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Fig. 1. We present a system for estimating temporally coherent and geometrically consistent depth from a casually captured video. Conventional multi-view

stereo methods such as COLMAP [Schonberger and Frahm 2016] o�en produce incomplete depth on moving objects or poorly textured areas. Learning-based

methods (e.g., [Li et al. 2019]) predict dense depth for each frame but the video reconstruction is flickering and geometrically inconsistent. Our video depth

estimation is fully dense, globally scale-consistent, and capable of handling dynamically moving objects. We evaluate our method on a wide variety of

challenging videos and show that our results enable new video special e�ects.

We present an algorithm for reconstructing dense, geometrically consis-

tent depth for all pixels in a monocular video. We leverage a conventional

structure-from-motion reconstruction to establish geometric constraints on

pixels in the video. Unlike the ad-hoc priors in classical reconstruction, we

use a learning-based prior, i.e., a convolutional neural network trained for

single-image depth estimation. At test time, we �ne-tune this network to

satisfy the geometric constraints of a particular input video, while retaining

its ability to synthesize plausible depth details in parts of the video that are

less constrained. We show through quantitative validation that our method

achieves higher accuracy and a higher degree of geometric consistency than

previous monocular reconstruction methods. Visually, our results appear

more stable. Our algorithm is able to handle challenging hand-held captured

input videos with a moderate degree of dynamic motion. The improved

quality of the reconstruction enables several applications, such as scene

reconstruction and advanced video-based visual e�ects.
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1 INTRODUCTION

3D scene reconstruction from image sequences has been studied

in our community for decades. Until a few years ago, the structure

from motion systems for solving this problem were not very robust,

and practically only worked “in the lab”, with highly calibrated and

predictable setups. They also, often, produced only sparse recon-

structions, i.e., resolving depth at only a few isolated tracked point

features. But in the last decade or so, we have seen good progress

towards enabling more casual capture and producing denser re-

constructions, driven by high-quality open-source reconstruction

systems and recent advances in learning-based techniques, as dis-

cussed in the next section.

Arguably the easiest way to capture for 3D reconstruction is using

hand-held cell phone video, since these cameras are so readily and

widely available, and enable truly spontaneous, impromptu capture,

as well as quickly covering large spaces. If we could achieve fully

dense and accurate reconstruction from such input it would be

immensely useful—however, this turns out to be quite di�cult.

Besides the typical problems that any reconstruction system has

to deal with, such as poorly textured areas, repetitive patterns, and

occlusions, there are several additional challenges with video: higher

noise level, shake and motion blur, rolling shutter deformations,

small baseline between adjacent frames, and, often, the presence of

dynamic objects, such as people. For these reasons, existing methods
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often su�er from a variety of problems, such as missing regions in

the depth maps (Figure 1b) and inconsistent geometry and �ickering

depth (Figure 1c).

Traditional reconstructionmethods [Szeliski 2010] combine sparse

structure-from-motion with dense multi-view stereo—essentially

matching patches along epipolar lines. When the matches are cor-

rect, this results in geometrically accurate reconstructions. However,

due to the before-mentioned complications, the matches are often

noisy, and typically need to be regularized with heuristic smooth-

ness priors. This often induces incorrect geometry in the a�ected

regions, so that many methods drop pixels with low con�dence

altogether, leaving “holes” in the reconstruction (Figure 1b).

There has recently been immense progress on learning-based

methods that operate on single images. These methods do not re-

quire heuristic regularization, but instead learn scene priors from

data, which results in better ability to synthesize plausible depth

in parts of the scene that would be weakly or even incorrectly con-

strained in traditional reconstruction approaches. They excel, in

particular, at the reconstruction of dynamic scenes, since static and

dynamic objects appear the same when we consider a single frame

at a time. However, the estimated depth often �ickers erratically

due to the independent per-frame processing (Figure 1c), and it is

not metric (i.e., not related to true depth by a single scale factor).

This causes a video reconstruction to be geometrically inconsistent:

objects appear to be attached to the camera and “swimming” in

world-space.

Several video-based depth estimation methods have also been

developed. These methods address the geometrical consistency of

the reconstruction over time either implicitly via recurrent neural

networks [Patil et al. 2020; Wang et al. 2019b] or explicitly using

multi-view reconstruction [Liu et al. 2019; Teed and Deng 2020].

State-of-the-art video-based depth estimation methods [Liu et al.

2019; Teed and Deng 2020], however, handle only static scenes.

In this work, we present a new video-based reconstruction system

that combines the strengths of traditional and learning-based tech-

niques. It uses traditionally-obtained geometric constraints where

they are available to achieve accurate and consistent depth, and

leverages learning-based priors to �ll in the weakly constrained

parts of the scene more plausibly than prior heuristics. Technically,

this is implemented by �ne-tuning the weights of a single-image

depth estimation network at test time, so that it learns to satisfy

the geometry of a particular scene while retaining its ability to syn-

thesize plausible new depth details where necessary. Our test-time

training strategy allows us to use both short-term and long-term con-

straints and prevent drifting over time. The resulting depth videos

are fully dense and detailed, with sharp object boundaries. The re-

construction is �icker-free and geometrically consistent throughout

the video. For example, static objects appear rock-steady when pro-

jected into world space. The method even supports a gentle amount

of dynamic scene motion, such as hand-waving (Figure 9), although

it still breaks down for extreme object motion.

The improved quality and consistency of our depth videos enable

interesting new applications, such as fully-automatic video special

e�ects that interact with the dense scene content (Figure 9). We

extensively evaluate our method quantitatively and show numer-

ous qualitative results. The source code of our method is publicly

available.1

2 RELATED WORK

Supervised monocular depth estimation. Early learning-based ap-

proaches regress local image features to depth [Saxena et al. 2008] or

discrete geometric structures [Hoiem et al. 2005], followed by some

post-processing steps (e.g., a MRF). Deep learning basedmodels have

been successfully applied to single image depth estimation [Eigen

and Fergus 2015; Eigen et al. 2014; Fu et al. 2018; Laina et al. 2016; Liu

et al. 2015]. However, training these models requires ground truth

depth maps that are di�cult to acquire. Several e�orts have been

made to address this issue, e.g., training on synthetic dataset [Mayer

et al. 2016a] followed by domain adaptation [Atapour-Abarghouei

and Breckon 2018], collecting relative depth annotations [Chen et al.

2016], using conventional structure-from-motion and multi-view

stereo algorithms to obtain pseudo ground truth depth maps from

Internet images [Chen et al. 2019a; Li et al. 2019; Li and Snavely

2018], or 3D movies [Ranftl et al. 2019; Wang et al. 2019a]. Our

method builds upon recent advances in single image depth estima-

tion and further improves the geometric consistency of the depth

estimation on videos.

Self-supervised monocular depth estimation. Due to challenges of

scaling up training data collection, self-supervised learning meth-

ods have received considerable attention for their ability to learn a

monocular depth estimation model directly from raw stereo pairs

[Godard et al. 2017] or monocular video [Zhou et al. 2017]. The core

idea is to apply di�erentiable warp and minimize photometric re-

projection error. Recent methods improve the performance through

incorporating coupled training with optical �ow [Ranjan et al. 2019;

Yin and Shi 2018; Zou et al. 2018], object motion [Dai et al. 2019;

Vijayanarasimhan et al. 2017], surface normal [Qi et al. 2018], edge

[Yang et al. 2018], and visual odometry [Andraghetti et al. 2019;

Shi et al. 2019; Wang et al. 2018b]. Other notable e�orts include

using stereo information [Guo et al. 2018; Watson et al. 2019], better

network architecture and training loss design [Gordon et al. 2019;

Guizilini et al. 2019], scale-consistent ego-motion network [Bian

et al. 2019], incorporating 3D geometric constraints [Mahjourian

et al. 2018], and learning from unknown camera intrinsics [Chen

et al. 2019b; Gordon et al. 2019].

Many of these self-supervised methods use a photometric loss.

However, these losses can be satis�ed even if the geometry is not

consistent (in particular, in poorly textured areas). In addition, they

do not work well for temporally distant frames because of larger

appearance changes. In our ablation study, however, we show that

long-range temporal constraints are important for achieving good

results.

Multi-view reconstruction. Multi-view stereo algorithms estimate

scene depth using multiple images captured from arbitrary view-

points [Furukawa et al. 2015; Schonberger and Frahm 2016; Seitz

et al. 2006]. Recent learning-based methods [Huang et al. 2018; Im

et al. 2019; Kusupati et al. 2019; Ummenhofer et al. 2017; Yao et al.

1https://roxanneluo.github.io/Consistent-Video-Depth-Estimation/
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2018] leverage well-established principles in traditional geometry-

based approaches (e.g., cost aggregation and plane-sweep volume)

and show state-of-the-art performance in multi-view reconstruction.

However, these multi-view stereo techniques assume a static scene.

For dynamic objects, these methods either produce erroneous esti-

mates or drop pixels with low con�dence. In contrast, our method

produces dense depth even in the presence of moderate dynamic

scene motion.

Depth from video. Recovering dense depth from monocular video

is a challenging problem. To handle moving objects, existing tech-

niques rely on motion segmentation and explicit motion modeling

for the moving objects in the scene [Casser et al. 2019; Karsch et al.

2014; Ranftl et al. 2016]. Several methods estimate depth by inte-

grating motion estimation and multi-view reconstruction using two

frames [Ummenhofer et al. 2017; Wang et al. 2019a] or a varying

number of frames [Bloesch et al. 2018; Valentin et al. 2018; Zhou et al.

2018]. The state-of-the-art video-to-depth methods [Liu et al. 2019;

Teed and Deng 2020] regress depth (or predict a distribution over

depth) based on the cost volume constructed by warping nearby

frames to a reference viewpoint. Such model designs thus do not

account for dynamically moving objects. In contrast, while we also

leverage constraints derived frommulti-view geometry, our depth is

estimated from (�ne-tuned) single-image depth estimation models,

and thereby handle dynamic object naturally and without the need

for explicit motion segmentation.

Temporal consistency. Applying single-image based methods inde-

pendently to each frame in a video often produce �ickering results.

In light of this, various approaches for enforcing temporal consis-

tency have been developed in the context of style transfer [Chen

et al. 2017; Huang et al. 2017; Ruder et al. 2016], image-based graph-

ics applications [Lang et al. 2012], video-to-video synthesis [Wang

et al. 2018a], or application-agnostic post-processing algorithms

[Bonneel et al. 2015; Lai et al. 2018]. The core idea behind these

methods is to introduce a “temporal consistency loss" (either at

training or testing time) that encourages similar values along the

temporal correspondences estimated from the input video. In the

context of depth estimation from video, several e�orts have been

made to make the estimated depth more temporally consistent by

explicitly applying optical �ow-based consistency loss [Karsch et al.

2014] or implicitly encouraging temporal consistency using recur-

rent neural networks [Patil et al. 2020; Wang et al. 2019b; Zhang et al.

2019b]. Our work di�ers in that we aim to produce depth estimates

from a video that are geometrically consistent. This is particularly

important for casually captured videos because the actual depth

may not be temporally consistent due to camera motion over time.

Depth-aware visual e�ects. Dense depth estimation facilitates a

wide variety of visual e�ects such as synthetic depth-of-�eld [Wad-

hwa et al. 2018], novel view synthesis [Hedman et al. 2017; Hedman

and Kopf 2018; Hedman et al. 2018; Shih et al. 2020], and occlusion-

aware augmented reality [Holynski and Kopf 2018]. Our work on

consistent depth estimation from causally captured videos enables

several new video special e�ects.

Test-time training. Learning on testing data has been used in

several di�erent problem contexts: online update in visual tracking

[Kalal et al. 2011; Ross et al. 2008], adapting object detectors from

images to videos [Jain and Learned-Miller 2011; Tang et al. 2012], and

learning video-speci�c features for person re-identi�cation [Cinbis

et al. 2011; Zhang et al. 2019a]. The work most closely related to

ours is that of [Casser et al. 2019; Chen et al. 2019b] where they

improve monocular depth estimation results by �ne-tuning a pre-

trained model using the testing video sequence. Note that any self-

supervised method can be trained at test time (as in [Casser et al.

2019; Chen et al. 2019b]). However, the focus of previous methods

is largely on achieving per-frame accuracy, while our focus is on

achieving an accurate prediction with global geometric consistency.

Our method achieves accurate and detailed reconstructions with a

higher level of temporal smoothness than previous methods, which

is important for many video-based applications.

Aside from these goals, there are important technical di�erences

between our method and prior ones. The method in [Casser et al.

2019] performs a binary object-level segmentation and estimates

rigid per-object transformations. This is appropriate for rigid ob-

jects such as cars in a street scene, but less so for highly deformable

subjects such as people. The method in [Chen et al. 2019b] uses a

geometric loss, similar to ours. However, they only train on con-

secutive frame pairs and relative poses. We use absolute poses and

long-term temporal connections, which our ablation shows is criti-

cal for achieving good results (Figure 6).

3 OVERVIEW

Our method takes a monocular video as input and estimates a cam-

era pose as well as a dense, geometrically consistent depth map (up

to scale ambiguity) for each video frame. The term geometric con-

sistency not only implies that the depth maps do not �icker over

time but also, that all the depth maps are in mutual agreement.

That is, we may project pixels via their depth and camera pose ac-

curately amongst frames. For example, all observations of a static

point should be mapped to a single common 3D point in the world

coordinate system without drifting.

Casually captured input videos exhibit many characteristics that

are challenging for depth reconstruction. Because they are often

captured with a handheld, uncalibrated camera, the videos su�er

from motion blur and rolling shutter deformations. The poor light-

ing conditions may cause increased noise level and additional blur.

Finally, these videos usually contain dynamically moving objects,

such as people and animals, thereby breaking the core assumption

of many reconstruction systems designed for static scenes.

As we explained in the previous sections, in problematic parts

of a scene, traditional reconstruction methods typically produce

“holes” (or, if forced to return a result, estimate very noisy depth.) In

areas where these methods are con�dent enough to return a result,

however, it is typically fairly accurate and consistent, because they

rely strongly on geometric constraints.

Recent learning-based methods [Liu et al. 2019; Ranftl et al. 2019]

have complementary characteristics. These methods handle the

challenges described above just �ne because they leverage a strong

data-driven prior to predict plausible depth maps from any input

image. However, applying these methods independently for each
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Fig. 2. Method overview. With a monocular video as input, we sample a pair of (potentially distant) frames and estimate the depth using a pre-trained,

single-image depth estimation model to obtain initial depth maps. From the pair of images, we establish correspondences using optical flow with forward-

backward consistency check. We then use these correspondences and the camera poses to extract geometric constraints in 3D. We decompose the 3D

geometric constraints into two losses: 1) spatial loss and 2) disparity loss and use them to fine-tune the weight of the depth estimation network via standard

backpropagation. This test-time training enforces the network to minimize the geometric inconsistency error across multiple frames for this particular video.

A�er the fine-tuning stage, our final depth estimation results from the video is computed from the fine-tuned model.

frame results in geometrically inconsistent and temporally �ickering

results over time.

Our idea is to combine the strengths of both types of methods. We

leverage existing single-image depth estimation networks [Godard

et al. 2019; Li et al. 2019; Ranftl et al. 2019] that have been trained

to synthesize plausible (but not consistent) depth for general color

images, and we �ne-tune the network using the extracted geometric

constraints from a video using traditional reconstruction methods.

The network thus learns to produce geometrically consistent depth

on a particular video.

Our method proceeds in two stages:

Pre-processing (Section 4): As a foundation for extracting geo-

metric constraints among video frames, we �rst perform a tradi-

tional Structure-from-Motion (SfM) reconstruction pipeline using

an o�-the-shelf open-source software COLMAP [Schonberger and

Frahm 2016]. To improve pose estimation for videos with dynamic

motion, we apply Mask R-CNN [He et al. 2017] to obtain people

segmentation and remove these regions for more reliable keypoint

extraction and matching, since people account for the majority of

dynamic motion in our videos. This step provides us with accurate

intrinsic and extrinsic camera parameters as well as a sparse point

cloud reconstruction. We also estimate dense correspondence be-

tween pairs of frames using optical �ow. The camera calibration

and dense correspondence, together, enable us to formulate our

geometric losses, as described below.

The second role of the SfM reconstruction is to provide us with

the scale of the scene. Because our method works with monocular

input, the reconstruction is ambiguous up to scale. The output of

the learning-based depth estimation network is scale-invariant as

well. Consequently, to limit the amount the network has to change,

we adjust the scale of the SfM reconstruction so that it matches the

learning-based method in a robust average sense.

Test-time Training (Section 5): In this stage, which comprises

our primary contribution, we �ne-tune a pre-trained depth esti-

mation network so that it produces more geometrically consistent

depth for a particular input video. In each iteration, we sample a

pair of frames and estimate depth maps using the current network

parameters (Figure 2). By comparing the dense correspondence with

reprojections obtained using the current depth estimates, we can

validate whether the depth maps are geometrically consistent. To

this end, we evaluate two geometric losses, 1) spatial loss and 2)

disparity loss and back-propagate the errors to update the network

weights (which are shared across for all frames). Over time, itera-

tively sampling many frame pairs, the losses are driven down, and

the network learns to estimate depth that is geometrically consis-

tent for this video while retaining its ability to provide plausible

regularization in less constrained parts.

The improvement is often dramatic, our �nal depth maps are

geometrically consistent, temporally coherent across the entire

video while accurately delineate clear occluding boundaries even

for dynamically moving objects. With depth computed, we can have

proper depth edge for occlusion e�ect and make the geometry of the

real scene interact with the virtual objects. We show various com-

pelling visual e�ects made possible by our video depth estimation

in Section 6.5.

4 PRE-PROCESSING

Camera registration. We use the structure-from-motion andmulti-

view stereo reconstruction software COLMAP [Schonberger and

Frahm 2016] to estimate for each frame 8 of the # video frames the
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intrinsic camera parameters  8 , the extrinsic camera parameters

('8 , C8 ), as well as a semi-dense depth map �MVS
8 . We set the values

to zeros for pixels where the depth is not de�ned.

Because dynamic objects often cause errors in the reconstruction,

we apply Mask R-CNN [He et al. 2017] to segment out people (the

most common “dynamic objects” in our videos) in every frame inde-

pendently, and suppress feature extraction in these areas (COLMAP

provides this option). Since smartphone cameras are typically not

distorted2, we use the SIMPLE_PINHOLE camera model and solve

for the shared camera intrinsics for all the frames, as this provides

a faster and more robust reconstruction. We use the exhaustive

matcher and enable guided matching.

Scale calibration. The scale of the SfM and the learning-based

reconstructions typically do not match, because both methods are

scale-invariant. This manifests in di�erent value ranges of depth

maps produced by both methods. To make the scales compatible

with the geometric losses, we adjust the SfM scale, because we can

simply do so by multiplying all camera translations by a factor.

Speci�cally, let �NN
8 be the initial depth map produced by the

learning-based depth estimation method. We �rst compute the rela-

tive scale for image 8 as:

B8 = median
G

{

�NN
8 (G) / �MVS

8 (G)
�

�

� �MVS
8 (G) ≠ 0

}

, (1)

where � (G) is the depth at pixel G .

We can then compute the global scale adjustment factor B as

B = mean
8

{B8 } , (2)

and update all the camera translations

C̃8 = B · C8 . (3)

Frame sampling. In the next step, we compute a dense optical

�ow for certain pairs of frames. This step would be prohibitively

computationally expensive to perform for all$ (# 2) pairs of frames

in the video. We, therefore, use a simple hierarchical scheme to

prune the set of frame pairs down to $ (# ).

The �rst level of the hierarchy contains all consecutive frame

pairs,

(0 =
{

(8, 9)
�

� |8 − 9 | = 1
}

. (4)

Higher levels contain a progressively sparser sampling of frames,

(; =
{

(8, 9)
�

� |8 − 9 | = 2; , 8 mod 2;−1 = 0
}

. (5)

The �nal set of sampled frames is the union of the pairs from all

levels,

( =

⋃

0≤;≤⌊log2 (#−1) ⌋

(; . (6)

Optical �ow estimation. For all frame pairs (8, 9) in ( we need to

compute a dense optical �ow �eld �8→9 . Because �ow estimation

works best when the frame pairs align as much as possible, we

�rst align the (potentially distant) frames using a homography-

warp (computed with a RANSAC-based �tting method [Szeliski

2010]) to eliminate dominant motion between the two frames (e.g.,

due to camera rotation). We then use FlowNet2 [Ilg et al. 2017] to

2Our test sequences (Section 6.1) are captured with a �sheye camera, and we remove
the distortion through recti�cation.

compute the optical �ow between the aligned frames. To account of

moving objects and occlusion/dis-occlusion (as they do not satisfy

the geometric contraints or are unreliable), we apply a forward-

backward consistency check and remove pixels that have forward-

backward errors larger than 1 pixel, producing a binary map"8→9 .

Furthermore, we observe that the �ow estimation results are not

reliable for frame pairs with little overlap. We thus exclude any

frame pairs where |"8→9 | is less than 20% of the image area from

consideration.

5 TEST-TIME TRAINING ON INPUT VIDEO

Now we are ready to describe our test-time training procedure, i.e.,

how we coerce the depth network through �ne-tuning it with a

geometric consistency loss to producing more consistent depth for

a particular input video. We �rst describe our geometric loss, and

then the overall optimization procedure.

Geometric loss. For a given frame pair (8, 9) ∈ ( , the optical �ow

�eld �8→9 describes which pixel pairs show the same scene point.

We can use the �ow to test the geometric consistency of our current

depth estimates: if the �ow is correct and a �ow-displaced point

58→9 (G) is identical to the depth-reprojected point ?8→9 (G) (both

terms de�ned below), then the depth must be consistent.

The idea of our method is that we can turn this into a geometric

loss L8→9 and back-propagate any consistency errors through the

network, so as to coerce it into to producing depth that is more

consistent than before. L8→9 comprises two terms, an image-space

loss L
spatial
8→9 , and a disparity loss L

disparity
8→9 . To de�ne them, we �rst

discuss some notation.

Let G be a 2D pixel coordinate in frame 8 . The �ow-displaced point

is simply

58→9 (G) = G + �8→9 (G) . (7)

To compute the depth-reprojected point ?8→9 (G), we �rst lift the

2D coordinate to a 3D point 28 (G) in frame 8’s camera coordinate

system, using the camera intrinsics  8 as well as the current depth

estimate �8 ,

28 (G) = �8 (G)  
−1
8 G̃, (8)

where G̃ is the homogeneous augmentation of G . We then further

project the point to the other frame 9 ’s camera coordinate system,

28→9 (G) = '
T
9

(

'8 28 (G) + C̃8 − C̃ 9

)

, (9)

and �nally convert it back to a pixel position in frame 9 ,

?8→9 (G) = c
(

 9 28→9 (G)
)

, (10)

where c
(

[G,~, I]T
)

= [
G
I ,

~
I ]

T.

With this notation, the image-space loss for a pixel can be easily

de�ned:

L
spatial
8→9 (G) =





?8→9 (G) − 58→9 (G)






2
, (11)

which penalizes the image-space distance between the �ow-displaced

and the depth-reprojected point.

The disparity loss, similarly, penalizes the disparity distance in

camera coordinate system:

L
disparity
8→9 (G) = D8

�

�

� I−18→9 (G) − I
−1
9

(

58→9 (G)
)

�

�

� , (12)
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where D8 is frame 8’s focal length, and I8 and I8→9 are the scalar

z-component from 28 and 28→9 , respectively.

The overall loss for the pair is then simply a combination of both

losses for all pixels where the �ow is valid,

L8→9 =
1

�

�"8→9

�

�

∑

G ∈"8→9

L
spatial
8→9 (G) + _L

disparity
8→9 (G), (13)

where _ = 0.1 is a balancing coe�cient.

Discussion. While the second term in Equation 11 (�ow mapping)

can handle dynamic motion, the �rst term (depth reprojection) as-

sumes a static scene. How can this still result in an accurate depth

estimation? There are two cases: (1) Consistent motion (e.g., a mov-

ing car) can sometimes be aligned with the epipolar geometry and

cause our method, like most others, to estimate the wrong depth. (2)

Consistent motion that is not epipolar-aligned or inconsistent mo-

tion (e.g., a waving hand) causes con�icting constraints; empirically,

our test-time training is tolerant to these con�icting constraints

and produces accurate results (as seen in many examples in this

submission and accompanying materials.)

Optimization. Using the geometric loss between 8-th and 9-th

frames L8→9 , we �ne-tune the network weights using standard

backpropagation. Initializing the network parameters using a pre-

trained depth estimation model allows us to transfer the knowledge

for producing plausible depth maps on images that are challenging

for traditional geometry-based reconstructon systems. We �ne-tune

the network using a �xed number of epochs (20 epochs for all our

experiments). In practice, we �nd that with this simple �ne-tuning

step the network training does not over�t the data in the sense that

it does not lose its ability to synthesize plausible depth in uncon-

strained or weakly constrained parts of the scene3. We also observe

that the training handles a certain amount of erroneous supervision

(e.g., when the correspondences are incorrectly established).

Implementation details. Wehave experimentedwith several monoc-

ular depth estimation architectures and pre-trained weights [Godard

et al. 2019; Li et al. 2019; Ranftl et al. 2019]. If not otherwise noted,

results in the paper and accompanying materials use Li et al.’s net-

work [2019] (single-image model). We use the other networks in

evaluations as noted there. Given an input video, an epoch is de-

�ned by one pass over all frame pairs in S. In all of our experiments,

we �ne-tune the network for 20 epochs with a batch size of 4 and

a learning rate of 0.0004 using ADAM optimizer [Kingma and Ba

2015]. The time for test-time training varies for videos of di�erent

lengths. For a video of 244 frames, training on 4 NVIDIA Tesla M40

GPUs takes 40 min.

6 RESULTS AND EVALUATION

In this section, we �rst describe the experimental setup (Section 6.1).

We then present quantitative comparison with the state-of-the-art

depth estimation methods (Section 6.2). We conduct an extensive

ablation study to validate the importance of our design choices and

their contributions to the results (Section 6.3). Finally, we show

3We note that there are more advanced regularization techniques for transfer learning
[Kirkpatrick et al. 2017; Li et al. 2018]. These can be applied to further improve the
performance of our method.

Static Dynamic

Fig. 3. Example frames from our test set that includes four static sequences

and three dynamic ones. The dynamic videos contain gentle amount of

seated motion like playing ukulele and body motion while playing chess,

flipping the notes while singing, etc. These videos resemble casual video

capture scenario where the hand-held camera is shaky and frames contain

motion blur.

qualitative results of our depth estimation and their applications to

new advanced video-based visual e�ects (Section 6.5).

6.1 Experimental Setup

Dataset. Many datasets have been constructed for evaluating

depth reconstruction. However, these existing datasets are either for

synthetic [Butler et al. 2012; Mayer et al. 2016a] , speci�c domains

(e.g., driving scenes) [Geiger et al. 2013], single images [Chen et al.

2016; Li et al. 2019; Li and Snavely 2018], or videos (or multiple

images) of static scenes [Schops et al. 2017; Silberman et al. 2012;

Sturm et al. 2012a]. Consequently, we capture custom stereo video

datasets for evaluation. Our test set consists of both static and dy-

namic scenes with a gentle amount of object motion (see Fig. 3 for

samples. We capture the videos with stereo �sheye QooCam cam-

eras.4 The handheld camera rig provides a handy way to capture

stereo videos, but it is highly distorted in the periphery due to the

�sheye lenses. We, therefore, rectify and crop the center region us-

ing the Qoocam Studio5 and obtain videos of resolution 1920× 1440

pixels. The lengths of the captured video range from 119 to 359

frames. Our new video dataset is available on the accompanying

website for evaluating future video-based depth estimation.

For completeness, we also provide quantitative comparisons with

the state-of-the-art depth estimation models on three publicly avail-

able datasets: (1) the TUM dataset [Sturm et al. 2012b] (using the 3D

Object Reconstruction category), (2) the ScanNet dataset [Dai et al.

2017] (using the testing split provided by [Teed and Deng 2020]),

and (3) the KITTI 2015 dataset [Geiger et al. 2012] (using the Eigen

split [Eigen et al. 2014]).

Evaluation metrics. To evaluate and compare the quality of the

estimated depth from a monocular video on our custom stereo video

dataset, we use the following three di�erent metrics.

Photometric error �? : We use photometric error to quantify

the accuracy of the recovered depth. All the methods estimate the

depth from the left video stream. Using the estimated depth, we

then reproject the pixels from the left video stream to the right one

and compute the photometric error as mean squared error of the

RGB di�erences. As the depth map can only be estimated up to a

4https://www.kandaovr.com/qoocam/
5https://www.kandaovr.com/download/
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Photometric Instability Drift

Photometric Instability

Fig. 4. �antitative comparison with the state-of-the-art. We plot the error of all reconstructed pixels, sorted by error. Note, that COLMAP drops some pixels

from the reconstruction. Hence, its curve in the le� column stops short of 100%; the second and third column evaluate on tracks, which tend to be in textured

areas where COLMAP has a higher level of completeness. Top: static sequences; bo�om: Dynamic sequences.

Table 1. �antitative comparisons with the state-of-the-art depth estima-

tion algorithms.

Static Dynamic

�B (%) ↓ �3 (%) ↓ �? ↓ �B (%) ↓ �? ↓

WSVD [2019a] 4.13 19.12 11.90 4.10 17.46

NeuralRGBD [2019] 1.86 15.25 11.33 1.30 18.62

Mannequin [2019] 3.88 13.22 12.05 2.38 18.16

MiDaS-v2 [2019] 3.14 10.14 11.74 2.83 15.76

COLMAP [2016] 1.02 6.19 - 1.47 -

Ours 0.44 2.12 10.09 0.40 14.44

scale ambiguity, we need to align the estimated depth maps to the

stereo disparity. Speci�cally, we compute the stereo disparity by

taking the horizontal components from the estimated �ow on the

stereo pair (using Flownet2 [Ilg et al. 2017]). For each video frame,

we then compute the scale and shift alignment to the computed

stereo disparity using RANSAC-based linear regression. We can

obtain the global (video-level) scale and shift parameters by taking

the mean of the scales/shifts for all the frames.

Instability �B : We measure instability of the estimated depth

maps over time in a video as follows. We �rst extract a sparse set

of reliable tracks from the input monocular video using a standard

KLT tracker. We then convert the 2D tracks to 3D tracks, using the

camera poses and calibrated depths to unproject 2D tracks to 3D. For

a perfectly stable reconstruction, each 3D track should collapse to a

single 3D point. We thus can quantify the instability by computing

the Euclidean distances of the 3D points for each pair of consecutive

frames.

Drift �3 : In many cases, while 3Dtracks described above may

appear somewhat stable for consecutive frames, the errors could be

accumulated and cause drift over time. To measure the amount of

drift for a particular 3D track, we compute the maximum eigenvalue

of the covariance matrix formed by the 3D track. Intuitively, this

measures how spread the 3D points is across time.

For static sequences, we evaluate the estimated depth using all

three metrics. For dynamic sequences, we evaluate only on photo-

metric error and instability, as the drift metric does not account for

dynamically moving objects in the scene.

6.2 Comparative Evaluation

Compared methods. We compare our results with state-of-the-art

depth estimation algorithms from three main categories.

• Traditional multi-view stereo system: COLMAP [Schon-

berger and Frahm 2016].

• Single-image depth estimation: Mannequin Challenge [Li

et al. 2019] and MiDaS-v2 [Ranftl et al. 2019].

• Video-based depth estimation: WSVD [Wang et al. 2019a]

(two frames) and NeuralRGBD [Liu et al. 2019] (multiple

frames).

Quantitative comparison. Fig. 4 shows the plot of the photometric

error, instability, and drift metrics against completeness. In all three

metrics, our method compares favorably against previously pub-

lished algorithms. Our results particularly shine when evaluated on

the instability and the drift metrics, highlighting the consistency of

our results. Table 1 further reports the summary of the results for

di�erent methods.

ACM Trans. Graph., Vol. 39, No. 4, Article 71. Publication date: July 2020.
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(a) Input (b) COLMAP (c)Mannequin (d) MiDaS-v2 (e) NeuralRGBD (f) Ours

Fig. 5. Visual comparisons with the state-of-the-arts. Our method produces depth, geometrically consistent, and flicker-free depth estimation from casually

captured videos by a hand-held cellphone camera. The first image in each pair is a sample frame, while the second is a scanline slice through the spatio-temporal

volume (either color video or video depth).

Visual comparison. Wepresent in Fig. 5 the qualitative comparison

of di�erent depth estimation methods. The traditional multi-view

stereo method produces accurate depths at highly textured regions,

where reliablematches can be established. These depthmaps contain

large holes (black pixels), as shown in Fig. 5b. The learning-based

single-image depth estimation approaches [Li et al. 2019; Ranftl et al.

2019] produce dense, plausible depth maps for each individual video

frame. However, �ickering depths over time cause geometrically

inconsistent depth reconstructions. Video-based methods such as

NeuralRGBD alleviate the temporal �icker, yet su�er from drift due

to the limited temporal window used for depth estimation. We refer

the readers to the video results in the supplementary material.

Table 2. Ablation study. The quantitative evaluation highlights the impor-

tance of our method design choices.

�B (%) ↓ �3 (%) ↓ �? ↓

Ours w/o scale calibration 0.93 3.37 9.99

Ours w/o disparity loss 0.76 3.30 9.99

Ours w/o overlap test 0.51 2.49 13.20

Ours 0.44 2.12 10.08

6.3 Ablation Study

We conduct an ablation study to validate the e�ectiveness of several

design choices in our approaches. We �rst study the e�ect of losses

ACM Trans. Graph., Vol. 39, No. 4, Article 71. Publication date: July 2020.
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w/o spatial loss w/o disparity loss w/o scale calibration w/o overlap test

Fig. 6. Contribution of our design choices to the results. (Top): Sample frame from input videos. (Middle): corresponding ablation results. Bo�om: result with

full pipeline. Without spatial loss, there is no constraint for what the depth should be. We end up losing all the structure and it fails. Without disparity loss,

depth can get sharper but also more flicker. Without scale calibration, we o�en observe degraded depth with blurrier depth discontinuities. Without overlap

test, erroneous flow causes wrong depth.
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Consecutive Long-term

Fig. 7. Analysis of the e�ects of using long-term temporal constraints and

the disparity loss. Please see the supplementary for video comparisons.

and the importance of di�erent steps in the pipeline, including scale

calibration and overlap test. We summarize these results in Table 2.

Fig. 6 visualizes the contributions of various components.

We observe that using long-term constraints help improve the

stability of the estimated depth over time. As the disparity loss also

helps reduce temporal �ickering, we further investigate the e�ects

of both design choices in Fig. 7. Our results show that including

constraints from long-term frame pairs leads to sharper and tem-

porally more stable results. In contrast, while adding disparity loss

reduces temporal �ickers, it produces blurry results when using

only consecutive frame pairs.

6.4 �antitative Comparisons on Public Benchmarks

We provide quantitative results on three publicly available bench-

mark datasets for evaluating the performance of our depth estima-

tion. In all of the evaluation settings, we resize the input images so

that the longest image dimension to 384. We �netune the monocular

depth estimation network for 20 epochs (the same evaluation setting

used in the stereo video dataset).

TUM-RGBD dataset. We evaluate our method on the 11 scenes in

the “3D Object Reconstruction" category in the TUM-RGBD dataset

[Sturm et al. 2012b]. For evaluation, we subsample the videos every

5 frames and obtain sequences ranging from 195 to 593 frames. Here,

we use the ground truth camera pose provided by the dataset. We

then �ne-tune the single-image model from Li et al. [2019] on the

subsampled frames. To compute the error metrics, we align the

predicted depth map to the ground truth using per-image median

scaling. We report the errors in the disparity (inverse depth) space

as it does not require clipping any depth ranges.

Table 4 reports the quantitative comparisons with single-frame

methods [Li et al. 2019; Ranftl et al. 2019] and multi-frame methods

[Liu et al. 2019; Wang et al. 2019a]. Our approach performs favorably

against prior methods with a large margin in all evaluation metrics.

In particular, our proposed test-time training signi�cantly improves

the performance over the baseline model from Li et al. [2019].

ScanNet dataset. Following the evaluation protocol of Teed and

Deng [2020], we evaluate our method on the 2,000 sampled frames

from the 90 test scenes in the ScanNet dataset [Dai et al. 2017]. We

�netune the MiDaS-v2 model [Ranftl et al. 2019] on each testing

sequence with a learning rate of 10−5 and _ = 10−5. Following Teed

ACM Trans. Graph., Vol. 39, No. 4, Article 71. Publication date: July 2020.
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Fig. 8. �antitative comparison before and a�er fine-tuning Monodepth2

on KITTI. We plot the each metric over all the test frames sorted by their

values. A�er fine-tuning, we have more outliers due to extreme dynamic

motion or failure in camera pose estimation, but achieve improved results

for more than 80% of the frames.

and Deng [2020], we apply per-image median scaling to align the

predicted depth to the ground truth depth map (using the range of

[0.5, 8] meters). We then evaluate all the metrics in the depth space

over the regions where the ground truth depth is within the range

of 0.1 to 10 meters.

Table 3 shows the quantitative comparisons with several other

multi-frame based depth estimation methods [Tang and Tan 2019;

Teed and Deng 2020; Ummenhofer et al. 2017] and the baseline

single-image model [Ranftl et al. 2019]. Our method achieves com-

petitive performance with the state-of-the-art algorithms, perform-

ing slightly inferior to the DeepV2D method that is trained on the

ScanNet training set.

KITTI dataset. Weevaluate ourmethod on the KITTI dataset [Geiger

et al. 2012] using the Eigen test split [Eigen et al. 2014] for com-

parison with prior monocular depth estimation methods. We es-

timate the camera poses for each test sequence using COLMAP

[Schonberger and Frahm 2016].We observe that the FlowNet2model

(pre-trained on the Flying Chairs [Dosovitskiy et al. 2015] and Fly-

ing Things 3D [Mayer et al. 2016b] datasets) performs poorly in

the KITTI dataset [Geiger et al. 2012]. Consequently, we use the

FlowNet2model �netuned on a combination of the KITTI2012 [Geiger

et al. 2012] and KITTI2015 [Menze et al. 2015] training sets, FlowNet2-

ft-kitti, for extracting dense correspondence across frames. Due to

the challenging large forward motion in the driving videos, the �ow

estimations between temporally distant frames are not accurate. We

thus only sample pairs with more than 50% consistent �ow matches.

We use the Monodepth2 [Godard et al. 2019] as the base single-

image depth estimation network. We apply our �ne-tuning method

at the resolution of 384 × 112 over each sequence with a learning

rate of 4× 10−5 and _ = 1. Following the standard protocol [Godard

et al. 2017], we cap the depth to 80m and report the results using

the per-image median ground truth scaling alignment.

Table 5 presents the quantitative comparisons with the state-of-

the-art monocular depth estimation methods. Under this evaluation

setting, the results appear to show that our method does not pro-

vide an overall improvement over the baseline model Monodepth2

[Godard et al. 2019]. To investigate this issue, we show in Figure 8

the sorted error (Abs Rel) and accuracy (f < 1.1) metrics for all the

testing frames. The results show that our method indeed improves

the performance in more than 80% of the testing frames (even when

Table 3. �antitative comparison on the ScanNet dataset [Dai et al. 2017]

using the test split provided by Tang and Tan [2019].

Error metric ↓

Abs Rel Sq Rel RMSE RMSE log Sc Inv

DeMoN [2017] 0.231 0.520 0.761 0.289 0.284

BA-Net [2019] 0.161 0.092 0.346 0.214 0.184

DeepV2D (NYU) [2020] 0.080 0.018 0.223 0.109 0.105

DeepV2D (ScanNet) [2020] 0.057 0.010 0.168 0.080 0.077

MiDaS-v2 [2019] 0.208 0.318 0.742 0.246 0.239

Ours 0.073 0.037 0.217 0.105 0.103

compared with the model with a high-resolution outputs). How-

ever, as COLMAP produce erroneous pose estimates in sequences

with large dynamic objects in the scene, our �ne-tuning method

inevitably results in depth estimation with very large errors. Our

method also has di�culty in handling signi�cant dynamic scene

motion. As a result, our method does not achieve clear improvement

when the results are averaged over all the testing frames. Please see

the supplementary material for video result comparison.

6.5 Video-based Visual E�ects

Consistent video depth estimation enables interesting video-based

special e�ects. Fig. 9 showcases samples of these e�ects. Full video

results can be found in the supplementary material.

6.6 Limitations

There are several limitations and drawbacks of the proposed video

depth estimation method.

Poses Our method currently relies on COLMAP [Schonberger and

Frahm 2016] to estimate the camera pose from a monocular

video. In challenging scenarios, e.g., limited camera transla-

tion and motion blur, however, COLMAP may not be able

produce reliable sparse reconstruction and camera pose es-

timation. Large pose errors have a strong degrading e�ect

on our results. This limits the applicability of our method on

such videos. Integrating learning-based pose estimation (e.g.,

as in [Liu et al. 2019; Teed and Deng 2020]) with our approach

is an interesting future direction.

Dynamic motion Our method supports videos containing moder-

ate object motion. It breaks for extreme object motion.

Flow We rely on FlowNet2 [Ilg et al. 2017] to establish geomet-

ric constraints. Unreliable �ow is �ltered through forward-

backward consistency checks, but it might be by chance erro-

neous in a consistent way. In this case our method will fail to

produce correct depth. We tried using sparse �ow (subsam-

pling dense �ow on a regular grid), but it did not perform

well.

Speed As we extract geometric constraints using all the frames in

a video, we do not support online processing. For example,

our test-time training step takes about 40 minutes for a video

of 244 frames and 708 sampled �ow pairs. Developing online

and fast variants in the future will be important for practical

applications.

ACM Trans. Graph., Vol. 39, No. 4, Article 71. Publication date: July 2020.



Consistent Video Depth Estimation • 71:11

Table 4. �antitative comparison on the TUM-RGBD dataset (3D Object Reconstruction category) [Sturm et al. 2012b] in the disparity space. We report the

averaged results over 11 video sequences.

Error metric ↓ Accuracy metric ↑

Abs Rel Sq Rel RMSE RMSE log f < 1.25 f < 1.252 f < 1.253

Single-frame
Mannequin [2019] 0.306 0.101 0.244 0.385 0.569 0.772 0.885

MiDaS-v2 [2019] 0.220 0.061 0.187 0.292 0.665 0.861 0.945

Multi-frame

WSVD [2019a] 0.281 0.083 0.228 0.365 0.551 0.794 0.905

NeuralRGBD [2019] 0.615 0.365 0.392 0.661 0.361 0.571 0.710

Ours 0.144 0.036 0.144 0.211 0.785 0.934 0.979

Table 5. �antitative comparisons with existing methods on the KITTI benchmark dataset using the Eigne split. (Top): methods that produce full resolution

(1024 × 320) depth maps. (Bo�om): methods that produce low-resolution (384 × 112) depth maps. Note that for fair comparison, we align the depth results

from all the compared methods with per-image median ground truth scaling. Therefore, our reported numbers for Monodepth2 (1024 × 320) [2019] di�er

slightly from those in their paper where they use a constant scale for alignment.

Error metric ↓ Accuracy metric ↑

Abs Rel Sq Rel RMSE RMSE log f < 1.25 f < 1.252 f < 1.253

Zhou [2017] 0.183 1.595 6.709 0.270 0.734 0.902 0.959

GeoNet [2018] 0.149 1.060 5.567 0.226 0.796 0.935 0.975

DF-Net [2018] 0.150 1.124 5.507 0.223 0.806 0.933 0.973

Struct2depth [2019] 0.109 0.825 4.750 0.187 0.874 0.958 0.983

GLNet [2019b] 0.099 0.796 4.743 0.186 0.884 0.955 0.979

Monodepth2 (1024 × 320) [2019] 0.108 0.806 4.606 0.187 0.887 0.962 0.981

Monodepth2 (384 × 112) [2019] 0.128 1.040 5.216 0.207 0.849 0.951 0.978

Ours (384 × 112) 0.130 2.086 4.876 0.205 0.878 0.946 0.970

Input video Bouncing balls Disco Snow Water

Fig. 9. Our consistent depth estimation enables a wide range of fully-automated video-based visual e�ects. We refer the readers to the supplementary video.

7 CONCLUSIONS

We have presented a simple yet e�ective method for estimating

consistent depth from a monocular video. Our idea is to leverage

geometric constraints extracted using conventional multi-view re-

construction methods and use them to �ne-tune a pre-trained single-

image depth estimation network. Using our test-time �ne-tuning

strategy, our network learns to produce geometrically consistent

depth estimates across entire video. We conduct extensive quantita-

tive and qualitative evaluation. Our results show that our method

compares favorably against several state-of-the-art depth estima-

tion algorithms. Our consistent video depth estimation enables com-

pelling video-based visual e�ects.
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