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Constant Envelope Precoding by Interference

Exploitation in Phase Shift Keying-Modulated

Multiuser Transmission
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Abstract— We introduce a new approach to constant-envelope
precoding (CEP) based on an interference-driven optimization
region for generic phase-shift-keying modulations in the multi-
user (MU) multiple-input-multiple-output downlink. While con-
ventional precoding approaches aim to minimize the multi-user
interference (MUI) with a total sum-power constraint at the
transmitter, in the proposed scheme we consider MUI as a
source of additional energy to increase the signal-to-interference-
and-noise-ratio at the receiver. In our studies, we focus on two
different CEP approaches: a first technique, where the power
at each antenna is fixed to a specific value, and a two-step
approach, where we first relax the power constraints to be lower
than a defined parameter and then enforce CEP transmission.
The algorithms are studied in terms of computational costs, with
a detailed comparison between the proposed approach and the
classical interference suppression schemes from the literature.
Moreover, we analytically derive a robust optimization region
to counteract the effects of channel-state estimation errors. The
presented schemes are evaluated in terms of achievable symbol
error rate in a perfect and imperfect channel-state information
scenario for different modulation orders. Our results show that
the proposed techniques further extend the benefits of classical
CEP by judiciously relaxing the optimization region.

Index Terms— Constant-envelope, multiuser, massive MIMO.

I. INTRODUCTION

M
ASSIVE Multiple-Input-Multiple-Output (M-MIMO)

communication systems have experienced an increasing

growth of interest from the scientific community, because of

the significant benefits they provide in terms of spectral effi-

ciency when compared to classical MIMO approaches [1], [2].

The pioneering work from [1] proved that a base station (BS)

equipped with high dimensional antenna arrays can achieve

high throughput values by exploiting the innate high degrees

of freedom offered by a large number of antennas at the

transmitter. At the same time, M-MIMO systems are known

to require lower values of radiated energy, thanks to the

higher beamforming gains provided by large antenna arrays.

Moreover, it has been proven that simple linear precoding
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techniques, such as matched filtering and zero forcing [3], [4],

are asymptotically optimal [5] for massive systems, because

of the favorable propagation effects that rise for infinitely

large arrays. In addition, recent works [6]–[9] have shown that

transmit mutual coupling at the base station can be exploited

with the aim to further increase the dimensions of antenna

arrays in fixed physical spaces.

When considering linear precoding techniques, it is common

in the literature [10], [11] to apply sum-power constraints

at the transmitter side, where the average or instantaneous

total transmitted power is constrained to a specific value.

While a sum-power constraint approach is easier to model and

study, it is important to consider that, in a realistic scenario,

each antenna of the base station is typically connected to

its own power amplifier (PA), which has to meet specific

power constraints. This is particularly relevant in M-MIMO,

because the benefits of using a large number of antennas at

the transmitter side are followed by heavy burdens in terms

of hardware costs and power consumption, which strongly

affect its feasibility for future communication systems. In fact,

the use of very large arrays (VLA) leads to an equally large

number of radio-frequency (RF) chains, where the role of PAs

is particularly critical, as inefficient PAs are accountable for

∼ 40 − 50% of the total power consumption [12].

Toward this end, the employment of non-linear RF com-

ponents in conjunction with low peak-to-average power-

ratio (PAPR) precoding techniques [13] can positively affect

the power efficiency of M-MIMO [14]–[16]. More specif-

ically, [14] presents a transmission scheme for orthogonal

frequency-division multiplexing (OFDM) modulations based

on low PAPR precoding, while [15] and [16] propose a

constant envelope precoding technique where the transmitted

signal amplitude corresponding to each antenna is constant

and independent from the channel realization, i.e., leading

to a unitary PAPR and therefore facilitating low cost PAs.

In [15] the precoding technique is designed by minimizing

the error norm function of the received signal for a single

user scenario, while in [16] the transmitted symbols vector

is designed for multiuser MIMO with the aim to reduce the

interference caused by other users. CEP was further analyzed

in [17], where the precoding design for frequency-selective

MIMO channels is presented. Still, the performances of CEP

with interference reduction are strongly affected by the number

of iterations used and by the array size at the transmitter

side [16]. In addition, the study in [18] investigated the

effects of phase constraints at the transmitter, since additional

restrictions to the change in transmitted phases at different
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symbol times can increase the power efficiency of the system.

Finally, the authors in [19] further improved the performances

of interference reduction CEP, by employing cross-entropy

optimization instead of gradient descent based algorithms.

While the above approaches focus on interference minimiza-

tion, previous works on linear precoding [20]–[22] showed

that interference minimization does not necessarily lead to

the best performances in a communication system. In fact,

since interference is data dependent, the transmitter is able to

predict the MUI at the receiver and can use this knowledge to

influence it and benefit from it. Early works in [23] and [24]

focused on reducing the the negative effects of interference

while preserving its positive components, defined accord-

ing to the correlation between the substreams of a MIMO

PSK-modulated transmission. Further results in [25] instead,

showed that the transmitted signal can be precoded in order to

rotate the destructive component of interference into construc-

tive or beneficial interference. Therefore, future research is

focusing onto identifying new optimization metrics that exploit

channel-state information (CSI) and data knowledge at the

transmitter side to maximize the signal-to-interference-and-

noise-ratio (SINR) of each user by capitalizing on the power

contained within multi-user interference. More specifically,

recent works [26]–[30] on PSK modulated signals have intro-

duced different metrics that prove how the known interference

can be effectively used as a source of green signal power

for downlink transmissions with high-order PSK modulations.

Finally, [31] has investigated the applicability of symbol-level

precoding based on relaxed receive constellations to increase

the security of multiuser MIMO communication systems by

means of Directional Modulation [32].

In this paper, we present two novel CEP techniques

which exploit concepts of constructive interference for

PSK-modulated signals. In the proposed techniques, we relax

the conditions over interference, allowing the transmitter to use

the interfering signal as a green source of power to increase

the signal-to-interference-and-noise-ratio at the receiver side.

It is important to highlight that the proposed schemes are

particularly suitable for high-interference and low-SNR sce-

narios, where low-order modulations such as BPSK and 4-PSK

are often preferred to ensure reliable communications [33].

Nevertheless, the benefits of constructive interference could

also be extended to Quadrature Amplitude Modulation (QAM)

signals, e.g., over the outer constellation points of a

16-QAM or to the whole constellation by means of adaptive

decision thresholds [22]. More specifically, [34] showed the

benefits of applying concepts of constructive interference over

16-QAM modulations in comparison with standard techniques,

by effectively differentiating between predictable and unpre-

dictable interference at the BS and allowing the interference

to constructively superimpose with the desired signal. In a

similar manner, [35] introduced constraints and metrics for

symbol-level precoding based on constructive interference for

QAM and asymmetric phase-shift keying (APSK) modula-

tions, showing how such approach is able to greatly enhance

power efficiency at the transmitter side. By employing similar

methodologies, it is intuitive that our approach can also be

extended to provide benefits for QAM constellations.

Here we list the contributions of the paper:

• We analytically describe and define a new optimization

region for constant envelope precoding, based on the

concepts of constructive interference.

• We introduce two different CEP approaches, when both

equality and inequality power constraints are considered.

• We study the computational costs of the proposed tech-

niques in comparison with the classical CEP approach in

the literature.

• We introduce a CSI-robust precoding scheme based

on a relaxation of the interference optimization

region.

• We evaluate the performances of the proposed schemes

for different PSK modulation orders and in scenar-

ios where the transmitter holds perfect and imperfect

CSI.

The rest of the paper is organized as follows: Section II

introduces the system model used throughout this work and

describes the classical CEP approach from the literature,

Section III describes the proposed interference-based opti-

mization region, while Section IV is dedicated to a thorough

description of the proposed techniques. In Section V the com-

putational complexity of the proposed scheme is analyzed and

compared with the previous approach, based on interference

mitigation. In Section VI a robust optimization region is ana-

lytically derived as a function of the CSI error upperbound and

Section VII shows the performance achieved by the proposed

techniques in different scenarios. Finally, in Section VIII the

main contributions of the paper are summarized.

Notation: Upper case boldfaced letters are used for matrices

(i.e., X), lower case boldfaced letters denote vectors (i.e., x),

subindices in vectors are used to identify rows of a matrix

(i.e., xm is the m-th row of X), tr [·] represents the trace of the

argument and superscripts (·)H and (·)∗ stand for Hermitian

transpose and complex conjugate, respectively. Operators ℑ (·)
and ℜ (·) respectively represent the imaginary and real part of

the argument.

II. SYSTEM MODEL

Consider a downlink multi-user scenario where the BS

employs an N dimensional antenna array to communicate with

a population of M single-antenna users. The received signal

y is a C
M×1 vector that collects the M user received signals

ym , and is analytically defined as:

y = Hx + w, (1)

where H is the CM×N channel matrix, x represents the CN×1

vector of transmitted symbols and w is the CM×1 zero mean

additive white Gaussian noise vector, i.e., w ∼ CN (0, N0) with

N0 being the noise variance. Complex channel gains hm,n in

M-MIMO are modeled to include both the complex small scale

fading gm,n between the n-th antenna and the m-th user and

the real large scale fading coefficient βm experienced by the

m-th user [1], leading to the following analytical definition

hm,n = gm,n

√
βm . (2)
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In our studies, we consider a single cell scenario where

channel gains are modeled by independent Rayleigh fad-

ing [36], i.e., small scale fading gm,n are zero mean i.i.d.

Gaussian variables and large scale coefficients βm = 1,

∀m ∈ {1, . . . , M}.
Given the total transmitted power by the antenna array

Pt , we can define the n-th transmitted symbol from the n-th

antenna of the BS as [16]

xn =
√

Pne jθn , (3)

where Pn is the power transmitted from the n-th antenna, so

that
N∑

n=1

Pn = Pt , and θn represents the precoding phase of the

CEP signal. We can then similarly define the received signal

at the m-th user as

ym =
N∑

n=1

hm,n

√
Pne jθn + wm . (4)

For simplicity and to ease the notation, throughout the paper

we assume unitary transmitted power Pt = 1 and equally

distributed power among the N antennas at the BS, i.e.,

Pn = 1/N,∀n ∈ {1, . . . , N}, hence leading to

ym =
N∑

n=1

1
√

N
hm,ne jθn + wm . (5)

The first term of the received signal ym can be rearranged

in order to explicitly discriminate between the desired signal

and the interference. Analytically we have

ym = um + tm + wm , (6)

where um = dme jφm is the PSK desired symbol for the m-th

user, with magnitude dm and phase φm , and tm represents the

interfering signal for the m-th user

tm =
(

N∑

n=1

1√
N

hm,ne jθn − dme jφm

)
. (7)

Accordingly, we can identify the total MUI energy as

EMU I =
M∑

m=1

∣∣∣∣∣

(
N∑

n=1

1
√

N
hm,ne jθn − dme jφm

)∣∣∣∣∣

2

. (8)

First approaches to CEP were based on the minimization

of the MUI energy [16]. In order to minimize (8), the base

station proceeds in identifying the N dimensional transmit

phase angle vector θ = [θ1, . . . , θN ] that leads to the lowest

MUI energy. Accordingly, the constant envelope precoding

algorithm can be formulated as follows [16], [19]

P1 : minimize
θ

M∑

m=1

∣∣∣∣∣

(
N∑

n=1

1√
N

hm,ne jθn − dme jφm

)∣∣∣∣∣

2

subject to |θn| ≤ π, ∀n ∈ {1, . . . , N} , (9)

which represents a non-convex nonlinear least squares (NLS)

problem, affected by local minima. The optimization prob-

lem (9) was first solved in [16] with a gradient descent (GD)

based approach, and further improved in [19] with a direct

application of cross-entropy method [37].

III. CONSTRUCTIVE INTERFERENCE

OPTIMIZATION REGION

When considering PSK-modulated signals, interference can

be classified as constructive and destructive according to

simple geometrical concepts, detailed in [23]–[27]. In fact, the

interference signal tm can be considered beneficial for system

performances when it leads the noise free received symbol

r̃m = ym−wm further away from the decision thresholds of the

desired constellation symbol um . A visual representation of the

distinction between constructive and destructive interference

is presented in Fig. 1a, where the desired symbol um is

considered to be the
(

1/
√

2 + j1/
√

2
)

point of the 8-PSK

constellation. Here the superscripts {·}c and {·}d are used to

differentiate between two different cases, where the received

symbol falls in the constructive region (i.e., the green shaded

area) or in destructive region (i.e., the red dot-pattern area),

respectively. As per above, we can see that when the received

symbol falls in the destructive region it resides closer to

the decision thresholds, represented by the bold lines, when

compared to the desired symbol. On the other hand, when r̃m

lays in the constructive region, its distance from the decision

thresholds is greater than the one which characterizes um .

Constructive interference conditions for generalized PSK

modulated signals can be analytically expressed as [26]
∣∣∣ℑ
(

r̃m · e− jφm

)∣∣∣ ≤ ℜ
(

r̃m · e− jφm

)
tan �, (10)

where � is the central angle of the constructive interference

sectors, which depends on the constellation order L and can be

readily computed as � = π/L. Note that the condition in (10)

is applied to the phase-shifted received signal r̃m ·e− jφm , where

φm is the phase of the symbol of interest for the m-th user.

The phase-shift is a fundamental operation, as it isolates the

received amplitude and phase shift over the desired symbol

um caused by the interference tm . It is important to stress that

these conditions are valid for any PSK modulation order.

The constructive interference constraint definition in (10)

allows the identification of a new precoding optimization

region that exploits the interfering signal power, instead of

reducing it. In fact, as shown in Fig. 1a, the constructive

interference regions are sectors with infinite radii whose cen-

tral angle depends on the constellation order. This represents

a relaxation from the classical optimization metrics based

on interference minimization, as the constructive interference

region is only constrained by the proximity to the decision

thresholds and extends infinitely in the directions away from

them. Optimization region constraints are visually represented

in Fig. 1a by the dashed lines.

In our studies, constructive interference conditions are

explicitly imposed over the interfering signal by substituting

tm into r̃m as
∣∣∣ℑ
(

tm · e− jφm

)∣∣∣ ≤ ℜ
(

tm · e− jφm

)
tan �. (11)

The condition (11) is visually described in Fig. 1b for the

8-PSK case, where t̄m = tm · e− jφm represents the rotated

interfering signal for the m-th user and t̄ R
m = ℜ

(
t̄m
)

and

t̄ I
m = ℑ

(
t̄m
)

identify the shift from um suffered by the received
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Fig. 1. Optimization region for constructive interference exploitation, 8PSK example: (a) Interference regions for 8-PSK symbol, (b) Interference signal after
rotation.

symbol by means of interference. More specifically, t̄ R
m is

an analytical measure of the amplification of the received

constellation point along the axis of um , while t̄ I
m represents a

linear measure of the angle shift from the original constellation

point with phase φm .1 The reader is referred to [24]–[26] for

more details on the definition of the constructive interference

region.

IV. CONSTANT ENVELOPE PRECODING WITH

CONSTRUCTIVE INTERFERENCE OPTIMIZATION

Existing studies in M-MIMO systems mostly consider pre-

coding techniques with sum-power constraints at the trans-

mitter side. However, this is not a realistic assumption, since

each transmitting antenna is typically characterized by its own

amplifier and is hence affected by specific power constraints.

Moreover, the use of precoding techniques where the power

at each antenna is fixed also allows the employment of power-

efficient amplifiers, hence reducing the total operational power

consumption of the system. Since CEP provides a solution to

the above challenges, here we apply the above interference

exploitation concept, to improve the performance of classical

CEP approaches.

Toward this end, we introduce two different CEP

approaches, both based on constructive interference exploita-

tion concepts: one with CEP equality constraints, i.e., |xn| =
p,∀n ∈ {1, . . . , N}, and a two-stage approach where the

constraints are initially relaxed to inequality conditions,

i.e., |xn| ≤ p,∀n ∈ {1, . . . , N}, to be successively reapplied

by means of normalization in order to perform CEP.

Following the concepts of constructive interference in (11),

it is possible to define a new optimization metric that maxi-

mizes the interference power, while imposing constraints over

the phase of tm . Thanks to simple analytical operations, we

can rearrange (11) as

ℜ
(

tm · e− jφm

)
tan � −

∣∣∣ℑ
(

tm · e− jφm

)∣∣∣ ≥ 0. (12)

1It is important to stress that t̄ R
m and t̄ I

m can grow infinitely, as long they
respect the condition in (10).

The difference on the left side of the inequation can

be used as an indicator of how constructive or destructive

the interfering signal tm is. In fact, if (12) is negative, the

interfering signal lies in the destructive region of interference,

while if (12) is positive it implies that the interfering signal is

constructive. In addition, since the real part of (11) represents

the power of the interfering signal, we can infer that higher and

positive values of (12) lead to stronger forms of constructive

interference. Accordingly, we define the optimization problem

P2 as follows:

P2 : maximize
θ

min
m

{
ℜ
(

tme− jφm

)
tan �−

∣∣∣ℑ
(

tme− jφm

)∣∣∣
}

subject to |θn| ≤ π, ∀n ∈ {1, . . . , N} , (13)

where m ∈ {1, . . . , M} and the operator min
m

{·} represents the

minimum value of the argument among each of the M values.

In P2 we maximize the minimum value of the constructive

interference metric. With this approach, when the minimum

value of the metric is positive, we can automatically infer

that the constructive interference condition is verified and

maximized for all the M users. In cases where the solution to

P2 leads to negative values of the minimum, instead, it implies

that the precoding phases minimize the destructive interference

as its least constructive component is maximized, as visually

described for the 8-PSK case in Fig. 1b. The formulation in

P2 is clearly non-convex, however it can be efficiently solved

via the cross-entropy method (CEM).

A. A CEM Solver for Constructive Interference Optimization

The cross-entropy method can be described as an adaptive

algorithm that aims to the identification of rare events by

means of variance reduction. The algorithm is characterized

by an iterative approach [37], where each iteration presents

two main steps:

• Generation of random samples based on a specific distri-

bution f (θ , u).

• Update distribution parameters u ∈ R, according to the

computed values of a chosen cost function, in order to
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improve the random samples generation in the following

iterations.

The use of cross-entropy method to perform combinatorial

optimization can be described as follows. Consider the max-

imization problem described in P2, we can define the global

optimum γ ∗ as

γ ∗ = min
m

{
ℜ
(
t̄∗m
)

tan � −
∣∣ℑ
(
t̄∗m
)∣∣}

= max
θ∈�

[
min

m

{
ℜ
(
t̄m
)

tan � −
∣∣ℑ
(
t̄m
)∣∣}
]
, (14)

where t̄∗m represents the m-th element of the normalized

interfering signal, analytically expressed as

t̄∗m =
(

N∑

n=1

1
√

N
hm,ne jθ∗

n − dme jφm

)
e− jφm , (15)

with θ∗
n being the n-th element of the optimal solution θ∗ to the

optimization problem. The application of CEM to optimization

problems is based on the association of the maximization

problem with the probability estimation of a rare event. Given

a performance threshold γ , we can evaluate the probability of

the rare event min
m

{
ℜ
(
t̄m
)

tan � −
∣∣ℑ
(
t̄m
)∣∣} ≥ γ as

L(γ ) = Pu

(
min

m

{
ℜ
(
t̄m
)

tan � −
∣∣ℑ
(
t̄m
)∣∣} ≥ γ

)

= Eu

{
I

{
min

m

{
ℜ
(
t̄m
)

tan � −
∣∣ℑ
(
t̄m
)∣∣} ≥ γ

}}

=
ˆ

I

{
min

m

{
ℜ
(
t̄m
)

tan �−
∣∣ℑ
(
t̄m
)∣∣} ≥ γ

}
f (θ , u) dθ ,

(16)

where the operator Pu (·) evaluates the probability of the event

in argument, the operator Eu {·} represents the expectation of

the argument with respect to the distribution f (θ , u) and I {·}
is boolean indicator function that returns 1 or 0 values when

its argument it true or false, respectively. The estimation of

L(γ ) can be performed through Monte Carlo simulations, 2 by

drawing a set of K random states �1, . . . ,�K from f (θ , u)

and by computing

L̂ (γ ) = 1

K

K∑

k=1

I

{
min

m

{
ℜ
(

t̄k
m

)
tan � −

∣∣∣ℑ
(

t̄k
m

)∣∣∣
}

≥ γ
}

,

(17)

where t̄k
m is the m-th element of the interfering signal for the

k-th state �k =
[
�k

1, . . . ,�
k
n, . . . ,�

k
N

]

t̄k
m =

(
N∑

n=1

1√
N

hm,ne j�k
n − dme jφm

)
e− jφm . (18)

A direct application of (17) becomes rapidly prohibitive

when the probability of the event is very small, i.e., on

the order of ∼ 10−5. This can be addressed by means of

importance sampling, where we estimate a different proba-

bility density function g (θ) that more frequently generates

2While analytical estimations of L(γ ) can also be performed, Monte-Carlo
estimation represents the standard procedure for applications of the Cross-
Entropy solver, as described in [37] and [38] and as performed in [19].

such rare events. Under importance sampling, the estimation

problem becomes

L̂ (γ )

= 1

K

K∑

k=1

I

{
min

m

{
ℜ
(

t̄k
m

)
tan �−

∣∣∣ℑ
(

t̄k
m

)∣∣∣
}
≥γ

} f (�k, u)

g (�k)
,

(19)

where g (�k) represents the importance sampling distribution

and
f (�k ,u)
g(�k)

is defined as the likelihood ratio (LR) estimator.

The importance sampling function is commonly chosen

as a probability density function from the same family of

f (θ , u), as

g (θ) = f (θ, v) , (20)

where v ∈ R is the tilting parameters vector and is obtained

by computing the function with the minimum Kullback-Leiber

distance from the ideal solution g∗ (θ) = I{S(θ)≥γ } f (θ,u)
L(γ )

,

where S(θ) is a real valued function of the optimization

parameter θ . The Kullback-Leiber distance or cross-entropy

between two densities s(x) and t (x) is analytically defined as

D (s, t) =
ˆ

s(x) ln s(x)dx −
ˆ

s(x) ln t (x)dx, (21)

and its minimization can be achieved through the maximiza-

tion of the second term in the equation. The tilting parameters

v deriving from the minimization of the Kullback-Leiber

distance between g∗ (θ) and f (θ , u) can be obtained as

v∗ = arg max
v

ˆ

I {S (θ) ≥ γ } f (θ , u)

L (γ )
ln f (θ , v)dθ, (22)

which, for the proposed optimization problem, is equivalent

to the maximization [37] :

v∗ = arg max
v

Eu

{
I

{
min

m

{
ℜ
(
t̄m
)

tan � −
∣∣ℑ
(
t̄m
)∣∣} ≥ γ

}

× ln f (�, v)
}

. (23)

A solution to (23) can be numerically estimated as

v̂∗ = 1

K

K∑

k=1

I

{
min

m

{
ℜ
(

t̄k
m

)
tan � −

∣∣∣ℑ
(

t̄k
m

)∣∣∣
}

≥ γ
}

× ln f (�k, v). (24)

In our study we consider f (θ , v) to be a Gaussian distribution,

i.e. f (θ, v) = f (θ , [µ, σ ]),3 which allows to analytically

estimate (23) as

µ̂ =

K∑
k=1

I

{
min

m

{
ℜ
(
t̄k
m

)
tan � −

∣∣ℑ
(
t̄k
m

)∣∣} ≥ γ
}

�k

K∑
k=1

I

{
min

m

{
ℜ
(
t̄k
m

)
tan � −

∣∣ℑ
(
t̄k
m

)∣∣} ≥ γ
} (25)

σ̂ =

√√√√√√√√

⎡
⎢⎢⎢⎣

K∑
k=1

I

{
min

m

{
ℜ
(
t̄k
m

)
tan �−

∣∣ℑ
(
t̄k
m

)∣∣}≥γ
}
(�k −µ̂)2

K∑
k=1

I

{
min

m

{
ℜ
(
t̄k
m

)
tan �−

∣∣ℑ
(
t̄k
m

)∣∣} ≥ γ
}

⎤
⎥⎥⎥⎦,

(26)

3This assumption is not uncommon for continuous optimization problems
[19] and leads to efficient solutions.
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Algorithm 1 CEO-CIO Precoding

Input: H, u, T , L , K

Output: x

Initialize µ(0) and σ (0)

for l = 1 → T

�(l) =
[
θ

(l)
1 , . . . , θ

(l)
k , . . . , θ

(l)
K

]
where the columns

θ
(l)
k ∼ N

(
µ(l−1),

(
σ (l−1)

)2)

for k = 1 → K

x
(l)
k = 1√

N
e jθ

(l)
k

t
(l)
k = H · x

(l)
k − u

Ck =min
m

{
ℜ
(

t
(l)
m,ke− jφm

)
tan �−

∣∣∣ℑ
(

t
(l)
m,ke− jφm

)∣∣∣
}

end

Sort C1 ≥ C2 ≥ ... ≥ CK

γ (l) = C⌈ρK ⌉
µ̂(l) and σ̂ (l) from (25) and (26)

µ(l) and σ (l) from (28) and (28)

end

Return x = x
(T )
1

where µ̂ and σ̂ respectively represent mean and standard

deviation of the importance sampling distribution, i.e., v̂∗ =
[µ̂, σ̂ ]. As previously mentioned, CEM is based on an iterative

approach and requires the tilting parameters to be updated

at each iteration. However, a direct update from (24) is

often undesirable, as it might rapidly converge to suboptimal

solutions [37]. The occurrence of these events can be reduced

by using smooth updating procedures, as follows

µ(l) = αµ̂(l) + (1 − α) µ(l−1) (27)

σ (l) = ασ̂ (l) + (1 − α) σ (l−1), (28)

where the superscript (·)(l) represents the l-th iteration of the

value in argument.

An analytical description of the constructive interference

optimization precoding based on cross-entropy optimization

(CEO-CIO) technique is presented in Algorithm 1. Here, T

represents the number of iterations, K identifies the random

sample size and ρ is direct proportionality coefficient used to

compute the intermediate threshold γ (l). More specifically, the

intermediate threshold γ (l) is identified by the cost function

evaluation Ck whose index is the smallest integer to be greater

or equal to ρK and is evaluated in Algorithm 1 as C⌈ρK ⌉.

The application of the proposed algorithm leads to received

symbols r̃ which prevalently reside in the constructive inter-

ference region. To illustrate this effect, Fig. 2 shows the

received constellation of CEP precoded signals for the example

of 8-PSK constellation in a noise free transmission over

100 different channel realizations, in a scenario where the BS

is equipped with N = 100 antennas and communicates with

M = 20 single-antenna users.

B. Two-Step Convex CEP

In addition to the previous approach, we propose an addi-

tional technique for constant envelope transmissions where

Fig. 2. Received symbols in a noiseless scenario with N = 100 antennas
for M = 20 users when using 8-PSK.

the power constraints are initially relaxed into inequality,

allowing to use standard convex optimization techniques, and

subsequently enforced to equality via normalization at a later

stage (i.e., by dividing the antenna outputs that do not respect

power constraints by their absolute value). In order to relax

the conditions in P2, we reformulate the optimization problem

in its equivalent form where the cost function is dependent on

the transmitted signal x :

P3 : maximize
x

min
m

{
ℜ
(
t̄m
)

tan � −
∣∣ℑ
(
t̄m
)∣∣}

subject to |xn| = 1/
√

N , ∀n ∈ {1, . . . , N} ,

t̄m =
(

N∑

n=1

hm,n xn − um

)
e− jφm . (29)

Similarly to the optimization in P2, the above problem

is non-convex, because of the equality constraint over a

convex set. In order to tackle this, we can convexify the

problem by imposing relaxed conditions to the transmitted

signal xn ∈ C,∀n ∈ {1, . . . , N} and its absolute value |xn| ≤
1/

√
N ,∀n ∈ {1, . . . , N}. Thanks to this, we can reformulate

the optimization problem P3 into its relaxation P
′
3 as

P ′
3 : maximize

x′
min

m

{
ℜ
(
t̄m
)

tan � −
∣∣ℑ
(
t̄m
)∣∣}

subject to |x ′
n| ≤ 1/

√
N , ∀n ∈ {1, . . . , N} ,

t̄m =
(

N∑

n=1

hm,n x ′
n − um

)
e− jφm , (30)

where the superscript {·}′ is used to identify the solu-

tion achieved through relaxation. Differently from P3, the

newly formulated problem is a standard second-order cone
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Algorithm 2 CVX-CIO Precoding

Input: H, u

Output: x

x′ = arg max
x′∈C,|x′|�1/

√
N

{
min

m

[
ℜ
(
t̄m
)

tan � −
∣∣ℑ
(
t̄m
)∣∣]
}

Return x = [x1, . . . , xN ]T =
[

x ′
1

|x ′
1|

√
N

, . . . ,
x ′

N

|x ′
N |√N

]T

program (SOCP) 4 and can be effectively solved by means

of standard convex optimization techniques [26]. Since the

constraints over the amplitude of the precoded signal |x ′
n| ≤

1/
√

N ,∀n ∈ {1, . . . , N} cannot guarantee a strict constant

envelope condition, in order to achieve a full CEP transmis-

sion for all the antennas at the BS we need to force the

equality constrained before transmission. More specifically, in

the second and final stage of the algorithm, we can proceed

by normalizing the elements where |x ′
n| �= 1/

√
N ,∀n ∈

{1, . . . , N} as follows

xn =
{

x ′
n/
(√

N |x ′
n|
)

∀n where |x ′
n| �= 1/

√
N

x ′
n ∀n where |x ′

n| = 1/
√

N .
(31)

The precoding scheme, which we refer to as Convex Con-

structive Interference Optimization (CVX-CIO), is analytically

described in Algorithm 2, where x′ � 1/
√

N is used to

represent that x ′
n ≤ 1/

√
N ,∀n ∈ {1, . . . , N}.

V. COMPUTATIONAL COMPLEXITY

In this section, we compute and analyze the complexity of

the proposed CEO-CIO in comparison with the CEO approach

to interference reduction (CEO-IR) precoding from [19] in

terms of floating-point operations (flops), following the oper-

ational costs listed in the literature [39]. More specifically, we

consider addition, subtraction and multiplication between two

floating-point numbers as a flop. Since both approaches are

characterized by the same number of iterations T , we focus

our analysis on the computational burdens of the two different

cost functions.

For our study, we consider a simple time-division duplex-

ing (TDD) scenario [40] where coherence time Tcohe indicates

the maximum number of data symbols that can be transmitted

within a channel realization, i.e., when the elements of the

channel matrix H can be considered constants. The TDD

assumption is not uncommon in M-MIMO literature, as it

allows to exploit the reciprocity of the channel, enabling the

CSI acquisition for downlink via uplink pilots. This property is

fundamental in M-MIMO systems, as the time required by CSI

acquisition TC S I becomes proportional to the number of users

M instead of the number of antennas N . In our analysis, we

consider a simple TDD case where TC S I = µM , with µ ≥ 1

being the number of pilot slots.

4More specifically, the problem can be cast as a standard SOCP [39],
for its objective function is concave [26] as it can be decomposed into

the combination of a linear function ℜ
(

tm e− jφm

)
and a concave function

−
∣∣∣ℑ
(

tm e− jφm

)∣∣∣. In fact, in [26] it was shown that the extraction of the

imaginary and real of a linear function preserves its linearity.

Finally, we consider a symmetrical transmission case where

the time for data transmission Tdata = Tcohe − TC S I is

divided between downlink and uplink transmissions according

to a parameter 0 ≤ ǫ
DL

≤ 1. The parameter ǫ
DL

explicitly

represents the portion of Tdata devoted to downlink symbol

transmission. Analytically, we have

TDL = ǫ
DL (Tcohe − TC S I ) = ǫ

DL (Tcohe − µM) . (32)

A. CEO-CIO Costs

As previously mentioned, main costs of the proposed CEO-

CIO algorithm reside in the need to compute the cost function

for each of the randomly generated samples. We can synthesize

the computation of the cost function in the following main

operations:

• Computation of the received vector in a noise free sce-

nario r̃ = Hx,

• Identification of the interfering signal vector t = r̃ − u,

• Projection of the interfering signal t̄ = t ◦ u∗,

• Identification of min
{
ℜ(t̄) tan � −

∣∣ℑ(t̄)
∣∣},

where ◦ represents the Hadamard product.

From the literature [39], we know the costs of each of

the aforementioned operations: the multiplication between a

M × N matrix and an N × 1 vector requires M(2N − 1)

flops, while the computation of the interfering signal and its

rotation can be performed with M flops each, since they can be

achieved by M subtractions and multiplications, respectively.

Finally, we can compute the costs of the identification of

the minimum as a search through an M-sized vector, hence

leading to M flops. It follows that the proposed approach is

characterized by a total flop count of M(2N − 1) + 4M flops,

which includes the cost of the separation between the real and

imaginary part of the rotated interfering signal. Computational

costs for the derivation and transmission of a CEO-CIO signal

are listed in Table I.

B. CEO-IR Costs

The application of the conventional CEO-IR follows a sim-

ilar pattern to CEO-CIO, due to the fact that they both require

the computation of the interfering signal for all the randomly

generated samples. More specifically, the computational costs

of CEO-IR can be highlighted in the following operations:

• Computation of the received vector in a noise free sce-

nario r̃ = Hx,

• Identification of the interfering signal vector t = r̃ − u,

• Computation of the interference energy
M∑
1

|tm |2.

Following a similar approach to the previous section, we

identify the multiplication costs in M(2N − 1) flops and the

computation of the interfering signal as M flops. Since the

interfering energy can be computed as the inner product of

two M-sized vectors, i.e., by a cost of 2M − 1 flops, the total

cost of the CEO-IR algorithm is M(2N − 1) + 3M − 1 flops.

As we can see, the computational costs of the proposed

technique CEO-CIO are comparable to the ones of the

CEO-IR approach from the literature, as the flop count dif-

ference is almost negligible. The total costs of the application
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TABLE I

COMPUTATIONAL COSTS IN FLOPS

of the precoding techniques in a coherence time are listed in

Table I, which includes the effects deriving by both the number

of iterations T and the sample size K .

VI. CSI-ROBUST CONSTANT ENVELOPE PRECODING

In the previous sections we assumed the transmitter to

possess a perfect knowledge over the channel, allowing the

definition of the constructive and destructive regions of inter-

ference in absence of uncertainty. When the CSI acquisition is

imperfect, however, the received signal region extends accord-

ing to the CSI error. We consider the BS to be aware of an

estimated channel matrix, defined analytically as follows [26]

Ĥ = H + S, (33)

where the error matrix S represents the CSI uncertainty at

the BS, statistically independent from H, and characterized

as a constrained spherical error, i.e., each element sm,n :{∣∣sm,n

∣∣2 ≤ δ2
m,n

}
[26]. Following [26], we consider a scenario

where the base station is aware of the error bounds δ2
m,n

but has no knowledge over the error matrix S. Differently

from classical robust precoding approaches from the literature

[26], [41], [42], where the transmitted power is increased in

order to overcome the effects of CSI estimation errors, we

propose a worst-case approach where the optimization region

is redefined according to the CSI uncertainty, while preserving

CEP constraints. The estimated interfering signal for the m-th

user, in case of imperfect CSI, can be defined as follows

t̂m =
(

N∑

n=1

1
√

N
ĥm,ne jθn − dme jφm

)

=
[

N∑

n=1

1
√

N

(
hm,n + sm,n

)
e jθn − dme jφm

]

=
(

N∑

n=1

1
√

N
hm,ne jθn − dme jφm

)
+

N∑

n=1

sm,n√
N

e jθn, (34)

where sm,n represents the n-th element of the m-th row of

the CSI uncertainty matrix S. As we can see in the last step

of (34), the estimated interference signal t̂m is characterized

by two different components: the actual interference signal

tm , i.e., when considering perfect CSI, and the uncertainty

Fig. 3. Imperfect CSI effects on the phase-shifted interfering signal t̄m .

error signal zm =
N∑

n=1

sm,ne jθn . It follows that the estimated

interfering signal can be defined as the sum of the two terms

t̂m = tm + zm . (35)

In (11), the interfering signal is rotated according to the

desired symbol, with the aim to have a region definition that

is independent from the specific phase of the symbol of interest

um . In a similar manner, we can define the rotated interfering

signal for the m-th user in presence of CSI errors ̂̄tm as

̂̄tm = t̂m · e− jφm = t̄m + z̄m . (36)

The second term in (36) can be described as the shift

from the ideal interfering signal t̄m caused by the CSI errors

and can be represented as a circular constrained region of

uncertainty, as visually presented in Fig. 3a. Accordingly,

we can identify the worst-case scenario in the event where

the actual interfering signal t̄m is within the constructive

interference region, but the uncertainty error signal z̄m moves

the estimated ̂̄tm away from it, as shown in Fig. 3b. Since

we assume the CSI errors to be constrained within a spherical

region, it is possible to analytically derive amplitude and phase

of the worst-case scenario uncertainty error signal z̄m .

Lemma 1:The amplitude of z̄m is characterized by the follow-

ing analytical upperbound

|z̄m | ≤

N∑
n=1

δm,n

√
N

(37)

Proof: Following the definition of z̄m we have

|z̄m | =

∣∣∣∣∣

N∑

n=1

1√
N

sm,ne jθn e− jφm

∣∣∣∣∣

=
∣∣∣∣∣

N∑

n=1

1
√

N

∣∣sm,n

∣∣ e j(U{sm,n}+θn−φm)

∣∣∣∣∣ , (38)

where sm,n has been represented in order to show amplitude

and phase and the operator U {·} identifies the phase extraction

of the argument. The absolute value of zm is evaluated as the

absolute value of the sum of complex values. According to the

triangle inequality (i.e., given two complex numbers a, b ∈ C
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they satisfy the property |a + b| ≤ |a| + |b|) we have
∣∣∣∣∣

N∑

n=1

1
√

N

∣∣sm,n

∣∣ e j(U{sm,n}+θn−φm)

∣∣∣∣∣ ≤
N∑

n=1

1
√

N

∣∣sm,n

∣∣ .

(39)

Given the assumption of a spherical constrained error during

CSI estimation, we have

N∑

n=1

1
√

N

∣∣sm,n

∣∣ ≤
N∑

n=1

1
√

N
δm,n, (40)

which ends the proof. �

Finally, the worst-case scenario phase of z̄m can be readily

identified as the phase that is orthogonal to the constructive

interference threshold identified by �.

The knowledge of the worst-case effects of CSI errors at

the transmitter can be used to relax of the optimization region,

in order to include the events that would be affected by the

uncertainty error signal. Thanks to this relaxation, we can

achieve a CSI errors robust precoding, without the need to

increase the transmitted power.

More specifically, according to simple geometrical analysis,

the phase threshold � is relaxed as

�R (δm) = �L + arctan

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

N∑
n=1

δm,n

E {|tm |}
√

N

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

, (41)

where �L = π/L identifies the threshold angle for the L

order PSK modulation used in transmission. Accordingly, we

can define a new optimization problem, specifically designed

for the imperfect CSI case

P4 : maximize
θ

min
m

{
ℜ
(
t̄m
)

tan �R (δm) −
∣∣ℑ
(
t̄m
)∣∣}

subject to |θn| ≤ π,∀n ∈ {1, . . . , N} . (42)

Without loss of generality, in our studies we consider a case

where δm,n = δ,∀m ∈ {1, . . . , M} ,∀n ∈ {1, . . . , N}, which

leads to a simplified definition of the robust relaxation

�R (δ) =
{

�L + arctan
{

δ
√

N
E{|tm |}

}
if arctan

{
δ
√

N
E{|tm |}

}
≤ π

L

�L−1 − ǫ otherwise,

(43)

where ǫ is an arbitrarily small positive quantity, which imposes

an upperbound to the growth of �R for high values of δ, and

L − 1 identifies the modulation order which is immediately

lower than the one used during data transmission. The defined

upperbound is particularly important, given the fact that very

high values of δ could cause ambiguity with lower modulation

orders, i.e., when their values lead the robust region �R(δ) to

coincide with or exceed �L−1.

VII. RESULTS

This section shows the performances of the proposed

precoding techniques through Monte Carlo simulations over

50000 channel realizations. We consider the downlink trans-

mission described in the previous sections, where the BS

Fig. 4. 4-PSK symbol error rate when M = 12, N = 64 with perfect CSI.

employs N = 64 antennas to communicate with a population

of M = 12 mobile users. Since the proposed technique can

be applied independently from the modulation order, results

are presented for both 4-PSK and 8-PSK, even though the

proposed schemes can be straightforwardly applied to higher

order PSK modulations. Legends are characterized by the fol-

lowing notation: CEO-CIO identifies constructive interference

driven precoding based on CEM, CEO-IR is used to rep-

resent interference minimization CEO precoding and finally,

CVX-CIO represents the two-step convex CEP approach to

constructive interference optimization. Both CEO techniques

are applied while considering the same parameter settings:

T = 1000, ρ = 0.05 and α = 0.08 [19]. CEM solver parame-

ter values have been studied in [38], where the used settings

are recommended for achieving good performances in terms of

both convergence speed and quality of the solution. In addi-

tion to CEO-IR, we compare the proposed techniques with

a CEP approach to linear zero-forcing(ZF) precoding [16],

ZF-P in the legends, which can be analytically defined as

xZ F−P = e jU{GZ F u}
√

N
, (44)

where GZ F = HH
(
HHH

)−1
is the ZF precoding matrix.

Figures 4 and 5 present the symbol error rate (SER) as

a function of the transmitted SNR for 4-PSK and 8-PSK

modulation respectively when considering a BS with N = 64

and M = 12 users. As we can see from Fig. 4 and Fig. 5,

the proposed approaches strongly outperform the classical

CEO-IR and ZF-P. This is due to the fact that CEO-CIO

wisely exploits the interference signal tm,∀m ∈ {1, . . . , M}
to increase the received signal power, while CEO-IR aims to

a direct minimization of the interference energy. Regarding

the ZF-P approach, we can see that a direct normalization

of the precoded signal leads to a significant decrease in

performances, due to its sub-obtimal approach. In addition, in

Fig. 6 we also show the SER as a function of the transmitted

SNR when a different topology is considered, where N = 32

and M = 6, for both the 4-PSK and 8-PSK case. Even in this

different topology, the same performance trend is preserved
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Fig. 5. 8-PSK symbol error rate when M = 12, N = 64 with perfect CSI.

Fig. 6. Symbol error rate as a function of the transmitted SNR when M = 6,
N = 32 with perfect CSI.

for all the described techniques, with the proposed schemes

outperforming the CEP approaches from the literature. It is

interesting to notice that in Fig. 6 CEO-CIO is able to achieve

slightly better performances than CVX-CIO, differently from

what happens in Fig.s 4-5. This is due to the fact that the

second-step normalization of CVX-CIO, enforced in order to

achieve a CEP transmission, has a stronger impact over the

performances achievable by systems with a lower number of

transmitting antennas and users, 5 such as the scenario shown

in Fig. 6.

In Fig. 7 we further characterize the proposed schemes

when the base station possesses imperfect CSI in the scenario

where δ2
m,n = δ2 = 0.1, ∀m ∈ {1, . . . , M} ,∀n ∈ {1, . . . , N}.

In our studies, we set the value of ǫ = 0.1 and consider a

simplified derivation of the relaxation �R (δ) where we impose

5It was empirically observed that on average both scenarios are characterized

by the same number of elements where |x ′
n | �= 1/

√
N ,∀n ∈ {1, . . . , N}.

This means that for scenarios with a larger number of transmitting antennas,
the percentage of elements where the normalization is necessary is lower,
hence reducing the degradation in performances caused by the second-step
normalization of CVX-CIO.

Fig. 7. Symbol error Rate for 8-PSK modulation when M = 12, N = 64
with imperfect CSI and δ2 = 0.1.

a unitary E {|tm |}. While more complex derivations of E {|tm |}
are expected to give a finer evaluation of �R (δ), it was empir-

ically shown that such approximation has a negligible impact

in the overall system performance. More specifically, Fig. 7

shows that for a system with imperfect CSI, the performances

of classical CEO-IR are strongly affected by the errors in

the channel estimation, while the performance gap with the

proposed schemes is strongly accentuated. This phenomenon

is caused by the fact that CEO-IR aims to minimize the

MUI over desired symbols with unitary energy, hence leading

to received points that are more prone to noise and CSI

errors.6 On the other hand, it is important to notice how the

performance trend of the proposed CEO-CIO scheme follows

the one of the system where perfect CSI is available at the

transmitter. This is due to the interference energy exploitation

in the CIO scheme, which allows a certain robustness against

noise in the channel estimation. In addition, we can see that

the robust relaxation of CEO-CIO, identified as CEO-CIO R

in the legend, is able to increase the performances achieved

by its non-robust counterpart, due to the proposed error-

based optimization region, which allows to partially reduce the

deteriorating effects of imperfect CSI at the transmitter side.

Finally, it can be noticed how the CVX-CIO is inherently more

robust to imperfect estimations of the CSI when compared

to the approach based on the CEM-solver. This behavior is

caused by the fact that CVX-CIO received signals tend be

more aligned to the corresponding desired constellation points,

hence allowing a innate robustness against noisy channels.

Fig. 8 studies the behavior of the proposed robust relaxation

of CEO-CIO with increasing values of the error bound δ2

and fixed SN R = 10d B . As we can see, all the techniques

achieve lower SER performances as the error bound δ2

grows. However, it is interesting to notice how the CSI error-

based region relaxation allows CEO-CIO R to outperform

the non-robust approach over all the spectrum of δ2 values.

6More specifically, CEP-IR leads to received symbols that are more sus-
ceptible to the imperfect CSI shift z̄m because of their shorter distance from
the decision threshold, when compared to the proposed schemes.
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Fig. 8. Symbol error rate for 8-PSK modulation when M = 12, N = 64
and S N R = 10d B with imperfect CSI.

Moreover, we can see that the performance gap between the

robust and non-robust version of CEO-CIO becomes more

significant as the uncertainty over the CSI grows, while the

gap between CEO-CIO R and CVX-CIO reduces as δ2 grows.

This is explained by the fact that when the error bound δ2

is very low, the deriving relaxation is less appreciable, hence

leading CEO-CIO R to achieve similar performances to its

non-robust counterpart. On the other hand, for higher values

of δ2, the CEO-CIO R is characterized by a more noticeable

relaxation which leads to higher benefits, when compared to

CEO-CIO.

In order to better represent the trade-off between complexity

and performances offered by the proposed scheme CEO-CIO,

the achievable Symbol Error Rate (SER) is shown in Fig. 9

as a function of the per-frame flops count when considering

an SN R = 0d B and perfect CSI at the transmitter. More

specifically, we gradually increase the size of the set of random

states K , which directly affects the flops count per-frame

shown in Table I.7 It is extremely important to highlight

that, while the proposed scheme is required to evaluate the

precoded signal at a symbol-rate, such need is shared by all

the other CEP precoding schemes from the literature, for both

single [15] and multiuser scenarios [16]–[19]. As a conse-

quence, we can see that for similar complexities, the proposed

CEO scheme is able to strongly outperform its interference

reduction counterpart, hence showing a very positive and

interesting trade-off between complexity and performances.

A. Constellation Energy

In our simulations we assume the desired symbols to

have unitary energy constellation, i.e., dm = d = 1,∀m ∈
{1, . . . , M}. While this assumption is not uncommon in CEP

literature [15]–[17], [19], the constellation energy can be

increased to improve CEP-IR performances. This represents

one of the key drawbacks of the CEP-IR approach, as its

7When computing the flops per-frame, for the sake of simplicity, we
consider the frame length to be equal to the coherence time for download
transmission TDL = 70, in line with the LTE standard [33].

Fig. 9. Symbol Error Rate for 8-PSK modulation when M = 6 and N = 32
and S N R = 0d B as a function of flops per-frame.

performances are strongly dependent on the constellation

energy E = d2. In fact, since the expected value of the

MUI is a function of both topology (i.e., number of antennas

at the BS and number of users) and modulation used in

transmission [16], it is not possible to know a priori the optimal

constellation amplitude d∗. More specifically, the identification

of the optimal energy would require to dynamically esti-

mate the SER at the transmitter side as a function of the

constellation energy E , hence increasing the computational

complexity of the system. Otherwise, the search for a sub-

optimal constellation energy for CEO-IR could be performed

at the transmitter side via an additional topology-dependent

optimization problem [16]. The optimization problem that

identifies the optimal constellation amplitude d∗ is defined as

follows [16]

maximize d

subject to E

⎧
⎨
⎩

M∑

m=1

∣∣∣∣∣

(
N∑

n=1

hm,n√
N

e jθn − dme jφm

)∣∣∣∣∣

2
⎫
⎬
⎭ ≤ γ

dm = d, ∀m ∈ {1, . . . , M} , (45)

where γ ≥ 0 ∈ R+ is a chosen threshold parameter to

the MUI energy. The optimization problem aims to identify

the maximum constellation energy that preserves the expected

MUI energy within a desired threshold.

It is important to stress that for classic CEO-IR, the choice

of the constellation energy is critical. These considerations are

visually presented in Fig. 10 and Fig. 11, for the M = 6,

N = 32 and M = 12, N = 64 scenario respectively.

Both figures consider the perfect-CSI case, while similar

results can be seen for the imperfect-CSI case. In fact,

the aforementioned figures show that the performances of

CEO-IR worsen as we incautiously increase the constellation

energy E , with this effect being particularly visible for higher

modulation orders such as 8-PSK. This is due to the fact

that the MUI-based metric used for CEO-IR aims to mini-

mize the energy of the interference signal (i.e., the distance

between the received symbol and the corresponding desired

constellation point), but fails to have any control over its
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Fig. 10. Symbol Error Rate as a function of the constellation energy

E = d2
m = d2,∀m ∈ {1, . . . , M} when M = 6 and N = 32.

Fig. 11. Symbol Error Rate as a function of the constellation energy

E = d2
m = d2,∀m ∈ {1, . . . , M} when M = 12 and N = 64.

phase U {tm}.8 Moreover, we can see that the optimal d∗

changes when considering different scenarios and different

modulations, supporting how it is not possible to identify

d∗ before transmitting. On the other hand, the performances

of the proposed techniques are not affected by the desired

symbol energy, as they aim to maximize the constructive

effects of interference over the received signal. Therefore, a

critical benefit of the proposed scheme is that the additional

optimization of E can be avoided, along with the significant

associated computational costs. In fact, as shown in Fig. 10

and Fig. 11 the proposed techniques are able to outperform

the classical CEO-IR for most of the energy spectrum. This is

supported by the fact that the performances of the proposed

metric are independent from the desired symbol energy

as they allow a constrained portion of the interference at

the user side. In other words, the proposed metric adap-

tively increases the received constellation in function of

8More specifically, CEO-IR metric is not affected by the phase of the
received signal, which is particularly important for PSK modulated signals, as
information is carried through the phases of the received signals, while their
amplitude identifies their robustness against noise.

the current CSI, without the need to additionally identify

the optimal transmitted constellation energy, hence show-

ing a very positive complexity-performance trade-off. Addi-

tionally, we can notice that the performance gap between

CVX-CIO and CEO-CIO is larger for Fig. 11. This phe-

nomenon is caused by aforementioned different impact of

the second-step normalization of CVX-CIO, which causes the

performance gap to be more significant and beneficial for

CVX-CIO when considering systems with larger arrays at

the BS.

VIII. CONCLUSIONS

This paper proposes a CEP scheme where multi-user inter-

ference is effectively exploited to increase the performances

of systems with constant envelope constraints at the base

station. The proposed techniques show that a relaxation of the

optimization region in function of the constructive interference

can be beneficial to achieve reliable communications. The

computational burdens of the proposed techniques has been

analyzed in terms of flops, and compared with the approaches

from the literature, showing negligible differences. In addi-

tion, a precoding approach robust to bounded CSI errors

that does not require to increase the transmitted power has

been analytically derived for scenarios that involve imperfect

CSI. Finally, performances have been shown in terms of

symbol error rate for different modulation orders, proving the

benefits introduced by the proposed scheme when compared

to classical CEP approaches.
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