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ABSTRACT 
We present a new and efficient algorithm for decomposition of arbitrary triangle meshes into connected subsets 
of meshes called regions. Our method, based on discrete curvature analysis decomposes the object into almost 
constant curvature surfaces and not only “cut” the object along its hard edges like traditional methods. This 
algorithm is an hybrid approach vertex-triangle, it is based on three major steps: vertices are first classified using 
their discrete curvature values, then connected triangle regions are extracted via a region growing process and 
finally similar regions are merged using a region adjacency graph in order to obtain final patches. Experiments 
were conducted on both CAD and natural models, results are satisfactory. Segmented patches can then be used 
instead of the complete complex model to facilitate computer graphic tasks such as smoothing, surface fitting or 
compression. 
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1. INTRODUCTION 
Triangle mesh is by far the most popular model for 
3D-objects/3D-surfaces representation. Reasons are 
its algebraic simplicity (linear algebra), which 
facilitates largely rendering algorithms, and its 
capacity to model any complex object of arbitrary 
topology. Moreover, the majority of triangle 
manipulations necessary in graphic applications are 
managed by the graphic hardware, which facilitates 
the diffusion and the preponderance of this model. 
Many tasks in computer graphic and computer vision 
are performed on 3D-meshes: smoothing, decimation, 
surface fitting and compression (due to the large 
amount of data carried by a triangle mesh). The 
difficulty of these algorithms increases when the 
object becomes complicated, for instance when it is 
composed of high complexity surfaces or numerous 
components. Therefore the object decomposition, 
into parts or patches, becomes attractive since it 
simplifies the complex problems of treating a 
complicated object in several sub-problems, each 
dealing with simpler subsets of the object. Within this 
framework, we present a curvature based triangle 
mesh segmentation method which decomposes a 3D-
mesh into connected subsets of mesh, called regions. 
Our purpose is to be able to fit subdivision patches on 
these regions for an adaptive compression objective. 

Section 2 presents the related work on the mesh 
segmentation subject, whereas the overview of our 
method is detailed in section 3. Sections 4, 5 and 6 
deal with the three different steps of the method: 
vertex classification, region growing and region 
merging. Experiments and results are presented and 
discussed in section 7.  

2. RELATED WORK 
There has been a considerable research work relevant 
to the problem of 3d-object segmentation. However 
the majority of these methods concern range images 
[Hof87] [Bes88] [Rom94][Leo97] or 3d point clouds 
[Che03][Cha00]. Only few studies concern triangle 
meshes which is nevertheless the most widespread 
representation for 3d-objects. Wu and Levine [Wu97] 
present a physics-based original method which uses 
the idea of electrical charge but this approach is 
computationally expensive. The other approaches 
generally use discrete curvature analysis combined 
with the Watershed algorithm described by Serra 
[Ser82] in the 2D image segmentation field. M angan 
and Whitaker [Man99] generalize the Watershed 
method to arbitrary meshes, using the Gaussian 
curvature or the norm of covariance of adjacent 
triangle normals at each mesh vertex as the height 
field. Sun and al. [Sun02] use the Watershed with a 



new curvature measure based on the eigen analysis of 
the surface normal vector field in a geodesic window. 
More recently, Razdan and Bae [Raz03] proposed an 
hybrid method wich combines Watershed algorithm 
with the extraction of feature boundaries by the 
analysis of dihedral angle between polygon faces. 
Zhang et al. [Zha02] use the sign of the Gaussian 
curvature to mark boundaries, and process a part 
decomposition.  

We have distinguished two major shortcomings in 
these existing methods. They are described below. 

Firstly, many approaches are only vertex based 
[Sun02] [Zha02], each vertex has its region 
information, therefore triangles on boundaries have 
multi-regions information, it results that boundaries 
are fuzzy; they are not clearly identified in term of 
edges. Our method is an hybrid approach vertex-
triangle, which combines a vertex classification with 
a triangle region growing and merging. Boundaries 
between regions are clearly distinguishable edges. 

Secondly, most of the approaches discussed above, 
particularly those based on the Watershed algorithm, 
extract regions surrounded by high curvature 
boundaries [Sun02] [Zha02] [Raz03] (see Fig.9.b) 
but fails to distinguish simple curvature transition 
between vertices (see Fig.9.a) without curvature pick. 
The K-Means vertex classification that we use allows 
to detect these transitions. 

3. METHOD OVERVIEW 
We present a segmentation algorithm for surface 
decomposition of arbitrary triangle meshes, based on 
curvature information analysis. Our method 
decomposes the object into almost constant curvature 
triangle regions with precise edge boundaries.  It does 
not only “cut” the object along its edges but detects 
every curvature transitions. Fig.1 shows the diagram 
for this approach. 

Figure 1. Diagram of our segmentation method. 

Firstly, discrete curvature is calculated for each 
vertex according to the work of Meyer and al. 
[Mey02]. Then vertices are classified into clusters 
(see Section 4), according to their principal 
curvatures values Kmin and Kmax. A region growing 
algorithm is then processed (see Section 5) 
assembling triangles into connected labeled regions 
according to the vertex clusters. Holes between 
regions are filled taking into account boundary 
criteria. Finally a region adjacency graph is processed 
and reduced in order to merge similar regions (see 

Section 6) according to several criteria (curvature 
similarity, size, common perimeter). 

4. VERTEX CLASSIFICATION 
Vertices of the mesh are classified according to their 
discrete curvature. 

Discrete curvature estimation 
To estimate the curvature information of each vertex 
of the mesh we have implemented the work of Meyer 
and al. [Mey02], using averaging Voronoi cell and 
the mixed Finite-Element/Finite-Volume method. The 
Gaussian curvature, the mean curvature and the 
principal curvatures are estimated using the following 
equations (see Fig. 2): 

 
 
 
 
 
 
 
 
 

Figure 2. 1-ring neighbors (N1(X)) around 
vertex X .  

§ Discrete Mean Curvature Normal of vertex X  is 
defined by: 
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Where A  is the Voronoi area region  (see equation 4). 

§ Discrete Gauss Curvature of vertex X  is 
processed as follows: 
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f  is the number of adjacent faces to the vertex X (6 in 
the example of Fig.2). The Gauss curvature can be 
negative (case of hyperbolic vertices). 

§ Discrete principal curvatures of vertex X are 
computed with the following equations: 
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A is the Voronoi area region, and is defined by:  
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Kmax  is always positive, whereas Kmin  follows the 
sign of Kg . 
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Results are presented in Fig.3. The color scale starts 
with the blue and ends with the red and depends on 
the considered curvature. When considering the 
interior of the torus, the mean curvature (a) is low and 
the gauss one is high in negative (blue color in b), 
just as the minimum curvature Kmin. In the interior, 
Kmin is high in absolute value (red color in c) 
whereas the maximum curvature Kmax is low (blue 
color in d), in this area Kmin and Kmax are almost 
equal (2,3 for Kmin and 2,7 for Kmax) . 
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Figure 3. Curvature values of triangulated torus 
using pseudo-colors: (a) Mean, (b) Gaussian, (c) 
Minimum (absolute value), (d) Maximum. 

Curvature classification 
Vertices are classified according to the values of their 
principal curvatures Kmin and Kmax (see Fig.4).  
Kmin can be negative, we consider its absolute value, 
it is not necessary to differentiate positive and 
negative value in our classification. The clustering is 
done via a K-Means algorithm (an usual unsupervised 
fast classification method) [Ger92], completed by a 
cluster regularization (merging of small or similar 
clusters). At the end of the algorithm each vertex is 
associated with a Cluster Ci and a classified curvature 
value ci (ci is in fact a two scalars vector which 
contains the classified values for Kmin and Kmax). 
The number of clusters K is fixed by the user, but is 
not critical for the final segmentation result because 
of the region growing and merging steps. 

Fig.4 shows the vertex classification process applied 
to the Fandisk object (6475 vertices). The number of 

clusters in the curvature space is fixed to 5, by the 
user (clusters colors are yellow, orange, blue, dark 
blue and light blue). 

Figure 4. Vertex classification of the Fandisk mesh 
in 5 curvature clusters. 

5. REGION GROWING 
Once vertices have been classified, a triangle growing 
and labeling operation is performed as follows. Each 
triangle which has its three vertices belonging to the 
same cluster CL (Corresponding to the classified 
curvature value cL) is considered as a seed. Starting 
from a seed, a region with a new label L and the 
curvature value cL is created containing this triangle.  

 
Figure 5. Seed triangle T with vertices from 
cluster CL and its neighbor triangles. 

Then a recursive process extends this region: for each 
triangle T belonging to the region L, we look its three 
neighbor triangles Ti (see Fig.5). For each Ti, if the 
cluster of its third vertex CTi is equal to CL, thus Ti is 
aggregated to this region (Label L), else it is not 
labeled. This process is repeated for every other 
triangle marked as seed and not yet labeled. 

Once all seeds have been treated, we have n 
connected regions with holes between them (in black 
Fig.7.b). Note that these Not-labeled triangles are 
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potential candidates for defining the exact frontiers 
between labeled regions. 

A crack filling process is performed. Not-labeled 
triangles are assigned to regions, according to labels 
of their neighbor triangles. The algorithm is iterative. 
For each non-labeled triangle T, its neighbors Ti are 
considered. For each Ti, we check if it is labeled or 
not, and if their common edge is considered as a 
boundary or not. If Ti has got a label and the common 
edge T-Ti is not a boundary, we memorize its label. 
Finally, if there is at least one memorized label, we 
assign T to the most represented one. We repeat the 
iterative process until every triangle is labeled. 
 

 

 

 

 

 

Figure 6. Boundary edge detection for the cracks 
filling algorithm. 

An edge E is considered as a boundary if the 
triangles which share this edge have their third 
vertices Co1 and Co2 with different labels from the 
edge vertices ones (C1 and C2) (see Fig.6). This 
boundary notion is only used in this part of the 
algorithm in order to improve the crack filling 
method and does not correspond to the final 
boundaries at the end of the segmentation method. 

 
 

 

Figure 7. The region growing process for the 
Fandisk mesh: (a) The vertex clusters, (b) the 
connected labeled regions, (c) the result of the 
cracks filling post-process. 

Fig.7 shows the region growing process for the 
Fandisk object, starting from a 5 clusters vertex 
classification. The region growing extracts 38 
connected regions. Holes in black are then filled 
according to the crack filling post-process. 

A fixed value of K for the K-Means classification 
algorithm can generate different sets of clusters 
because of the random choice of the K initial seeds. 
Thus for a given K, the merging step will give 
different results in term of number and localization of 

extracted regions. Because of this uncertainty, a 
region merging process was developed, in order to 
unify results. 

6. REGION MERGING 
According to the nature of the object to segment, and 
to its number of curvature clusters, the region 
growing step can extract numerous small regions, 
(see Fig.10). The purpose of the merging step is to 
reduce this over-segmentation, in order to extract 
significant sub-surfaces, corresponding to 
‘meaningful’ parts of the object.  

The region adjacency graph 
The efficiency of an algorithm depends on the data 
scheme used. The purpose here is to merge adjacent 
similar regions. Thus a good representation to operate 
is a region adjacency graph (RAG), a data scheme 
used in image segmentation [Saa94]; it is an algebraic 
structure that contains a set of nodes and a set of 
edges. Each node represents a connected region (i.e. 
a connected subset of the mesh), and each edge 
represents an adjacency between two regions. Edges 
are evaluated by a curvature distance between the two 
corresponding regions. 

General algorithm 
Once connected regions have been extracted by the 
region growing algorithm, we have a region-map of 
the mesh, with the labels of the regions. Thanks to the 
region-map, the RAG is processed, and distances 
between adjacent regions are calculated. Then the 
reduction of the graph is processed: at each iteration 
the smallest edge of the graph is eliminated, thus the 
corresponding regions are merged; then the graph is 
updated. 

When two regions are merged, the curvatures of the 
resulting region are merged proportionally to their 
areas. This graph reduction stops when the number of 
regions reaches a queried number chosen by the user, 
or when the weight of the smallest edge is larger than 
a given threshold. 

Region distance measurement 
The distance Dij used in our method is equal to the 
curvature distance DCij, between the two 
corresponding regions Ri and Rj weighted by two 
coefficients: Nij, which measures the nesting between 
the two corresponding regions and Sij of which aim is 
to eliminate the smallest regions. 

ijijijij SNDCD ××=  

Each coefficient is detailed in the following 
paragraphs.  
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The curvature distance DCij is processed using the 
curvature values Ci and Cj of the two corresponding 
regions and the curvature value Cij of their boundary.  

ijjijiij CCCCDC −+−=  

Ci and Cj come from the region growing step. Cij is 
the average of the vertices curvatures on the 
boundary between the two regions. Only vertices with 
two incident edges separating these regions (real 
boundary vertices) are taken into account (see Fig.8), 
in order to consider only the real boundary between 
them. 
 
 
 
 
 
 
 
 
 
 
Figure 8. Representation of the vertices taken into 
account for the calculation of the average 
curvature of the boundary between Ri and Rj. 

It is important for the calculation of the curvature 
distance between Ri and Rj to consider not only their 
respective curvatures but also their boundary one, 
because two situations may exist between these 
regions. Either regions have different curvatures and 
no precise boundary (see Fig.9.a), or regions have 
almost the same curvature and a very different 
boundary curvature (see Fig.9.b).  
 
 
 
 
 
 
 
 
 
Figure 9. The two different situations between two 
adjacent regions. (a) no boundary but a curvature 
difference, (b) no curvature difference, but a 
significant boundary. 

The ijN  coefficient measures the nesting between 

the two corresponding regions.  
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with iP  the perimeter of the ith region and ijP  the size 

of the common border between ith  and jth  regions. 
This coefficient was introduced in image processing 
by Schettini [Sch93] for color image segmentation. 
The aim of the Nij factor is to consider the spatial 
disposition of the regions in the merging decision. 
Regions with a large common border are more likely 
to belong to the same ‘meaningful’ part, thus their 
similarity distance is reduced. 

The Sij coefficient purpose is to accelerate the fusion 
of the smallest regions. 
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where Ai is the area of the ith region, Amin is a 
minimum area fixed by the user and ε  is a positive 
number near 0. The Sij factor can be considerate as a 
filtering factor. When a region’s area is smaller than 
Amin, it is considered too small, thus its distance with 
its adjacent regions is reduced by the Sij coefficient, 
equal toε ; the considered region will be more easily 
merged with another. It is a method to eliminate the 
smallest regions. The value of Amin depends on the 
queried size (or number) of final regions. The value 
of ε  is fixed to 1e-5. This value accelerates the 
fusion of the smallest regions, while keeping the 
merging order. 
 

     
 
 
Figure 10. The region merging process for the 
Fandisk mesh.  

Fig.10 shows the merging process. The initial pre-
segmented object was obtained after the classification 
step in the curvature space (30 curvature clusters), 
and after the region growing step. It contains 196 
connected spatial regions. After the merging process, 
the final region number is 25. For this example this 
number was fixed by the user. 
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Figure 11. Segmentation of (a) Fandisk, (b) Cow and (c) Shark object. The number of curvature clusters is 
10 for all. The region merging threshold is 0,015 for Fandisk, 0,018 for Cow and 0,010 for Shark. 

Fandisk (6475 vertices)                          Cow (2892 vertices)                             Shark (10234 vertices)        

Vertex Classification                            Vertex Classification                           Vertex Classification  

 K=10 clusters                                         K=10 clusters                                      K=10 clusters                      

Region growing                                Region growing                                  Region growing                            

69 spatial regions                                      244 spatial regions                                342 spatial regions                     

Region merging, threshold=0.015       Region merging, threshold=0.018       Region merging, threshold=0.010                           

     22 spatial regions                                        25 spatial regions                                11 spatial regions                     

(a)                                            (b)                                       (c) 
 



7. EXPERIMENTS AND RESULTS 
Our segmentation method was tested on several 
different objects. Examples are given for natural 
objects (Fig.11.b-c) and a mechanical part (Fig.11.a). 
For the classification step the cluster number K is 
fixed to 10 and Amin is fixed to 0.5% of the total mesh 
area. The region merging threshold is chosen 
heuristically according to the nature of the object and 
to its curvature distribution (0,015 for Fandisk, 0,018 
for Cow and 0,010 for Shark).  

For the natural objects, the aim of a segmentation 
method is generally the extraction of ‘meaningful’ 
parts for a possibly further analysis, that is to say, 
features which represent a semantic notion: the 
shark’s fin, or the cow’s paws for instance. We have 
good results with our method, although boundaries 
between regions are not very precise. The bull’s 
paws, head and tail are well extracted (see Fig.11.b), 
just as the shark’s fins, and tail (see Fig.11.c).  

Concerning the Mechanical parts, the purpose of a 
segmentation algorithm is generally rather the 
extraction of simple sub-surfaces for a further surface 
fitting or adaptive smoothing for instance. The 
mechanical part Fandisk is correctly segmented (see 
Fig.11.a), the segmented surfaces are almost from 
constant curvature. On the other hand, we can 
observe that boundaries between segmented regions 
are not completely correct, even if the general shape 
is good. We plan to develop a boundary rectification 
method, in order to obtain clean and regular 
boundaries. 

K Region Number 
after growing step 

Region Number 
after merging step 

5 38 22 

10 70 22 

10 65 21 

10 113 23 

15 192 22 

15 160 20 

15 200 22 

Table 1. Influence of the cluster number K of the 
classification algorithm, on the number of final 
regions for a given threshold. 

The number of curvature clusters K which parameters 
the K-means algorithm during the vertex 
classification step is not a critical factor. Of course it 
influences the number of regions created after the 
growing step (besides, this number can vary for a 
same K, because of the random choice of the K initial 
seeds for the K-Means algorithm) but the final region 

number is regularized by the merging algorithm. We 
have conducted tests with several objects; results for 
Fandisk are shown in Table 1. The vertex 
classification was processed with different values for 
K and a unique threshold 0,02 was chosen for the 
region merging step, results show that K influence is 
negligible in the final region number, moreover 
resulting segmented regions are almost identical. 
Therefore K can be fixed (to 10 for instance) in the 
algorithm and does not have to be considered as a 
parameter for the method. 

8. CONCLUSION 
This paper presents an original method to decompose 
a 3D-object into connected sub-surfaces. This 
algorithm processes first a vertex classification and 
then extracts and merges triangle regions by using a 
region adjacency graph. This hybrid vertex-triangle 
approach dissociates itself from the traditional 
Watershed based methods which fail to extract hard 
boundaries [Raz03]. Moreover the proposed method 
permits the user to choose the final number of 
regions; if he does not have this information he can 
simply fix a precision threshold, we are investigating 
the possibility to process automatically this graph 
reduction stopping threshold.  

This work is part of a larger compression process.  
The objective is to fit the segmented sub-surfaces 
with subdivision surfaces, in order to obtain the 
object in the form of a set of ”light” subdivision 
patches, which will allows adaptive and scalable 
compression and transmission. 
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