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Abstract: The performance of hyperspectral image (HSI) classification is highly dependent on spatial
and spectral information, and is heavily affected by factors such as data redundancy and insufficient
spatial resolution. To overcome these challenges, many convolutional neural networks (CNN)
especially 2D-CNN-based methods have been proposed for HSI classification. However, these
methods produced insufficient results compared to 3D-CNN-based methods. On the other hand, the
high computational complexity of the 3D-CNN-based methods is still a major concern that needs to be
addressed. Therefore, this study introduces a consolidated convolutional neural network (C-CNN) to
overcome the aforementioned issues. The proposed C-CNN is comprised of a three-dimension CNN
(3D-CNN) joined with a two-dimension CNN (2D-CNN). The 3D-CNN is used to represent spatial–
spectral features from the spectral bands, and the 2D-CNN is used to learn abstract spatial features.
Principal component analysis (PCA) was firstly applied to the original HSIs before they are fed to
the network to reduce the spectral bands redundancy. Moreover, image augmentation techniques
including rotation and flipping have been used to increase the number of training samples and reduce
the impact of overfitting. The proposed C-CNN that was trained using the augmented images is
named C-CNN-Aug. Additionally, both Dropout and L2 regularization techniques have been used
to further reduce the model complexity and prevent overfitting. The experimental results proved
that the proposed model can provide the optimal trade-off between accuracy and computational
time compared to other related methods using the Indian Pines, Pavia University, and Salinas Scene
hyperspectral benchmark datasets.

Keywords: consolidated convolutional neural network; hyperspectral image classification; high
performance computing; image augmentation; principal component analysis

1. Introduction

Hyperspectral images (HSIs) have been found in a number of applications in the
field of remote sensing such as vegetation monitoring [1–3], area change detection [4,5],
and atmospheric research [6,7]. Hyperspectral sensors generate hundreds of wavelength
bands that range from the visible to the near-infrared spectrum [8]. These wavelength
bands typically provide rich spectral and spatial information for analyzing the target
area [9]. Each pixel in a HSI corresponds to hundreds of reflected electromagnetic radiation
bands [10]. However, this large number of wavelength bands contains nonlinear and
high-dimensional features which make the analysis of HSIs even more challenging [11].
Lately, principal component analysis (PCA) [12] and kernel PCA [13,14] techniques have
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been proposed to overcome the dimensionality and nonlinear problem in the field of
hyperspectral images classification, respectively. Although these techniques showed a
great success in dimensionality reduction, they have some limitations in feature extraction
for HSIs classification [15]. HSIs classification is always one of the key topics in the
field of remote sensing. Traditional machine learning algorithms such as support vector
machines (SVM) [16], random forest [17], multinomial logistic regression [18], and k-
nearest neighbor [19,20] have been widely used for hyperspectral image classification.
However, the complex characteristics and nonlinearity of HSIs make the classification
of HSIs a challenging task for the traditional machine learning methods [21]. Unlike
these traditional machine learning methods that require extensive domain knowledge,
debugging skills, and hand-crafted features, convolutional neural networks (CNNs) have
shown very promising results in HSI classification in recent years [21–25]. CNNs use
a series of hierarchical layers to extract informative features from the HSIs. Shallower
layers extract features such as edge and texture features, while the deeper layers extract
more complex features [26]. The learning process and features extraction from high-
dimensional data are automatic, which makes CNNs more suitable for complex applications
in the field of remote sensing such as scene classification and object detection [27–30].
The structure of CNNs typically consists of a stack of convolution layers and pooling layers,
and a fully connected layer. In the convolutional layers, the image spatial information
is extracted by a set of filters. Then, the pooling layers reduce the spatial size of the
feature maps created by the convolutional layers to produce more abstract features. Finally,
these feature maps are further flattened into a feature vector and fed to a fully connected
layer [31,32]. However, CNN architectures require a large number of training samples to
avoid issues, such as overfitting and vanishing gradient [33,34]. Usually, techniques such as
data augmenting [35] and Dropout regularization [36] have been used to reduce the impact
of such issues. Moreover, CNNs are computationally intensive and require a large amount
of memory [37]. Recently, graphics processing units (GPUs) have been used to boost the
CNNs performance on HSI classification [38,39]. Hyperspectral images classification using
CNNs has been extensively studied in recent years.

One study [40] introduced a method based on adaptive dimensionality reduction
(ADR) and a semi-supervised 3D convolutional neural network (SS-3DCNN) for hyperspec-
tral images classification. The proposed approach seeks to solve the curse of dimensionality
problem and the limited number of training samples by finding the most informative spec-
tral bands using labeled and unlabeled training samples. Then, the selected bands are fed
into a semi-supervised encoder-decoder 3-D CNN for HSI classification. Zhang et al. [41]
proposed a lightweight spectral–spatial attention fusion with a deformable convolution
residual network (SSAF-DCR) for HSI classification. The proposed model is composed of
both end-to-end sequential deep feature extraction and a classification network, which led
to improvement in the HSI classification performance. The spectral and low-level spatial fea-
tures of HSIs are extracted with a 3D CNN, and the high-level spatial features are extracted
by a 2D CNN. The effectiveness of the SSAF-DCR approach was clearly proven. Another
interesting work [42] proposed a deep spectral spatial inverted residuals network (DSSIR-
Net) for hyperspectral images classification. The proposed DSSIRNet introduced a data
block random erasing technique to overcome the lack of labeled samples by augmenting
small spatial blocks. Moreover, a deep inverted residuals (DIR) module for spectral spatial
feature extraction is proposed. Furthermore, a global 3D attention module is implemented
and embedded into the DIR module. The module considers the global context features of
spectral and spatial dimension to further improve the classification performance.

Nevertheless, the performance of the HSIs classification is still negatively impacted
by factors such as data redundancy, insufficient spatial resolution, and limited labeling
samples. This study proposes a C-CNN structure, which aims to resolve the aforementioned
issues and achieve satisfactory accuracy. Moreover, it aims to accelerate the computing
processes and provide faster response time for the HSI classification. Meanwhile, the use
of high-performance computing (HPC) methods is evaluated to improve the computing
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process for the HSI classification. The contributions of this study can be summarized
as follows:

1. This paper proposes a consolidated convolutional neural network (C-CNN) that is
comprises of a three-dimensional CNN (3D-CNN) joined with a two-dimension CNN
(2D-CNN) to produce sufficient accuracy and reduce the computational complexity
for HSIs classification.

2. PCA has been used to reduce the spectral bands of the input HSIs.
3. Image augmentation methods including rotation and flipping have been applied to

increase the number of training samples and reduce the impact of overfitting.
4. Dropout and L2 were adopted to further reduce the model complexity and pre-

vent overfitting.
5. The influence of band selection and training sample ratio on the overall accuracy (OA)

was investigated.
6. The impact of window size and multi-GPUs on the OA and processing time was

also examined.

2. Methodology

In the traditional 2D-CNNs, the convolutional filter is normally applied to HSI on the
spatial level instead of the spectral level. On the other hand, in the 3D-CNNs, convolutional
kernel can be used to simultaneously extract spatial and spectral features from the HSI data.
However, the computational complexity of the 3D-CNN convolutional kernel can be very
high. The previous methods that combined both 2D-CNN and 3D-CNN have demonstrated
a certain level of improvement. However, there is still a room for computational complexity
and performance improvement. Both spatial and spectral information are expected to be
extracted together for performing a better HSI classification result.

2.1. Proposed Model

By the 2D-CNN of the proposed model, the 2D convolutional filter extracts features
from the local neighborhood of the previous feature map and applies an added bias value
before passing the result to an activation function. Formally, at position (x, y) on the ith
layer and jth feature map, the unit value is expressed as vxy

ij , and is given by the following
Equation (1) [43]:

vxy
ij = g

(
bij + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

wpq
ijmv(x+p)(y+q)

(i−1)m

)
(1)

where g is the sigmoid activation function, b is a bias value for the feature map, m is a
position set from (m− 1)th layer feature map connected to the current feature map, wpq

ijm is
the weight value at the nuclear position (p, q) connecting the mth feature map, and Pi and
Qi are the height and width of the kernel.

In the down-sampling layer on the feature map of the previous layer, it can increase the
invariance of the input distortion by pooling of the local neighborhood and by reducing the
feature map resolution. Then, the CNN architecture can be constructed by stacking multiple
convolutional and down-sampling layers in an alternating manner. In the 2D-CNN, when
dealing with spectral analysis, it is necessary to extract features among different wavelength
spectra. For this purpose, during the convolutional phase of CNN, a 3D convolution
operation is performed to simultaneously extract features from both spatial and spectral
dimensions. The 3D convolution operation is implemented by convolving a cube formed
by stacking a plurality of consecutive bands with a 3D core, and by having the feature map
on the convolution layer be connected to a plurality of consecutive bands of the previous
layer to extract spectral features. Formally, at the (x, y, z) position of the ith layer and the
jth feature map, the unit value is given by the following Equation (2):

vxyz
ij = g

(
bij + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wpqr
ijmv(x+p)(y+q)(z+r)

(i−1)m

)
(2)
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where Ri represents the size of the 3D convolution kernel in the spectral dimension, and wpqr
ijm

is the value of the (p, q, r) of the kernel of the mth feature map connected to the previ-
ous layer.

The proposal structure of C-CNN model for hyperspectral image classification is
illustrated in Figure 1. The proposed C-CNN structure consists of 3D convolutional layers,
2D convolutional layers, fully connected (FC) layers, and Softmax output layer, where
3D-CNN is used to extract both spectral and spatial features, and the 2D-CNN is used
to further extract more spatial features. In addition, the placement of the Max-pooling
in the 3D-CNN and the 1 × 1 convolutions in the 2D-CNN with data augmentation are
introduced in the proposed model to reduce the computational complexity and produce
better performance. Additionally, because of the common problem of overfitting in deep
neural networks especially with high-dimensional data, methods such as rectified linear
unit (ReLU) [44], L2 regularization [45] and Dropout [46] have been adopted in this study.
In the proposed network, the HSI is expressed as I∈RM∗N∗D, where I is the original input,
M is the width, N is the height, and D is the number of spectral bands. Each pixel in
I contains D spectral values. It uses the one-hot tag vector to represent the output as
Y = (y1, y2, . . . , yC)∈R1∗1∗C, where C represents the number of land cover categories.

S∗S∗B

8@3×3×7

16@3×3×5

32@3×3×3

Max-pooling

3D Conv

Reshape

128@1×1

256@3×3

64@1×1

2D Conv

Flatten

256

128

FC
Softmax

…

ReLU

L2 L2 Dropout

PCA 

Band 

Selection

Spectral Feature Learning Spatial Feature Learning

I ∈ ℝ𝑀∗𝑁∗𝐷

Hyperspectral 

Images 

X ∈ ℝ𝑀∗𝑁∗𝐵

Neighbor 

Pixels

Classification 

Map C

Feature 

Map

Figure 1. The proposed C-CNN model architecture.

Since pixels in hyperspectral images are usually mixed with land cover categories, it is
a huge challenge to accurately classify a category corresponding to each pixel for any model.
In order to eliminate spectral redundancy, the PCA is firstly applied to the original HSI
data (I). The PCA is employed to reduce the number D of spectral bands while maintaining
the same spatial size, i.e., M as the width and N as the height. We only reduce the spectral
band and retain the important spatial information in the HSI classification. After the PCA
reduces the number of bands, we use X∈RM∗N∗B to represent its spectral image, where X is
the input after the PCA dimensionality reduction, M is the width, N is the height, and B is
the number of bands after the dimension is reduced by the PCA band selection ratio (λ).
After the PCA band reduction, the 3D-CNN uses a 3D kernel for 3D convolution operations
to extract both spatial and spectral features simultaneously. The proposed model C-CNN is
deployed with the number and size of the 3D convolutional kernel on the 3D convolutional
layer. In the proposed model, there are three 3D convolution layers for learning the spectral
information with different scales. The deployments are set with 8, 3 × 3 × 7 convolution
kernels on the first layer, 16, 3 × 3 × 5 convolution kernels on the second layer, and
32, 3 × 3 × 3 convolution kernels on the third layer.

In order to provide invariance to the proposed model, a Max-pooling function was
performed after all the 3D convolutions as the down-sampling process to reduce the
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resolution of the feature map. Each pooling layer corresponds to the previous convolution
layer, and the neurons on the pooling layer are combined by the specified block size on
the convolutional layer. It is used after the third 3D convolutional layer. Since the size of
the feature maps can be reduced without losing any feature information, the convergence
of the network can be well facilitated with less amount of computations on the feature
map with the size S

2 ×
S
2 ×

B
2 × 32 after the Max-pooling, and the processing time for the

classification can be facilitated and optimized. Prior to switching into the 2D domain, since
the 2D convolution input must be of three-dimensional for fulfilling the process, the feature
map must be reshaped to be 3-dimensional with the size of S

2 ×
S
2 × ( B

2 × 32) as the input
of the 2D convolutional layer, where the ( B

2 × 32) is the number of channels in the 2D
convolutional input feature maps.

Due to the large number of channels, the increase of computing complexity is the
concern for further 2D convolution operations. The 1 × 1 convolutions are deployed to
reduce both the size of convolutional kernels and the complexity of the model without
losing the representation of the model feature. Meanwhile, because a simple convolution
operation easily leads to overfitting, the deployment of 1 × 1 convolutions can also get
better generalization and learning ability. The number and size of 2D convolution kernels on
the 2D convolutional layer are deployed as 128, 1 × 1 convolution kernels on the first layer,
256, 3 × 3 convolution kernels on the second layer, and 64, 1 × 1 convolution kernels on the
third layer, respectively, as shown in Figure 1. Maintaining an appropriate representation is
very important for HSI classification. For increasing the number of spectral–spatial feature
maps, the 3D convolution is applied three times, by which the spectral information in
the input HSI data can be well preserved. Per the data process flow, the 2D convolution
is also applied three times before stepping into the Flatten layer, by which the spatial
information in different spectral bands can be distinguished without the loss of substantial
spectral information.

2.2. Training and Testing Process

During the training process, the training samples are randomly divided into a number
of N batches, and each batch contains the same number of samples. The training is
performed by using a random gradient descent method. For each iteration, only one batch
is sent to the network for training. The training process does not stop until the specified
number of iterations is reached. During the testing process, test samples are sent to the
trained network and the predicted labels can be obtained by finding the maximum value
in the output vector. The training and testing process flow chart of the proposed model
C-CNN is shown in Figure 2.

Data&Label

C-CNN Training

C-CNN Model Predicted LabelTesting Data

Batch 1

Batch 2

Batch N

Figure 2. C-CNN training and testing flow chart.
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2.3. Data Augmentation

Due to the lack of training samples, the learning model can be easily overfit. Hence,
in order to reduce the impact of overfitting, one of the most common methods is to produce
a slightly modified version of the existing training samples to increase the number of
training samples. This production operation is known as data augmentation or image
augmentation. In the experiment, each pixel was treated as a center and its neighbor S × S
pixel block was taken as a sample, hence the data size of each sample is S× S× B. For every
training sample, a rotation by 90◦, 180◦, and 270◦ has been performed as the conversion to
have 4 samples including the original one, and then these samples are flipped vertically
to form 8 samples in total. The proposed model trained on the augmented datasets is
called C-CNN-Aug.

3. Experimental Results

This section introduces the experimental environment, the impact of PCA ratio λ on
the overall accuracy (OA), the results of varying the window size, the comparative results
of other HSI classification methods, the impact of training sample ratio on the OA, and the
impact of multi-GPUs implementation on the processing time, respectively.

3.1. Experimental Environment and Parameter Settings

The hardware environment in which all experiments are performed has Intel Xeon
(R) CPU E5-2630 v4 processors with 64 GB of DDR4 RAM. The graphics processing unit
(GPU) is NVIDIA GeForce RTX 2080 Ti with 11 GB of memory. The software environment
is set up with Ubuntu 16.04.4, 64-bit as the operating system, CUDA 9, cuDNN 5.1.5,
TensorFlow 1.13.1, and Python 3.6. The datasets are randomly divided into a training set
and testing set in a ratio of 1% and 99%, respectively. In addition, all the network weights
were randomly initialized, and the adaptive moment estimation (Adam) [47] was employed
as the optimization strategy. The initial learning rate was set at 0.001, and the mini-batch
size was 128.

3.2. Datasets

Three benchmark datasets are used to evaluate the performance of our proposed
models. They are namely Indian Pines (IP), Pavia University (PU), and Salinas Scene (SA).
These three datasets are collected by the airborne visible infrared imaging spectrometer
(AVIRIS), reflective optics system imaging spectrometer (ROSIS), and AVIRIS sensor in the
Salinas Valley, California, respectively. The detail information of each dataset is shown
in Table 1, where the column Discarded Bands depicts the number of the bands covering
water. In practical applications, the labeled samples are usually very limited, which makes
HSI classification more challenging. Therefore, in order to present the performance of our
proposed method under a condition of small sample size, we randomly selected 1% of
each class to form a training set, and the remaining samples made up for the testing set.
The semantics and labels of the Indian Pines, Pavia University, and Salinas Scene datasets
have been shown in Figures 3–5, respectively.

Table 1. Indian Pines, Pavia University, and Salinas Scene datasets information.

Data Set Pixels Spatial Resolution Bands Wavelength Range Discarded Bands Classes

Indian Pines 145× 145 20 m/pixel 224 400∼2400 nm 24 16
Pavia University 610× 340 1.3 m/pixel 103 430∼860 nm 0 9

Salinas Scene 512× 217 3.7 m/pixel 224 360∼2500 nm 20 16
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Figure 3. Land cover category of Indian Pines dataset.
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Figure 4. Land cover category of Pavia University dataset.
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Figure 5. Land cover category of Salinas Scene dataset.

3.3. The Impact of PCA Band Selection Ratio on Overall Accuracy

The influence of band selection ratio λ of PCA on the OA was examined in this section.
For example, the band selection ratio, λ = 0.10 represents 10% of the most informative
selected band, and the higher λ indicates the selected data is more similar to the original
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data. However, the higher the λ value is, the more computational power is required.
The appropriate λ value was empirically determined by the best OA in the band selection
ratio analysis in Table 2. In fact, the appropriate λ value is not only determined by the
OA, but also by the computational complexity as shown in Table 3. Therefore, there is
a trade-off between the OA and computational complexity when the optimal λ value is
determined. Table 2 shows the λ value ranges from 0.01 to 0.10, and their OAs are presented
using IP, PU, and SA datasets, respectively. For the IP and PU datasets, the optimal OA is
λ = 0.10 and λ = 0.08, respectively. For the SA dataset, the OA reached to 99% at λ = 0.03,
and continued rising up to 99.43% at λ = 0.10. Therefore, λ = 0.10, 0.08, and 0.10 are selected
in this experiment for IP, PU, and SA datasets, respectively.

Table 2. The impact of band selection ratio λ on the overall accuracy (OA) of C-CNN-Aug.

λ IP PU SA

0.01 65.08 94.23 95.79

0.02 77.55 95.88 98.21

0.03 80.42 96.62 99.00

0.04 80.49 96.64 99.08

0.05 81.32 97.68 99.06

0.06 82.24 98.00 99.28

0.07 82.28 97.93 99.25

0.08 83.57 98.25 99.28

0.09 83.53 98.19 99.36

0.10 83.68 98.20 99.43

3.4. The Impact of Window Size on Overall Accuracy and Processing Time

The impact of window size S × S on the model performance is shown in Table 3. From
Table 3 and Figure 6 below, it is found that the performance of 5× 5 size is lower than those
of other sizes. The performance of 15 × 15 size shows significant improvement compared
with that of 5 × 5 size. Nevertheless, there is no much difference among 15 × 15, 25 × 25,
and 35 × 35 sizes in terms of OA. The 15 × 15 was finally decided in this study as it turns
out that the 15 × 15 window size provides the best trade-off between the overall accuracy
and testing time.

Table 3. The impact of window size on the overall accuracy and testing time of C-CNN-Aug,
where λ = 0.10.

Window Size
Overall Accuracy (OA) Time (Seconds)

IP PU SA IP PU SA

5× 5 70.26 95.46 96.24 10 37 54

15 × 15 83.68 98.20 99.43 39 95 196

25× 25 84.28 98.87 99.67 97 210 486

35× 35 84.09 98.77 99.80 185 395 953

Herein, λ is defined as the band selection ratio.
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Figure 6. The effect of different window size on the overall accuracy of C-CNN-Aug.

3.5. Comparison with Other Methods

In order to compare the performance of the proposed models with the-state-of-art
models, such as SS-3DCNN [40], SSAF-DCR [41], and DSSIRNet [42], for the hyperspectral
image classification, the experimental results with each benchmark dataset are addressed
in the subsections below.

3.5.1. Test Results on Indian Pines Dataset

From 220 bands of the IP scene dataset, 15 × 15 × 16 (S × S × B) data blocks were
extracted to calculate the original spectral–spatial features and used as the input to the
network, where the window size, S = 15, the number of bands after the dimensionality
reduction by PCA, B = 16, and the optimal band selection ratio λ = 0.10 is selected for the
best OA performance as shown in Table 2. With respect to average accuracy (AA), OA,
and Kappa evaluation metrics, the proposed methods are not superior to other methods.
This could be due to the small size of the dataset which contains 145 × 145 pixels. However,
in comparison with other methods, the processing time of the proposed methods C-CNN
and C-CNN-Aug is the best. The visual results of HSI classification by the five methods are
shown in Figure 7. The performance comparison is shown in Table 4.

(a) (b) (c) (d)

(e) (f) (g)

Figure 7. (a) False-color composite (R: 26, G: 14, B: 8), (b) ground truth, (c) SS-3DCNN (97.89%),
(d) SSAF-DCR (96.36%), (e) DSSIRNet (97.18%), (f) C-CNN (73.33%), (g) C-CNN-Aug (83.68%).
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Table 4. The accuracy comparison of Indian Pines classification.

Class SS-3DCNN [40] SSAF-DCR [41] DSSIRNet [42] C-CNN C-CNN-Aug

1 97.96 97.82 98.88 42.00 61.93

2 96.49 96.03 96.65 58.15 75.82

3 99.53 96.39 96.64 54.27 75.75

4 97.47 96.00 94.81 18.34 48.47

5 97.21 99.51 98.62 80.90 81.69

6 95.24 99.09 99.13 92.99 94.75

7 98.88 71.13 94.18 70.00 89.29

8 98.51 100.0 99.92 98.46 99.32

9 97.73 96.90 83.71 76.50 79.83

10 94.44 93.11 97.07 67.67 79.50

11 97.83 97.14 97.65 83.06 88.41

12 97.70 93.58 98.69 45.38 67.12

13 97.24 99.69 100.0 76.06 96.49

14 96.47 97.05 98.78 95.69 95.46

15 95.81 95.13 95.76 54.27 71.68

16 99.83 97.63 98.70 59.24 91.85

AA 97.39 95.39 96.82 67.06 81.08

OA 97.89 96.36 97.18 73.33 83.68

Kappa 98.72 95.85 96.78 69.43 81.25

Time (s) 371 47 40 39 39

3.5.2. Test Results on Pavia University Dataset

With 103 bands of the PU scene dataset, 15 × 15 × 8 (S × S × B) data blocks have
been extracted to calculate the original spectral–spatial features and used as the input to
the network, where the window size, S = 15, the number of bands after the dimensionality
reduction by PCA, B = 8, and the optimal band selection ratio λ = 0.08 is selected for the
best OA performance as shown in Table 2. Our proposed method has surpassed the other
methods in terms of AA, OA, Kappa, and processing time. In comparison with other
methods, the OA performance of the proposed method C-CNN is 97.08%. On the other
hand, the C-CNN-Aug has achieved OA of 98.25% which is comparable to DSSIRNet
method. Nevertheless, the running time of the proposed methods reached 79 s, which
is faster than that of the other methods. The maps of hyperspectral images classification
by the five methods are shown in Figure 8. The performance comparison is presented in
Table 5.

(a) (b) (c) (d) (e) (f) (g)

Figure 8. (a) False-color composite (R: 53, G: 31, B: 8), (b) Ground truth, (c) SS-3DCNN (98.45%),
(d) SSAF-DCR (97.43%), (e) DSSIRNet (99.31%), (f) C-CNN (97.08%), (g) C-CNN-Aug (98.25%).
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Table 5. The accuracy comparison of Pavia University classification.

Class SS-3DCNN [40] SSAF-DCR [41] DSSIRNet [42] C-CNN C-CNN-Aug

1 98.01 98.80 99.04 97.63 98.64

2 99.41 100.0 100.0 99.75 99.74

3 98.92 94.46 98.70 83.74 92.50

4 98.15 99.16 97.98 94.62 94.89

5 98.20 100.0 100.0 99.73 99.91

6 99.31 97.95 100.0 98.68 99.11

7 98.08 94.11 99.39 95.31 98.04

8 98.06 88.23 97.86 91.46 95.26

9 99.23 100.0 99.89 90.21 94.68

AA 98.60 96.96 99.20 94.57 96.98

OA 98.45 97.43 99.31 97.08 98.25

Kappa 98.53 0.97 99.05 96.13 97.68

Time (s) 265 156 100 79 79

3.5.3. Test Results on Salinas Scene Dataset

With SA scene dataset (including 224 bands), the 15 × 15 × 20 (S × S × B) data blocks
are extracted to calculate the original spectral–spatial features and used as the input to
the proposed network, where the window size, S = 15, the number of bands after the
dimensionality reduction by PCA, B = 20, and the optimal band selection ratio λ = 0.10.
The OA of the proposed C-CNN-Aug on the SA map dataset is higher than those of other
methods. Additionally, better performance is achieved in terms of the processing time,
where the proposed methods achieved 196 seconds of processing time. The classification
maps obtained by SS-3DCNN, SSAF-DCR, DSSIRNet, C-CNN, and C-CNN-Aug are shown
in Figure 9. The comparison results are shown in Table 6.

(a) (b) (c) (d) (e) (f) (g)

Figure 9. (a) False-color composite (R: 53, G: 31, B: 8), (b) Ground truth, (c) SS-3DCNN (98.29%),
(d) SSAF-DCR (96.53%), (e) DSSIRNet (99.35%), (f) C-CNN (99.22%), (g) C-CNN-Aug (99.43%).
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Table 6. The accuracy comparison of Salinas Scene classification.

Class SS-3DCNN [40] SSAF-DCR [41] DSSIRNet [42] C-CNN C-CNN-Aug

1 96.73 100.0 100.0 99.94 99.91

2 98.50 99.93 100.0 99.63 99.99

3 96.06 98.33 99.86 99.80 99.83

4 98.80 96.99 99.66 99.49 98.89

5 97.88 97.68 99.91 99.08 99.07

6 98.87 100.0 100.0 99.94 99.93

7 96.58 100.0 100.0 99.96 99.97

8 98.61 92.72 99.07 98.39 99.22

9 98.92 99.86 100.0 100.0 99.99

10 98.30 98.64 99.79 97.92 98.23

11 98.96 96.91 97.78 99.94 99.87

12 99.71 97.43 100.0 99.93 99.61

13 98.78 96.78 99.80 99.15 99.24

14 98.96 99.27 98.93 98.90 98.81

15 98.01 91.49 98.83 98.87 99.00

16 98.77 100.0 100.0 99.29 99.35

AA 98.28 97.87 99.60 99.39 99.43

OA 98.29 96.53 99.35 99.22 99.43

Kappa 98.16 96.14 99.27 99.13 99.36

Time (s) 289 198 219 196 196

3.6. The Impact of Training Sample Ratio on Overall Accuracy

The effectiveness of the proposed models on various training sample ratios has been
evaluated and demonstrated in this Section 1%, 2%, 3%, 4%, and 5% of the labeled training
samples from each class have been used to form the training sets, and then evaluated the
performance of different methods on the benchmark datasets. The Figure 10 shows the
OA results on different training samples ratios of IP, PU, and SA datasets, respectively. It
can be clearly seen that the proposed C-CNN and C-CNN-Aug achieve better OA than
other methods on PU and SA especially when the ratio of the training sample increases.
On the other hand, the proposed C-CNN and C-CNN-Aug performed worse than the other
methods on the IP dataset. However, the processing time of C-CNN and C-CNN-Aug is
better than other methods on IP dataset as well as the other two datasets, PU and SA.

Figure 10. The overall accuracy performance comparison for different sample ratio of datasets
and methods.
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3.7. The Impact of Multi-GPUs Implementation with NVLink on Processing Time

To further improve the performance, another experimental environment was set to
evaluate the influence of the NVLink [48] on the processing time. In hardware, we increased
the number of GPUs (GeForce RTX 2080 Ti) from 1 to 2 by the NIVIDA NVLink technology
for GPU interconnection. For building the extra software for the evaluation environment,
we firstly set up Docker 18.06.1-ce, then, installed NVIDIA Container Toolkit and NVIDIA
NGC to support NVIDIA SLI technology, which is able to merge and utilize multi-GPUs’
capability efficiently. The container image employed is the nvcr.io/nvidia/tensorflow:
18.04-py3 linked with NCCL and CUDA 9.0. The processing time with the benchmark
datasets is shown in Table 7. The observations indicate that the implementation of HPC
by employing the NVLink technology with 2xGPU is a significant advance that makes the
training phase of deep neural network more efficient.

Table 7. The processing time comparison by 1 and 2 GPUs on benchmark datasets (Measured
unit: Second).

Dataset C-CNN-Aug, 1 × 2080Ti C-CNN-Aug, 2 × 2080Ti Improved%

IP 32 18 44

PU 79 45 43

SA 197 111 44

4. Discussion

In deep neural network (DNN) models such as CNN are prone to overfitting because
of the large number of parameters and the small amount of training data used to train the
model. Consequently, the model is able to perform well on the training samples, but its
results on the validation or testing samples are poor. Therefore, the model cannot be gener-
alized to new data samples. This issue of overfitting can be worse in the field of remote
sensing due to the complexity of data such as hyperspectral images which are composed of
thousands of spectral channels. Typically, techniques such as data augmenting, Dropout
regularization, and L1/L2 regularization are used to reduce the impact of such an issue.
The vanishing gradient is another issue faced by deep CNN models. The vanishing gradient
problem arises from the backpropagation technique used for updating the DNN models’
parameters during the training process. For example, in the gradient descent algorithm,
the gradient might fade slightly as it passes through each layer of the CNN, resulting in its
disappearance or vanishing. To avoid this problem, an appropriate learning rate should be
used, making the gradient to perform appropriate steps until convergence. However, find-
ing the optimal learning rate is another issue. To address such an issue, an adaptive variant
of optimizers such as adaptive moment estimation (Adam) was proposed. In comparison
to other optimizers, the superiority of Adam optimizer for HSI classification was demon-
strated in [49]. The main goal of the proposed C-CNN method is to achieve satisfactory
HSI classification accuracy while accelerate the computing processes and provide faster
response time for the HSI classification. Hence, several techniques have been implemented
and incorporated into the proposed method in order to achieve this goal. These techniques
include principal component analysis (PCA), image augmentation, Dropout, and L2 reg-
ularization. Moreover, the impact of band selection ratio, window size, training sample
ratio, and multi-GPUs on the model performance was evaluated. The implementation of
C-CNN without the PCA led to similar results as those of the λ = 0.01. Hence, only the
results of the C-CNN with PCA were discussed in the paper. The spectral bands have been
intentionally reduced by a small ratio of λ ranging from 0.01 to 0.10 to preserve as much
useful information as possible and keep the computational cost low. More importantly,
this small ratio of λ can mitigate any potential negative impact of PCA on the spectral data
while providing comparable performance. The appropriate λ value is determined by both
the OA and computational complexity. For example, for the IP and PU datasets, the optimal
OA is λ = 0.10 and λ = 0.08, respectively. For the SA dataset, the OA reached to 99% at
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λ = 0.03, and continued rising up to 99.43% at λ = 0.10. On the other hand, the optimal
processing time is reached when λ = 0.10. Image augmentation methods including rotation
and flipping have been applied to increase the number of training samples and reduce the
impact of overfitting. The impact of image augmentation methods on the performance of
the proposed method is shown in Tables 4–6. The most noticeable improvement is shown in
Table 4, where the proposed C-CNN with image augmentation (C-CNN-Aug) has yielded
to ∼15% improvement in terms of AA, OA, and Kappa on Indian Pines dataset. Dropout
and L2 regularization techniques were adopted to further reduce the model complexity and
prevent overfitting. Additionally, the 15 × 15 was finally decided in this study as it turns
out that the 15 × 15 window size offers the best trade-off between the OA and testing time
as shown in Table 3. The impact of several training sample ratios on the proposed model
is shown in Figure 10, where the OA of the proposed C-CNN and C-CNN-Aug increases
on Indian Pines, Pavia University, and Salinas Scene dataset when the ratio of the training
sample increases. Finally, by using multi-GPUs with 2xNVIDIA GeForce RTX 2080 Ti,
NVLink, the processing time has been improved by ∼44% with the three standard datasets.

5. Conclusions

This study proposed a convolutional neural network called consolidated convolutional
neural network (C-CNN) by combining a 3D-CNN and a 2D-CNN for better and faster
hyperspectral image (HSI) classification than those of the previous state-of-the-art methods.
The experimental results on the benchmark datasets of Indian Pines (IP), Pavia University
(PU), and Salinas Scene (SA) proved that our proposed C-CNN and the augmented C-CNN
(C-CNN-Aug) methods can firmly reduce the complexity of the model, and effectively
resolve the overfitting problem by applying deep learning techniques such as image aug-
mentation, Dropout, and L2 regularization. Moreover, principal component analysis (PCA)
has been used to reduce the spectral bands dimensionality of the input HSIs. Consequently,
the accuracy and the processing time have been significantly improved on most of the
benchmark datasets. Furthermore, the impact of PCA band selection ratio λ and window
size on the overall accuracy (OA) were presented. The OA of the proposed model reached
83.68%, 98.25%, and 99.43% on IP, PU, and SA datasets, respectively. By enhancing the
computing power with 2xNVIDIA GeForce RTX 2080 Ti, NVLink, the processing time has
been further improved by ∼44%. Future work will study the effectiveness of varying the
PCA band selection ratio λ on the processing time. Additionally, the impact of the variation
of the data size on the classification results will be investigated.
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