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METHODOLOGY ARTICLE Open Access

ConSole: using modularity of Contact maps to
locate Solenoid domains in protein structures
Thomas Hrabe and Adam Godzik*

Abstract

Background: Periodic proteins, characterized by the presence of multiple repeats of short motifs, form an interesting
and seldom-studied group. Due to often extreme divergence in sequence, detection and analysis of such motifs is
performed more reliably on the structural level. Yet, few algorithms have been developed for the detection and analysis
of structures of periodic proteins.

Results: ConSole recognizes modularity in protein contact maps, allowing for precise identification of repeats in solenoid
protein structures, an important subgroup of periodic proteins. Tests on benchmarks show that ConSole has higher
recognition accuracy as compared to Raphael, the only other publicly available solenoid structure detection tool. As
a next step of ConSole analysis, we show how detection of solenoid repeats in structures can be used to improve
sequence recognition of these motifs and to detect subtle irregularities of repeat lengths in three solenoid protein families.

Conclusions: The ConSole algorithm provides a fast and accurate tool to recognize solenoid protein structures as a whole
and to identify individual solenoid repeat units from a structure. ConSole is available as a web-based, interactive server and is
available for download at http://console.sanfordburnham.org.

Keywords: Protein repeat detection, Solenoid structure, Contact map, Template matching, Machine learning

Background
Current estimates suggest that approximately 30% of hu-

man proteins contain multiple repeats of short motifs and

could be classified as “periodic proteins” [1]. In many cases,

proteins with such motifs fold into three-dimensional struc-

tures resembling solenoids (Greek solen (pipe) eidos (form))

and thus are called solenoid or solenoid-like proteins. A

well-known example of solenoid proteins are Leucine Rich

Repeats (LRRs) present in the innate immunity or receptors

(NLR or TLR, respectively) and in thousands of other

proteins with various other functions and extremely vari-

able consensus sequences [2]. Other examples include

Ankyrin repeats involved in various protein–protein in-

teractions and Armadillo repeats that, together with

other homologous classes, such as HEAT repeats, form

helical solenoids and are found in proteins involved in

cell adhesion [3,4].

Solenoid proteins evolved by a series of duplications of

an ancestral motif, but the precise order of duplications is

often unknown and may differ between and sometimes

even within families. Accumulated mutations, deletions,

and insertions lead to increasing divergence between indi-

vidual repeats. For many proteins, this divergence can be

quite extreme with almost no sequence similarity between

individual copies of the ancestral motif [5]. As a result, so-

lenoid repeats are often difficult to recognize in sequence,

for instance Pfam Hidden Markov Models recognize less

than half of the repeats in NLR and TLR proteins. Hence,

automated detection of subtle motif variations from se-

quence is often impossible.

Because protein structures tend to be more conserved

than sequences, similarity is retained on the structural level

and recognition of the repeats is thus easier [6]. Still, re-

peats have significant variations of length and shape, mak-

ing the precise recognition of individual solenoid units

highly nontrivial. For instance, in LRR proteins the length

of the individual repeats varies between 18 and 34, and not

a single position, including the leucines forming the telltale

pattern, is universally conserved in all repeats. The local di-

vergence of the motifs has consequences on the global-

structure level. In LRR proteins, the curvature of the entire

domain varies from an ideal curvature in Ribonuclease In-

hibitors (RIs) or NLRs [7] to an irregular curvature of TLRs
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[8], with consequences for the binding properties within

the inner cavity of the protein.

Detection of repeats in proteins, both on the sequence

and structure level, has gained importance as structures of

more proteins with solenoid repeats have become known.

Almost simultaneously, the sensitivity of sequence-based

recognition has improved. Both these trends resulted in

better appreciation of the relative number of proteins with

repeats and the importance of the detection problem.

Various detection algorithms of repeated motifs in protein

sequences have been developed, with Gibbs sampling [9]

and RADAR [10] as some of the first, and many others

have followed [11,12]. Some of them are focused specific-

ally on solenoid repeats in which Fourier-based analysis

seems to produce the best results [13,14].

To the best of our knowledge, only four detectors of re-

petitive units in protein structures have been described in

literature: (i) DAVROS [15] was probably the first method

for this task, with detection based on a self-alignment

matrix, (ii) ProStrip [16] performs repeat detection based on

the Cα backbone angles, (iii) Raphael [6] is specifically de-

voted to the detection of solenoid repeats and is based on

repeated Fourier analysis of Cα coordinates with appended

machine-learning classification, and (iv) a hierarchical ap-

proach based on successive bisection of the structure into

tiles for self-alignment [17]. Raphael is the best solenoid

classifier to date as it significantly exceeds solenoid detection

performance of sequence-based methods, while the hier-

archical structural analysis from [17] is the most versatile ap-

proach to detect all possible types of structural repeats.

Here we present ConSole, a new method to determine the

presence and specific positions of individual solenoid repeat

units within protein structures. Template matching, a popu-

lar image-processing procedure, applied to contact maps de-

termines whether individual residues are part of a solenoid

domain or part of a non-solenoid segment. This approach is

further generalized to classify whether a whole protein struc-

ture under scrutiny is solenoid or non-solenoid. ConSole is

assessed on a benchmark dataset and directly compared to

Raphael, the only publicly available solenoid detection algo-

rithm. We furthermore demonstrate how accurate detection

and subsequent structural alignment of solenoid units can

be used to automatically retrieve the solenoid sequence

motif from structure. Finally, as an example of a large-scale

analysis enabled by the development of the ConSole algo-

rithm, we analyze the length distribution of solenoid units in

a large number of solenoid-like protein structures to auto-

matically detect subtle variations of solenoid units in three

solenoid protein families.

Methods

Pattern of solenoid units in contact maps

Contact maps (CMs) provide a simple but powerful

means for protein structure comparison and alignment

[18,19], prediction [20,21] and visualization of protein

structural features [22]. Here we show how CMs can be

used to identify solenoid proteins and to calculate lengths

of individual units, even for very divergent repeats.

Below, we briefly specify the contact map definition

used here and explain how solenoid unit lengths are esti-

mated. Specifically, we define sidechains of residue i and
j of all N residues to be in contact if the distance of any

pair of their heavy atoms ai, aj is below a specified

threshold:

c i; jð Þ: ai−aj
�

�

�

�≤ t ð1Þ

We use the distance threshold of t = 4.5 Å, following
our earlier applications of contact maps [23], and assign

a value of 1 (True) or 0 (False) to each of the N ×N posi-

tions on the map. As expected, structural repeats in pro-

tein structures correspond to repeating patterns in the

CM. The most striking feature of CMs for solenoid pro-

tein structures is an almost continuous line d2 of con-

tacts running parallel to the main diagonal d1. The

presence of a point on d2 indicates that a residue from

one solenoid unit is in contact with a residue in the

neighboring units (Figure 1). We also tested other con-

tact definitions (Cα, Cβ), but they did not reveal alternative

significant features in the maps for solenoid detection

other than d2.
We define λ as the average repeat length in a solenoid

protein structure. In contact maps, the distance between

d1 and d2 is related to the repeat length by a formula

λ = | d1 - d2 |. Because contacts are aligned along the

main diagonal in the CM, we have to iterate along d1 in
order to determine the most frequent contact length:

λ ¼ argmax60n¼6

XN

i¼0
c i; i þ nð Þ ð2Þ

Argmax returns the argument with the maximum

value of a function. Sampling the complete CM to obtain λ

is not required since λ is expected to be in the interval

[6; 60] of potentially contacting residues. These boundaries

are based on the fact that contacts shorter than 6 residues

are within the α-helical contact range and that solenoid

unit lengths beyond 60 residues are virtually nonexistent

[1]. Lengths of solenoid repeats are typically in the [12; 45]
interval. Repeat lengths λi of individual solenoids unit span-

ning over a short segment [i; i + λi] can also be calculated

when the detection in equation 2 is confined to [i; i + λ].

Rule-based classification of solenoids vs. non-solenoids

In many solenoid proteins, regular repeats are inter-

rupted by insertions that are not part of the solenoid.

We developed a rule-based classifier analyzing only con-

tact information to detect whether a residue is or is not

a part of a solenoid unit. It mimics a human approach
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on detecting solenoid units in contact maps. This classi-

fier is based on sampling each line in the contact map

for each residue i, starting at the main diagonal [i,i] for
each sample. The first step toward determining whether

residue i is or is not part of the solenoid unit was to find

gaps within d2. Gaps in d2 indicate insertions where the

given segment does not interact with the next turn of

the solenoid. We defined significant contact gaps to be

at least 5 residues long, without any upper margin. A

gap starting at residue i is defined as:

¬gap ið Þ ¼ if ∀j∈ i; i þ 5½ �; ∀k ∈ j þ 6; j þ 60½ �: c j; kð Þ

ð3Þ

In order to identify solenoid units with variable

lengths, we iterate over the CM and analyze each residue

i and the following residues within a window I = [i; i + λ].
We assign a solenoid unit starting at residue i by:

¬solenoid ið Þ¼ if ∀j∈ I : gap jð Þ ∧ 0:5⋅λ ≤ λi ≤ 2 ⋅ λ

ð4Þ

Then, we reassess each solenoid unit by determining

the individual unit length λi with equation 2. We anno-

tate a solenoid unit starting at i and ending at i + λi if

solenoid(i) is true. The algorithm then continues at

i = i + λi + 1. If solenoid(i) is false, however, we continue

either at i = i + 1 or at the end of a gap.

Template matching and SVM-based classification of solenoids

vs. non-solenoids

The core algorithm implemented in ConSole is based on

image-processing methods to detect solenoids and non-

solenoid regions in protein structures. For this, we apply

a template-matching algorithm to the contact map and

classify the resulting scores with a trained Support Vec-

tor Machine (SVM).

Template matching in a contact map

Template matching (TM) is a popular image-processing

technique allowing one to find specific patterns (P) in

images (I) or other multidimensional data. A standard

approach in TM is to use normalized cross correlation

(NCC) in order to find potential areas resembling the

searched pattern P. I and P must not necessarily match

in size. Moreover, it is rather common that P is signifi-

cantly smaller than I with accurate normalization ac-

counting for the size difference. The NCC is typically

defined as:

NCC I; Sð Þx; y ¼

X

i; j
Si; j − �S
� �

Ix þ i; y þ j − �I x; y
� �

σS σ Ix; y

ð5Þ

where �S is the mean and σS the standard deviation of S;

�I x; y is the mean and σ Ix; y the standard deviation of a

region around x, y in I with the same size as S. NCC

returns a matrix containing correlation coefficients in

the range of [−1; 1]. A result of 1 indicates a perfect

match, 0 indicates no similarity, and −1 indicates inverse

similarity [24].

Images and CMs are usually represented as a matrix of

N ×M pixels, and, hence, NCC can be used to localize

Figure 1 Contact maps of solenoid protein structures. Contact

maps of two solenoid protein structures. A line d2, parallel to the
main diagonal, is clearly visible in both CMs. d2 is almost fully continuous

for the highly regular Ribonuclease Inhibitor (1DFJ—Chain I) and has
some gaps in the Clathrin structure (1B89—Chain A), reflecting more
variable interaction patterns between helices.
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any kind of pattern within a CM. In order to determine

whether a residue is part of a solenoid or not, two patterns

are correlated with the structure’s CM: (i) one pattern

representing the typical solenoid contact pattern with two

parallel diagonals, resulting in a correlation matrix M1 and

(ii) one pattern with only one main diagonal for non-

solenoids, resulting in a correlation matrix M2 (Figure 2).

Both patterns are generated dynamically at runtime.

The pattern size in the x and y dimensions are set to 2λ

in order to accommodate d2 fully in the solenoid pat-

tern. This way, both patterns used in the analysis are

adapted to the specific solenoid length of the given

structure.

Support vector classification of correlation features

The Support Vector Machine is a machine-learning

method used for supervised classification in many com-

putational disciplines [25]. It is especially renowned for

Figure 2 Solenoid contact patterns. (a) The correlation matrix M1 determined for template matching the contact map of PDB 1DFJ-Chain I

determined with the solenoid pattern (b). Bright regions indicate high correlation values [0;1], while dark regions indicate low [−1; 0] correlation
values. (b) The solenoid pattern to generate M1 and (c) the non-solenoid pattern to generate M2 used for template matching. (d) Plot of the
correlation coefficients determined for residue 75 in chain I of 1DFJ. Twenty correlation coefficients were collected around the main diagonal

[(75,55); (75,95)] from M1 and merged with 20 coefficients from M2 from the same positions. (e) Coefficients determined for residue 81 in chain B
of the globular structure from 1QGC. Correlation features determined for solenoid residues have smoother profiles compared to rather noisy features

of globular proteins. Peak correlation values also differ for the solenoid/non-solenoid combinations, respectively.
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being able to classify multidimensional data while main-

taining a low error rate based on its maximum margin

hyper-plane determined during training.

In ConSole, we make use of the SVM to assign residues

to solenoid or non-solenoid classes according to their pre-

viously determined correlation coefficients. We therefore

collect correlation coefficients around the main diagonal

from the NCC results as shown in Figure 2. Feature vec-

tors are generated by concatenating 20 correlation coeffi-

cients from M1 with 20 correlation coefficients from M2

(Figure 2). All coefficients were extracted from their re-

spective matrices at the positions [(i,i – 10);(i,i + 10)]. Vis-
ual inspection of the feature vectors clearly indicated

significant differences between both correlation features

for the same CM regions. We observed smooth correlation

peaks for solenoid segments while correlation features of

globular proteins had rather noisy shapes. Conclusively,

the shape of the correlation peaks provides a characteristic

feature for automated classification. Class labels were avail-

able from the corresponding benchmark annotation and

assigned to each feature vector prior to SVM training.

Final classification of structures

In order to compare classification results to the results in

literature, we extend classification of individual residues

and repeats to the level of complete structures using a

simple threshold measure. If the ratio of the total number

of residues classified as being in solenoid units to the

number of all residues exceeds the threshold value, the

whole structure is classified to be a solenoid (Equation 6):

solenoid structureð Þ ¼
# solenoids
# residues

≥ t ð6Þ

Setting the t value to 0.5 provided the best agreement

with benchmark results. A detailed assessment of diffe-

rent t values is presented in the Additional file 1.

Detection of solenoid sequence-motifs by solenoid unit

alignment

We extended the solenoid detection algorithm with an

automated feature to recognize individual solenoid mo-

tifs. It is based on the local λi value where units include

all residues with the indexes in [i; i + λi -1]. We extend

the usage of equation 6 to measure the quality of each

solenoid unit and accept units as being solenoids only if

their solenoid abundance solenoid([i; i + λi -1]) is larger

than 0.75. If solenoid([i; i + λi -1]) < 0.75 we continue

with the next residue i + 1. This condition prevents be-

ginnings or ends of non-solenoid regions from contrib-

uting to the motif detection.

In order to improve identification of consensus motifs,

we perform structural alignment of all units using rigid

alignment in the FATCAT [26] and POSA [27] pipeline.

We extract the common core determined by POSA to

build a sequence alignment from the respective common

core overlaps [28]. Finally, we use Weblogo to visualize

the consensus motif [29] for the repeat.

Solenoid benchmark data

We used a previously published test dataset to assess the

accuracy of ConSole. This dataset was originally estab-

lished for testing sequence repeat detectors [13] and has

since been used as a benchmark for both sequence [14]

and structure based repeat detectors [6].

The benchmark comprises 105 solenoid structures for

which λ, solenoid and non-solenoid residues, have been

manually annotated. A total of 247 non-solenoid struc-

tures were also included in this dataset to provide a large

variety of non-solenoid samples. The dataset contains

80,347 residues in total, out of which 19,197 were anno-

tated as being part of solenoid repeats.

Implementation

All the algorithms described here were implemented in

Python, utilizing additional packages such as Biopython

[30] for accessing PDB files, PyTom [31] for correlation

functions and parallel processing on multiple CPUs, and

Scikit [32] to interface with the machine-learning algo-

rithms. The algorithm used on the server is also avail-

able for download from the server page http://console.

sanfordburnham.org. Residue classification results are

available in XML format containing solenoid unit boun-

daries for further analysis.

Results and discussion

Figures of merit

Based on the benchmark dataset, we were able to use

annotations of (i) solenoid repeat lengths to evaluate so-

lenoid length detection and (ii) predefined residue labels

to evaluate classification results. Hence, we were able to

determine true-positive (TP), true-negative (TN),

false-positive (FP), and false-negative (FN) rates. Fur-

thermore, sensitivity : TP
TP þ FN; precision: TP

TP þ FN and

accuracy : TP þ TN
TP þ FP þ FN þ TN were determined for the so-

lenoid and the non-solenoid class, respectively. Our

final figure of merit for all algorithms was the Matthews

correlation coefficient [33]:

TP � TN − FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ
p

Solenoid unit length estimates

The fidelity of our solenoid detector was tested on each

structure from the benchmark dataset. Each automatic-

ally detected λ was compared to the manually annotated

value. The accuracy was determined to a mean standard

Hrabe and Godzik BMC Bioinformatics 2014, 15:119 Page 5 of 11

http://www.biomedcentral.com/1471-2105/15/119

http://console.sanfordburnham.org
http://console.sanfordburnham.org


deviation of 2.6 residues. The original annotators postu-

late that an error tolerance of up to 5 residues is accept-

able for structural solenoid detectors [6], so the accuracy

of our method is well within the tolerance level.

Assessing automated solenoid classification

First, classification of residues to the solenoid or non-

solenoid class was assessed for a random classifier. The

underlying random distribution was adjusted to the dis-

tribution in the benchmark annotation of all residues,

resulting in a distribution such that ~23% of all residues

were annotated as solenoids while the remaining ~77%

were non-solenoid residues.

A total of 80,347 random draws from this distribution

were used to calculate the baseline performance for both

of our classifiers. In the random assignments, an average

of ~63% of all residues were assigned correctly while ~37%

were false assignments. More precisely, 4,515 solenoids and

46,695 non-solenoids were predicted correctly. The MCC

of the random residue classification was ~0.008. Extending

this random assignment with equation 6 and t = 0.33 or

t = 0.5 to the level of whole structures failed to detect any

solenoid structure correctly.

Next, we assessed the classification fidelity of our rule-

based classifier (Table 1). This classifier showed rela-

tively high sensitivity and precision for solenoid residues.

However, results for non-solenoid residues were low,

resulting in an MCC of 0.11. Extending solenoid classifi-

cation with equation 6 and t = 0.5 to the whole structure

level revealed an MCC = 0.46.

Finally, the classification fidelity of ConSole was deter-

mined at both the residue and whole-structure level

(Table 1). Consistent with previous studies, a leave-one-

out cross validation of the classifier was performed: all fea-

tures from one structure were excluded for SVM training,

and this structure was scrutinized [6]. Results of this cross

validation determined the Matthews correlation coefficient

for the residue classification to be 0.59. Figure 3 shows

classification results of four selected structures, while all

results on the benchmark data are visualized online. De-

tails on the SVM training parameters and our trials with

other classifiers (pure SVM contact classification, Decis-

ion Tree correlation classification) are provided in the

Additional file 1.

In order to compare ConSole classification to other

methods, we generalized classification to entire protein

structures based on equation 6. Results of this general-

ized classification are also presented in Table 1, and the

Matthews correlation coefficient was determined here to

be 0.91. Based on the results published for Raphael, the

MCC was determined to be 0.87 for SVM value > 0 and

0.89 for SVM value > 1.

Additional file 2: Figure S1 in the presents the ROC

curve of whole-structure classification and provides an

additional means for direct comparison to Raphael.

Solenoid consensus motif from unit alignments

Detecting solenoid motifs in sequence is difficult be-

cause (i) the length of a solenoid repeat is typically short,

increasing the signal-to-noise ratio as compared to the

typical domains and full-length proteins, and (ii) se-

quence similarity may be too weak for detection of very

divergent repeats. Pfam profiles for solenoid families

such as LRR, Armadillo, or Ankyrin try to address these

problems by defining HMMs consisting of several repeat

units for divergent family members. For instance, the

LRR profile for LRR1 (PF00560) has a length of 22 resi-

dues that is in accordance with the primary repeat interval

[12–45]—class 3 in [34]. However, the HMM for LRR5

(PF13306) has a length of 129 residues, encompassing ap-

proximately five repeats of the actual motif. This approach

is used for other solenoid families: Ankyrin HMMs:

PF00023—33 residues and PF12796—89 residues (3×

motif repeat), Armadillo/HEAT: PF02985—31 residues

and PF13646—88 residues (3× motif repeat), and others.

While improving the recognition sensitivity, this approach

is inconsistent and leads to confusing results, where simul-

taneous high-significance matches to overlapping HMMs

of different lengths are possible.

We processed structures from the LRR, Ankyrin, and

Armadillo/HEAT families and determined their respective

sequence motifs (Figure 4). The motifs obtained with Con-

Sole were in excellent agreement with motifs available in

literature. For instance, the sequence motif determined for

Table 1 Benchmark results of various solenoid classifiers

Rule based Rule based ConSole ConSole Raphael S > 0 Raphael S > 1

Residue Structure Residue Structure Structure Structure

Sol. NSol. Sol. NSol. Sol. NSol. Sol. NSol. Sol. Sol.

Sensitivity 74% 40% 55% 88% 72% 88% 87% 100% 89% 93%

Precision 89% 19% 65% 83% 66% 90% 100% 95% 86% 98%

Accuracy 69% 79% 84% 96% 94% 96%

MCC 0.11 0.46 0.59 0.91 0.87 0.89

Evaluation of solenoid/non-solenoid classification accuracies determined for all solenoid classifiers mentioned. Sensitivity, precision, accuracy, and MCC were

determined on a standard benchmark dataset of 105 solenoid (Sol.) and 243 non-solenoid (NSol.) protein structures. Results were determined either for individual

residues (Residue level) or for whole structures (Structure level).
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Figure 3 Results of solenoid classification. Four solenoid protein structures taken from the benchmark dataset: (a) 1XKU-A, (b) 1QRL-A, (c)

1M8Z-A, and (d) 1K5C-A. All are colored according to the ConSole-based classification results. Residues correctly assigned to the solenoid class
are colored green; residues correctly assigned to the non-solenoid class are colored red. Gray or yellow indicates all residues wrongly assigned to
the non-solenoid or solenoid class, respectively. Figures for all results in the benchmark are available online.

Figure 4 Solenoid motif from structure alignment. (a) Automatically detected solenoid units of a Leucine Rich Repeat domain (1DFJ-I) with

arbitrary solenoid unit coloring. The middle inset shows all units superimposed after multiple-structure alignment with POSA. The consensus motif
determined for the structurally aligned units is displayed on the right. The next two rows display the same results for (b) an Armadillo repeat

(1M8Z-A) and (c) an Ankyrin repeat (3B95-A).
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the Ribonuclease Inhibitor (RI) was almost identical with

the RI typical sequence [35]. The only difference to the

known motif was the start position in sequence, which is

an arbitrary parameter. To obtain a perfect alignment of

our motif to the standard motif, the motif sequence had to

be shifted by 17 residues.

Unknown solenoid structures in the PDB

Many protein coordinate sets in the PDB are not de-

scribed in a peer-reviewed manuscript and also often

lack any significant annotations. To identify such pro-

teins, we parsed all PDB headers for the keywords “JRNL

REF TO BE PUBLISHED,” which resulted in a large set

(16,114) of structures. In the next step, we applied Con-

Sole to identify novel, perhaps unrecognized solenoid

protein structures within this set. Indeed, 132 structures

from this set were classified as solenoids.

Next, the sequence similarity of each protein against the

complete collection of PDB proteins was determined. Here

we ruled out homologs of proteins that have already been

annotated as solenoids. The search for already known so-

lenoid homologs was furthermore extended to the Pfam

database, eliminating proteins mapping to known solenoid

proteins such as Ankyrin (Pfam: 00023), Armadillo (Pfam:

00514), or Leucine Rich Repeat (Pfam: 00022).

Nineteen solenoid structures remained after these steps.

Many of them were TIM barrels, identified here as sole-

noids because the torus-like structure also produces the

second diagonal feature in contact maps. Hence, they are

sometimes referred to as “closed” solenoids [1,36].

Among the remaining true solenoid protein structures

we observed were a few interesting LRR domains with an

unusual flat structure (PDB: 4FD0, Bacteriodes caccae) or
two flat domains connected by a kink (PDB: 4H09, Eubac-
terium ventriosum), both highly divergent bacterial LRR

proteins. Their consensus motifs show an interesting over-

abundance of phenylalanine residues that could be linked

to their atypical, flat structures by stacking interactions

(Figure 5). The conserved region of the sequence motif de-

termined for 4FD0 (LxxLxLxxLxxL) differs from the clas-

sical conserved motif region because there was no

significant alignment of Asparagine-like residues (N) as in

the standard LRR motif—(LxxLxLxxNxL). Moreover, this

conserved motif matches with the TpLRR conserved se-

quence motif, and 4FD0 is probably one of the first struc-

tures ever to be determined for this LRR family [35].

Another unrecognized solenoid protein structure was

a hypothetical protein from B. thetaiotaomicron (Uni-

prot: A7LZL0, PDB: 3N6Z). Interestingly, a domain

homologous to this protein is found in one of the classes

of immunoglobulin A1 proteases, where it overlaps with

an N-terminal immunoglobulin A1 protease domain.

This domain was not known to consist of repeats, but

detailed analysis of the automatically identified repeats

performed as described in the previous paragraph sug-

gests that repeats in this domain are distantly related to

GLUG repeats. GLUG is found in other classes of im-

munoglobulin A1 proteases, suggesting that the different

classes could actually be distantly homologous.

Analysis of solenoid unit length distributions in solenoid

families

Solenoid-like protein structures, by their very nature, gener-

ally show a high degree of structural regularity. However,

subtle variations at the level of individual solenoid units are

possible, with accumulated mutations, deletions or inser-

tions altering the length and shape of individual units. Such

small local irregularities can add up to very significant

structural differences between entire proteins and are im-

portant for functional adaptations of individual proteins.

Reliable and reproducible detection of such subtle ir-

regularities in unit lengths for whole protein families is

impossible by manual analysis. Hence, we used ConSole to

automatically analyze the Leucine rich repeat, Ankyrin re-

peat and Armadillo repeat families for length irregularities

of solenoid units. The structures were obtained from a

representative set of PDB structures clustered at 90% se-

quence identity, a total of 140 structures (396 chains) for

the LRR family, 107 structures (281 chains) for the

Figure 5 An unusually flat LRR structure. (a) An unusually flat

LRR (4FD0-A) found within the few solenoid structures that have not
yet been mentioned in publications. (b) Structural alignment of

individual solenoid units with phenylalanine residues colored in
blue. (c) Sequences of the respective solenoid units where all
phenylalanines are highlighted in blue and all leucine-like residues

are highlighted in green. Below is the sequence motif determined
by ConSole.
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Ankyrin and 37 structures (100 chains) for the Armadillo

repeats.

Units were assigned to irregularity classes based on the

unit-length irregularity measured by |λj – λ|, where j is the
index of a respective solenoid unit. We now can associate

length regularity profiles with the regularity of a whole

structure (Figure 6). Flat profiles indicate a very regular

structure, while peaks in the profile indicate positions of

unusual variations in solenoid unit lengths and, as a con-

sequence, a divergent/irregular overall structure.

For instance, the unit-length irregularity distribution

of the LRR structures revealed that 57% of all analyzed

solenoid units are highly regular (Figure 7) and, such as

in the case of Ribonuclease Inhibitor (1DFJ), result in a

regular, torus-like structure. However, large deviations

from the mean length λ were observed in many struc-

tures, such as in a structure of the TLR4 extracellular do-

main (2Z64) where irregularities result in a horseshoe-like

structure with varied curvature. This irregularity provides

TLRs with the ability to adjust their shape to bind differ-

ent ligands [37].

We show that Ankyrin repeats are the most regular

among the three families we analyzed here, with no devi-

ation from λ for approximately 75% of all solenoid units

(Figure 7). On the other hand, the Armadillo repeats

turns out to be the most irregular with 23% of all solen-

oid units being at least two residues off from the average

length λ.

Conclusions

In this work we present ConSole, an algorithm based on

a novel combination of contact map analysis and image-

processing algorithms that focuses on recognition of so-

lenoid repeats in structures of periodic proteins.

Contact maps are naturally suited for solenoid recog-

nition because of the presence of a characteristic line

parallel to the main diagonal in the contact map. Albeit

being the most intuitive approach for solenoid unit de-

tection, direct analysis of contacts did not provide the

desired accuracy of repeat recognition.

To improve the recognition, we used a standard tech-

nique of template matching in image analysis based on

Figure 6 Unit-length irregularities in Leucine Rich Repeat structures. (a) The structure of the Ribonuclease Inhibitor (1DFJ-I) shows only
minimal irregularity. The irregularity profile indicates variations in unit length λj (blue curve) and absolute deviation | λ – λj | from the mean unit
length λ for each solenoid unit j (green curve). The two structural motifs at the bottom represent the two main structural solenoid unit motifs

detected for 1DFJ. Possible positions of these structural motifs are indicated above the respective structure. (b) The LRR domain in CARMIL (A)
resembles an unusually irregular Ribonuclease Inhibitor structure for which variations in the irregularity profile indicate variability in solenoid units. The
structural segment of units 6 – 9 (dashed box) depicts irregularities in units in more detail. Each unit is colored according to the irregularity distribution

in Figure 7. Gray segments were classified as insertions by ConSole and do not contribute to the irregularity calculation. (c) The structure of TLR4 (2Z64-A)
has a distinctively more irregular region (units 5 – 10, dashed box) when compared to other segments of the structure. Irregularity in this region accrues a

significant change in the curvature.
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successive cross correlations of dynamically generated

solenoid and non-solenoid patterns. The further classifi-

cation of the computed correlation coefficients with a

support vector machine allowed high-accuracy solenoid

classification as measured by the MCC on the standard

solenoid recognition benchmark.

ConSole is both more accurate and much faster than

any available solenoid classifier. However, there are still

a few examples of solenoid protein structures that pose

challenges for the current implementation. Most notable

are protein structures with non-solenoid segments run-

ning close to the solenoid domain. Such non-solenoid

segments alter the contact patterns in a way that leads

ConSole to classify neighboring solenoid residues as

non-solenoids. An example of such a structure is the

structure of gamma carbonic anhydrase (1QRL). Another

factor for false classification results were false-negative

classifications of complete solenoid units encapsulating

long insertions (4ECO). While the insertion segment was

classified correctly as a non-solenoid, residues in solenoid

units in contact with the insertion were wrongly classified

as non-solenoids.

One interesting application of ConSole is to analyze

individual solenoid units and retrieve their consensus

motifs from structural alignments. As we demonstrated,

this application is robust enough to be integrated in a

completely automated pipeline. We proved that se-

paration of individual solenoid units and subsequent

multiple structure alignment reliably detects solenoid

specific motifs. Consensus motifs stemming from dis-

tinctive solenoid families were retrieved successfully for

individual structures and indicate that current Pfam

HMMs for solenoids were trained using sequences that

were too long.

Finally, we extended ConSole analysis from individual

structures to large groups of proteins in order to analyze

the extent of structural irregularities within each family.

Such local irregularities are correlated with function differ-

ences between homologs from the same family, such as a

difference between Ribonuclease Inhibitor-like, regular

and TLR receptors, the irregular members of the LRR

family. We were also able to compare the irregularity pat-

terns and show that Ankyrin structures generally are more

regular than LRRs and Armadillo repeats.

Thus, we believe that ConSole would be useful for fur-

ther sequence- or structure-based analysis of solenoid

proteins as it allows the user to reliably identify consen-

sus motifs and to detect structural irregularities, leading

either to developing more accurate motif definitions or

to structure analysis of individual units and detecting

their variations.
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Figure 7 Distribution of unit-length irregularities over several solenoid families. Structures from the Leucine Rich Repeat, Ankyrin Repeat
and Armadillo Repeat were sampled for irregularities. Displayed is the length irregularity distribution for each respective family, where the number of

residues a solenoid unit length differed from λ.
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