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ABSTRACT

In order to display images of high dynamic range (HDR),

tone reproduction operators are usually applied that reduce

the dynamic range to that of the display device. Gener-

ally, parameters need to be adjusted for each new image to

achieve good results. Consistent tone reproduction across

different images is therefore difficult to achieve, which

is especially true for global operators and to some lesser

extent also for local operators. We propose an efficient

global tone reproduction method that achieves robust re-

sults across a large variety of HDR images without the need

to adjust parameters. Consistency and efficiency make our

method highly suitable for automated dynamic range com-

pression, which for instance is necessary when a large num-

ber of HDR images need to be converted.
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1 Introduction

The dynamic range (ratio of maximum to minimum lumi-

nance; usually denoted in a base-10 logarithm) of imag-

ing devices, real-world, or artificial luminance shows large

variation. High dynamic range (HDR) imaging has been in-

troduced to record real-world radiance values, which can be

much higher range than that of ordinary imaging devices.

Radiance maps are usually generated by capturing several

exposures [1–5] and can have a dynamic range of about

nine to ten orders of magnitude. Photographic HDR images

or artificial radiance maps cannot be displayed properly on

low dynamic range (LDR) output devices (with about two

orders of magnitude) due to the huge difference in dynamic

range. Consequently, the dynamic range of the HDR scene

needs to be mapped into the range of an output device,

which is called tone reproduction or tone mapping.

Over the years, many different tone reproduction op-

erators have been developed. The majority of research has

focused on improving local operators, pursuing less arti-

facts and more efficient computation times [6–18]. Global

operators have received less attention [19–22] since high

contrast appearance is difficult to achieve, but on the plus

side they do not suffer from halo-artifacts like many local

operators and are much more efficient.

Relatively little work has been done to achieve consis-

tent tone mapping results across a variety of image without

the need to tweak parameters. Consistent tone-mapping is

necessary for applications that cannot afford manual inter-

vention and require many images to be tone-mapped, e.g.,

thumbnail creation for HDR images. The only work in this

area [23] estimates parameters for Reinhard et al.’s tone

mapper [14] and then applies the tone-mapper with those

parameters. The method achieves good results, but cannot

take user-preferences into account, such as a preference for

higher contrast at the cost of detail.

We propose a new global tone mapping operator,

which is efficient and achieves consistent results across dif-

ferent input HDR images. The user has two parameters

at their disposal to indicate overall preferences (contrast

vs. detail and light vs. dark). These parameters can be set

once by the user (or left at their default values), and then

achieve consistent results across different HDR inputs. Our

luminance compression is also based on a sigmoidal func-

tion, like other methods before [11,14,22], yet we use it in

such a way that inter-image consistency can be achieved.

1.1 Related Work

Tumblin and Rushmeier [19, 24] were the first to address

the research question of how to render computer-generated

HDR images. Their approach is to manipulate the tone-

reproduction curves of HDR images. Ward et al. [20] sug-

gested a global adaptation approach, which is based on his-

togram equalization. Drago et al. [21] introduced a global

tone-mapping model which is based on logarithmic com-

pression following the hypothesis by Fechner [25]. They

manipulate the base of logarithm to adjust the contrast of

images. Reinhard and Devlin [22] introduced a global

method to mimic the physiological response of photorecep-

tors.

Chiu et al. [26] introduced the pioneering concept of

local adaptation for HDR tone-mapping. Schlick’s [6] local

adaptation method was the first to take color into account

in HDR tone-mapping. He concentrated on preserving the

ratio of color primaries. Tumblin and Turk [10] introduced

the concept of diffusion imaging, which includes gradient

mapping using a partial differential equation (PDE) solver.

Fattal et al. [13] extended their research and improved ef-

ficiency. Durand and Dorsey [15] proposed an algorithm



O
ut

pu
t 

L
og

 L
um

in
an

ce

D
y
n
am

ic
 r

an
g
e 

o
f

D
is

p
la

y
 L

u
m

in
an

ce

0

25

50

75

100

125

150

175

200

225

250

275

Input HDR Luminance

O
u

tp
u

t 
D

is
p

la
y

 L
u

m
in

an
ce

 (
th

ro
u

g
h

 D
is

p
la

y
 S

ig
n

al
s)

 
 

00 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Input Log Luminance of Real-World

O
u

tp
u

t 
L

o
g

 L
u

m
in

an
ce

 

 

Scale down
in log−log domain

D
y
n
a
m

ic
 r

a
n
g

e
 o

f
H

D
R

 l
u
m

in
a
n
c
e

Averaged

Log Luminance

5.55.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Input Log Luminance

O
ut

pu
t 

L
og

 L
um

in
an

ce

00.511.522.533.544.55

0.

0

5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Input Log Luminance
5.5

Maximum Display Level

1st quadrant :

No Scaling
2nd quadrant :

Linear Scaling

3rd quadrant :

Non-linear Scaling

4th quadrant :

Final Transform

(a) Original Luminance

(b) Lumiance scaled by app. 0.43

(g) Without Tone-mapping

(f) System Transfer Function

     including statistical rescaling

(d) Linearly Scaled Luminance

(e) Non-linear Dynamic-scaled Luminance

(c) Linearly Scaled
Luminance to Display

0 25 50 75 100 125 150 175 200 225 250 275 300

Figure 1. Jones quadrant diagram explaining our transform of dynamic range from real-world luminance (input) to display

luminance (output). The workflow is displayed in counter-clockwise order, starting with the first quadrant. 1st quadrant: the

solid line (a) shows HDR luminance levels (output) against real-world luminance (input) as a log-log plot. Scaling the HDR

luminance by approximately 0.43, presented by the dotted line (b), reduces the dynamic range of HDR luminance to that of the

display. 2nd quadrant: the solid line (c) presents the result of linearly scaling luminance to fit the dynamic range of display. 3rd

quadrant: the curved line (d) indicates luminance levels scaled by a non-linear dynamic scaler (log-log plot). The dotted line

(e) is shown for comparison between the linear- and the non-linear scaling. 4th quadrant: the curved line (f) presents the final

system transfer function for tone-mapping which transforms real-world HDR luminance to output display luminance taking into

account display non-linearities. This also includes statistical rescaling based on the luminance histogram. The dotted line (g)

shows linear scaling without tone-mapping for comparison. Note, these quadrants are scatter plots using the Stanford memorial

church image as an example (see Figure 2).

based on a bilateral decomposition of an image into a base

layer and a detail layer. Only the base layer is compressed

and the detail layer is added back in. Reinhard et al. [14]

presented a mixed approach of global and local adapta-

tion, for which they employed low-pass filtering through

FFT. The resulting quality appears more robust compared

to other approaches.

Finally, there are perceptual models that simulate hu-

man vision system (HVS) and its local adaptation in order

to solve the tone-mapping problem. Ferwarda et al. [8]

developed a visual adaptation model as an extension of

CIECAM97s [27], which applies a threshold vs. intensity

(TVI) function for tone-mapping. Pattanaik et al. [9,11] in-

troduced a more rigorous computational model of adapta-

tion and spatial vision for realistic tone-reproduction. John-

son and Fairchild [16] presented a new color appearance

model that modifies CIECAM02 with a spatial vision ap-

pearance model, and which is applicable to HDR tone-

mapping. Since Land [28] proposed the retinex theory to

simulate the HVS, many researchers [7,12,17] have worked

on using it for HDR tone-mapping. Even though it provides

better results than the other perceptual models, the compu-

tational cost is rather considerable.

Recent solutions for tone-mapping have focused on

local adaptation or sub-band filtering in the frequency or

gradient domain [10,13,14,18]. Even though they can pro-

vide strong compression of the dynamic range, results can

appear unnatural due to halo artifacts. Furthermore, com-

putational efficiency is often lacking. Therefore, we revisit

the original idea of global adaptation [19], aiming to de-

sign a general method to control the dynamic range of im-

ages, which is efficient and consistent across different HDR

images. The rest of this paper will present our proposed

method in detail.



2 Our Approach

Our method is based on two popular assumptions that hu-

man vision sensitivity is concentrated in the averaged log

luminance which is broadly used by many tone reproduc-

tion methods [11,14,19,29] and that human sensitivity sta-

tistically follows a Gaussian distribution [30–33]. It con-

sists of two main elements: (a) dynamic range compression

and (b) inverse display characterization.

2.1 Dynamic Range Compression

We will first describe our dynamic range compression

method before we detail the inverse display characteriza-

tion.

2.1.1 Characteristic Curve Control

Our method to compress the dynamic range of radiance

map is inspired by the characteristic curve of photographic

material in the log-log domain. This can be described in

Hurter and Driffield’s DlogE plot [34], which plots density

(logarithm of reflective luminance) against logarithm of the

luminance incident on the material. The DlogE plots are

used in the sense of the Jones quadrant diagram [35]. For

instance in photography, the diagram consists of four quad-

rants of DlogE plots: original density, film density, paper

density, and system transfer function. We utilize the dia-

gram to explain our method (see Figure 1), of which axes

are mirrored and show different variables in order to rep-

resent circulation of tone reproduction at each stage. Fig-

ure 2 shows the performance of the proposed method at

intermediate steps corresponding to the quadrant diagram

(Figure 1).

Considering that we need to adjust the dynamic range

of an HDR radiance map into that of a target display, the ad-

justment procedure can be explained easily with the help of

DlogE plots. Suppose that we have an HDR radiance map,

using the church image for illustration purposes (Figure 2),

which has a dynamic range (luminance) of 5.5 (1:343,512)

and that we need to observe the radiance map through a dis-

play which has a dynamic range of 2.4 (1:256, 8-bits [36]).

The upper part from the 1st to the 2nd quadrant in Figure 1

presents a simple transform of dynamic range from real-

world luminance to output display luminance (log-log plot,

counter-clockwise order). By linearly scaling the HDR ra-

diance map to the range of display luminance in the DlogE

domain (scaled by appr. 0.43), we can adjust the dynamic

range of the HDR radiance map into that of display lumi-

nance. The dynamic range of these two is then identical.

The scaling factor k1 is computed as follows:

k1 =
log Ldmax

− log Ldmin

log Lsmax
− log Lsmin

, (1)

where log Ldmax
and log Ldmin

are the maximum and min-

imum luminances of the display signals and log Lsmax
and

log Lsmin
are the maximum and minimum luminances of

the HDR radiance map.

The dynamic-range compressed image can be computed as:

L1 (x, y) = exp (k1 · log L0 (x, y)) , (2)

where L1 is the compressed luminance at pixel address

(x, y) and L0 is the luminance of the HDR image at each

pixel.

2.1.2 Non-Linear Dynamic Scale Factor

As shown on the upper left of Figure 2, the result of the

above simple linear scaling method appears not only dark

but also appears to lose contrast appearance.

When we apply the linear scale factor, the tone re-

production line can be understood to be rotated at the end

of the line in the DlogE domain. We move this rotating
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Figure 2. Intermediate results corresponding to the Jones

quadrant diagram (Figure 1). 1st quadrant: directly map-

ping HDR to LDR values. 2nd quadrant: linear scaling in

the same domain. 3rd quadrant: non-linear dynamic scal-

ing method. 4th quadrant: the final result of our proposed

method (including statistical re-scaling). Note that all the

images are rendered through inverse display characteriza-

tion. Inset: histogram of each image.



point to the averaged log-luminance µ — based on the ini-

tial assumption — by subtracting the mean µ before scal-

ing, and then adding it back in the DlogE domain. We then

replace the linear scaling factor with a non-linear function.

Many psychophysical experiments [32, 33, 37] tell us that

human vision has a sigmoidal response to given stimuli (lu-

minance) in the logarithmic domain. This means that hu-

man vision has a Gaussian-shaped sensitivity, which is the

first derivative of its sigmoidal response (cumulative sensi-

tivity) to logarithmic luminance. This also corresponds to

the characteristic curve of standard photographic materials.

Therefore, we do a Gaussian-weighting of the scale factor

k1 such that it has a peak at the averaged log-luminance

µ and that it has its minimum at k1 (see Figure 3). This

new Gaussian-weighted scale factor k2(L) depends on the

log-luminance L = log L0(x, y) and has the range of

k1 ≤ k2(L) ≤ 1.0. This non-linear scale factor is com-

puted as:

k2(L) = (1 − k1)w (L) + k1, (3)

w(x) = exp
(

− 1
2

(x−µ)2

σ2

)

, σ = d0

c1

, (4)

where σ is the ratio of the dynamic range d0 of the log-

luminances of the HDR image to the user-parameter c1.

This adjusts the shape of Gaussian fall-off within the width

of its characteristic curve. The parameter c1 influences the

resulting brightness and local details of the tone-mapped

image. We have found that c1 ≈ 3.0 is the maximum

level that can compress contrast without losing detail in the

bright area of images (see Section 3.2).

The final non-linear mapping function is as follows

(including the rotation around µ):

L1 (x, y) = exp [c2k2 (log L0 (x, y)− µ) + µ] (5)

We also introduce a parameter c2, which will be referred to

as the efficiency factor, which scales the intensity of non-

linear weighting. Even though the display signal depth has

the dynamic range of 2.4 (1:256), the actual dynamic range

of display luminance is often lower than that of signals

(e.g., Apple Cinema HD Display has a measured dynamic

range of only 2.01). Therefore, the dynamic range of an

HDR radiance map should be compressed more than that

of the display signal depth. To combat this problem, we

add the parameter c2, which is 0.84 ( = 2.01/2.4) for our

k2 

k1 

1.0 0.0 

µ
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g
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m
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Figure 3. Range of dynamic scale factor k2.

specific display. However, based on testing other displays,

we realized that other CRT or LCD displays may produce

a lower dynamic range than the Apple one such that the c2

parameter should be set to lower than the above for general

purpose. We have found that c2 ≈ 0.5 works for a wide

variety of images and displays that we tested (see results

section 3.2).

In order to apply our tone reproduction method to

color HDR images, we first transform HDR RGB primaries

into CIE XYZ coordinates by using the standard transfor-

mation matrix [38] (without gamma correction as we start

with linear values), based on the assumption that the HDR

RGB primaries have the same characteristics as sRGB pri-

maries. The Y coordinate of CIE XYZ is used as the lumi-

nance input value for the proposed tone reproduction oper-

ator. After obtaining the mapped luminance layer, we scale

the X and Z channels by the ratio of mapped luminance to

original luminance in a similar way to Schlick [6] in order

to preserve the ratio of the three primaries:

C1 (x, y) =
L1 (x, y)

L0 (x, y)
× C0 (x, y) . (6)

where L1 (x, y) is the mapped luminance; L0 (x, y) is the

original luminance; C1 (x, y) are the X and Z coordinates

of the mapped image; and C0 (x, y) are the X and Z coordi-

nates of source image. The Y channel is merely replaced by

the mapped luminance to save computational cost and zero

luminances of L0 (x, y) are excluded from the calculation.

2.2 Inverse Display Characterization

After obtaining the tone-mapped radiance map, we use the

international specification for the sRGB color space [38]

to map the LDR radiance map into the display color

space (CIE XYZ values are transformed into sRGB signals

through the inverse transform matrix and gamma correc-

tion, corresponding to γ = 2.2 including linear ramp for

dark value [38]).

In order to optimize the dynamic range of the display,

we compute the histogram of the tone-mapped image and

stretch the pixel levels between 1% and 99% to the range of

display signals (effectively clamping values below 1% and

above 99% and renormalizing to the 0%-100% range).

3 Results

In following section, we will present results of our pro-

posed method in terms of efficiency, response to varia-

tion of the parameters, and robustness of its performance

through comparison with others.

3.1 Efficiency

We tested a large number of different photographic and

computer-generated HDR images, all of which were tone-

mapped into 8-bits sRGB. The results can be seen through-

out this section. Images look natural, colors are vivid, and



contrast appearance is preserved well. Note that all images

were computed with the same parameter set, i.e., c1 = 3.0
and c2 = 0.5. The computation time of the church image

(Figure 2) was about 0.56 seconds for a 768 × 512 image

on a 2.0GHz Pentium 4 with unoptimized C++ code.

The doll image of 922 × 901 in Figure 8 (top-right)

took approximately 1.00 second on the same machine. See

a comparison with other algorithms in Table 1.

Methods FBF GC SBC LPR ALM OPR

Times 74.2 17.6 30.7 5.3 3.0 1.0

Table 1. Comparison of computation times (in seconds), which

were produced with fast bilateral filtering (FBF) [15], gradient

control (GC) [13], subband compressing (SBC) [18], local pho-

tographic reproduction (LPR) [14], adaptive logarithmic mapping

(ALM) [21], and our proposed (OPR). We used the authors’, Man-

tiuk and Krawczyk’s [39], and Reinhard et al.’s [40] codes.

3.2 Parameters

Figure 4 shows the results of varying parameter c1 from

Equation 4. This parameter was tested in intervals of 2.0 as

(a) 1.0, (b) 3.0, (c) 5.0, and (d) 7.0. We have found that set-

ting the parameter c1 ≈ 3.0 works well. Of course, a user

can change the parameter to their liking. The important

thing to note, however, is that the same parameter setting

will achieve consistent results across different images.
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Figure 4. Variation of parameter c1. We increased the pa-

rameter c1 for the standard deviation of the Gaussian in

intervals of 2.0 as (a) 1.0, (b) 3.0, (c) 5.0, and (d) 7.0.

c1 = 3.0 is a good compromise between contrast compres-

sion and loss of detail in bright areas. Of course, a user

may have a slightly different individual preference. Inset:

plot of weighting w(x).

The effect of varying the efficiency factor c2 in Equa-

tion 5 is shown in Figure 5. The parameter was varied in

intervals of 0.3 as (a) 0.2, (b) 0.5, (c) 0.8, and (d) 1.1. As

mentioned in the previous section, c2 should be varied de-

pending on the actual dynamic range of the employed dis-

play device. c2 = 0.2 is suitable for an extremely low

dynamic range device, whereas c2 = 1.1 is a better choice

for higher dynamic range devices. We use c2 ≈ 0.5 for all

our results (see Section 2.1 for technical details). As noted

before, the user’s personal taste may require slightly higher

or lower values.

3.3 Robustness

As stated before, it is beneficial for tone reproduction oper-

ators not to require any per-image parameter tweaking. To

demonstrate how default parameters influence tone repro-

duction, we have tested two global tone reproduction oper-

ators (Drago et al. [21] and Reinhard and Devlin [22]) as

well as ours on a set of images. The algorithms all require

similar computation time but may reproduce rather differ-

ent images with their default parameter sets. The results
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Figure 5. Variation of parameter c2. We increased the pa-

rameter c2 for the efficiency factor in 0.3 intervals as (a)

0.2, (b) 0.5, (c) 0.8, and (d) 1.1. c2 = 0.5 works well, but

this parameter can be varied depending on the display de-

vice and user preference. Inset: histogram of each image.
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Figure 6. Comparison of contrast. Left and middle: the re-

sults of Drago et al. [21] with different bias settings. Right:

the result of our proposed method with default parameters.

Inset: histogram of each image.
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Figure 7. Consistency test of three global tone reproduction operators with its default parameters (top to bottom): our method,

adaptive logarithmic mapping [21], and the photoreceptor method [22]. Inset: histogram of each image. Images courtesy of

Industrial Light & Magic and Greg Ward.

can be found in Figure 7. As can be seen, adaptive loga-

rithmic mapping [21] and photoreceptor [22] methods pro-

duce inconsistent results for the same default parameter set

— some images are overly bright or dark while others look

fine. In certain cases, see Figure 6, it may not even be pos-

sible for some previous tone-mappers to achieve good re-

sults even after parameter tweaking. Our proposed method

shows consistent results across the set of images (photo-

graphic and computer-generated) without any need for pa-

rameter tweaking. More results of our method can be seen

in Figure 8.

4 Conclusions

We have proposed a new global tone reproduction method

that efficiently compresses high dynamic range images.

Our experiments show that we achieve consistent results

with a fixed set of parameters for a large variety of images.

This is especially beneficial for applications that cannot af-

ford parameter tweaking. In the future, we would like to try

our algorithm on HDR video and test its temporal coher-

ence. Furthermore, a graphics processing unit (GPU) im-

plementation would be an interesting direction of research.
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Figure 8. Consistency test with default parameters of our proposed method. Our method produces plausible and consistent

images without any user intervention, i.e., without per-image parameter tweaking (as described in Section 2). Images courtesy

of Martin Cadik, Cornell University, Paul Debevec, Yuanzhen Li, Dani Lischinski, Industrial Light & Magic, Jack Tumblin,

and Greg Ward (in alphabet order of surname).


