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CONSTANT ANGLE SURFACES IN H
2 × R

FRANKI DILLEN AND MARIAN IOAN MUNTEANU

Abstract. We classify all surfaces in H
2
×R for which the unit normal makes a

constant angle with the R-direction. Here H
2 is the hyperbolic plane.

1. Introduction

In last years, the study of the geometry of surfaces in 3-dimensional spaces, in par-
ticular of product type M

2×R was developed by a large number of mathematicians.
Very recently, in [2] the authors study constant angle surfaces in S

2 × R, namely
those surfaces for which the unit normal makes a constant angle with the tangent
direction to R. In another recent paper [1] it is proved that if the ambient in the
Euclidean 3-space, the study of surfaces making constant angle with a fixed direc-
tion has some important applications to physics, namely it is shown how constant
angle surfaces may be used to describe interfaces occurring in special equilibrium
configurations of nematic and smectic C liquid crystals. See also [5]. The problem
of constant angle surfaces is also studied in the 3-dimensional Heisenberg group [4].
In this article we consider the 3-dimensional Riemannian product H

2 × R, and we
classify all surfaces making constant angle with the R-direction.

2. Preliminaries

Let M̃ = H
2 × R be the Riemannian product of

(
H

2(−1), gH

)
and R with the

standard Euclidean metric, where H
2(−1) denotes the hyperbolic plane of constant

curvature −1. Denote by g̃ = gH + dt2 the product metric and by ∇̃ the Levi Civita
connection of g̃. Denote by t the (global) coordinate on R and hence ∂t = ∂

∂t
is the

unit vector field in the tangent bundle T (H2 ×R) that is tangent to the R-direction.

The Riemann-Christoffel curvature tensor R̃ of H
2 × R is given by

(1) R̃(X, Y, Z,W ) = −gH(XH ,WH)gH(YH , ZH) + gH(XH , ZH)gH(YH ,WH)

for any X,Y, Z,W tangent to H
2 ×R. If X is a tangent vector to H

2 ×R we put XH

its projection to the tangent space of H
2.
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2 F. DILLEN AND M.I. MUNTEANU

Let M be a surface in M̃ = H
2 × R. If ξ is a unit normal to M , then the shape

operator is denoted by A. We have the formulas of Gauss and Weingarten

(G) ∇̃XY = ∇XY + h(X, Y )

(W) ∇̃Xξ = −AX,

for all X and Y tangent to M . Here ∇ is the Levi Civita connection on M and h is
the second fundamental form of M . We have g̃(h(X, Y ), ξ) = g(X, AY ) for all X,Y
tangent to M , where g is the restriction of g̃ to M .

Since ∂t is of unit length, we can decompose ∂t as

(2) ∂t = T + cos θ ξ

where T is the projection of ∂t on the tangent space of M and θ is the angle function,
defined by

(3) cos θ = g̃(∂t, ξ).

If X, Y are tangent to M , then we have the following relation

gH(XH , YH) = g(X, Y ) − g(X,T )g(Y, T ).

Thus, if R is the Riemannian curvature on M , then the equation of Gauss can be
written as

(EG) R(X,Y, Z,W ) = g(AX, W )g(AY,Z) − g(AX,Z)g(AY, W )−

−g(X,W )g(Y, Z) + g(X, Z)g(Y, W )+

+g(X,W )g(Y, T )g(Z, T ) + g(Y, Z)g(X, T )g(W,T )−

−g(X,Z)g(Y, T )g(W,T ) − g(Y, W )g(X, T )g(Z, T )

for all X, Y, Z, W ∈ T (M).

Using the expression of the curvature R̃ of H
2 × R, after a straightforward compu-

tation, we can write the equation of Codazzi as

(EC) ∇XAY −∇Y AX − A[X, Y ] = cos θ
(
g(X, T )Y − g(Y, T )X

)

for all X, Y ∈ T (M).

Proposition 2.1. Let X be a tangent vector to M . We have

(4)

{
∇XT = cos θAX

X(cos θ) = −g(AX, T ).

Proof. For any X tangent to M we can write

X = XH + g(X, T ) ∂t .

We have
∇̃X∂t = ∇̃XH

∂t + g(X, T )∇̃∂t
∂t = 0.

On the other hand,

∇̃X∂t = ∇̃XT + ∇̃X(cos θ ξ) = ∇XT + h(X, T ) + X(cos θ)ξ − (cos θ)AX.

Identifying the tangent and the normal part respectively, one gets

∇XT = cos θAX and X(cos θ)ξ = −h(X,T ).

Hence the conclusion. ¤
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From now on consider that θ is constant; for a given orientation of R, suppose that
θ ∈ [0, π). Then, from the previous proposition we have g(AX,T ) = 0 for every X
tangent to M (at p), which is equivalent to

(5) g(AT,X) = 0 , ∀X ∈ Tp(M).

This means that, if T 6= 0, T is a principal direction with principal curvature 0.

Remark 2.2. If T = 0 on M , then ∂t is always normal so, M ⊆ H
2 × {t0}, for

t0 ∈ R.

If T 6= 0, we consider

(6) e1 =
1

||T ||
T,

where ||T || = sin θ.

Let e2 be a unit vector tangent to M and perpendicular to e1. Then the shape
operator A takes the following form

A =

(
0 0
0 λ

)

for a certain function λ on M . Hence we have

(7) h(e1, e1) = 0, h(e1, e2) = 0, h(e2, e2) = λ ξ.

Proposition 2.3. If M is a constant angle surface in H
2 × R with constant angle

θ 6= 0, then M has constant Gaussian curvature K = − cos2 θ and the projection T
of ∂

∂t
is a principal direction with principal curvature 0.

Proof. We have to prove only the first part of this statement. To do this, we decom-
pose e1, e2 ∈ T (M) as

(8) e1 = E1 + sin θ∂t , e2 = E2

with E1, E2 ∈ T (H2) (since e2 is perpendicular to ∂t). We immediately have

gH(E1, E1) = cos2 θ, gH(E1, E2) = 0, gH(E2, E2) = 1.

Putting X = W = e1 and Y = Z = e2 in the Gauss equation (EG) and combining
(1) and (7), we find that the Gaussian curvature of M satisfies

(9) K = − cos2 θ.

¤

We conclude this section with the following

Proposition 2.4. The Levi Civita connection of g on M is given by

(10)
∇e1

e1 = 0, ∇e2
e1 = λ cot θ e2,

∇e1
e2 = 0, ∇e2

e2 = −λ cot θ e1.
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Proof. Using (4) and (6) we obtain

∇Xe1 =
1

sin θ
∇XT = cot θ AX.

From (7) we then obtain the first two formulas. The other two formulas then follow
immediately. ¤

3. Characterization of constant angle surfaces

In this section we classify the constant angle surfaces M in H
2 ×R. There exist two

trivial cases, namely θ = 0 and θ = π
2
. As we have already seen, in the first case one

has that ∂
∂t

is always normal and hence M is an open part of H
2 × {t0}, t0 ∈ R. In

the second case ∂
∂t

is always tangent. This corresponds to the Riemannian product

of a curve in H
2 and R.

We can take coordinates (u, v) on M such that the metric g on M has the form

(11) g = du2 + β2(u, v) dv2

with ∂u := ∂
∂u

= e1 and ∂v := ∂
∂v

= β e2, where β is a smooth function on M . This
can be done since [e1, e2] is collinear with e2. We have

0 = [∂u, ∂v] = [∂u, βe2] = βue2 + β[e1, e2] = (βu − βλ cot θ) e2

and hence β satisfies the following PDE

(12) βu = βλ cot θ.

Using Proposition 2.4 one can now write the Levi Civita connection of g on M in
terms of the coordinates u and v, namely

(13)
∇∂u

∂u = 0, ∇∂u
∂v = ∇∂v

∂u = λ cot θ ∂v,

∇∂v
∂v = −ββu∂u + βv

β
∂v.

Proposition 3.1. The two functions λ and β are given by

(14) λ(u, v) = sin θ tanh (u cos θ + C(v))

(15) β(u, v) = D(v) cosh (u cos θ + C(v)) ,

or

(16) λ(u, v) = ± sin θ

(17) β(u, v) = D(v)e±u cos θ

where C and D are smooth functions depending on v, D(v) 6= 0 for any v.

Proof. From the equation of Codazzi (EC), if we put X = e1 and Y = e2 one obtains
that λ must satisfy the following PDE

(18) λu = sin θ cos θ − λ2 cot θ.

By integration, one gets (14) or (16). Now, solving (12) we obtain β. ¤
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There are many models for the hyperbolic plane (e.g. the Klein model, the Poincaré
disk, the upper half plane H+, the Minkowski model), cf. [7]. The study of the
constant angle surfaces was done by the authors in [3] by using the upper half plane
model of the hyperbolic plane. In the following we will deal with the Minkowski
model or the hyperboloid model for H

2.

We denote by R
3
1 the Minkowski 3-space with coordinates x, y and z, endowed with

the Lorentzian metric tensor

< ·, · >= dx2 + dy2 − dz2.

Then H
2 can be considered as the upper sheet (z > 0) of the hyperboloid

{(x, y, z) ∈ R
3
1 : x2 + y2 − z2 = −1}.

The external unit normal to H in a point p ∈ H ⊂ R
3
1 is N = p and we have

< N,N >= −1.

We recall the notion of the Lorentzian cross-product (see e.g. [7]):

⊠ : R
3
1×R

3
1 −→ R

3
1, ((a1, a2, a3), (b1, b2, b3)) 7→ (a2b3−a3b2, a3b1−a1b3, a2b1−a1b2).

As analogue to the vector cross product in the Euclidean space, it has similar alge-
braic and geometric properties:

(i) a ⊠ b is perpendicular to a and b, i.e. < a ⊠ b, a >=< a ⊠ b, b >= 0;

(ii) b ⊠ a = −a ⊠ b;

(iii) < a ⊠ b, a ⊠ b >= − < a, a >< b, b > + < a, b >2 for all a, b ∈ R
3
1.

Let M be a 2-dimensional surface in H × R ⊂ R
3
1 × R. On the ambient space we

consider the product metric: go = dx2 +dy2−dz2 +dt2. Denote by
o

∇ the Levi Civita

connection on R
3
1 × R and let D⊥ be the normal connection of M in R

3
1 × R. If ξ̃ is

the unit normal to M̃ , then ξ̃(p1, p2, p3, p4) = (p1, p2, p3, 0). The shape operator on

M w.r.t. ξ̃ is denoted by Ã and will be computed below.

Theorem 3.2. A surface M in H×R is a constant angle surface if and only if the

position vector F is, up to isometries of H× R, locally given by

(19) F (u, v) =
(
cosh(u cos θ)f(v) + sinh(u cos θ)f(v) ⊠ f ′(v), u sin θ

)
,

where f is a unit speed curve on H.

Remark 3.3. This result is similar to that given in Theorem 2 of [2].

Proof of the Theorem. First we have to prove that the given immersion (19) is
a constant angle surface in H × R. To do this we compute the tangent vectors (in
an arbitrary point on M)

Fu(u, v) =
(
cos θ [sinh(u cos θ)f(v) + cosh(u cos θ)f(v) ⊠ f ′(v)], sin θ

)

Fv(u, v) =
(
cosh(u cos θ)f ′(v) + sinh(u cos θ)f(v) ⊠ f ′′(v), 0

)
=

=
(

[cosh(u cos θ) − κ(v) sinh(u cos θ)] f ′(v), 0
)
,

where κ is the geodesic curvature of the curve f . Let us give some details. Since f(v)
lies on the hyperboloid it follows that f ′(v) is spacelike. But the curve f has unit
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speed so, < f ′(v), f ′(v) >= 1. In each point of the curve f one has an orthonormal
basis, namely {f(v), f ′(v), f(v)⊠f ′(v)}. Taking into account that < f ′(v), f ′′(v) >=
0 for all v, one can express f ′′(v) as linear combination of f(v) and f(v) ⊠ f ′(v).
From the theory of curves, the curvature κ(v) = |f ′′(v)| (f ′′(v) is not timelike) and
hence the following identity holds f ′′(v) = f(v) + κ(v)f(v) ⊠ f ′(v). As consequence
f(v) ⊠ f ′′(v) = −κ(v)f ′(v).

We will calculate now both ξ and ξ̃. The second normal vector is nothing but the
position vector where we take the last component to be 0, namely we have

ξ̃(u, v) =
(
cosh(u cos θ)f(v) + sinh(u cos θ)f(v) ⊠ f ′(v), 0

)
.

Looking for the expression of the unitary normal ξ as linear combination of f , f ′,
f ⊠ f ′ and ∂t we find

ξ(u, v) =
(
− sin θ [sinh(u cos θ)f(v) + cosh(u cos θ)f(v) ⊠ f ′(v)], cos θ

)
.

This is direct consequence of the following conditions: g̃(ξ, Fu) = 0, g̃(ξ, Fv) = 0,
g̃(ξ, ξ) = 1 and < p1(ξ), p1(F (u, v)) >= 0 (due the fact that ξ is tangent to H×R),
where p1 : R

3
1×R −→ R

3
1 is the natural projection. It follows < ξ, ∂t >= cos θ (which

is a constant).

Conversely, consider a surface M in H×R given by the following isometric immersion

F : M −→ H× R →֒ R
3
1 × R, F = (F1, F2, F3, F4).

Suppose the constancy of the angle function θ. If M is one of the trivial cases (see
page 4), then it can be parameterized by (19). From now on we consider θ /∈ {0, π

2
}.

We have

(F4)u = g̃(Fu, ∂t) = g̃(Fu, T + cos θξ) = g(∂u, T ) = sin θ

and

(F4)v = g̃(Fv, ∂t) = g(∂v, T ) = 0.

These relations and the initial condition F4(0, 0) = 0 yield

(20) F4 = u sin θ.

If X = (X1, X2, X3, X4) is tangent to M , then
o

∇X ξ̃ = (X1, X2, X3, 0). It follows

• D⊥

X ξ̃ =< (X1, X2, X3, 0), ξ > ξ = − cos θ < X, T > ξ

• D⊥

Xξ = cos θ < X, T > ξ̃.

Since
o

∇X ξ̃ = −Ã X + D⊥

X ξ̃ for every X tangent to M , we are able to give Ã in
terms of the basis {∂u, ∂v}

Ã =

(
− cos2 θ 0

0 −1

)
.

From (2), taking the jth component, and because T = sin θFu, one has

(21) ξj = − tan θ(Fj)u

for all j = 1, 2, 3. Here ξ = (ξ1, ξ2, ξ3, cos θ).
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Applying now the formula of Gauss, using the expressions of the shape operators A

and Ã and (13) we find:

(22) (Fj)uu = cos2 θFj

(23) (Fj)uv = λ cot θ(Fj)v

(24) (Fj)vv = −ββu(Fj)u +
βv

β
(Fj)v − λβ2 tan θ(Fj)u + β2Fj .

Let us sketch the proof of (22). If h̃ is the second fundamental form of the immersion

M →֒ R
3
1 ×R then one can prove that h̃(∂u, ∂u) = cos2 θ ξ̃ (since < ξ̃, ξ̃ >= −1). We

have Fuu =
o

∇∂u
∂u = ∇∂u

∂u + h̃(∂u, ∂u) = cos2 θ p1(F (u, v)) and now take the jth

component (j = 1, 2, 3). In the same manner we can show (23) and (24).

Case 1: λ satisfies (14). Integrating (23) one gets

(Fj)v = Hj(v) cosh(u cos θ + C(v)),

where Hj is an arbitrary function. Hence

Fj =

v∫

0

cosh(u cos θ + C(τ))Hj(τ)dτ + Ij(u),

where Ij is an arbitrary function. Substituting in (22) we obtain

(25) Ij = Kj cosh(u cos θ) + Lj sinh(u cos θ),

where Kj and Lj are real constants.

We define the following functions

fj = Kj +

v∫

0

coshC(τ)Hj(τ)dτ , (j = 1, 2, 3)

gj = Lj +

v∫

0

sinhC(τ)Hj(τ)dτ , (j = 1, 2, 3).

Case 2: λ satisfies (16). One gets

Fj = e±u cos θ

v∫

0

Hj(τ)dτ + Ij(u)

with Ij having the same form as in (25).

In this case we put

fj = Kj +
v∫
0

Hj(τ)dτ , (j = 1, 2, 3)

gj = Lj ±
v∫
0

Hj(τ)dτ , (j = 1, 2, 3).

Let f = (f1, f2, f3) and g = (g1, g2, g3).
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Summarizing, in both cases F is of the following form:

(26) F =
(
cosh(u cos θ)f + sinh(u cos θ)g, u sin θ

)
.

Let ǫ1 = ǫ2 = 1 and ǫ3 = −1. Then we have

3∑

j=1

ǫjF
2
j = −1,(27)

3∑

j=1

ǫj(Fj)
2
u = cos2 θ,(28)

3∑

j=1

ǫj(Fj)u(Fj)v = 0,(29)

3∑

j=1

ǫj(Fj)
2
v = β2.(30)

From (27) and (28) one obtains∑
ǫjf

2
j −

∑
ǫjg

2
j = −2. (i)

Now, relations (27) and (29) can be written as∑
ǫjf

2
j cosh2(u cos θ) +

∑
ǫjg

2
j sinh2(u cos θ)+

+2
∑

ǫjfjgj sinh(u cos θ) cosh(u cos θ) = −1.
(ii)

and (∑
ǫjfjf

′
j +

∑
ǫjgjg

′
j

)
sinh(u cos θ) cosh(u cos θ)+

+
∑

ǫjf
′
jgj cosh2(u cos θ) +

∑
ǫjfjg

′
j sinh2(u cos θ) = 0.

(iii)

By a derivation in (27) one has∑
ǫjfjf

′
j cosh2(u cos θ) +

∑
ǫjgjg

′
j sinh2(u cos θ)+

+
(∑

ǫjfjg
′
j +

∑
ǫjf

′
jgj

)
sinh(u cos θ) cosh(u cos θ) = 0

(iv)

(∑
ǫjf

2
j +

∑
ǫjg

2
j

)
sinh(u cos θ) cosh(u cos θ)+

+
∑

ǫjfjgj(cosh2(u cos θ) + sinh2(u cos θ)) = 0.
(v)

Finally (i), (ii) and (v) yield∑
ǫjf

2
j = −1,

∑
ǫjg

2
j = 1,

∑
ǫjfjgj = 0.

Moreover, it follows
∑

ǫjfjf
′

j = 0,
∑

ǫjgjg
′

j = 0,
∑

ǫjfjg
′

j +
∑

ǫjf
′

jgj = 0.

From (iii) we get

(31)
∑

ǫjf
′

jgj = 0 and
∑

ǫjfjg
′

j = 0.

Hence, the relation (iv) is identically satisfied.

We can write these last equations in another way:
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(32)

< f, f >= −1
< g, g >= 1
< f, g >= 0
< f ′, g >= 0
< f, g′ >= 0

and
< f, f ′ >= 0
< g, g′ >= 0.

We still have to develop the relation (30). This yields

< H(v),H(v) >=< f ′, f ′ > − < g′, g′ >= D2(v), H = (H1,H2,H3).

Remark that f can be thought as a curve on H (while g is not).

Since < f ′, f ′ >≥ 0 (which can be easily proved), one can change the v-coordinate
such that f becomes a unit speed curve in H; this corresponds to D(v)2 cosh2 C(v) =
1 or D(v)2 = 1 (depending on the value of λ).

We have g ⊥ f and g ⊥ f ′. Due the geometric properties of the Lorentzian cross
product, g is collinear to f ⊠ f ′. We have < g, g >= 1 and < f ⊠ f ′, f ⊠ f ′ >= 1
and hence g = ±f ⊠ f ′. We can assume that g = f ⊠ f ′. Then F is given by (19) as
we wanted to prove.

Remark 3.4. Looking for all minimal constant angle surfaces in H×R, these must
be totally geodesic in H× R. Hence we obtain the following surfaces:

(1) H× {t0}, t0 ∈ R

(2) f × R with f a geodesic line in H.

Remark 3.5. A surface M in H × R is a non-minimal constant mean curvature
constant angle surface if and only if it is parameterized by (19) where f is the
parabola explicitly given by

f(v) =

(
1 +

v2

2

)
K − ε

v2

2
L + vK ⊠ L.

Here K and L are orthogonal unitary timelike, respectively spacelike vectors in R
3
1

and ε = ±1.

Proof. First, since M is CMC surface, due to (7), λ must be a constant and hence
λ is given by λ = ε sin θ, with ε = ±1. In this case we have fj = Kj +

∫ v

0
Hj(τ)dτ

and gj = Lj + ε
∫ v

0
Hj(τ)dτ , where Kj and Lj are real constants (j = 1, 2, 3). See

Case 2 in the proof of the main theorem.

Denoting by K = (K1,K2,K3) and L = (L1, L2, L3) it immediately follows that
< K, K >= −1, < L, L >= 1 and < K, L >= 0. Moreover, V = K − εL is a
lightlike vector and f(v) − εg(v) = V , for all v and H(v) = (H1,H2,H3) lies in a
plane orthogonal to V .

Considering the base {K, L,K ⊠ L} one obtains the expression of f and g, namely

f(v) = K +
1

2
A2(v)

(
K − εL

)
+ A(v)K ⊠ L
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and g(v) = f(v) ⊠ f ′(v), where A(v) is a smooth function. After a change of the
parameter v (we can do this since |A′(v)| = |f ′(v)| = 1), we get the statement. ¤

The authors wish to thank the referee for providing constructive comments and
valuable suggestions.
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