
Constant Addition utilizing Flagged Prefix
Structures

James E. Stine, Christopher R. Babb, and Vibhuti B. Dave
Electrical and Computer Engineering Department

Illinois Institute of Technology
Chicago, Illinois 60616

Email: {jstine, cbabb, vdave}@ece.iit.edu

Abstract— The role of addition and subtraction in digital
systems is sometimes complicated due to the arrival of certain
operands arriving at different times. For example, floating-point
arithmetic typically requires the exponent logic to wait until
an output is received from post-normalization. Previously, logic
designers have resorted to the use of conditional sum and carry-
select adders to make their design efficient. Recently, a new
technique has been proposed that utilizes the concept of flagged
prefix addition. Flagged prefix addition utilizes the parallel-prefix
adder and slightly modifies it to yield a new adder that is capable
of adding A+B or A+B +1. Moreover, alterations to the logic
can easily be made to allow difference operations to occur as well.
This paper presents an extension to the flagged prefix addition
to allow an arbitrary number to be added to the logic. Results
are shown for several design in AMI C5N 0.5 µm technology.

I. INTRODUCTION

VLSI adders are critically important in digital designs since
they are utilized in ALUs, memory addressing, cryptography,
and floating-point units. Since adders are often responsible for
setting the minimum clock cycle time in a processor, they can
be critical to any improvements seen at the VLSI level. How-
ever, fast logarithmic time adders, such as carry-lookahead
adders, can be impractical for a given VLSI implementation
due to their prohibitive structures in terms of interconnect
congestion and delay [1].

One method of improving carry-propagate adders for log-
arithmic time in VLSI design is to express it as a prefix
computation [1], [2]. Using prefix computations are partic-
ularly attractive because they are easily expressed which leads
to efficient implementations. In addition, the intermediate
structures allow trade-offs between the amount of internal
wiring and the fan-out of intermediate nodes, thereby, resulting
in a more attractive combination of speed, area and power
especially for sub-micron technologies [3].

Many applications require the addition or subtraction of two
operands followed by the addition of a constant. Unfortunately,
even with advances in technology, datapaths typically result to
two or more carry-propagate adders to complete the operation.
This is because there are many cases when a constant cannot
be easily integrated within a given architecture. The condi-
tional sum adder is one solution that generates a pair of sum
and carry bits at each bit position. One pair assumes a carry-in
of one and the other assumes a carry in of zero. The correct
sum and carries are then subsequently selected using a tree

of multiplexors. However, the conditional-sum adder suffers
from large fan-out and large area constraints [4].

One particular solution is to modify a prefix adder so that
the selected sum bits can be inverted as required to derive
the second result [5], [6]. This new adder, called a flagged
prefix adder can exploit a prefix adder with a small amount
of additional hardware and exploit a prefix adder’s flexibility
for fan-out loading and wire densities. This paper extends
the flagged prefix adder so that an arbitrary constant can be
integrated within the structure.

II. RECURRENCE RELATIONSHIP

Binary carry-propagate adders can be efficiently expressed
as a prefix computation [7]. That is, through the basic oper-
ation of ci+1 = ai · bi + (ai + bi) · ci. Parallel-prefix logic
combines n inputs using an arbitrary associative operator ◦ to
n outputs so that the output Sumi depends only on the input
operands [1].

The key to fast addition is the calculation of the carries
ci [8]. This can be computed utilizing a recurrence relation-
ship:

ci+1 = gi + pi · ci (1)

with the generate or g signal being equal to gi = ai · bi, and
the propagate or p signal being equal to pi = ai + bi. Some
adders utilize propagate as pi = a ⊕ b to exploit a specific
circuit structure.

Prefix addition is carried out in three consecutive steps
called the preprocessing stage, parallel-prefix carry computa-
tion, and the postprocessing stage as shown in Figure 1. Gen-
erate and propagate signals are typically produced within the
pre-processing stage, whereas, the prefix structure computes
the recurrence relationship for the carries. The postprocessing
stage computes the sum completing the addition.

A. Flagged Prefix Addition

Flagged addition relies on the simple idea of speculatively
computing two operands. These two values either compute a
sum with a carry in of one or zero. A flag bit is introduced to
enable logic to indicate which sum to compute [9], [10]. For
example, the addition of x = 9 and y = 78 is shown below

6680-7803-8834-8/05/$20.00 ©2005 IEEE.

Post−processing

Pre−processing

Carry Tree

Prefix

n−1:0
Sum

n−1:1
c

n−1:0
p

n−1:0
g

n−1:0
y

n−1:0
x

Fig. 1. Block diagram of a parallel prefix adder

where a flag is utilized to add x + y + 1

x = 0000 1001
y = 0100 1110

Sum = 0101 0111
F = 0000 1111

Sum + 1 = 0101 1000

The flag bit is utilized to compute the new sum by utilizing
the exclusive-or of the sum and the flag. Flagged prefix can
be utilized to perform an increment operation (i.e. x + y + 1)
or a decrement operation a − b − 1 [5], [6].

The flag bits have been shown to be easily generated
from the prefix structure by relying on the group generate
and group propagate signals from the prefix structure. From
these two signals, late carry signals can be produced from
ck+1 = Gk +Pk ·incr where incr indicates the bit that should
be incremented. The increment can be easily computed in the
post-processing stage or as a select signal for a conditional
sum adder. A block diagram of the flagged prefix adder is
shown in Figure 2.

To implement this operation, a pair of enable bits are
utilized to invert the appropriate sum bits to derive the desired
result. Two enable bits, cmp and incr enable the inversion
of the flagged bits or the inversion of the unflagged bits,
respectively [5]. Normally, the case of (cmp, incr) = (1, 1) is
a “don’t care” condition since the complement and increment
operations cannot occur concurrently. A straightforward imple-
mentation of the flagged inversion is shown in Figure 3 [5].
Since this circuit has the availability of producing several
inputs earlier, the critical path is minimally impacted.

III. CONSTANT FLAG GENERATION

For this section, the flagged prefix operation is extended
for an arbitrary constant, M . That is, the computation of
x+y±M . This paper only deals with adding unsigned values,

Prefix

Carry Tree

Pre−processing

Post−processingcmp
incr

x
n−1:0

y
n−1:0

g
n−1:0

p
n−1:0

c
n−1:1

Sum
n−1:0

P
n−1:1

Fig. 2. Block diagram of a flagged-prefix adder

however, based on previous work [6], the logic can easily
be extended for modulo 2w − 1, absolute value, and sign-
magnitude addition [6].

A major building block in arithmetic systems is the full
adder (FA). A FA takes three bits xk, yk, and ck and produces
two outputs: a sum bit Rk and a carry bit ck+1. Sometimes,
because a FA counts the number of ones that are available at
its input it sometimes is called a (3, 2) counter. The traditional
logic equations for a FA are:

Rk = xk ⊕ yk ⊕ ck (2)

ck+1 = xk · yk + xk · ck + yk · ck

Assuming the input is an arbitrary value to be added with a
constant, the FA equations can be rewritten assuming Rk is a
value that is to be augmented or decremented by a Mk, such
that:

Sumk = Rk ⊕ Mk ⊕ ck (3)

ck+1 = Rk · Mk + Rk · ck + Mk · ck

Utilizing these equations, the new function, called a flag
function, can be computed such that Fk = Mk ⊕ ck+1 where

i+1 SumSum

ic
i+1c

iRi+1R

iFi+1
1 0F 01

cmp
incr

i

Fig. 3. Flagged inversion logic (Adapted from [5])

669

Mk Mk−1 ck Fk

0 0 Rk−1 · Fk−1 Rk−1 · Fk−1

0 1 Rk−1 + Fk−1 Rk−1 + Fk−1

1 0 Rk−1 · Fk−1 Rk−1 · Fk−1

1 1 Rk−1 + Fk−1 Rk−1 · Fk−1

TABLE I

OUTPUT LOGIC FOR SELECTION OF REQUIRED RESULT.

Fk is the flag. The flag function is utilized such that it
determines whether the current value is flagged to change [5].
Consequently, this structure can be formulated by developing
flag equations based on speculative elements of the constant:

ck+1 =
{

Rk · ck, if Mk = 0
Rk + ck, if Mk = 1 (4)

Fk =
{

ck, if Mk = 0
ck, if Mk = 1

Similar to the conditional sum adder, the constant is chosen
based on either 1 or 0 for the present bit or previous bit [11].
Utilizing the equations above, and plugging in the constant,
assuming the input is Mk and Mk−1, new flag equations can
be computed. In other words, two bits of the constant are
examined to determine whether not the carry bit from the
constant affects the current position. For example, assume that
the Mk = 0 and Mk−1 = 1. Utilizing the relationships in
Equation 5,

ck+1 = Rk · ck ∃ Mk = 0 (5)

ck = Rk−1 + ck−1 ∃ Mk−1 = 1
∴ ck+1 = Rk · Fk

∴ ck = Rk−1 + Fk − 1

Table I shows the complete table for both the flag and carry
equations for ck and Fk.

The generation of a flag computation is complicated due to
the fact that the value of Rk is produced from the addition
of two numbers xk and yk utilizing a carry-propagate adder
(CPA). Therefore, not only is the computation based on a
carry produced from the constant as described above, however,
the carry of the prefix adder must be utilized within the flag
equations. Based on this carry, this results in the following
relationship based on the value of the carry from the CPA:

Rk−1 =
{

xk−1 ⊕ yk−1, if ck = 0
xk−1 ⊕ yk−1, if ck = 1 (6)

In other words, Table I can be rewritten based on the value
of the carry assuming Rk−1 = xk−1 ⊕ yk−1 as shown by
Equation 6. Table II shows the new logic equations for the flag
based on the constant Mk. The new equations for ck = 1 can
be also produced based on Table I and the one’s complement
of the constant bits, Mk and Mk−1.

In order for the equations to be computed properly, some
initial conditions are required in order to guarantee the equa-
tions work properly. In these assumptions, similar to other
algorithms which two bits are examined at a time, the least

Mk Mk−1 Fk, (ck = 0) Fk, (ck = 1)

0 0 Rk−1 · Fk−1 Rk−1 · Fk−1

0 1 Rk−1 + Fk−1 Rk−1 · Fk−1

1 0 Rk−1 · Fk−1 Rk−1 + Fk−1

1 1 Rk−1 · Fk−1 Rk−1 · Fk−1

TABLE II

MODIFIED OUTPUT LOGIC FOR SELECTION OF REQUIRED RESULT

UTILIZING CARRY PRODUCED FROM THE PREFIX CPA.

significant bit assumes that 0 is examined at the M−1 position.
That is, the following initial conditions are assumed:

R−1 = M−1 = F−1 = 0 (7)

∴ F0 = M0

Utilizing the previous example in adding x = 9 and y = 78,
and suppose the constant to be added is M = 0011 10012 =
5710, the flag equations utilizing the equations above are:

M = 0011 1001
x = 0000 1001
y = 0100 1110

Sum = 0101 0111
F = 1100 0111

Sum + 57 = 1001 0000

A. Modification to the prefix adder

The modifications are done such that the prefix structure
can handle the flag bit. The constant is assumed to be known
beforehand so that each prefix cell can output the correct flag
equation and pass it on to the post-processing block. However,
the logic could be modified to handle the constant as an input.
In summary, the following modifications are required:

• A new cell is added to the prefix block to pass on
the group propagate signal. This input is utilized along
with the group generate to produce the carry required to
produce the flag.

• Flag logic, according to a specific constant, is required.
• A pair of “invert enable” bits are provided to enable the

control of the inversion of the sum bits. In this paper,
an exclusive-or gate is utilized to handle the inversion. A
multiplexor could also be utilized.

As presented in [5], the original flagged prefix of x+ y +1
is introduced. Using Table II, the flag equations are:

Fk =

⎧⎪⎪⎨
⎪⎪⎩

1, for F0

R0, for F1

Rk−1 · Fk−1 · ck−1 +
Rk−1 · Fk−1 · ck−1, for Fn−1, . . . , F2

This produces an equation that relies on the carry produced
from the CPA, as well as not affecting the critical path.
The original derivation in [5] utilized both group generates
and propagates to produce the correct carry for this specific
example (e.g. ck−1). However, carry propagate adders other

670

than prefix adders could be utilized as well to still provide
good results.

If another constant is chosen, logic for the flag changes
according to Table II. Fortunately, the logic for the flag can
be pre-computed, thus, not affecting the critical path and
promoting time-borrowing. On the other hand, there may be
specific designs that incorporate constants that may incur more
delay than other constants. As stated previously, the constant
could also be an input, however, this would dramatically affect
the area since all equations within Table II are required.

IV. RESULTS

Several designs were implemented to examine the impact
upon a typical Application Specific Integrated Circuit (ASIC)
design. An AMI C5N 0.5µm System-on-Chip (SoC) design
flow is selected to examine the impact of these designs [12].
The nominal operating voltages for the library are 5.0 Volts
and are simulated at T = 25 ◦C. A Brent-Kung prefix adder is
utilized for the implementation, however, other prefix structure
can equally be implemented. Moreover, a C program is utilized
to exhaustively test that the equations in Table II to correctly
produce the correct sum.

Synthesis is performed with Synopsys Design Compiler.
Cadence Silicon Ensemble is used in script mode and per-
forms both, placement and routing. The Verilog netlists were
optimized utilizing Synopsys directives for area. Other design
factors could be employed to achieve lower delay and power
considerations as well. Layouts are generated for the adders
and parasitically extracted to obtain accurate numbers for
area, delay, and speed. Delay numbers are obtained utilizing
Synopsys’ Pathmill. Pathmill is a cell-based static timing tool
that utilizes netlists to achieve accurate delay estimates. The
results are shown in Table III.

Results indicate that flagged prefix adders can be easily
inserted into the prefix structure without significantly affecting
the critical path. Interestingly, for all designs, the flagged
prefix adder performed better than the non-flagged version.
This occurred because Synopsys’ synthesis package optimized
the structure for area. More than likely, the improvement
would be minimal for normal custom-layout implementations.
However, the disadvantage for flagged prefix adders is that
significant area is consumed as the operand size increases.
However, with certain circuit styles, flag equations could be

Prefix Flagged Prefix
Delay Area Delay Area

n (ns) (mm2) (ns) (mm2)

4 2.006 0.0477 2.028 0.0498
8 4.736 0.0671 4.409 0.0784
16 10.016 0.1159 9.890 0.1397

TABLE III

POST-LAYOUT ESTIMATES FOR BRENT-KUNG PREFIX AND FLAGGED

ADDERS (I.E. FLAGGED IS x + y + 57). NOTE: SINCE M = 57 IS NOT

IMPLEMENTABLE FOR n = 4, THE CONSTANT, M , IS TRUNCATED TO THE

INTEGER VALUE 9 .

implemented more efficiently at the physical level. In should
be noted that certain constants may cause certain problems in
terms of implementation since some constants can cause the
prefix structure to become more congested. On the other hand,
for adding constants that have low amounts of entropy, this
method achieves small amounts of hardware and high amounts
of throughput without requiring an additional carry-propagate
adder.

V. CONCLUSION

In this paper, flagged prefix addition is presented for arbi-
trary constant addition. With flagged addition, a constant can
easily be inserted into a parallel-prefix adder scheme. Results
in a sub-micron standard cell library indicate efficient designs
with high amounts of speed. Flagged adders also allow flexi-
bility in the algorithm’s ability to execute time borrowing as
well as computing differences. Since this structure is generic,
it can equally be applied to other adders. Unfortunately,
adders other than prefix adders might be prohibitive due to
the excessive delay in computing the flags since the prefix
structure computes the flags not on the critical path.

REFERENCES

[1] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Transaction on Computers, vol. C-31, pp. 260–264, 1982.

[2] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient So-
lution of a General Class of Recurrence Equations,” IEEE Transactions
on Computers, vol. C-22, pp. 783–791, 1973.

[3] S. Knowles, “A family of adders,” in Proceedings of the 14th IEEE
Symposium on Computer Arithmetic, 1999, pp. 30–34.

[4] R. K. Yu and G. B. Zyner, “167 MHz floating-point multiplier,” in
Proceedings of the 12th IEEE Symposium on Computer Arithmetic,
1995, pp. 149–154.

[5] N. Burgess, “The flagged prefix adder for dual addition,” in Proceedings
of SPIE-the international society for opticl engineering, vol. 3461, 1998,
pp. 567–575.

[6] ——, “The flagged prefix adder and its applications in integer arith-
metic,” Journal of VLSI Signal Processing, vol. 31, no. 3, pp. 263–271,
2002.

[7] H. Lindkvist and P. Andersson, “Techniques for Fast CMOS-based
Conditional Sum Adders,” in Proceedings of the 1994 International
Conference on Computer Design, October 1994, pp. 626–635.

[8] S. Winograd, “On the time required to peform addition,” Journal of the
ACM, vol. 12, no. 2, pp. 277–285, April 1965.

[9] S. Cui, N. Burgess, M. J. Liebelt, and K. Eshraghian, “A GaAs IEEE
floating-point standard single precision multiplier,” in Proceedings of
the 12th IEEE Symposium on Computer Arithmetic, 1995, pp. 91–97.

[10] A. Tyagi, “A reduced-area scheme for carry-select adders,” IEEE Trans-
actions on Computers, vol. 42, pp. 1163–1170, 1993.

[11] J. Sklansky, “Conditional-sum addition logic,” IRE Transactions on
Electronic Computers, vol. EC-9, no. 6, pp. 226–231, 1960.

[12] J. Grad and J. E. Stine, “A Standard Cell Library for Student Projects,” in
International Conference on Microelectronic Systems Education. IEEE
Computer Society Press, 2003, pp. 98–99.

671

