕ : TϕM × TϕM → R. The fundamental
theorem of Riemannian geometry states that there is a unique connection, ∇, (the Levi-Civita connection),

which preserves the metric tensor, that is, such that for ϕ̇, ϕ̄, ¯̄ϕ ∈ TϕM,

∇ϕ̄Gϕ(ϕ̇, ¯̄ϕ) = Gϕ(∇ϕ̄ϕ̇, ¯̄ϕ) + Gϕ(ϕ̇, ∇ϕ̄
¯̄ϕ), ∀ϕ̇, ϕ̄, ¯̄ϕ, ∈ TϕM, (40)

and that is torsion-free, i.e., for all differentiable f : M → R

[ϕ̄, ϕ̇] f = ∇ϕ̄ϕ̇ f − ∇ϕ̇ϕ̄ f, ∀ϕ̇, ϕ̄, ∈ TϕM. (41)

The unique Levi-Civita connection can be obtained by the Koszul formula, i.e., ∀ ϕ̇, ¯̄ϕ, ϕ̄ ∈ TϕM

2 Gϕ(∇ϕ̄ϕ̇, ¯̄ϕ) = ∂ϕ̄Gϕ(ϕ̇, ¯̄ϕ) + ∂ϕ̇Gϕ(ϕ̄, ¯̄ϕ) − ∂ ¯̄ϕ
Gϕ(ϕ̇, ϕ̄) +

+Gϕ([ϕ̄, ϕ̇], ¯̄ϕ) − Gϕ([ϕ̇, ¯̄ϕ], ϕ̄) − Gϕ([ϕ̄, ¯̄ϕ], ϕ̇). (42)

Now, we particularize the previous formulae to the Kirchhoff rod model presented. We adopt the following
metric:

Gϕ(ϕ̄, ϕ̇) :=
L∫

0

(

ū · u̇ + ω̄(ū) · ω̇(u̇) + φ̄ φ̇
)

dS. (43)

The choice is motivated by the fact that any variation of the position of the centroid line implies a rotation
of the directors.

Observing that the metric defined by the definition (43) does not depend explicitly on the configuration of
the manifold ϕ, the first three terms on the right-hand side of the Koszul formula trivially vanish so that only
the second line of Eq. (42) remains. It can be explicitly evaluated using the expression for the Lie parenthesis.

The Lie parenthesis is obtained evaluating the commutator for two independent elements of TϕM. Recall
that to the variation ũ is associated a translation and a rotation of the directors represented by a skew-symmetric
matrix (an infinitesimal rotation superposed to �). The translation commutes with any translation and rotation,
so that, indicating by � the skew-symmetric matrix associated with any rotation vector ωb and with � the
skew-symmetric matrix associated with any rotation φ t̂ the commutator reduces to the following:

[ϕ̄, ϕ̇] = axial
[

�̄�̇ + �̄�̇ − �̇�̄ − �̄�̇
]

= ω̄b × ω̇b. (44)

Using this result in Koszul’s formula (42), and observing that the second and third terms of the second line of
the expression vanish for the properties of the triple product, we have

2 Gϕ(∇ϕ̄ϕ̇, ¯̄ϕ) = [ω̄b, ω̇b] · ¯̄ωb = ω̄b × ω̇b · ¯̄ωb. (45)

Therefore, the only non-null structure coefficient is

∇ω̄b
ω̇b := 1

2
[ω̄b, ω̇b] = 1

2

(

ω̄b × ω̇b

)

=
(

ω̄nω̇ν − ω̄νω̇n

2

)

t̂. (46)



Fig. 1 Graphical interpretation of the nonvanishing connection symbol, corresponding to a rotation around the current unit tangent

vector t̂ (a torsional rotation)

Substituting the relations ω̇ν = 1
‖t‖

(
du̇

dS
· n̂

)

and ω̇n = − 1
‖t‖

(
du̇

dS
· ν̂

)

, that hold for the Kirchhoff assump-

tions, the connection coefficient (46) takes the form:

t̂ · ∇ω̄b
ω̇b = 1

2

[(
1

‖t‖
dū

dS
· n̂

)(
1

‖t‖
du̇

dS
· ν̂

)

−
(

1

‖t‖
du̇

dS
· n̂

)(
1

‖t‖
dū

dS
· ν̂

)]

,

= 1

2

[
dū

dS
· n̂ ⊗ ν̂

‖t‖2
· du̇

dS
− du̇

dS
· n̂ ⊗ ν̂

‖t‖2
· dū

dS

]

. (47)

Applying the vector (46) to the unit triad { t̂, n̂, ν̂}, we get the skew-symmetric part of the second variation
of the unit triad that, as evidenced by Eqs. (35),(38), is associated with the bending rotations only. This fact
is graphically represented in Fig. 1 that shows two subsequent bending rotations around two orthogonal axes
occurring in reversed order a → b → c and a → d → c. The red arrow denotes the tangent to the rod
axis, and the blue or green arrow denotes the normal vector. The final configurations differ only by a torsional
rotation.

4.3 Second covariant gradient: the Hessian

We are now in position for evaluating the second covariant gradient of the internal energy potential ψint(ϕ).
Differentiating the first gradient of ψint, given by

∇(ψ) = ∂ϕ̇(ψ(ϕ)) ⊗ ϕ̇♮ (48)

we have the following:

∇2(ψ) = ∂ϕ̄∂ϕ̇(ψ(ϕ)) ⊗ ϕ̇♮ ⊗ ϕ̄♮ + ∂ϕ̇(ψ(ϕ)) ⊗ ∇ϕ̄ϕ̇♮ ⊗ ϕ̄♮, (49)

where the apex ♮ indicates the contravariant basis. With simple algebra, we get:

∇2(ψ) = [∂ϕ̄∂ϕ̇(ψ(ϕ)) − ∂ϕ̇(ψ(ϕ))(∇ϕ̄ϕ̇ · ϕ̇♮
)] ⊗ ϕ̇♮ ⊗ ϕ̄♮

= [∂ϕ̄∂ϕ̇(ψ(ϕ)) − ∂∇ϕ̄ ϕ̇(ψ(ϕ))] ⊗ ϕ̇♮ ⊗ ϕ̄♮. (50)



The first term in Eq. (50) is the second directional Gateaux derivative of the energy functional. It splits
in the sum of two parts, the first known as the tangent material-stiffness, KM symmetric for an associated
material model, and the second known as the tangent geometric-stiffness, G that turns out to be nonsymmetric,
if the tangent map is noncommutative. In [58], Simo demonstrated that splitting the geometric stiffness into
its symmetric and skew-symmetric parts, the latter is equal to the opposite of the second term of the result
(50), restoring the symmetry of the second covariant derivative. He proved this property for a Timoshenko rod,
using the SO(3) group for the rotations. In this work, we prove that the same conclusion is also true for the
configuration space introduced in (12), valid for a Kirchhoff -Love rod, with the metric (43).

With an obvious meaning of the symbols, the tangent stiffness operator, from expression (50), is written as

Ktan[ϕ̄, ϕ̇](ψ(ϕ)) = KM [ϕ̄, ϕ̇](ψ(ϕ)) + sym
[

G[ϕ̄, ϕ̇](ψ(ϕ))
]

+ skew[G[ϕ̄, ϕ̇](ψ(ϕ))]
︸ ︷︷ ︸

∂ϕ̄∂ϕ̇ψ(ϕ)

− ∂∇ϕ̄ ϕ̇(ψ(ϕ)).

(51)

Having obtained the coefficients of structure, we are able to evaluate the last term in (51). From the property
that the connection is torsion-free, it will be found that skew[G[ϕ̄, ϕ̇](ψ(ϕ))] − ∂∇ϕ̄ ϕ̇(ψ(ϕ)) = 0, so that the

tangent stiffness operator reduces to

Ktan[ϕ̄, ϕ̇](ψ(ϕ)) = KM [ϕ̄, ϕ̇](ψ(ϕ)) + sym
[

G[ϕ̄, ϕ̇](ψ(ϕ))
]

. (52)

4.4 Material tangent stiffness: KM

The material tangent stiffness can be evaluated as

M[ϕ̄, ϕ̇](ψ(ϕ)) =
L∫

0

E A(∂ϕ̄ε(ϕ))(∂ϕ̇ε(ϕ)) dS +
L∫

0

E In(∂ϕ̄χn(ϕ))(∂ϕ̇χn(ϕ)) dS +

+
L∫

0

E Iν(∂ϕ̄χν(ϕ))(∂ϕ̇χν(ϕ)) dS +
L∫

0

G Jt (∂ϕ̄χt (ϕ))(∂ϕ̇χt (ϕ)) dS. (53)

Using the results (24) for the variations of the strain measures, we have the following:
material axial stiffness

K
ax
M [ϕ̄, ϕ̇](ψ(ϕ)) =

L∫

0

E A

(
dū

dS
· t ⊗ t · du̇

dS

)

dS (54)

material bending stiffnesses

K
ν
M [ϕ̄, ϕ̇](ψ(ϕ)) =

L∫

0

E Iν

[(
d2ū

dS2
− φ̄ b

)

· n̂ ⊗ n̂ ·
(

d2u̇

dS2
− φ̇ b

)]

dS, (55)

and

K
n
M [ϕ̄, ϕ̇](ψ(ϕ)) =

L∫

0

E In

[(

−d2ū

dS2
+ φ̄ b

)

· ν̂ ⊗ ν̂ ·
(

−d2u̇

dS2
+ φ̇ b

)]

dS. (56)

material torsion stiffness

K
t
M [ϕ̄, ϕ̇](ψ(ϕ)) =

L∫

0

G Jt

(
dφ̄

dS
+ 1

‖t‖2

dū

dS
· b

)(
dφ̇

dS
+ 1

‖t‖2

du̇

dS
· b

)

dS. (57)

In the definitions (54), (55), (56), and (57), the vectors t , n, ν, and b are referred to the current configuration
ϕ.



4.5 Geometric tangent stiffness: G

The formal expression of the geometric tangent stiffness is

G[ϕ̄, ϕ̇](ψ(ϕ)) =
L∫

0

E Aε(ϕ)(∂ϕ̄∂ϕ̇ε(ϕ)) dS +
L∫

0

E Inχn(ϕ)(∂ϕ̄∂ϕ̇χn(ϕ)) dS +

+
L∫

0

E Iνχν(ϕ)(∂ϕ̄∂ϕ̇χν(ϕ)) dS +
L∫

0

G Jtχt (ϕ)(∂ϕ̄∂ϕ̇χt (ϕ)) dS. (58)

Preliminarily, we explicitly calculate the second Gateaux directional derivative of the strain measures
that appear in the formula (58), starting from the first variations stated in Eq. (24) that are recalled here for
convenience in a slightly more elaborate form, for an arbitrary element {u̇, φ̇} ∈ TϕM:

∂ϕ̇ε(ϕ) = du̇

dS
· t, (59)

−∂ϕ̇χν(ϕ) =
[

−d2u̇

dS2
+ φ̇

(

t̂ × dt

dS

)]

· n̂

=
[

− d

dS

(
du̇

dS

)

+ 1

‖t‖
d‖t‖
dS

du̇

dS
+ φ̇

(

t̂ × dt

dS

)]

· n̂, (60)

∂ϕ̇χn(ϕ) =
[

−d2u̇

dS2
+ φ̇

(

t̂ × dt

dS

)]

· ν̂

=
[

− d

dS

(
du̇

dS

)

+ 1

‖t‖
d‖t‖
dS

du̇

dS
+ φ̇

(

t̂ × dt

dS

)]

· ν̂, (61)

∂ϕ̇χt (ϕ) = dφ̇

dS
+ 1

‖t‖
du̇

dS
·
(

t̂ × d t̂

dS

)

. (62)

4.5.1 Second Gateaux derivative of ε

The second derivative of the axial strain-rate measures is given by

∂ϕ̄∂ϕ̇ε(ϕ) = du̇

dS
· dū

dS
, (63)

and this is trivially symmetric.

4.5.2 Second Gateaux derivative of χν

The calculation of the second Gateaux derivative of χν ((60)) splits in two parts,

∂ϕ̄∂ϕ̇χν(ϕ) = ∂ū∂ϕ̇χν(ϕ) + ∂φ̄∂ϕ̇χν(ϕ) (64)

where the first defines the action of the variation ū only, while the second defines the action of the variation of
the rotation φ̄ on the strain-rate measure (60) along the generic tangent direction ϕ̄ ∈ TϕM. In particular, one
has the following:

∂ū∂ϕ̇χν(ϕ) = −d2u̇

dS2
· t̂ ⊗ n̂

‖t‖ · dū

dS
− du̇

dS
· n̂ ⊗ t̂

‖t‖ · d2ū

dS2
+

+
(

dn̂

dS
· t̂

)
dū

dS
· n̂ ⊗ n̂

‖t‖ · du̇

dS
+

(
dν̂

dS
· t̂

)
dū

dS
· ν̂ ⊗ n̂

‖t‖ · du̇

dS
, (65)



and

∂φ̄∂ϕ̇χν(ϕ) = φ̄

(

ν̂ · d2u̇

dS2

)

+ φ̇

(

ν̂ · d2ū

dS2

)

+ φ̇φ̄

(
dn̂

dS
· t

)

. (66)

Expression (65) is not symmetric, while the second term, given by (66), is symmetric in its arguments. The
result (65) is split in its symmetric and in its skew-symmetric parts:

∂ū∂ϕ̇χν(ϕ) = sym
{

∂ū∂ϕ̇χν(ϕ)
}

+ skew
{

∂ū∂ϕ̇χν(ϕ)
}

(67)

where the symmetric part is given by the sum of the first three terms in the right-hand side of Eq. (65), while
the skew-symmetric part is defined by

skew
{

∂ū∂ϕ̇χν(ϕ)
}

=
(

dν̂

dS
· t

)
1

2

[
dū

dS
· ν̂ ⊗ n̂

‖t‖2
· du̇

dS
− du̇

dS
· ν̂ ⊗ n̂

‖t‖2
· dū

dS
+
]

= −
(

dν̂

dS
· t

)

t̂ · ∇ω̄ω̇. (68)

4.5.3 Second Gateaux derivative of χn

The second derivative of χn is evaluated in a manner analogous to the previous case:

∂ϕ̄∂ϕ̇χn(ϕ) = ∂ū∂ϕ̇χn(ϕ) + ∂φ̄∂ϕ̇χn(ϕ). (69)

The two terms are respectively given by

∂ū∂ϕ̇χn(ϕ) = d2u̇

dS2
· t̂ ⊗ ν̂

‖t‖ · dū

dS
+ du̇

dS
· ν̂ ⊗ t̂

‖t‖ · d2ū

dS2
+

−
(

dν̂

dS
· t̂

)
dū

dS
· ν̂ ⊗ ν̂

‖t‖ · du̇

dS
−

(
dn̂

dS
· t̂

)
dū

dS
· n̂ ⊗ ν̂

‖t‖
du̇

dS
, (70)

and

∂φ̄∂ϕ̇χn(ϕ) = φ̄

(
d2u̇

dS2
· n̂

)

+ φ̇

(
d2ū

dS2
· n̂

)

− φ̇φ̄

(
dν̂

dS
· t

)

. (71)

As in the previous case, the second term (71) is symmetric in its arguments, while the first, given by (70),
is not symmetric and is split in its symmetric and in its skew-symmetric parts as follows:

∂ū∂ϕ̇χn(ϕ) = sym
{

∂ū∂ϕ̇χn(ϕ)
}

+ skew
{

∂ū∂ϕ̇χn(ϕ)
}

, (72)

where the symmetric part is given by the sum of the first three terms of the result (70), while the skew-symmetric
part is

skew
{

∂ū∂ϕ̇χn(ϕ)
}

=
(

dn̂

dS
· t

)
1

2

[

−dū

dS
· n̂ ⊗ ν̂

‖t‖2
· du̇

dS
+ du̇

dS
· n̂ ⊗ ν̂

‖t‖2
· dū

dS

]

= −
(

dn̂

dS
· t

)

t̂ · ∇ω̄ω̇. (73)



4.5.4 Second Gateaux derivative of χt

Starting from (62), the second directional derivative of the torsion curvature is

∂ϕ̄∂ϕ̇χt (ϕ) = ∂ū∂ϕ̇χt (ϕ), ∂φ̄∂ϕ̇χt (ϕ) = 0. (74)

where

∂ū∂ϕ̇χt (ϕ) = − 1

‖t‖2

(

d t̂

dS
· n̂

)
{(

dū

dS
· t̂

)(
du̇

dS
· ν̂

)

+
(

du̇

dS
· t̂

)(
dū

dS
· ν̂

)}

+

+ 1

‖t‖2

(

d t̂

dS
· ν̂

)
{(

dū

dS
· t̂

)(
du̇

dS
· n̂

)

+
(

du̇

dS
· t̂

)(
dū

dS
· n̂

)}

+

+ 1

‖t‖2

{(
du̇

dS
· ν̂

)(
d2ū

dS2
· n̂

)

+
(

du̇

dS
· ν̂

)(
dū

dS
· t̂

)(
dn̂

dS
· t̂

)}

+

− 1

‖t‖2

{(
d2ū

dS2
· ν̂

)(
du̇

dS
· n̂

)

+
(

du̇

dS
· n̂

)(
dū

dS
· t̂

)(
dν̂

dS
· t̂

)}

. (75)

Also, in this case, the first two terms of the Eq. (75) are symmetric in the their arguments, while the last
two terms are not symmetric and are split in the symmetric and in the skew-symmetric parts, given by

∂ū∂ϕ̇χt (ϕ) = sym
{

∂ū∂ϕ̇χt (ϕ)
}

+ skew
{

∂ū∂ϕ̇χt (ϕ)
}

(76)

where the first is the sum of the first two terms in the right-hand side of the Eq. (75), while the skew-symmetric
part, after some calculation, reduces to

skew
{

∂ū∂ϕ̇χt (ϕ)
}

= t̂ · d

dS

(

∇ω̄ω̇
)

. (77)

5 The tangent stiffness operator for the Kirchhoff rod model

Collecting the results obtained, the geometric tangent operator defined by Eq. (58) can be expressed as

G[ϕ̄, ϕ̇](ψ(ϕ)) =
L∫

0

N (ϕ)∂ϕ̄∂ϕ̇ε(ϕ) dS +

+
L∫

0

Mn(ϕ)
(

sym{∂ϕ̄∂ϕ̇χn(ϕ)} + skew{∂ϕ̄∂ϕ̇χn(ϕ)}
)

dS +

+
L∫

0

Mν(ϕ)
(

sym{∂ϕ̄∂ϕ̇χν(ϕ)} + skew{∂ϕ̄∂ϕ̇χν(ϕ)}
)

dS +

+
L∫

0

Mt (ϕ)
(

sym{∂ϕ̄∂ϕ̇χt (ϕ)} + skew{∂ϕ̄∂ϕ̇χt (ϕ)}
)

dS, (78)

The explicit form of the skew-symmetric parts is

L∫

0

(

Mt t̂ · d

dS

(

∇ω̄ω̇
)

+ t̂ × M · b ( t̂ · ∇ω̄ω̇)

)

dS. (79)



Integrating by part, one has

skew
{

G[ϕ̄, ϕ̇](ϕ)
}

=
L∫

0

[

−d Mt

dS
+ t̂ × M · b

]

( t̂ · ∇ω̄ω̇) dS. (80)

The equation in the bracket is the equilibrium equation dual to the torsional velocity of rotation given in
Eq. (28).

In order to obtain the tangent stiffness, we still have to add the last term in Eq. (51) that represents the
variation of the energy functional in the direction of the coefficients of structure. Since the only non-null

connection symbol is given by the expression (47) that has only component along the t̂ direction, then the term
−∂∂ϕ̄ ϕ̇(ψ) reduces to

− ∂∇ϕ̄ ϕ̇(ψ) = −
L∫

0

[

−dMt

dS
+ t̂ × M · b

]

( t̂ · ∇ω̄ω̇) dS. (81)

This term cancels out with (80), and then, the symmetry of the covariant Hessian is recovered.

6 Conclusions and developments

The consistent tangent stiffness operator for a Kirchhoff -Love rod model has been obtained performing the
second covariant gradient of the elastic potential energy, assuming elastic behavior for the cross section. This
has been done explicitly evaluating the Levi-Civita connection for the tangent space of the configurations,
introducing a suitable metric that accounts for the rotations of the directors. The rotation operator for the
Kirchhoff -Love rod has been split in two parts that induce a corresponding split in the rotation on the tangent
space of the configurations. The only one coefficient of the defined connection different from zero in the case
of Kirchhoff -Love rods is a torsional rotation, defined as the derivative of the bending rotation in the direction
of the bending rotation.

The tangent operator evaluated in this way is symmetric for any pairs of admissible variations of the
configuration of the rod. The result is essential for developing consistent numerical schemes for the nonlinear
analysis of rods, where the consistent symmetric tangent operator is necessary in order to guarantee quadratic
rate of convergence, and for buckling analysis.

The strong as well as the weak forms of the equilibrium equations have also been obtained, together with
the boundary conditions that define the admissible boundary loads for the nonlinear Kirchhoff -Love beam
model. The tangent kinematics has been stated, from which it is possible to obtain the discrete deformation
operator in a numerical finite element model.

The results obtained in this paper will be the basis for developing an efficient numerical model for the
nonlinear analysis of curved space rods, using the isogeometric interpolation proposed in [30,31]. The efficiency
of the method, already examined for the linear case, will be tested when large deformations are attained, causing
degradation of the properties of the tangent stiffness matrix. An interesting problem that will be investigated
is the applicability of the method presented to the case of nonconservative forces and to the related buckling
analysis of systems of rods with perturbation methods, as done in [43,44,46,48], where the stability of a
cantilever elastic beam under the action of a follower tangential force and a bending conservative couple at
the free end was analyzed. Similar issues arise in the analysis of deformable curved beams under the action of
wind loads.
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