Constant Communication ORAM with Small Blocksize

Tarik Moataz
Colorado State University
Telecom Bretagne, IMT

tmoataz@cs.colostate.edu

ABSTRACT

There have been several attempts recently at using homomorphic
encryption to increase the efficiency of Oblivious RAM protocols.
One of the most successful has been Onion ORAM, which achieves
O(1) communication overhead with polylogarithmic server com-
putation. However, it has two drawbacks. It requires a large block
size of B = Q(log® N) with large constants. Moreover, while it
only needs polylogarithmic computation complexity, that compu-
tation consists mostly of expensive homomorphic multiplications.
In this work, we address these problems and reduce the required
block size to Q(log* N). We remove most of the homomorphic
multiplications while maintaining O(1) communication complex-
ity. Our idea is to replace their homomorphic eviction routine with
anew, much cheaper permute-and-merge eviction which eliminates
homomorphic multiplications and maintains the same level of se-
curity. In turn, this removes the need for layered encryption that
Onion ORAM relies on and reduces both the minimum block size
and server computation.

1. INTRODUCTION

With cloud storage becoming increasingly popular and relied
upon by both enterprise and individual users, ensuring proper se-
curity and privacy is a critical research problem. Reports indicate
that up to 88% of organizations [24] are using public cloud infras-
tructure for at least some of their data. It is fairly straightforward to
encrypt that data, but that is not always enough. Where, when and
how often a user accesses their data can reveal as much about it as
the plaintext itself. We call this information a user’s access pattern.
For instance, observing that an investment bank has repeatedly ac-
cessed their files on a specific company may reveal that they plan
to invest in that company. Crucially, there is no easy way to bound
what information you might leak as part of your access pattern, es-
pecially when an adversary can correlate those accesses with other
outside (potentially public) information he might have.

Oblivious RAM is a tool that was designed to solve exactly this
problem. Given a set of accesses to a block storage device, an
ORAM algorithm allows a user to perform them on an untrusted
storage device in such a way that an adversary observing those ac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Travis Mayberry
United States Naval Academy

travism@ccs.neu.edu

Erik-Oliver Blass
Airbus Group Innovations
81663 Munich, Germany
erik-oliver.blass@airbus.com

cesses cannot determine which block the user was reading/writing.
This generally involves shuffling and reencrypting the data some-
how each time it is read or written to in order to unlink two ac-
cesses to the same block. Unfortunately, ORAM has traditionally
been very expensive to implement, causing over a thousand-fold
increase in communication over unprotected accesses.

Recently there has been a flurry of research on ORAM that has
managed to drastically decrease communication overhead with a
new tree-based paradigm [25]. Building on that, Stefanov et al. [27]
introduced Path ORAM which, along with some derivative works,
is the most efficient construction currently known. However, it still
requires polylogarithmic communication overhead which can re-
sult in over a hundred-fold slowdown and may not be usable for
many cloud applications given that cost is a driving factor in out-
sourcing data. Along with work on pure Oblivious RAM, May-
berry et al. [17] introduced the idea that communication overhead
can be greatly reduced if the storage device is also considered to
have some computational ability, which it generally does in a cloud
setting. Using recent advances in homomorphic encryption, a small
amount of computation on the server can be leveraged to cut a sig-
nificant amount of communication to the client, see also [1].

Furthering this research, Devadas et al. [6] have recently pro-
posed a hybrid ORAM-with-computation scheme that achieves O(1)
communication overhead. They achieve this by consecutively wrap-
ping blocks in further layers of encryption as they proceed down
the tree, effectively forming an “onion” out of the blocks. Unfortu-
nately, it still has some major drawbacks:

1. Their scheme requires that the block has a very large size of
Q(log® N). In practice, it can be up to 30 MB for reasonably
sized databases.

2. The onion part of their scheme requires a large number of ho-
momorphic multiplications, which are computationally very
expensive. Depending on the encryption scheme used, over-
head on the server may outweigh any communication saved.

In this work we tackle these problems. We start by showing that
the homomorphic multiplications, and in fact the nesting “onion”
nature of their solution, is not necessary. With careful application
of an oblivious merging algorithm, all movement of blocks through
the tree can be done with only homomorphic addition, resulting in
a more computationally efficient algorithm. This also reduced the
required block size by a O(log? N) factor and, as we will show,
allows for O(1) communication complexity in the worst case. Fi-
nally, we demonstrate via experimental evaluation that our scheme
requires only a small storage overhead compared to Onion ORAM.
For practical parameter values, we achieve significant improvement
in block size and number of homomorphic operations. Table 1 sum-
marizes our improvements when compared to Onion ORAM.

Table 1: Comparison of Onion ORAM and C-ORAM, containing block size, worst-case bandwidth, and number of homomorphic additions
and multiplications. The simplified block value is a looser bound for easier comparison using A = w(log N) and v = O()\3).

Scheme Block size B Simplified block size ~ Worst-case bandwidth ~ # additions ~ # multiplications
Onion ORAM Q(yAlog® N) Q(log® N) o(1) O(BXlog N) ©O(BMlogN)
C-ORAM Q(A[log Alog N +4]) Q(log* N) o(1) ©(BXlog N) O(B))

2. BACKGROUND: ONION ORAM

We start by briefly introducing the main idea of Onion ORAM [6].
We then analyze its complexity to motivate our improvements.

2.1 Overview

An Oblivious RAM is a block-based storage protocol whereby a
user can outsource some data to an untrusted server, and that server
does not learn anything about the pattern of accesses that the user
performs on that data. For instance, whether the user accesses the
same block many times in a row, or each block individually in se-
quence, the server will not be able to distinguish between these two
access patterns. In fact, a secure ORAM guarantees that any two
access patterns will be indistinguishable from the perspective of the
server. This is accomplished by periodically moving, shuffling and
reencrypting the data so that correlations between accesses are lost.
A twist on that model introduced by Mayberry et al. [17], and used
in Onion ORAM, is that instead of the traditional ORAM server
definition where it only stores the data passively, Onion ORAM
assumes that the server can also perform computations.

Onion ORAM is a tree-based ORAM, and shares many qualities
with existing schemes [23, 25, 27]. Most importantly, data blocks
are stored in a tree where each node of the tree is a “bucket” which
contains some number of blocks. When blocks are added to the
ORAM, they start at the root of the tree and are tagged as belonging
to one of the leaf nodes. As the lifecycle of the ORAM continues,
blocks percolate from the root to their assigned leaf node through
a process called eviction. This way, a block can be located at any
time by reading the path from its target leaf back to the root, since
it is guaranteed to always reside on this path. The eviction process
maintains a proper flow of blocks from the root to the leaves so
that no buckets overflow with too many blocks. This is usually
accomplished by picking a path in the tree, from root to a particular
leaf node, and pushing all the blocks on that path as far as possible
down the path toward the leaf node.

The contribution of Onion ORAM is then that it achieves con-
stant communication complexity in the number of ORAM elements
N, while only requiring polylogarithmic computation on the server.
Although the client exchanges many pieces of data back and forth
with the server, the key to having O(1) communication complexity
is that the size of one data block, B, dominates the communica-
tion. All other messages, ciphertexts etc. are collectively small
compared to the actual data being retrieved. Therefore it might
be more intuitive to say that communication is O(B). However,
it is customary in ORAM literature to refer to the communication
complexity in terms of multiplicative overhead, i.e., the cost com-
pared to retrieving the same data without any security. Everything
is then divided by B, and we get to the notion of O(1) communica-
tion complexity. Note that O(1) communication complexity is not
difficult if you allow unrestricted computation (FHE for instance
achieves this trivially), so the limit to polylogarithmic computation
is important.

The main idea behind Onion ORAM is an oblivious shuffling
based on (computational) Private Information Retrieval (PIR). There-
with, ORAM read, write, and eviction operations can be performed
without the client actually downloading data blocks and doing the

merging themselves. This saves a huge amount of communication
when compared to existing schemes like Path ORAM. Compared
to existing tree-based ORAM schemes, Onion ORAM introduces
a triple eviction that empties all buckets along the path instead of
only pushing some elements down and leaving others at intermedi-
ate points in the tree. Elements in any evicted bucket will be pushed
towards both children, thereby ensuring that after an eviction the
entire evicted path is empty aside from the leaves. The authors
take advantage of the fact that if you choose which path to evict
by reverse lexicographic ordering, then you are always guaranteed
during an eviction that the sibling of every node on your path will
already be empty from a previous eviction. This allows for the en-
tire process to be done efficiently and smoothly, because the entire
contents of a parent can be copied into the empty bucket and there
is no need to worry about overwriting what was there because it is
necessarily empty.

This triple eviction is accomplished by sending a logarithmic
number of oblivious shuffling vectors to the server. These vectors,
encrypted with an additively homomorphic encryption, obliviously
map an old block of the parent bucket to a new position in the child.
This operation is made by a matrix multiplication between the vec-
tor sent to the server and the bucket. Considering the size of the
bucket as logarithmic, this algebraic computation should be per-
formed a polylogarithmic number of times. This results that each
block is encrypted, without transitional decryption, a logarithmic
number of times, hence, the attributed name “onion”.

The above results in an ORAM with constant communication
complexity and constant client-memory in the number of elements
N stored in the ORAM, see Table 1.

2.2 Analysis

As noted above, O(1) communication complexity does not im-
ply that blocks are the only information exchanged between client
and server. In Onion ORAM, the client still needs to retrieve meta-
information and send PIR vectors for PIR reads and PIR writes.
Thus, Onion ORAM chooses the block size such that all commu-
nication between server and client is asymptotically dominated by
block size B. Thatis, if B € O(Imeta-information|-+[PIR vectorsl),
then Onion ORAM has constant communication complexity.

Large Block Size: Consequently, to achieve constant communi-
cation complexity, Onion ORAM requires a large block size B.
For a security parameter ~y in the order of 2048 Bytes, bucket size
z = ©(A), and number of elements NV, the block size B in Onion
ORAM is in Q(yAlog? N). This is a significant increase over
B € Q(log N) as required by related work [25, 27]. Generally,
large block sizes render ORAMs impractical for many real world
scenarios where the block size is fixed and simply predetermined by
an application. To mitigate the problem, Onion ORAM uses Lip-
maa’s PIR [15] instead of straightforward additively homomorphic
PIR [13]. This decreases block size to B € Q(ylog? Alog® N).
Factor) is replaced by log® A. On a side note, observe that using
Lipmaa’s PIR might not result in much (or any) gain in practice.
Parameter) is a security parameter with A € w(log N). So, it is
typically small and therefore “close” to log? X. For example, for
A = 80, log® A = 40 is in the same order of magnitude. Since

Lipmaa’s method requires substantially more computation than the
straightforward approach, the small gain in communication is likely
to be outweighed by additional computation time.

Onion ORAM block size example: For security parameter v =
2048, number of elements N = 22°, and security parameter A =
80, the block size must be at least B = 2048 - log? (80) - 20% ~ 33
MBits. Thus, the dataset size equals 22° - 33 - 10° = 35 TBits.
This computation is very rough and does not take into account ad-
ditional, hidden constants such as the constant for the additively
homomorphic cipher chunk in (- log V), or smaller, yet still sig-
nificant constants, like the fact that downloads have corresponding
uploads which multiplies everything by 2. Requiring blocks of size
at least 4 MBytes to store N = 220 elements is impractical for
many real world applications. In conclusion, Onion ORAM can
only be applied to very special data sets with very large block sizes.

3. CONSTANT COMMUNICATION ORAM

Overview: To achieve our increased efficiency and lower block
size, we present a novel, efficient, oblivious bucket merging tech-
nique for Onion ORAM that replaces its expensive layered encryp-
tion. We apply our bucket merging during ORAM eviction. The
content of a parent node/bucket and its child node/bucket can be
merged obliviously, i.e., the server does not learn any information
about the load of each bucket. The idea is that the client sends a per-
mutation II to the server. Using this permutation, the server aligns
the individual encrypted blocks of the two buckets and merges them
into a destination bucket. The client chooses the permutation such
that blocks containing real data in one bucket are always aligned
to empty blocks in the other bucket. As each block is encrypted
with additively homomorphic encryption, merging two blocks is a
simple addition of ciphertexts. For the server, merging is oblivious,
because, informally, any permutation I from the client is indistin-
guishable from a randomly chosen permutation.

For buckets of size O(z), our oblivious merging evicts elements
from a parent bucket to its child with O(z log z) bits of communi-
cation instead of O(yz?) of Onion ORAM. As a result of applying
our merging technique, we only need a constant number of PIR
reads and writes for ORAM operations.

Based on our merging technique, we now present increasingly
sophisticated modifications to Onion ORAM to reduce its costs.
We call the resulting ORAM, i.e., Onion ORAM with our modi-
fication, C-ORAM. As a warm up, we present a technique allow-
ing amortized constant communication complexity with a smaller
block size B in Q(z log z log N +~zlog N). Our second and main
technique achieves constant worst case communication complexity
with smaller block size in Q(z log z log N + ~z).

3.1 Oblivious Merging

Oblivious merging is a technique that obliviously lines up two
buckets in a specific order and merges them into one bucket. Us-
ing this technique, we can evict real data elements from a bucket to
another by permuting the order of blocks of one of them and then
adding additively homomorphically encrypted blocks. Oblivious
merging is based on an oblivious permutation generation that takes
as input the configurations of two buckets and outputs a permuta-
tion II. A configuration of a bucket specifies which of the blocks
in the bucket are real blocks and which are empty. Permutation I1
arranges blocks in such a way that there are no real data elements
at the same position in the two blocks.

3.1.1 C-ORAM Construction

header, |—bucket
(NLe[e] R[]
header,

addr, noise 1/o]of1]0
addr, empty ojojo|o|o
addr,_ empty o|o|lo|o|o
addr4 real ojojoj1f1
addr, noise tjojojoje
address block

Figure 1: C-ORAM bucket structure

C-ORAM keeps Onion ORAM’s main construction. That is, C-
ORAM is a tree-based ORAM composed of a main tree ORAM
storing the actual data and a recursive ORAM storing the position
map. The position map consists of a number of ORAM trees with
linearly increasing height mapping a given address to a tag. For n
elements stored in the ORAM, the communication needed to access
the position map is in O(log? N). As with all recent tree-based
ORAMS, the recursive position map’s communication complexity
is dominated by the block size. For the remainder of this paper, we
therefore restrict our description to C-ORAM’s main data tree.

Let N be a power of 2. C-ORAM is a binary tree with L levels
and 27 leave nodes. Each node/bucket contains . - z blocks. Here,
z is the number of slots needed to hold blocks as in Onion ORAM
and y is a multiplicative constant that gives extra room in the buck-
ets for noisy blocks, a detail we will cover below which is important
for our construction. We maintain the same relation between N, L
and z as in Onion ORAM, namely N < z - 2L=1 " Each block in
a C-ORAM bucket is encrypted using an additively homomorphic
encryption, e.g., Pailler’s or Damgard-Jurik’s cryptosystem. Also,
each bucket contains IND-CPA encrypted meta-information, head-
ers, containing additional information about a bucket’s contents.

3.1.2 Headers

Bucket headers are an important component in C-ORAM as they
determine how oblivious permutations are generated. A bucket
header is comprised of two parts: the first part stores for each block
whether it is noisy, contains real data or is empty. The second part
stores the block tags. More formally, the header is composed of two
vectors header; and header;. Vector header; has length p - 2z, and
each element is either noisy, empty or real. Thus, each element has
a size of two bits. The total size of this vector is in O(1z). header;
isa (i - z X log N) binary matrix. The rows represent the address
of the blocks. Finally, as with all tree based ORAMS, each block
in a bucket also contains the encryption of its address. That is, the
address of each block is encrypted separately from the block itself.
We show a high level view of a C-ORAM bucket in Fig 1.

3.2 C-ORAM: First Construction

To prepare for our main contribution, we start by presenting a
new technique allowing amortized constant communication com-
plexity with a smaller block size.

3.2.1 Overview

To access an element in C-ORAM, i.e., read or write, the client
first fetches the corresponding tag from the position map. This tag
defines a unique path starting from the root of the ORAM tree and
going to a specific leaf given by the tag. The element might reside
in any bucket on this path. To find this element, we make use of a
PIR read [13] that will be applied to each bucket. To verify whether

the block exists in a bucket, the client downloads the encrypted
headers of each bucket. Therewith, the client can generate a PIR
read vector retrieving the block from a bucket. To preserve the
scheme’s obliviousness, the client sends PIR read vectors for each
bucket on the path. Once the block has been retrieved, the client
can modify the block’s content if required, then insert it back into
the root of the C-ORAM tree using PIR write. This is the standard
Path-PIR behavior to read from or write into blocks [17].

Eviction in our first construction takes place after every x =
O(z) access operations. As in Onion ORAM, a path in C-ORAM is
selected following deterministic reverse lexicographic order. Then,
the entire root of the ORAM tree is downloaded, randomly shuf-
fled and written back (additively homomorphically) encrypted. Fi-
nally, the eviction is performed by repeatedly applying an oblivious
merge on buckets along the selected path. Any bucket belonging to
this path is obliviously merged with its parent while the other child
of the parent will be overwritten by a copy of the parent bucket.
We call the former bucket on the path the destination bucket and
the latter one its sibling bucket.

Before starting the eviction of a specific path, an invariant of the
eviction process is that siblings of buckets of this path are empty,
except the leaves. After the eviction, all buckets belonging to the
evicted path will be empty except the leaf [6]. Note that siblings of
this path, after the eviction, will not be empty anymore. See Fig 2
for a sample eviction with N = 8.

Sibling buckets, since they are simply copies of their parents,
will contain blocks with tags outside the subtree of this bucket.
These blocks are called noisy blocks as they do not belong into this
subtree and are essentially leftover “junk”. Now for correctness, in
our construction, we will guarantee that the number of noisy blocks
in any bucket is upper bounded. So, there will always be space for
real elements in a bucket and will not overflow.

Elements in each bucket are encrypted using additively homo-
morphic encryption, respectively. Given two buckets B; and Bs,
oblivious merging will permute the position of blocks in By such
that there are no real or noisy element at the same positions in By
and By. Consequently, if there is a real element in the i*® position
in By, then for the scheme to be correct, the i*® position in B
should be empty. The following addition of elements at the same
position in By and B2 will preserve the value of the real element.
After y operations, we also download the leaf bucket to delete its
noisy blocks.

3.2.2 Details and Analysis

Let P(tag) denote the path starting from the root and going to
the leaf identified by tag. The path is composed of L + 1 buckets
including the root. P(tag,%) refers to the bucket at the i*" level
of P(tag). For example, P(tag, 0) is the root bucket. Ps(tag,)
is the sibling of bucket P(tag,). Let [IN] be the set of integers

{1,---,N},z & [N] uniformly sampling a random element from
set [V], and x the period of eviction which is in O(z). ldentity is
an empty bucket containing only encryptions of zero.

Algorithm 1 presents details of the access operation. An access
can be either an ORAM Read or a Write operation. The only dif-
ference between the two is that a write changes the value of the
block before putting it back in the root. The access operation in-
vokes a PIR read algorithm, see Algorithm 2 that obliviously re-
trieves a block. Algorithm 3 shows the eviction where elements
percolate towards their leaves using oblivious permutations, see Al-
gorithm 4.

Block size: The following asymptotic analysis will be in function
of z, N, and 7. z is the size of the bucket, N the number of ele-

Input: Operation op, address adr, data data, counter ctr, state st
Output: Block B associated to address addr
// Fetch tag value from position map

1 tag = posMap(adr);

posMap(adr) & [N];
if ctr = 0 mod (x) then
Download root bucket, refresh encryptions, randomize order of
real elements;
Evict(st);
else
| forifromOto L do B = B+PIR-Read(adr, P(tag,?)) ;
end
if op = write then set B = data ;
10 ctr = ctr + 1,
11 Upload IND-CPA encrypted block to root P(tag, 0);
Algorithm 1: Access(op, adr, data, ctr, st): C-ORAM access
operation, 1°* construction

PSS

e ® 9 »n

ments, and ~y the length of the ciphertext of the additively homo-
morphic encryption. The communication complexity induced by
an ORAM access operation comprises a PIR read operation and
the eviction process (happening every x € O(z) accesses). The
size of the bucket is i - z, but we will show in our security analy-
sis section later that x4 is a constant. Therefore, we ignore it in our
analysis.

First, the client performs PIR reads L + 1 times. For this, the
client has to download all addresses in the path, i.e., O(z-L-log N)
bits. Also, the client should send a logarithmic number of PIR read
vectors V with size O(7y - z - L) bits. Note that the computation of
PIR read vectors outputs, for all but one buckets’ block, encryption
of zeros. Instead of sending back a logarithmic number of blocks
to the client, the server only sends a single block, the summation
of all the blocks output, cf. Algorithm 1. Thus, the client only
retrieves a single block B. A PIR read applied to all buckets of the
path induces an overhead in O(z - L - log N +~ - z - L + B).

For the eviction, the client downloads header; and the i** col-
umn of headers and sends permutations for all buckets in the path.
Thus, the overhead induced by the permutations is O(L - z - log z)
bits. Also, after every x = O(z) operations, the client downloads
the root and one leaf, which has O(zB) communication complex-
ity. Amortized, for each operation we have O (B) communication
complexity (amortized over z).

In conclusion, each access has O.(z - L -logN +~v -z - L +
z - log(z) - L + B) communication complexity. To have constant
communication complexity in B, the block size should be B €
Q(z-L-logN+~-z-L+L-z-log z) € Q(A-log? N++-X-log N).

The above is a consequence of z = ©(\), A € w(logn), and
L € ©(log N). Based on current attacks [15], v = O()\®). There-
fore, A - log® N is dominated by v - A - log N, and B € Q(y -) -
log N).

The block size of our first modification is already a log N multi-
plicative factor improvement over the block size of Onion ORAM.
However, in practice, this value is still large. The main idea of
our second construction is based on the following observation. The
block size has exactly the same asymptotic as transmitted vectors
V. So to improve the block size, we change the way we are ac-
cessing the ORAM. Note that we can de-amortize C-ORAM first
construction using techniques from [30].

3.3 C-ORAM: Second Construction

We start by further reducing the block size — again by a multi-
plicative factor of log N compared to our first construction. Re-
call that in our first construction, the worst case involves a blow-
up of O(z), because during eviction the client needs to download

Input: Bucket P(tag, level)), address adr
Output: Block B
Retrieve and decrypt addresses Addr of bucket P(tag, level));
// Compute the PIR-Read vector V in client side
if adr € Addr then
// Retrieve the index «
a = Addr[addr];
for i from 1 to . - z do
if i # o then V; < ENC(0) else
V; < ENC(1);
end
else
| forifrom1top-zdo V; < ENC(0);
10 end
// Retrieve block in server side
11 Parse bucket P(tag, level) as (i - z X | B|) binary matrix M;
12 B= (A Vi- Mg, -, 0 Vi My
13 Update header'f"eI of bucket P(tag, level);
Algorithm 2: PIR-Read(adr, P(tag, level))

—_

[N}

[I 7 I

O(z - B) bits. In our second and main construction, the eviction
remains exactly the same, and our focus will only be on ORAM
access.

3.3.1 Overview

In our first modification, we perform a PIR read per bucket dur-
ing an access. Contrary, we now perform an oblivious merge to
find out the block to retrieve. For an ORAM access to tag, our idea
is to perform a special evict of path P(tag). We push all real el-
ements in P(tag) towards the leaf and then simply access the leaf
bucket. So, we preserve access obliviousness and make sure that
the element we want is pushed into leaf bucket tag.

This approach comes with several challenges. We must preserve
the bucket distribution, i.e., we have to maintain sibling empti-
ness property, as guaranteed by the reverse lexicographic eviction,
before evicting any path. Instead of deterministically selecting a
path for eviction, we choose paths randomly. However, using ran-
domized eviction, we still have to guarantee empty siblings on the
evicted path. By randomly evicting a path, we might copy a bucket
in its sibling which is not empty resulting therefore in a correctness
flaw.

Our approach will be to temporarily clone the path P(tag). The
clone of P(tag) serves to simulate the eviction towards the leaf
bucket, and we remove the clone after the access operation. We
apply the oblivious merging on the bucket of this cloned path, and
at the end we will have all real elements in the leaf bucket of the
cloned path. Finally, we apply a PIR read to retrieve the block.

Besides, to get rid of the amortized cost and have a scheme that
only requires a constant bandwidth in the worst case, we make use
of a PIR write operation that will be performed during every ac-
cess. In the first construction, we have to shuffle the root bucket
since oblivious merging has to be performed on random buckets
for security purposes. Moreover, we need to eliminate noisy blocks
from the leaf buckets and therefore after each x operations, the
client downloads the evicted leaf to eliminate all noisy blocks. In
our second C-ORAM construction, we are evicting after every ac-
cess. Consequently, we can be certain that the root bucket is always
empty after an eviction. The first PIR write operation that we per-
form will randomly insert the block in an empty root bucket after
any access obliviously. The second use of PIR write is to delete the
retrieved element from the leaf. In fact, we can also delete noisy
blocks by the same tool but a PIR read is needed to retrieve first the
noisy block that we will overwrite with a PIR write. We dedicate
Section 4.2 to analyze security and correctness of our modification.

Input: State st

Output: Evicted path and updated state st
1 forifromOto L —1do ‘
2 Retrieve headeri and header”ﬁl;
3 Retrieve C; and C; 41 respectively the 3¢ and the (i 4- 1)*P
column of header?, and headeré+1 of the bucket P(st, ¢) and
P(st,i+1);
4 7 < GenPerm((header!, C;), (headerlﬁl, C;4+1)), generate
the oblivious permutation 7;
// Merge the parent and destination bucket
5 P(st,i + 1) = w(P(st,i)) + P(st, i + 1);
6 ifi < L — 1 then

// Copy the parent bucket into its
sibling
7 Ps(st, i) = P(st, 1);
8 else
// Merge the last bucket with the sibling
leaf
9 Retrieve header”fr1 and C;1 from the sibling leaf;
10 7 < GenPerm((header?, C;), (header; ™1, C;11));
1 P(st,i+ 1) = w(P(st,i)) + P(st,i + 1);
12 end
13 Update(header?) and store it with bucket P (st, 7);

14 Update(header’ﬁl) and store it with bucket P(st, 7 + 1);
15 P(st,i) = ldentity;
16 end

Algorithm 3: Evict(st), eviction process

3.3.2 Details and Analysis

Algorithm 5 presents the core of our second C-ORAM construc-
tion. Now, instead of performing a logarithmic number of PIR
reads, we only invoke an Evict-Clone to read a block, cf. Algo-
rithm 6. Evict-Clone uses our oblivious merging, together with
one PIR read to retrieve a block. Moreover, we evict after every ac-
cess. In order to eliminate noisy blocks that have been percolated
to the leaf bucket, we use a PIR write to delete the noisy block, cf.
Algorithm 7.

Block size: The access operation in C-ORAM is composed of
scheduled path eviction, eviction in the cloned path, a PIR read,
and two PIR writes. The size of the headers are negligible com-
pared to the PIR read and write vectors. For sake of clarity, we
therefore avoid including them in our asymptotic analysis.

First, the eviction always involves an overhead of O(zL log z).
Evict-Clone performs one PIR read in addition to the regular evict.
Finally, we retrieve the block of size B. Therefore, the overhead
induced by these steps is O(zL log z + zlog N + vz + B).

Adding the two PIR writes and single PIR read operation will not
change asymptotic behavior since the number of these operations
is constant in V.

In conclusion, to have a bandwidth that is constant in block size
B, the block size should be B € Q(z- L -logz + z -).

With z € O(A), A € w(log N) and L € ©(log N), we achieve
B € Q- [logN -log A+]). In practice, v € O()\?), so v
dominates log N - log A. Therefore, block size B is B € Q(vA).

Our second C-ORAM construction achieves worst-case constant
blow-up, it also omits inefficient PIR reads performed for ORAM
access. This second construction improves the blocks size by a
multiplicative factor of log? N compared to Onion ORAM in the
Wworst case.

As you can see, the main overhead of C-ORAM’s block size
comes from the size of ciphertext . Recall that v € O(\®). There-
fore, the smaller the additively homomorphic ciphertext will get,
the smaller the block size of C-ORAM will be.

Input: Configuration of buckets A and B
Output: A permutation randomly lining up bucket B to bucket A
// Slots in A and B start either empty, full
or noisy; mark slots in A as assigned if
block from B is assigned in 7
1 Let 1, 2 be the number of empty and noisy slots in A;
2 Let y1, y2 be the number of full and noisy slots in B;
3.dy =x1 — Y13
4 do = w9 — Y23
5 for ¢ from / to p - z do

6 case B[i] is full z Ean empty slots in A ;
7 case B[] is noisy

8 if do > 0 then

9 z <$¥ all noisy slots in A;

10 do =da — 1;

11 else

12 ‘ & an empty slots in A;

13 end

14 end

15 case B[] is empty

16 if d; > 0 then

17 z <$¥ all non-assigned slots in A;
18 di =dy —1;

19 else

20 ‘ z <$¥ all full slots in A;

21 end

22 end

23 wli] = z;

24 Alz] = assigned;

25 end

26 return ;
Algorithm 4: GenPerm(A, B), oblivious permutation generation

4. C-ORAM ANALYSIS
4.1 C-ORAM correctness analysis

The goal of the correctness analysis section is to show that, dur-
ing any eviction (algorithms Evict and Evict-Clone), the probabil-
ity that a failure occurs is small. The failure in C-ORAM is defined
as the lack of encryption of zeros in the evicted path. In this sec-
tion, we only consider the proof of correctness of C-ORAM’s first
construction. The proof of correctness of C-ORAM’s second con-
struction is a straightforward extension from the first one. Before
presenting details of our correctness analysis, we introduce some
notations and assumptions.

Let B; ; refer to the bucket at the i*" level of the path evicted at
the j*" step. Each bucket contains . - z blocks, with integer 1 > 1.
In C-ORAM’s first construction, the root bucket contains z real
elements and (11— 1) - z empty blocks. We set ¢ = p—1. An empty
block represents an additively homomorphic encryption of zero.
Each bucket cannot have more than z real elements at any time
with high probability, as we will prove in Theorem 4.3. Let Z; ;
be the discrete random variable of the number of blocks containing
an encryption of zero in bucket B; ;. Similarly, R; ; represents the
number of real blocks. Recall that if a real block is pushed to a
path leading to a leaf different from its own tag, this block is called
a noisy block. N; ; represents the random variable that counts the
number of noisy blocks in bucket B; ;. Finally, the 4" eviction
step is the eviction of the ' path following a deterministic reverse
lexicographic order.

Formally, the eviction in Evict algorithm fails if 3i € {0,...,
L} and £ € N such that Z¢+1,k < Ri,k or Zi,k < Ri+1,k- Thus,
the proof’s goal will be to show that there is no such integer ¢ € {0,
..., L} that verifies both inequalities with high probability.

Input: Operation op, address adr, data data, state st

Output: Block B associated to address adr

// Fetch tag value from position map
1 tag = posMap(adr);

posMap(adr) & [N];

// Retrieve desired block

B =Evict-Clone(adr, tag);

if op = write then set B = data ;

// Select a random position in the root bucket

[N}

B W

n

posi & ITREE

// Write back the block to the empty root

PIR-Write(posi1, B, P(st, 0));

Evict(st);

// Select a random noisy block position from
the header of the leaf P(st,L)

NN

$ L
8 posy < header”;
9 N =PIR-Read(posy, P(st, L));
// Write back the negation of the noisy block
10 PIR-Write(posy, —N, P(st, L));
Algorithm 5: Access(op, adr, data, st): C-ORAM access oper-
ation, 2" construction

Input: Leaf tag and address adr
Output: Block B
Create a copy of the C-ORAM path P(tag);
for i from O to L — 1 do
Retrieve headeri and header§+1;
Retrieve C; and C; 1 1 respectively the i? and the (i 4 1)t
column of header? and header;Jrl of the bucket P(tag, ¢) and
P(tag,i+1);
// Generate the oblivious permutation 7
5 7 < GenPerm((header?, C;), (headeri™ C;11));
// Merge the parent and destination bucket
P(tag,i + 1) = w(P(tag,i)) + P(tag, i+ 1);

S R S

6
7 end

8 B =PIR-Read(adr, P(tag, L));
9 for i from O to L do

10 | Update header! in P(tag, i);
11 end

Algorithm 6: Evict-Clone(adr, tag)

First, we need to introduce two properties that will help us to
understand the proof and the eviction mechanism more thoroughly.
The first property is called the path composition history while the
second one is the bucket composition history. Given a path P(j),
the path composition history captures the eviction step in which
each bucket has been created. Given a bucket B; ;, the bucket com-
position history is a sequence that captures all buckets that have
contributed to the construction of the bucket B; ;.

Path composition history: In C-ORAM, the eviction follows a de-
terministic reverse lexicographic order. In the j'" step of eviction,
every bucket of the path 7(5) has been created on a previous evic-
tion. Thus, we associate to a bucket its eviction step during which
it has been created. In particular, every bucket in this path has been
created from a different eviction step. We are interested on defining
the relation between the eviction steps of buckets belonging to the
same evicted path. This relation follows a pattern which is common
to all evicted paths. For instance, in Fig. 3, the path P(9) of the 9"
eviction is composed of buckets B g, B2 7, B3 5. These are buck-
ets that were created, respectively, in the 8th, 7th, and 5" eviction
step. We do not count the root bucket and the leaf, because the pat-
tern of their eviction is clear. That is, the root is evicted every time
while the leaf is evicted following reverse lexicographic order.

Input: Position pos, bucket P(tag, level), block B
Output: Updated bucket P(tag, level)
// Compute the PIR-Write vector V in client side
for i from 1 to 1 - z do
if i # pos then V; < ENC(0) else
V; + ENC(1);
end
// Write block in server side
Parse bucket P(tag, level) as (1 - z x |B|) binary matrix M;
M ; =W; - Bj;
P(tag, level) = M + P(tag, level);
Algorithm 7: PIR-Write(pos, block, P(tag, level)), PIR-write

n BN =

SN

process

Step 1 Step 2

Figure 2: Buckets on evicted path are with horizontal hatching.
Bucket 3 is a copy of the root. Bucket 4 results from merging buck-
ets 1 and 2. Bucket 6 results from merging 1, 2, and 5.

Formally, for N elements stored in the ORAM and L € O(log N),
one can easily show by induction that the j*® evicted path, for all
J > 1,is composed of {B; ;_50, B3 ;_21,...,B_; j_sr-2}.

After L evictions, buckets belonging to an evicted path, except
the leaves, are copies of a bucket from previous evictions. In our
proof, we will later assume that the ORAM has performed a num-
ber of evictions larger than L. We will also consider the worst case
where all buckets might eventually contain real or noisy blocks.

Bucket composition history: This property follows from the pre-
vious one. Given a path P(3), the eviction will empty all buckets
in this path except the leaf. The eviction works as follows: the
root By, ; will be merged with its destination child B; ;_oo0 in the
path while the sibling Biy ;» originally empty, will be overwritten
by a copy of the root. The root is finally overwritten by an empty
bucket. The bucket B; ;_0 will be merged with its destination
child B, ;_o1 then emptied. The sibling of the bucket By ;_50 will
be overwritten by the content of B; ;_o0. We reiterate the process
until the end of the path (this was a recapitulation of Evict).

Given a bucket B; ;, we are interested in enumerating the evic-
tion’s steps of creation of all buckets that have contributed to bucket

Figure 3: Illustration of nine evictions. Numbers below leaves
represent the order of reverse deterministic lexicographic eviction.
Buckets with same shapes were full and then evicted at the same
step. Example: buckets with triangular shape are evicted in step 9.

Table 2: Bucket creation pattern in function of the eviction step.

Levely 8|7 |6|5[4]3[2]1]-
Levels 716514 (3|2[1]-1]-
Levels St4 (3121]-1|-1-1-

[Evictedpath [9 [876 [543 [2]1]

B;,;. The bucket composition also follows a pattern that is unique
to any bucket in the construction. Given the eviction algorithm, ev-
ery bucket in the i*® level is created by merging all buckets in the
path from the root to the (i — 1)'" level, see Table 2 for an example
of this pattern for N = 16. As an example, the bucket in path 9 at
the 374 level was created during the 5*" eviction step. To determine
the buckets that contributed to this bucket’s creation, we check the
column that has an evicted path equal to 5. Then, we consider all
buckets that are in upper levels: buckets 4 and 3 which are in lev-
els 2 and 1. In general, a bucket B; ; is the result of merging the
following buckets: {Bo,j, By ;_20,Ba j_21,...,B;_1 j_si-2}.

Noisy blocks: It is important to understand the source of prove-
nance of noisy blocks. From a one hand, a noisy block can be cre-
ated whenever an access has been performed on C-ORAM. There-
fore, the accessed block is not valid anymore and should be turned
to a noisy block by updating the headers. On the other hand, a
noisy block can be also created from the eviction process. During
an eviction, and in particular, when a parent is copied to its sibling,
many real elements are no longer valid and become noisy. The main
goal of this section is to upper bound the number of noisy blocks
in all buckets with high probability. Our quantification has then to
take into account both sources, however, one can show that the first
source of noisy blocks can be included as a worst case of the second
source. Recall that a bucket cannot hold more than z real elements
which means that we can have up to z real elements turning to
noise —if we access the same bucket z times before eviction—. One
can only add z additional blocks to each bucket to handle reads, so
whatever computed bound on ¢, one can increase it by one. How-
ever, one can show that it is not necessary. In fact, this situation is
equivalent to having all z real elements in a given bucket as noise
for its sibling (which is the worst case). Thus, one can consider the
first source of noisy blocks as a sub-case of the second one. We are
now ready to state our main theorem.

THEOREM 4.1. If ¢ € O(1), the probability that Z;11,; >
Rijand Z;i; > Rit1,jisin O(z7 %), foralli € [L] and j € N.

PROOF. Based on our assumption, we know that a path cannot
handle more than z real elements with high probability. This im-
plies that Vi € {0,...,L}, we have Ri11 + R; < z.

Here, for sake of clarity and without loss of any generality, we
omit the eviction step j from notation just to minimize the burden
of additional indexes. To show that Vi € [L], Z;41 > R; and
Z; > Riy1, itis equivalent to show that Ni<¢-z

Riyi+R < =z
Rii+Ri+N;+2Z < z+N;+2;
Ripi+p-z < z+4 Ni + Z;
Ripg < (Ni—¢-2)+2Zi

Therefore, it is sufficient to show that Ni — ¢ -z < 0in order
to proof that Vi € [L], Zi+1 > R; and Z; > R;+1. Itis clear that
these inequalities hold for any eviction step j € [N].

Consequently, the proof boils down to show that the probability
that N; ; > ¢ - z is negligible with very high probability.

Based on the bucket composition history, notice that the noisy
elements in the bucket B; ; are exactly those that exist already in
the bucket B; ; ;_5i—2, plus, all the real elements that will be
evicted to the other child and therefore they are considered noisy

elements for the bucket B; ;. Thus, we have Pr(N;; > ¢ - z) =

PI‘(NZ-_Lj_zifz + R;*Lj > ¢ z).

We have shown in the bucket composition history that B; ; is
created by summing all the buckets {Bo ;, By j_20, B2 j_21,. ..,
B;_1,j_2i—2}. The above equation can be then formulated more
accurately such that Pr(Nm- >¢-z) = Pr(maxi(NLJ.,QO7 R
Ni_yj_2i—2)+ Ri_1; > ¢-2).

The equation can be understood as follows: the noise in bucket
B;,; is the maximal amount of noise in any bucket in its history.
Each bucket is created independently of the other ones in the evicted
path. Therefore the quantity of noise in every bucket in the evicted
path is independent of the other ones. We give more details below
about the independence assumption. Since the noise is cumulative
during the eviction, the bucket that has the maximum noise will
represent the noise of the last bucket. Recall that based on Algo-
rithm 4, the noisy blocks are added up. Also, to this quantity of
noise, we add the sum of all real elements in the path that are no
longer considered real elements in B; ; and therefore represent a
new noise denoted by R;_; ;.

All buckets in an evicted path are independent of each others,
i.e., the number of real elements, the number of noisy elements are
independent of the the other buckets in the path. This holds since
the real elements, the noise in any bucket is generated from dis-
tinct evictions. First, note that a bucket is created by merging all
its ancestors. We have defined in the previous section the notion
of bucket composition history that keeps track of each bucket’s an-
cestor that contributed to its creation. As have been shown, the
bucket ancestors emanate from different evictions’ steps which is
a consequence of the reverse deterministic lexicographic eviction.
More importantly, each bucket in the evicted path has a differ-
ent bucket composition history such that the intersection of all of
them is empty. Formally, an evicted path, based on the path com-
position history, of the j* step equals {By ; 90, By _o1,...,
BL71,J‘72L*2}-

Consider a bucket and its parent in the evicted path for ¢ € {1,

.., L =1}, B; ;_si-1 and B, ; ;_oi. The bucket composition is
{Bo,j_2i-1, By j_gi-1_20, By j_gi-1_91,...
and {BO,j—2i7 Bl,j72'i720, B27j72i721 gy Bi7j72i72i71 }

By replacing each bucket in the above sequence by its own bucket
composition history and by iterating the process, we will converge
to a state where each bucket is composed of root buckets that were
instantiated at different evictions’ steps. That is, no distinct buckets
in the evicted path have a root in common. Thus, the number of real
and noisy elements are independent from each other. Therefore we
have

Pr(Nij >¢-2z) = 1—Pr(max(Ny; 50,...,N;_ 1 j_gi-2)
“FR;—I,]’ <¢- Z)
i1
= 1- HPT(Nk’j72k—1 +R;,17j < ¢Z)
k=1

We can reiterate the process of counting the noise until arriving
to the root. The quantity of noise in the root is null. Then

i—1 k—1 s—1

Pr(Nij>¢-2) = 1—-[[]] - J]PrNo.:+ R+

k=11=1 t=1

) Bi—l,j—Qifl—Qi*Q}

Rll,s+--'+R;—l,j <¢-2)
i—1k-1 s—1

= 1= [III- [T PeBo.+ R+

k=11=1 t=1
"'+R;—1,j <¢-2)

Recall that RQ_L ; represents the number of real elements in the
bucket B;_1,; that will be considered as noise in the bucket B; ;.
Any bucket cannot have more than z elements with hight probabil-
ity, denoting R = Ry, + R s + ... + Ri_1 ;, we then have

Pr(R<¢-z) = 1-Pr(i-2>R>¢-2)
= 1— Z Pr(R = k))

k=¢-z

Now, we have to compute an upper bound of Pr(R = k). One
can proceed by: (1) counting all possible solutions of R = k, then
(2) multiply this value by the probability of the most likely solution.
All the possible combinations of the equation x1 + ... + zx =
N equal (**X~") possibilities. The non-trivial part is to find an
upper bound of the most likely solution that, in its general form,
equals Pr(Rj, = x1 AND ... AND R}_, ; = x;_1). We have
that R;_; ., follows a binomial distribution such that Pr(R;_; , =

z;) < (2;:1) . W Using the independence between buckets,

see above for the independence argument, we obtain:

i i—1

ie1 -1 — 1
Pr(/\ Pr(R) = z;)) = HPr(R} =z;) < H (o) (297
§=0 J=0 =o
i1 . e i—1 1
<)" =(podl
<MG" -G TG

We want to find a readable upper bound only in function of k.
Also, remark that the above inequality is true iff, Vj € {1,...,
i — 1}, the following statement holds z; < 27~'. One can ver-
ify with induction that with ;s reaching their upper bounds 27~*
minimizes H;;ll a:;’ and therefore maximizes the inverse of the
function. Also, there exists by construction a nonnegative inte-
ger v such that 327°'2" < k < 377 2", which implies that
v —1 <logk < v+ 1. Putting everything together we obtain:

i—1 i—1
e 1.,
Pr(A Pr(R) = ;) = ()" [[(-)"
o - (E]'
j=0 j=0
(S -
-2 22 (22)22_,,(2771)27—1
_ (&K 1 _ (&K 1
A 9] o1 3% =G e
€.k 1 4e . 1.
<" vt < (3)
Now, we plug the above results in (1)
< rk+i— 1y 4de
PR < ¢-2) > -3 ()
k k
k=¢-z
iz 2. .
> 1— (46 (k+1 1))k
2
k=¢-z
. 82 (¢p-z+i—1)
> 1—(i—@) -z (2= 2T Tz (p
> (i—9¢) z-(2622) ()]

8e?

> 1—i-z.(¢_2

)2 (3)

Inequalities (2) and (3) are bounds that are reached first by replac-
ing k = ¢ - z since it will result on the larger value (k is in the
denominator) and by summing over the final probability by ¢ - z.
Combining all results together, we have

A
T
=

Pr(Nj’k >0 z)

< 1-(1=Pr(j-2>R>¢-2)°00)
< 1-(l—i-z-(ez)M)O(%)

it e2 .
= O(iz() #) = O(eliz(ded!

The last transitions are obtained by the binomial inequality and Stir-
ling approximation. Now, we define the value of ¢ for which this
probability is negligible. The probability above can be simplified
to PI‘(NL]' > ¢ . Z) — O(ei+111(7;‘z)+24>‘z—ln(qb-z)A¢Az).

This probability computation is independent of the step of evic-
tion 7 € N. Therefore, choosing ¢ € ©(1) (and assuming that L €
O(z1n z)), the probability equals: Pr(N; ; > ¢-2z) € O(e™*1"?),
which is negligible in z. [

COROLLARY 4.1. Ifbucket size z € w(log N), L € O(log N),
and ¢ € O(1), the probability that Z; 11 ; > R;j and Z;j; >
Rit1,jisin O(N~1°81e N forqili € [L] and j € N.

The Corollary can be derived from the main theorem by taking z €
w(log N).

4.2 Security Analysis

4.2.1 Oblivious merging

We prove that permutations generated by Algorithm 4 are indis-
tinguishable from random permutations. Informally, we show that
the adversary cannot gain any knowledge about the load of a par-
ticular bucket. Applying a permutation from Algorithm 4 is equal
to applying any randomly chosen permutation. We formalize our
intuition in the security definition below.

First, we introduce our adversarial permutation indistinguisha-
bility experiment that we denote PermG. Let M denote a proba-
bilistic algorithm that generates permutations based on the configu-
rations of two buckets, and .A a PPT adversary. Let & be the bucket
size and s the security parameter. By Perm we denote the set of
all possible permutations of size k. Let & = (Gen, Enc, Dec)
and & = (Gen,, Enc,, Dec,) respectively denote an IND$-CPA
encryption and an IND-CPA additively homomorphic encryption
schemes. PermeA’ £,.8, (s) refers to the instantiation of the ex-
periments by algorithm M, &1, & and adversary A.

The experiment PermG:y ¢, &, () consists of:

e Generate two keys k1 and k2 such that k1 & Gen,(1%) and

ky & Gen(1°) and send n buckets additively homomor-
phic encrypted with Enc,(k1,.) associated to their headers
encrypted with Enc(kz, .) to the adversary .4

e The adversary A picks two buckets A and B, then sends the
encrypted headers header(A) and header(B)

e A random bit b < {0,1} is chosen. If b = 1, m &

M ((header(A), header(B)), otherwise 7o & Perm. Send
m to A

e A has access to the oracle O that issues permutation for
any couple of headers different from those in the challenge

A outputs a bit b’

The output of the experiment is 1 if b’ = b, and 0 otherwise.
If PermGAy ¢, ¢,(s,b') = 1, we say that the adversary A
succeeded.

DEFINITION 4.1
M generates indistinguishable permutations iff for all PPT adver-
saries A and all possible configurations of buckets A and B, there
exists a negligible function negl, such that

Pr[PermGj{‘,L‘gl,g2 (s,1) = 1]7Pr[PermGj§l,1"gl,‘g2 (s,0) = 1] < negl(s).

THEOREM 4.2. If & is IND$-CPA secure, E2 IND-CPA se-
cure, then Algorithm 4 generates indistinguishable permutations.

PROOF. We consider a succession of games Gameg, Game; and
Game; defined as follows:

e Gamey is exactly the experiment PermGﬁ/l,ghg,2 (s,1)

e Game; is similar to Gameyp, except that encrypted headers
are replaced with random strings

e Game; is similar to Game;, except that encrypted buckets
are replaced with buckets with new randomly generated blocks
which are additively encrypted

From the definition above, we have

Pr[Gameg] = P’r[PermGj‘\‘,hg“g2 (s,1) =1]. 4)

For Game;, we can construct an efficient distinguisher B; that re-
duces &; to IND$-CPA security such that:

Pr[Gameg] — Pr[Game;] < AdVIgRECPA(S). 5)

Similarly for Game;, we can build an efficient distinguisher B»
that reduces the security of &5 to IND-CPA security such that:

Pr[Game;] — Pr[Game,] < AdviE> ™ (s). (6)

We will no show that Pr[Gamez] = Pr[PermG#, ¢, ¢,(s,0) =
1]. That is, we need to show that the distribution of the output of
algorithm M has a uniform distribution over the set Perm.

For sake of clarity, we assume that the number of noisy slots is
zero in both buckets. Therefore, slots in A and B are either full or
empty. We can easily extend the proof for the case where we have
full, empty and noisy blocks.

For clarity, let X denote the discrete random variable that repre-
sents the permutation selected by the adversary and by Load;; the
event of load(A) = i and load(B) = j. By load(A), we denote
the number of real elements in bucket A. If b = 0, the adversary
receives a permutation g selected uniformly at random. It is clear
that 4 cannot distinguish it from another uniformly generated ran-
dom permutation. Note that in this case, for buckets with & slots,
the probability that adversary selects a permutation from Perm uni-
formly at random equals ——— = . Thus, Pr[X = mo] = .

[Perm|

(INDISTINGUISHABLE PERMUTATION). Algorithm

If b = 1, the adversary receives m1. We need to show that the
permutations output by M are uniformly distributed.

Pr(X =m) = Z Pr(X = 7 and Load;;)
1,5€[n]
= > Pr(X =m |Load;) - Pr(Load;)
i,j€[n]

We compute the probability of selecting a permutation while the
loads of buckets A and B are fixed to 4 and j. The number of possi-
ble configurations of valid permutations equals Valid = (*)- (k;l))
This represents the number of possible permutation from which the
client can choose to generate a valid permutation. From the ad-
versary view, it should take into consideration all possible config-
urations of blocks in both buckets A and B. The total number of
permutations computes to Total = (%) - (f) . (k;‘) gl (k=L
The first two terms count the possible configurations of the loads
in both buckets while the three last terms are for valid permuta-
tions for a fixed setting of load distribution in the buckets. The
cardinality of possible configurations equals the number of possi-
ble combinations from which we can select j empty blocks from
k —1,ie., (k;l) We then multiply this last value by the possible
permutations of the k — 4 full blocks and the j empty blocks that
are respectively equal to (k — j)! and j!. That is,

Pr(X = m | Load:j) = \T/zl'adl

) -7 1 1

= TR (R (k=3 - N k! i N k!
)G -7 gt k=) sy (k=) K
We insert the result of this equation in the previous one and ob-
tain Pr(X =m) =3, .\ & - Pr(Loadij) = 4.
Thus for the adversary, permutations output by M are uniformly
distributed, i.e.

Pr[X = m] = Pr[X = mo] = Pr[PermGyy ¢, ¢,(5,0) =1] (7)

Combining Equations 4, 5, 6, and 7, we obtain

Pr[PermGjﬁ‘A"gl’g2 (s,1)] = Pr[Gamey]

< Pr[Game;] + Adv'g?zcm(s)

< Pr[Game] + AdviEP SPA(s) + Advngfg_lCPA(s)

< Pr[PermGiy.e, ., (s,0)] + AdVED 5SPA(s) + AdvEPE A (s).

4.2.2 Overflow probability of C-ORAM buckets

C-ORAM eviction is similar to Onion ORAM [6]. The distribu-
tion of real elements for both constructions is exactly the same. We
have a bucket size of i - z where z elements are allocated for real
elements and (pu — 1)z is allocated for noisy elements to preserve
the correctness of C-ORAM construction. The overflow probabil-
ity denotes the fact that any bucket in C-ORAM will contain more
than z elements. We want to show that this probability is negligible
in n. For this, we borrow the results of Devadas et al. [6] and Ren
et al. [23] that have introduced the eviction factor x. Throughout
the paper, we have been stating that x = O(z), which is a result of
the following theorem, without explicitly stating it before to avoid
confusion.

THEOREM 4.3. For the eviction factor x and height L such that
z > xand N < x - 2L7L the overflow probability after every
—(2z—x)?

eviction equals e 6x

O

Choosing z € O(A), L € O(logN), x € ©(\) and X\ €
w(log N) makes the the result of Th 4.3 negligible in N.

S. EVALUATION

We have shown analytically that it suffices to set © = (1) and
have buckets of size ©(z) = ©(X). However, we have not derived
precisely what bucket size is necessary for concrete security pa-
rameters. In order to get an idea of how bucket size in our scheme
scales with A\, we performed a series of experiments simulating our
ORAM and measuring the maximum number of used slots (real
data blocks plus junk blocks) after number of operations, for var-
ious values of x. We performed 20 sets of runs for each value of the
security parameter where we executed 2* operations to test security
parameter \. For each of these runs, we measured the largest bucket
load in the tree and then averaged this value across all runs to deter-
mine a bucket size which matches the selected security parameter.
Figure 4b shows the results of this test, compared with equivalent
tests run using the original Onion ORAM algorithm. Our results
show that, because of the lower value of A in C-ORAM, our bucket
size is actually slightly smaller than Onion ORAM.

Additionally, we compare the efficiency of our scheme in terms
of server computation to that of Onion ORAM. We aim to quantify
the number of homomorphic addition and multiplication operations
in each scheme, to show that we have significant improvement.
Throughout this analysis, we will consider a single multiplication
or addition to be over an entire block, although in practice it may
be divided into chunks of smaller ciphertext. Any changes in chunk
size will apply equally to both schemes so discussion of its impact
will be ignored. Note however that we do not have layered encryp-
tions and so, in fact, ciphertext operations in our scheme will be
cheaper simply because they are smaller.

During eviction Onion ORAM performs z select operations on
each bucket, which each require a PIR query over z slots. This re-
sults in a total of 22 multiplications for each bucket, over L buckets.
Amortized over z gives O(z - L) multiplications. Each multiplica-
tion also implies an addition in the select procedure, so the number
of ciphertext additions is the same.

C-ORAM contains one major modification that is pertinent when
comparing ciphertext operations: PIR queries are only done on the
root bucket, to add new blocks, and on leaf buckets to read and re-
move blocks. C-ORAM then requires only O(z - 1) multiplications
and z - p - L additions. Since we have shown that g is a small con-
stant, we effective gain a factor of O(L) in multiplications. Cru-
cially, this means the number of multiplications for C-ORAM is
independent of log N, as can be seen in Figure 5a.

Figure 5b shows the results of tests we have run to determine the
computational speedup of C-ORAM compared to Onion ORAM.
We considered Pailler encryption as the homomorphic cipher for
our tests, using a 2048-bit semiprime, which results in ciphertexts
of size 4096 bits. Tests were done on a 2013 Macbook Pro with
a 2.5 GHz Intel Core i7 processor, which we found could perform
62 ciphertext multiplications per second. We then calculated how
much time it would take to perform the necessary ciphertext oper-
ations for one ORAM access, setting B = 100kb and varying N
from 2'¢ to 2%, Figure 5b also shows the computation necessary
for the online (read) portion of the access.

Although C-ORAM improves significantly over Onion ORAM,
computation is the main bottleneck in both schemes. C-ORAM re-
quires less than one MB of communication for one of the queries
we tested. Using modern Internet connections, communication
would take only a matter of seconds compared to a minute for the
ciphertext computations. C-ORAM takes about 7 minutes for this
query, while Onion ORAM takes over an hour and a half.

100000
)

< 10000

@ L X

)

% 1000

o

2 | IS S N SR S S |
100

3

o

CORAM —+—
Onion ORAM —>—

16 17 18 19 20 21 22 23
log N

(a) Minimum efficient block size for C-ORAM and Onion ORAM

200

a
o

Minimum bucket size
S
o

B

CORAM O
Onion ORAM

15 20 25 30 35 40 45 50 55 60
Security parameter

0

(b) Required bucket size in relation to security parameter

Figure 4: Comparison of C-ORAM and Onion ORAM

10000
¢
//)
8000
o0
s T
g 6000 >/
[}
S ///
§ //
5 4000 CORAM Milts —+—
€ CORAM Adds —<—
2 Onion Adds/Mults —«—
2000
0

16 17 18 19 20 21 22 23
log N

(a) Required ciphertext operations for one access

140
120
2 100 /G/B/E
2 P/Eﬂ/E
£ 80 CORAM Read —+—
° CORAM Total —<—
g 60 Onion Read —*—
- Onion Total —&—
40
20 ¥

16 17 18 19 20 21 22 23
log N

(b) Comparison of computation time for one access

Figure 5: Comparison of C-ORAM and Onion ORAM

We stress that these evaluation results are largely to show the
relative improvement of C-ORAM over Onion ORAM. We chose
Paillier, because it is an established additively homomorphic en-
cryption scheme, with well-understood levels of security. There are
new homomorphic encryption schemes which perform much better
than Paillier [2, 4, 16]. But stable, optimized implementations of
them do not yet exist, and concrete parameters choices are still up
for debate. Preliminary tests indicate that use of, for instance, the
modern NTRU encryption scheme of Lopez-Alt et al. [16] could
allow for accesses with as little as 5 to 10 seconds of computation.
However, a significant drawback that must be balanced for NTRU
is that the ciphertexts are much larger, resulting in a tradeoff be-
tween increased computational efficiency and higher communica-
tion for the PIR portions of C-ORAM. We leave full exploration of
optimized homomorphic encryption schemes to future work.

Finally, we compare the optimal block size for C-ORAM in re-
lation to Onion ORAM, cf. Figure 4a. For each eviction, Onion
ORAM requires A2 ciphertexts of size + to be sent by the client,
while we require only permutation vectors of total size uAL log A.
Since v = O(\?), this is a huge savings. For reads, Onion ORAM
requires AL+~ bits of ciphertext while we require only 4u 7.

Comparison results: C-ORAM is able to achieve constant com-
munication overhead in the worst-case, with significantly less server
computation required in addition to smaller minimum block sizes.
Figure 5a shows that we lower both the required number of cipher-
text additions and multiplications by several orders of magnitude
when compared to Onion ORAM, and Figure 5b shows that in
practice this leads to a substantial improvement in efficiency. Fig-
ure 4b shows that, due to our lower value of A, the bucket size
for C-ORAM is actually smaller in practice than Onion ORAM as

well. Additionally, Figure 4a shows that C-ORAM requires much
smaller blocks than Onion ORAM in practice.

6. RELATED WORK

ORAM was first introduced by Goldreich and Ostrovsky [9] and
has recently received an increasing interest with the introduction of
tree-based ORAM construction [3, 5, 7-12, 14, 17-19, 21-23, 25,
27-29]. ORAMs can be categorized based on the client memory
setting, namely, constant client memory or sublinear client mem-
ory. This categorization can be refined by taking into account the
server computation nature, namely, storage-only server, versus, com-
putational servers. In the following, we will briefly recapitulate
some notable research works done in this area while arranging them
in their corresponding categories.

Constant client memory: This category of ORAMs is very useful
in the case of very restrained client memory devices such us smart-
phones, embedded devices. With constant client memory, the aim
of this research is to reduce the worst-case or amortized case com-
munication complexity between the client and server [6, 10, 11,
14, 17, 21, 22, 25]. Polylogarithmic amortized-case cost was intro-
duced by Goodrich and Mitzenmacher [10] and Pinkas and Rein-
man [22] in O(log® N) but with linear worst case communication
complexity. This last has been improved to O(v/N - log? N) with
the work of Goodrich et al. [11]. The first scheme to provide a poly-
logarithmic worst-case was presented by Shi et al. [25]. The idea
behind this scheme is a tree-based construction where nodes con-
sist of small bucket ORAMs, see [9, 20] while memory shuffling is
performed after every access. This scheme offers a communication
complexity in O(log® N) in term of number of blocks downloaded.

Asymptotics for constant-client memory has been enhanced by the
work of Kushilevitz et al. [14] with a communication complexity
equal to O(%). However, this construction suffers from a
large hidden constant ~ 30 that make it less efficient compared to
Shi et al. [25] for example.

While all the previous schemes are based on storage-only servers,
Mayberry et al. [17] have introduced a new paradigm that takes
advantage of a computational server setting. In fact, their idea is
based on coupling PIR [13] with Shi et al. [25]’'s ORAM. A PIR
vector is used to retrieve the searched for block from the desired
bucket that greatly reduces the amount of bits needed for one ac-
cess. The authors show therewith that the communication complex-
ity can be reduced to O(log® N). Devadas et al. [6] enhanced this
idea by proposing the first amortized constant client bandwidth in
a computational server. The idea is also based on merging PIR
and ORAM, however, the client still needs to download a large
block size B = Q(log® N) which is not very practical for real-
istic dataset.

Sub-linear client memory: Williams and Sion [28], Williams et al.
[29] works introduce a sublinear client side memory in O(v/N) but
with a linear worst-case cost complexity. Stefanov et al. [26] im-
proved this result by introducing a polylogarithmic communication
complexity in O(log? N) but with O(v/N) client memory.
Gentry et al. [7] improve the ORAM by Shi et al. [25] by replac-
ing the binary tree by a x—array tree. They introduce a new de-
terministic eviction process adapted to this new structure based on
reverse lexicographic ordering of leaves. This eviction method is
the basis of many recent tree-based ORAMs such as Ren et al. [23]
or Devadas et al. [6]. With a branching factor equal to k = log IV,

the communication complexity of Gentry et al. [7]’s ORAM is in
%. The polylogarithmic client memory is in O(log® N) be-
cause the client has to keep track of all elements in path during
the eviction. Stefanov et al. [27] present Path ORAM, one of the
most efficient construction with only O(log N) client memory. The
bandwidth is in O(log? N) if the block size is in Q(log N) or in
O(log N) for (log® N) block sizes. Ren et al. [23] further re-
duced the communication cost by 2 to 4 times.

Acknowledgements: We thank shepherds Chris Fletcher, Ling Ren, and Elaine Shi
for valuable discussions improving the paper. This work was partially supported by
NSF grant 1218197.

References

[1] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable Oblivious
Storage. In Proceedings of Public-Key Cryptography, pages 131-148,
Buenos Aires, Argentina, 2014.

[2] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)
fully homomorphic encryption without bootstrapping. In Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference,
pages 309-325. ACM, 2012.

[3] K.-M. Chung and R. Pass. A Simple ORAM. IACR Cryptology ePrint
Archive, 2013:243, 2013.

[4] Jean-Sébastien Coron, Tancreéde Lepoint, and Mehdi Tibouchi. Scale-
invariant fully homomorphic encryption over the integers. In Public-
Key Cryptography—PKC 2014, pages 311-328. Springer, 2014.

[5] L. Damgard, S. Meldgaard, and J.B. Nielsen. Perfectly Secure Obliv-

ious RAM without Random Oracles. In Proceedings of Theory of

Cryptography Conference -TCC, pages 144-163, Providence, USA,

March 2011.

Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling

Ren, Elaine Shi, and Daniel Wichs. Onion ORAM: A Constant Band-

width Blowup Oblivious RAM. JACR Cryptology ePrint Archive,

2015:5, 2015.

[7]1 C. Gentry, K.A. Goldman, S. Halevi, C.S. Jutla, M. Raykova, and
Daniel Wichs. Optimizing ORAM and Using It Efficiently for Secure
Computation. In Proceedings of Privacy Enhancing Technologies,
pages 1-18, 2013.

[6

—_

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

(28]
[29]

(30]

0. Goldreich. Towards a Theory of Software Protection and Simu-
lation by Oblivious RAMs. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing —STOC, pages 182-194, New
York, USA, 1987.

0. Goldreich and R. Ostrovsky. Software protection and simulation on
oblivious rams. J. ACM, 43(3):431-473, May 1996. ISSN 0004-5411.
doi: 10.1145/233551.233553. URL http://doi.acm.org/10.
1145/233551.233553.

M.T. Goodrich and M. Mitzenmacher. Privacy-preserving access of
outsourced data via oblivious ram simulation. In Proceedings of
Automata, Languages and Programming —ICALP, pages 576-587,
Zurick, Switzerland, 2011.

M.T. Goodrich, M. Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. Oblivious ram simulation with efficient worst-case access
overhead. In Proceedings of the 3rd ACM Cloud Computing Security
Workshop —CCSW, pages 95-100, Chicago, USA, 2011.

M.T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamas-
sia. Privacy-preserving group data access via stateless oblivious RAM
simulation. In Proceedings of the Symposium on Discrete Algorithms
—SODA, pages 157-167, Kyoto, Japan, 2012.

E. Kushilevitz and R. Ostrovsky. Replication is not Needed: Sin-
gle Database, Computationally-Private Information Retrieval. In Pro-
ceedings of Foundations of Computer Science, pages 364-373, Miami
Beach, USA, 1997.

E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of hash-
based oblivious ram and a new balancing scheme. In Proceedings
of the Symposium on Discrete Algorithms —SODA, pages 143-156,
Kyoto, Japan, 2012.

H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Com-
munication. In Proceedings of Information Security Conference,
pages 314-328, Singapore, 2005.

A. Loépez-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic en-
cryption. In Proceedings of Symposium on Theory of Computing,
pages 1219-1234, 2012.

T. Mayberry, E.-O. Blass, and A.H. Chan. Efficient Private File Re-
trieval by Combining ORAM and PIR. In Proceedings of the Network
and Distributed System Security Symposium, San Diego, USA, 2014.
T. Moataz, E.-O. Blass, and G. Noubir. Recursive Trees for Practical
ORAM. In Proceedings of Privacy Enhancing Technologies Sympo-
sium, pages 115-134, Philadelphia, USA, 2015.

T. Moataz, T. Mayberry, E.-O. Blass, and A.H. Chan. Resizable Tree-
Based Oblivious RAM. In Proceedings of Financial Cryptography
and Data Security, pages 147-167, San Juan, Puerto Rico, 2015.
ISBN 978-3-662-47853-0.

R. Ostrovsky. Efficient computation on oblivious rams. In Proceed-
ings of the Symposium on Theory of Computing —STOC, pages 514—
523, Baltimore, USA, 1990.

R. Ostrovsky and V. Shoup. Private information storage (extended
abstract). In Proceedings of the Symposium on Theory of Computing
—STOC, pages 294-303, El Paso, USA, 1997.

B. Pinkas and T. Reinman. Oblivious ram revisited. In Advances in
Cryptology — CRYPTO, pages 502-519, Santa Barbara, USA, 2010.
L. Ren, C.W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and
S. Devadas. Constants Count: Practical Improvements to Oblivious
RAM, 2014. IACR Cryptology ePrint Archive 997.
RightScale. State of the cloud report, 2015.
http://assets.rightscale.com/uploads/pdfs/
RightScale-2015-State-of-the-Cloud-Report.pdf.
E. Shi, T.-H.H. Chan, E. Stefanov, and M. Li. Oblivious RAM with
O(log®(N)) Worst-Case Cost. In Proceedings of Advances in Cryp-
tology — ASIACRYPT, pages 197-214, Seoul, South Korea, 2011.
ISBN 978-3-642-25384-3.

E. Stefanov, E. Shi, and D.X. Song. Towards practical oblivious ram.
In Proceedings of the Network and Distributed System Security Sym-
posium, San Diego, USA, 2012. The Internet Society.

E. Stefanov, M. van Dijk, E. Shi, C.W. Fletcher, L. Ren, X. Yu, and
S. Devadas. Path ORAM: an extremely simple oblivious RAM proto-
col. In Proceedings of Conference on Computer and Communications
Security, pages 299-310, Berlin, Germany, 2013. ISBN 978-1-4503-
2477-9.

P. Williams and R. Sion. Usable pir. In Proceedings of the Network
and Distributed System Security Symposium, San Diego, USA, 2008.
P. Williams, R. Sion, and B. Carbunar. Building castles out of mud:
practical access pattern privacy and correctness on untrusted stor-
age. In ACM Conference on Computer and Communications Security,
pages 139-148, Alexandra, USA, 2008.

Peter Williams, Radu Sion, and Alin Tomescu. PrivateFS: A parallel
oblivious file system. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 977-988. ACM, 2012.

URL

