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Abstract

We describe an efficient procedure for sampling representatives from a weighted set such that for

any weightings S and T , the probability that the two choose the same sample is equal to the Jaccard

similarity between them:

Pr[sample(S) = sample(T )] =

∑

x
min(S(x), T (x))

∑

x
max(S(x), T (x))

where sample(S) is a pair (x, y) with 0 < y ≤ S(x). The sampling process takes expected computation

linear in the number of non-zero weights in S, independent of the weights themselves.

Sampling computations of this form are commonly limited mainly by the required (pseudo) random-

ness, which must be carefully maintained and reproduced to provide the consistency properties. Whereas

previous approaches require randomness dependent on the sizes of the weights, we use an expected num-

ber of bits per weight independent of the values of the weights themselves.

Furthermore, we discuss and develop the implementation of our sampling schemes, reducing the

requisite computation and randomness substantially in practice.



1 Introduction

“Consistent sampling” refers to sampling processes with the property that, while producing an appropriate

distribution (perhaps uniform) over samples from an input set, the samples produced from differing input

sets are coupled, so that samples from similar sets are likely to be identical. The standard approach for

defining such a process, from [3], is to apply a random hash function to each element in a set and retain the

pre-image of the greatest resulting hash.1 The resulting sample from any set is uniformly distributed over

elements of that set, and the probability that two samples drawn from different sets S and T are equal is their

Jaccard similarity |S ∩ T |/|S ∪ T |. A typical application of consistent sampling is to efficiently estimate

the similarity of web pages (when viewed as sets of words, or possibly k-word phrases): the probability

of identical samples from two documents equals their Jaccard similarity as sets, and multiple independent

trials can be used to accurately estimate this quantity.

In many contexts we do not want to sample uniformly from the set, but rather in proportion to a set of

predetermined weights. In the example of web documents, we might consider applying some version of

term frequency normalization (eg: TF-IDF), where we weight terms by their frequency in the document,

and discount terms by their frequency in the corpus of all relevant documents. By selecting samples using

TF-IDF weights, we are more likely to select informative terms, arriving at a more accurate estimate for

semantic similarity when comparing the vectors of samples.

Traditional consistent sampling can be applied to non-uniform distributions by replicating each item

a number of times proportional to its weight, and tagging each replica with its ordinal position, so item

x with weight S(x) is replaced by S(x) items (x, 1), (x, 2), . . . , (x, S(x)). This introduces substantial

additional hash evaluations, linear in the weights, and constrains the weights to be integers (or, by scaling,

integer multiples of some smallest non-zero weight). When sampling uniformly and consistently from the

set of such pairs, the probability that two sets yield identical samples (both element and index) becomes the

following natural generalization of the Jaccard similarity:

Pr[sample(S) = sample(T )] =

∑

x min(S(x), T (x))
∑

x max(S(x), T (x))
.

Recently, [6] showed that the computational burden can be substantially eased, giving a sampling algo-

rithm that takes time proportional to the sum of the logarithms of the weights, assuming all weights are at

least one. Their approach is motivated by the understanding that for any x, relatively few of the pairs (x, y)
will be of interest: only those pairs whose hash value exceeds all preceding hash values, we will call them

“active pairs”, can ever possibly be returned as samples. Rather than iterate through all pairs (x, i), they

generate the sequence of active pairs: from one active pair (x, ij) with hash value hj , the number of pairs

until the hash value is improved follows a geometric distribution with mean 1/(1 − hj). The value of ij+1

can be sampled from this distribution, without considering the intervening hash values, and the value of

hj+1 is uniformly drawn from (hj , 1]. As the ij values grow exponentially in j, we arrive at the last element

for which ij ≤ S(x) when j = O(log(S(x))).
While this represents a substantial improvement over simple replication, the techniques of [6] are still

constrained by the required normalization (to a minimum of 1) and a logarithmic dependency on the nor-

malized weights. In essence, it can require per-candidate time proportional to the logarithm of the largest

ratio of weights. As weightings can go both up and down, sometimes substantially so, these average values

need not be negligible, as we describe later.

1It is perhaps more common to retain the pre-image of the least hash. We use the greatest hash because the mathematics simplify

somewhat, but the two are equivalent.
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We present a scheme for consistent weighted sampling taking expected constant time per non-zero

weight. The weights themselves can be arbitrary non-negative real values. As in [6], our approach em-

ulates the behavior of the replication approach, including the generalization to the continuous case. Unlike

[6], our process allows “random access” to the sequence of indices ij whose corresponding hash values

exceed those at all lesser indices. For an arbitrary weight S(x), we can leap directly to the relevant region of

the sequence and produce the appropriate representative index. Also, in contrast to [6], our scaling doesn’t

depend on a smallest weight, but instead is capable of producing a doubly-infinite sequence of indices ij ,

heading to zero or positive infinity as j heads to negative or positive infinity, respectively.

1.1 Applications

Consistent sampling raises many interesting theoretical and algorithmic questions, but also bears practical

relevance to many problems. We take a moment to survey several different settings, ranging from deeply

applied web processing to more theoretical contexts.

1.1.1 Similarity / Duplicate Detection

Many large corpora, noted first in web documents [3] and file-systems [12], are filled with content that

may be replicated multiple times, in whole or in part. As direct hashing of content will capture only ex-

act duplication, a common approach is to consistently sample from the set of n-grams in the document.

Locality-sensitive hashing [8, 4] generalizes the sampling techniques of the earlier papers, presenting a

general theory for estimating proximity.

Weighting features may be important if given a deeper understanding of the objects in the set. For

example, in web pages, a match in the title may be viewed as more significant than other matches. Words

or phrases might be sampled with probability that decreases with frequency in the corpus, as commonplace

terms or phrases may represent idiomatic or spurious duplication. Confidence scores may exist for parts of

the document that were unsuccessfully extracted, and may also suggest lower probability of selection. Each

of these reasons can skew the distribution from uniform, resulting in a modified Jaccard similarity score that

more accurately corresponds to duplication.

1.1.2 Mechanism Design

Mechanism design refers to the design of algorithms whose intended input is supplied by strategic players:

consider an auction, whose inputs are bids from interested parties. The players are assumed intelligent, and

willing to manipulate their inputs if they believe that doing so will lead to more appealing outcomes.

In recent work, [5] shows that mechanisms satisfying differential privacy, the property that no outputs

become substantially more or less likely as a result of any one player’s input, can be transformed to mecha-

nisms with the additional guarantee that with high probability, the output of the mechanism simply does not

change as a result of changes to any one player’s input.

Their transformation results from the application of consistent sampling to the distribution over out-

puts. Since the change in distribution caused by a single participant is relatively small, the similarity of

the distributions is nearly one, and consequently a consistent sampling scheme will, with high probability,

return identical answers. The implementation they propose is, unfortunately, limited by the fact that in these

constructions the probability densities vary exponentially, making the direct replication approach infeasible,

and the more recent logarithmic ascent approach of [6] super-linear.

1.1.3 Embeddings

As noted by Charikar [4], consistent sampling is closely related to the problem of rounding of the earthmover

linear program for the metric labeling problem [10]. In fact, one way to look at the Kleinberg-Tardos
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rounding for the metric labeling problem on uniform metrics is to note that the Jaccard distance, taken to

be one minus the Jaccard similarity, is a 2-approximation to the ℓ1 distance between norm 1 vectors, and

to observe that min-wise hashing gives an unbiased estimator for the Jaccard distance; this is exactly the

Kleinberg-Tardos algorithm. The rounding on earthmover linear programs is also used for approximating

other problems such as 0-extension [1] and the multiway uncut problem [11]. Moreover, Charikar [4] uses

consistent sampling to design fast sketching/streaming algorithms for similarity estimation. Our work now

gives an efficient implementation of the rounding algorithm.

Searching for nearest neighbors in the earthmover metric is an important problem and has been used

for image retrieval(see e.g. [9] and the references therein). Since consistent sampling gives an approximate

estimator for the earthmover distance between distributions, this leads to a fast approximate locality sensitive

hash function. This naturally leads to an efficient near neighbor search algorithm for such spaces.

1.2 Previous Work

The earliest applications of consistent sampling techniques were in examining file-systems, looking for

repeated segments of data, as described in [12, 7]. Independently, and roughly contemporaneously, Broder

et al. [3, 2] applied similarity techniques to a collection of web pages. All of these develop techniques for

selecting samples from files or documents in such a way that small edits are likely to result in small changes

to the set of samples. All of these papers cast sample selection as selection of hash values of features of the

underlying objects, but viewing this as selection of the pre-image of the chosen hash value leads to samples

which are elements of the objects in question.

In support of related goals, and coming from a background of dimension reduction, Indyk and Motwani

[8] investigated techniques looking not at sampling, but rather at vectors in high-dimensional spaces with

small angles between them. This line of research views the sampling techniques as a restricted class of

locality-sensitive hashing, a broader class in which the goal is to produce a family of hash functions such

that, averaged over the family, the similarity of two objects can be estimated by looking at the average

number of matching hash values. While this is also true of the sampling techniques, the hashes considered

in locality sensitive hashing often consider the vector as a whole, looking at hyperplanes to produce hash

bits by determining whether a vector and the normal vector to a hyperplane have positive inner product.

Note that the latter technique is very compatible with weighted inputs; the magnitude of the vector in

a given dimension can be the weight of that dimension, and smaller values will be less influential in the

inner product computation. The sample-based techniques also accomodated weighting, but at higher cost

(linear in the sum of the weights), and supporting only integer weights. This last restriction can be, to some

extent, bypassed by scaling, but this adds a multiplicative factor to the computational effort; in this scaling,

we replace feature f with weight w by w features f1, f2, ..., fw.

Recently, [6] improved on this by presenting an iterative algorithm for producing a sample, running

in time proportional to
∑

1 + log(wf ). It still requires the weights to be larger than some predetermined

minimum, most conveniently taken to be one. Scaling the weights in a set make it possible to choose

weights larger than one, but the samples chosen depend on the scaling. Thus, if the universe of weighted

sets is unknown, new sets may appear at a later time with weights smaller than the previously chosen scaling

factor. In this case, the samples chosen for the new weighting will not be comparable with previously chosen

samples. Our new algorithm, in contrast, avoids the logarithmic cost of the weights, and allows consistent

selection of samples even in the presence of arbitrarily small or large weights.
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2 Main Result

The sampling algorithm we develop will take in a non-empty weighted set S, where a weight S(x) is

associated with every x, and produce a representative sample of the form (x, y) where x is the selected

object, and y is a positive weight value that is at most S(x). The distribution over (x, y) will be uniform

over the pairs satisfying 0 < y ≤ S(x). That is, x is chosen with probability proportional to S(x), and

y uniformly between 0 and S(x). Note that elements in the universe but not in the set (i.e. elements with

weight 0) will never be chosen as samples. The sampling algorithm is also consistent, producing the same

sample from different sets with probability equal to the Jaccard similarity. Finally, the sampling algorithm

does so in expected time linear in the number of positive weights, whose only dependence on the values of

the weights comes from the assumption that operations such as log take unit time.

Before presenting the specifics of the algorithm, we establish two necessary and sufficient conditions for

a sampling process to yield the Jaccard similarity as the probability of sample collision:

1. Uniformity: The sample (x, y) is distributed uniformly over the pairs satisfying y ≤ S(x).

2. Consistency: If T (w) ≤ S(w) for all w, then whenever (x, y) satisfying y < T (x) is sampled from

S, (x, y) is also sampled from T .

Lemma 1 For any uniform and consistent sampling scheme,

Pr[sample(S) = sample(T )] =

∑

x min(S(x), T (x))
∑

x max(S(x), T (x))
.

Proof: Consider weights R(x) = max(S(x), T (x)). By consistency, samples from S and T coincide when

the sample (x, y) from R satisfies y ≤ min(S(x), T (x)). By uniformity, this happens with the stated

probability.

2.1 Algorithm Definition

Our sampling algorithm is composed of two steps: for each element x with non-zero weight, we choose a

representative (x, y) satisfying y ≤ S(x). Secondly, for each representative (x, y) we produce a hash value

h(x, y), and report the pair with the greatest hash value.

2.1.1 Index Production

As done in [6], we will produce the sequence of “active” indices, those whose hash values exceed the hash

values of any lesser index. The chosen y value for x will then be the greatest active index below S(x).
Unlike [6], our sequence will extend infinitely in both directions, towards 0 as well as ∞, and will allow

effective random access to any region of the sequence.

The main property we leverage is that the distribution over active indices in any interval is independent

from the distribution over active indices in a disjoint interval. We will decompose (0,∞) into intervals of

the form (2k−1, 2k], and determine which indices are active in each interval independently, using pseudo-

randomness whose seed depends in part on k. Using such a scheme, we can leap directly to any such interval

and explore the active indices therein. In the following algorithm, salt is a string used as part of the seed of

the random number generator.

The following code fragment outputs the active indices in the interval (2k−1, 2k]:

GenerateSamples(x, k, salt)
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1. random.seed(x, k, salt);

2. sample = 2k * random.uniform(0.0, 1.0);

3. while (sample > 2k−1)

(a) record(sample);

(b) sample = sample * random.uniform(0.0, 1.0);

The collection of these descending sequences will conceptually form the full sequence, though we have

effective random access to any point in the sequence. We can use GenerateSamples to determine the values

immediately above or below any weight S(x) by computing ⌈log(S(x))⌉ and exploring the subsequences

in intervals up or down until we find a suitable element. Importantly, when determining the active indices

in another interval we do not fall through from the computation of a prior interval, but always restart the

computation using a new invocation of GenerateSamples with the appropriate new value of k. This ensures

that all computations have a consistent view of the active indices in each interval, independent of their

history and prior consumption of randomness.

As each interval is non-empty with probability exactly 1/2 and of constant expected length, we can

determine the greatest value y ≤ S(x) and the least value z > S(x) in expected constant time. We will

refer to this process (not formally stated) as ActiveIndices(x, S(x), salt).

2.1.2 Hash Production

The hash value we produce should be independent of y, but nonetheless consistent. An excellent source

of randomness will be the least active value z > S(x), which is consistent (any weight S(x) immediately

above y is necessarily immediately below z) and independent from y, once conditioned on S(x). From

z we define and sample from the following carefully chosen cumulative density function over hash values

a ∈ [0, 1]:

cdfz(a) = az + azz ln(1/a) . (1)

To produce a hash value from cdfz , we choose a value βx uniformly at random from [0, 1], and set h(x, y) =
cdf−1

z (βx), which we can find using binary search as cdfz is monotone. Importantly, the value βx is chosen

from a pseudo-random source whose seed depends on x, but not S(x), y, or z.

Relying on the density derivation proved below in Section ??, the distribution (1) is used because it has

the property that for any S(x), when we integrate cdfz over the possible values z > S(x) using the density

S(x)/z2, derived below, we arrive at the following cumulative density function over hash values a ∈ [0, 1]:

S(x)

∫ ∞

S(x)

(

az/z2 + az ln(1/a)/z
)

dz = aS(x) . (2)

This is appealing, as aS(x) is the cumulative density function of the maximum of S(x) independent random

values between 0 and 1. Drawing hash values from this distribution for each x and then selecting the x with

the largest hash properly emulates the replication process.

We write FS(x)(a) = aS(x) for the cumulative density function over hash values described in (2), and

write fS(x)(a) = S(x)aS(x)−1 for the probability density function associated with FS(x).

5



2.1.3 Algorithm

Based on the previously described structure (and again using salt to distinguish different members of the

family of sampling functions and different uses of randomness), the pseudo-code for our sampling algorithm

looks as follows:

ConsistentSample(weights S, salt)

1. hmax = 0; xmax = null; ymax = 0;

2. foreach (x : nonzero S(x))

(a) random.seed(x, salt);

(b) β = random.uniform(0.0, 1.0);

(c) (y, z) = ActiveIndices(x, S(x), salt);

(d) Compute h = cdf−1
z (β) via binary search;

(e) If (h > hmax)

{hmax = h; xmax = x; ymax = y;}

3. Return the sample (xmax, ymax)

As mentioned previously, ActiveIndices uses GenerateSamples to produce the greatest active index

y ≤ S(x) and least active index z > S(x). GenerateSamples is used to investigate the active indices in the

power-of-two interval containing S(x), as well as adjacent intervals as needed.

2.2 Proof of Correctness

As noted previously, the two important features we need to establish are uniformity and consistency.

Uniformity is established in two parts: by proving that y is uniform in [0, S(x)] and that x is selected

with probability proportional to S(x). Uniformity of y follows from our construction of the sequence of

active values; each active index is uniformly distributed between zero and the next active index. For any

weight S(x), the sampled index y is uniformly distributed over [0, z], and, conditioned on being at most

S(x), uniformly distributed over [0, S(x)].
The specific non-uniformity of x follows from the independence of the hash values and nature of their

distributions. Formally, the probability that x is selected is the integral over possible values a from 0 to 1
of the density fS(x)(a) that a is chosen as the hash, times the probability that every other term x′ chooses a

lesser hash,
∏

x′ 6=x FS(x′)(a):

Pr[hash(x) > max
x′ 6=x

(hash(x′))] =

∫ 1

0

(

fS(x)(a)
∏

x′ 6=x

FS(x′)(a)

)

da . (3)

Substituting the definition of FS(x′)(a) and fS(x)(a), multiplying out, and intergrating, we get

∫ 1

0

(

S(x)aS(x)−1
∏

x′ 6=x

aS(x′)

)

da = S(x)

∫ 1

0

(

a
P

x′
S(x′)−1

)

da = S(x)/
∑

x′

S(x′) . (4)

This final probability is exactly what we seek: x selected with probability proportional to S(x).
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Consistency is established as follows: For any S and T with S(w) ≥ T (w) for all w, if (x, y) is

selected by S and T (x) > y, then (x, y) will be considered by T , with the same hash value, against other

representative elements whose hash values are at most those of the other elements considered by S, all of

which are less than h(x, y). This last point is subtle, and only holds because of the consistent use of βx for

each x, and the fact that cdf−1
z (βx) strictly decreases with increasing z.

2.3 Integral Counts and Representatives

In the case of integral counts, the mathematics and their derivations are perhaps a bit more clear. We take a

moment to describe the derivations in the integral case, and show that the limit of the integral case achieves

the continuous mathematics.

First, the density at any integral value z is exactly S(x)/(z(z − 1)). This follows from direct computa-

tion: an index z′ is active with probability 1/z′, and for an index z to be the least active index above S(x),
it must be active, and each element in between must be inactive. These two events lead to the probability

1/z ×
∏

S(x)<z′<z

(1 − 1/z′) = S(x)/(z(z − 1)) (5)

Consequently, we would like to use a cumulative density function that when integrated using these

probabilities, over z from S(x) to infinity, lead to the cumulative density function aS(x). The appropriate

cdfz function turns out to be:

cdfz(a) = zaz−1 − (z − 1)az . (6)

Remark: We should point out that the continuous case can easily emulate the integral case, simply taking

any output samples of the form (x, y) and rounding y upwards to the nearest integer. Assuming S(x) is

integral, the rounded y values are uniformly distributed and the representatives x chosen with the correct

probability owing to the correctness of the continuous approach. Likewise, we could use the integral math-

ematics to derive the continuous form, by discritizing the real line, and taking the limit as the the interval

widths go to zero.

3 Implementation Enhancements

Algorithms for sampling are aimed at accelerating interaction with sets, and it is natural to try to squeeze

as much performance out of a sampling algorithm as is possible. A direct implementation of the algorithm

as described consumes a fixed, but substantial, amount of computational resources. Notably, the production

of random bits is expensive, and the inversion of cdfz seems to require a numerical, rather than analytic,

approach.

Consequently, we now describe several implementation details that can be used to accelerate the pro-

duction of samples, to use randomness more carefully, to avoid unnecessary computation, and to amortize

certain resources across parallel sampling instances. We measure the impact of these decisions on synthetic

sets of varying length with uniform weights. In all cases, non-uniform weights improve performance when

the representation is first sorted in decreasing order of weights.

3.1 Deferred Evaluation of y

Determining which sample x is to be returned does not actually require the determination of which value y
will accompany it, but rather only requires the value z. Consequently, we can defer the determination of y
until we have determined x and are ready to return.
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3.2 Avoiding Numerical Inversion

We define the hash value h(x, y) as the pre-image of a uniformly random value β under the somewhat

messy density function cdfz . We are not aware of a way to easily invert the density function, and instead

exploit the monotonicity of the cumulative density function to perform binary search over the hash values.

Searching to a sufficient degree of accuracy is expensive, and as we do it for each term it quickly becomes

the computational bottleneck.

However, we do not actually need to compute a hash value for every x, we only need to determine which

x has the best value. Rather than compute and compare cdf−1
z (β) to the best hash h seen so far, we can

exploit the monotonicity of cdfz , which implies

cdf−1
z (β) > h iff β > cdfz(h) . (7)

Using this test, we can efficiently determine if we need to compute cdf−1
z (β) before actually doing so. This

reduces the number of numerical inversions to the number of times the best sample changes in the course of

processing the document.
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Figure 1: Number of Numerical Inversions and Approximate z Schemes

We see in Figure 1 the number of numerical inversions we conduct as a function of set size. The experi-

ments confirm mathematical intuition that the number of inversions should be logarithmic in the length: with

uniform weights, the probability that term i needs to be inverted is 1/i, and the sum of these terms forms

the harmonic sequence, approximately ln(n) for length n documents. For sets with non-uniform weights,

we will see fewer inversions if the weights are processed in decreasing order, since heavier set elements are

more likely to be selected and to have large synthesized hash values.

3.3 Use of Randomness

As an alternate approach to explicitly investigating each interval (2k−1, 2k] to see if it is non-empty, which

happens with probability exactly 1/2, we could produce a bit vector whose kth bit indicates non-emptiness

of the sequence in that interval. By examining this bit vector, we could determine which values of k merit a

call to GenerateSamples, saving ourselves the trouble of exploring empty intervals. The GenerateSamples

method will of course need modification to ensure that whenever it is invoked it produces at least one sample,

as promised, which we can do by setting the first bit of the first uniform random number.
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Even more cleverly, we can steal this first bit, capturing it rather than setting it, and using it for the first

bit in the next sample, warning us that the coming value will fall below 2k−1 before we even produce the

value. Doing likewise with each subsequent sample, we avoid producing many of the random variables that

we do not need.

3.4 Partial Evaluation of z

In subsection 3.3 we described the use of a bit vector, from which we can determine the highest interval

(2k−1, 2k] in which z could lie, followed by a call to GenerateSamples to determine where in the interval

it would land. We can view these two steps as producing the exponent and mantissa of z separately. In light

of subsection 3.2, and by virtue of the monotonicity of cdfz with respect to z, we can avoid computation of

the mantissa if we can determine that even the largest possible value of z would not compare favorably to

our current best hash h. We simply compare β against cdf2k(h), and only evaluate the mantissa if β is the

larger.

Figure 1 plots the number of times that we need to fully evaluate the mantissa of z given only β and the

exponent field of z. Knowing z up to a power of two is sufficient to rule out most of the candidates without

computing the mantissa, thereby saving a substantial amount of computation.

Remark: It is important that the upper bound we use for z is determined by the first active bit in the exponent

bitvector that is strictly beyond the one associated with S(x). Even though z may live in this interval when

we investigate it, we can not rule out the possibility that all the elements in the interval are less than S(x).

3.5 Parallel Sampling

When we are trying to produce many samples in parallel, we require many β values and many z values. We

do not necessarily need to evaluate each β and z fully, and rather than generating a large number of fully

formed β and z values, we can carefully parcel out the randomness in small amounts to each of the parallel

instances, providing each β and z with enough randomness to quickly rule out those x that will not lead

to viable samples. We can produce additional randomness for those β and z values that may lead to viable

samples, which we hope happens infrequently.

Having discussed an approximation for z in Section 3.4, we now discuss two examples for approxima-

tions to β. For the first scheme, we chose to take 8 bits of randomness for each sample, with 128 bits leading

to 16 parallel samples. The second, adaptive scheme takes the same 128 bits and reads out β values by

proceeding through the bits, and emitting a number when it first sees a zero. That is, it takes the sequence

10110100 and outputs 10, 110, 10, and 0. This has the advantage of terminating early on samples that are

unlikely to be close to one, and continuing deeply into those that are.

We now compare these two schemes, measuring the number of times that we need to produce additional

randomness as a function of the document length. We use synthetic sets which have weight one for each

“term” in the document. Non-uniformity in the weights, if the document is sorted by decreasing weights,

would only help, as subsequent terms are even less likely to be viable.

In Figure 2 we measure (from bottom to top) the number of times the maximum hash value changes, as

a lower limit on the times we must fully evaluate β and z, the number of times that a fully formed β would

be viable, given that we are not fully computing z, as a lower limit on the possible culling that approximate

β values might produce, followed by the adaptive and oblivious schemes.

Notice that initially, the oblivious scheme outperforms the adaptive scheme, due to its larger number

of bits. However, as the document sizes increase, the adaptive scheme begins to gain ground, due to its

ability to investigate beyond the first 8 if needed. The oblivious scheme can only cull at most 255/256 of

the elements, as a value of 11111111 will always be viable. Looking farther out, we see quite clearly that
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Figure 2: Approximate β Schemes

the oblivious scheme loses out to the adaptive scheme.

3.6 Numerical Accuracy

The skeptical reader may have already noted that the cdfz function we use tends to produce terribly small

values, raising its input a to very large powers. For large z, we must take h very nearly one to prevent cdfz(h)
from vanishing, roughly 1−1/z, but floating point numbers do not excel at maintaining high precision away

from zero. While not a problem for most z, we do expect to see rather large values infrequently, as z has

infinite expectation.

Fortunately, these problems can be ameliorated with careful mathematical manipulation. Rather than

solving for h = cdf−1
z (β), with its numerical imprecision, we can solve for hz using its density function:

cdf(az) = az(1 − ln(az)) . (8)

Having computed hz = cdf−1(β), we could either raise it to the power 1/z, which returns us to the realm

of numerical inaccuracy, or simply compute log(hz)/z, which accurately represents log(h), and which as a

monotone function of h is sufficient for comparisons between two hash values.

Going to an extreme, in applications like mechanism design [5, 13], where the weights are exponentially

sized and only stored as their logarithms, we would like to avoid even representing z, producing and com-

puting with log(z). This is not hard to do as z is produced in an exponent and mantissa form, corresponding

to the integral and fractional components of its logarithm. Rather than compare ln(hz)/z values, we take

another logarithm, computing and comparing values of

log(log(1/hz)) − log(z) = log(log(1/h)) , (9)

which, by monotonicity, lets us compare h values indirectly.

4 Concluding Remarks

We described an algorithm for consistent sampling that takes a constant amount of computation and random-

ness for each non-zero weight that it sees. This improves on previous work, whose running time depended

on the values of the weights, and for which a lower bound is assumed.
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Additionally, we have developed and enhanced the implementation of the algorithm, reducing the num-

ber of numerical inversions to logarithmic in document length, and the amount of randomness per weight in

expectation, in the limit. These optimizations are supported by empirical measurements of the efficacy.
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