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Abstract

The Pareto distribution has been validated recently as a model for
X-band high resolution maritime surveillance radar clutter returns. As
such, coherent and incoherent detection schemes have begun to appear
in the literature. Consequently, constant false alarm rate (CFAR) de-
tectors have also been explored in recent work. This paper introduces
some new detectors, designed to manage issues associated with interfer-
ing targets and clutter changes in the CFAR training cells. Additionally,
the existence of an optimal CFAR is examined, to see whether such a
detector can exist as in the Gaussian intensity case.
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1 Background and Motivation

There has been an evolution in the development of clutter models for mar-
itime surveillance radars operating at X-band, which is largely attributable to
systematic improvement in radar resolution [1]. Earlier low resolution radar
clutter returns were well modelled by Gaussian distributions [2]. As radar
resolution improved, there has been an evolution in amplitude clutter models,



232 Graham V. Weinberg

ranging from Lognormal, Weibull, K- and KK-Distributions [3-7]. Maritime
radar clutter at X-band, and at high resolution, is characterised by very spiky
statistics, and so long-tailed distributions became an obvious choice for the
next generation of statistical clutter models.

As an example, Figure 1 shows two plots of actual spiky intensity maritime
surveillance radar clutter returns. The left subplot is for the case of horizontal
polarisation, while the right is for vertical polarisation. These have been ob-
tained from the Defence Science and Technology Organisation (DSTO)’s high
resolution X-band clutter data sets, which will be described in subsequent sec-
tions. What is important to note in Figure 1 is the appearance of false targets,
which is attributable to the radar resolution and the fact that maritime sea
clutter is very spiky at X-band.

Clutter Returns: Vertical Polarisation

Clutter Returns: Horizontal Polarisation
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Figure 1: A time series of 1000 pure real intensity clutter returns, illlustrating
the challenge in target detection in spiky sea clutter.

Figure 2 examines the correlations of the data plotted in Figure 1. Shown
are plots of the associated autocovariance functions for the two sets of data. It
is clear that there is significant correlations in the data, which is of a periodic
nature. However, the strength of the correlations appears to be small.
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Figure 2: Autocovariance functions for the data in Figure 1, showing the
dependency between sample observations.



CFAR detection in Pareto distributed clutter 233

The Pareto model first appeared in radar analysis in [8], in the context of
modelling clutter as a compound Gaussian distribution with inverse Gamma
texture. The Pareto distribution arises as the model’s univariate intensity dis-
tribution [9]. This distribution is characterised by a very long tail. Validation
of the Pareto model for low grazing angle maritime X-band clutter was re-
ported in [10], and then further confirmed to fit the high grazing angle case in
[11].

Coherent detection schemes, based upon a Pareto intensity model, have
been analysed in several recent papers [9, 12-15]. From the incoherent per-
spective, [16] analyses classical integrators. Constant false alarm rate (CFAR)
control is explored in [17], where a relationship between the Exponential and
Pareto distributions is exploited to generate CFAR detectors. Included in this
work is an investigation of the performance of three CFAR detectors, both in
homogeneous and heterogeneous clutter environments. One of the interest-
ing observations in this study was the apparent lack of optimal CFAR, in the
sense that each of the three detectors could surpass the others performance,
in different numerical experiments. The target model used was a Swerling 1
Gaussian model. Such a target model, when used in the context of CFAR de-
tection in Gaussian clutter (with Exponential intensity returns), is known to
result in the existence of an optimal CFAR detector [19]. It is hence of interest
to investigate whether there is an optimal CFAR detector for the Pareto case,
with a corresponding relevant target model.

The Pareto intensity distribution [19, 20|, with shape parameter o > 0 and
scale parameter 5 > 0 has density

ox(t) = 2. 1)

for ¢ > 3, and is zero otherwise. We write X < Pa(a, B) to signify that the
random variable X has this distribution. Its cumulative distribution function
is given by

Gxlt) =P(X <t)=1- (%) , @)
for t > 3, where IP denotes probability.

To illustrate the Pareto clutter fit to DSTO’s data, Figure 3 performs a
quantile-quantile (QQ) plot for the full set of data associated with Figure 1.
Pareto clutter parameters have been estimated in Matlab to generate a corre-
sponding comparison distribution. For the horizontally polarised case, these
are o = 4.7241 and 3 = 0.0446. The vertically polarised case has a = 11.3930
and # = 0.3440. Smaller shape parameters indicate spikier returns [11]. The
subplots in Figure 3 plot the sample quantiles against those obtained with
the corresponding theoretical distribution. These results show the difficulty in
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getting an accurate fit for the horizontally polarised case. There is a better
fit in the vertical polarised scenario. These results are examined in [11], and
it was found the Pareto fit matched those for the K- and KK-Distributions.
Given the relative simplicity of the Pareto model, this further justifies the
development of radar detectors based upon this clutter model assumption.

Quantile Plot: Horizontal Polarisation Quantile Plot: Vertical Polarisation
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Figure 3: Quantile comparison plots, for the data of which the clutter in Figure
1 is a subset.

This paper extends the detectors introduced in [17], with the motivation
being the development of improved CFAR detectors for target detection when
the clutter training cells contain interfering targets. Additionally, it is impera-
tive that such a detector can perform well in the presence of clutter transitions.
This is measured by the ability of a CFAR to preserve the false alarm proba-
bility, when the CFAR clutter cells are gradually affected by higher powered
returns.

In addition to this, the existence of an optimal CFAR detector in homoge-
neous Pareto clutter is explored. Here, optimality is in the sense of a uniformly
most powerful (UMP) test [20] generating a decision rule which has maximum
probability of detection, for a given false alarm probability.

This paper is organised as follows. Section 2 fomulates the CFAR problem,
while Sections 3 - 5 introduce the new detectors. Section 6 analyses detec-
tor performance in homogeneous clutter. Sections 7 and 8 analyse detector
performance in the heterogeneous clutter scenario. Finally, Sections 9 and 10
examine the question of the existence on an optimal CFAR detector for targets
in homogeneous Pareto distributed clutter.

A useful reference on CFAR detection is [22], while [20] is a good refer-
ence on statistical hypothesis tests. Probability distribution properties can be
sourced from [19, 20].
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2 Formulation of the CFAR Problem

The central idea behind CFAR detection is that we have a series of N inde-
pendent and identically distributed clutter intensity statistics X, Xo, ..., Xy,
from which an “average” level of clutter is produced through the application
of some function f. These clutter statistics are often referred to as the CFAR
training or clutter range cells. When sampling from a real series of clutter
returns, obtained from an operational radar, these will be subsampled from
the data stream so that they are approximately uncorrelated returns. The
measurement of clutter level obtained from the range cells is then normalised
using a threshold multiplier 7, such that the probability of false alarm de-
pends only on this threshold multiplier, and not on the clutter statistics. Due
to sensitivity between the detection threshold/probability of false alarm and
clutter parameters, the hope in the CFAR approach is that this sensitivity can
be eliminated by using an ad hoc suboptimal detector [22, 23]. The tradeoff
in not using a decision rule based upon the Neyman-Pearson Lemma [20] is a
likely reduction in detection performance [23].

A cell under test (CUT) is then assessed to see whether a target is present
or not. It is assumed that this is independent of the clutter statistic cells, which
is achieved by allowing for a sufficient number of guard cells in the range profile
under examination [22]. As a statistical hypothesis test, if we suppose Hy is
the hypothesis that the CUT is pure clutter, and H; is the hypothesis that the
CUT is a mixture of target return and clutter, then the decision rule takes the
form

Z Tf(Xl,XQ,... ,XN)/N, (3)

EN/E

where Z is the statistic of the CUT, and the notation A % B means that we
reject the null hypothesis if any only if the statistic A > B

It has been shown that for the case of Gaussian intensity returns, and with
a Swerling 1 target model, the cell averaging CFAR, where f is a sum, is the
optimal CFAR [19].

In recent years the effect of transformations on UMP tests has been ex-
plored [24], showing such properties can be preserved under some transfor-
mations of decision rules. Given the duality between Exponential and Pareto
random variables, this created an interest in further exploring this phenomenon
in the Pareto case.

To see this duality, as explained in [17], if X 4 Pa(a, 3), and Y is an

Exponential random variable with parameter «, (written Y < Exp(a)) then
these two distributions are related by

X = pe’, (4)

where Y has density given by gy () = ae™, for t > 0, and is zero otherwise.
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This was the key in [17] to transforming simple Gaussian intensity CFAR
processes to the Pareto case. The basic approach is to start with a CFAR
detector for the Gaussian intensity case, and then to transform the expression
for the detector using the inverse of (4), so that it is in terms of Pareto clutter
statistics. This results in a detector operating on Pareto clutter, whose prob-
ability of false alarm and threshold multiplier relationship will be identical to
that for the pre-transformed Gaussian counterpart.

An inevitability of using the transformation (4) is that the detectors require
explicit knowledge of the Pareto scale parameter. Hence it will be assumed that
B is explicitly known. As argued in [17], since this parameter is not critical to
determining the distribution’s shape, this assumption is reasonable. Further,
given the development of improved Pareto parameter estimation prodedures
in [18], B can be estimated very accurately for small sample sizes. Hence in all
the analysis to follow, [ is assumed known while « is assumed to be unknown
but fixed. Hence, strictly speaking, the CFAR processes developed are CFAR
with respect to a.

Using (4), three simple CFAR processes were constructed in [17], which
were extensions of the Gaussian intensity cell-averaging CFAR, as well as the
minimum and maximum CFAR-based detectors. As an example, a geometric
mean variant, also known as a product detector in [17], is defined by

Z

AV

N
Cand | P (5)
Jj=1

which is shown to have its probability of false alarm related to 7 by Pfa = (1+
7)~N. The latter expression can be recognised at the probability of false alarm
and threshold multiplier relationship for the cell-averaging CFAR detector for
the Gaussian intensity case [23]. Additionally, the transformation approach
of [17] results in a CFAR detector significantly different in form from the
traditional CFARs analysed in the literature.

Using the relationship (4), a series of new detectors are now introduced,
based upon transformations of Gaussian intensity CFARs. The importance
of extending the detectors in [17] lies in the need to develop CFAR processes
that can manage multiple targets that may appear in the CFAR range cells.
Additionally, preservation of the false alarm probability is required in the case
where the clutter power may fluctuate.

3 Order-Statistic CFAR

As an extension of the minimum and maximum-based CFARs in [17], a general

order statistic CFAR (OS-CFAR) can be defined. If we let X ) be the k'™ OS
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of the clutter returns, then

4 1—-7yT
Z ?0 BT Xy (6)
can be proposed as a detector. It is now shown that the probability of false
alarm and threshold multiplier do not depend on the clutter parameters, and
hence the clutter power. To facilitate the calculation, it is shown in [18] that the
k" OS for a series of independent and identically distributed Pareto random
variables can be written

Xy = W, e, (7)

where Wy, is a Beta distribution with parameters N — k + 1 and k [20]. By
applying this, together with the fact that under Hy, the cell under test statis-
tic can be written Z = e?, where () has an Exponential distribution with
parameter « (see (4)),

Pfa = P(Z>77X,) = P(e? > W, ~7/9)
1
_ / Fur (DP(Q > log(t~7/))dt
0
1

_ / £ fur (£)dt, (8)

0

where fy, is the density of W}, and statistical conditioning has been used. By
applying the density of the Beta distribution to (8), and then by an application
of the Beta function and its relationship to the Gamma function, it is not
difficult to show that (8) reduces to

Nl D(N—k+71+1) )
(N—Fk)! I'(N+7+1)
where T'(+) is the Gamma function [20]. Hence detector (6) is CFAR with

respect to . In order to set the threshold multiplier 7, for a given probability
of false alarm, one can invert the expression (9) numerically.

Pfa =

4 Smallest-Of and Greatest-Of CFAR

Next, smallest-of (SO) and greatest-of (GO) CFARs are introduced. By trans-
forming the Gaussian intensity equivalent, it can be shown the detector takes
the form

A

EAVE

51M7<77;'%(§% (HXj’ H XJ)) ) (10)

J=M+1
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where min is used for SO-CFAR and max is for GO-CFAR, and for simplicity
we have assumed that NV is even, and M = N/2. The false alarm probabilities
are given by

Pfago = 2(1 + T)iM — Pfago, (11)

where
Pfago = 2 Z ( Mﬂ -1 ) (24 7)" M+, (12)

Hence it follows that (10) is CFAR with respect to a. The GO-CFAR censors
the lower half of the clutter statistics, while the SO-CFAR censors the upper
half. The subscripts in expressions (11) and (12) indicates the corresponding
CFAR scheme, and these results have been obtained from [25].

The proof of the expressions for probability of false alarm is a relatively
straightforward application of (4) to the Gaussian CFAR equivalent in [25]. It
is illustrated for the case of the GO-CFAR only. Under Hy, we can write Z =

Be?, where Q 4 Exp(a). Additionally, each X; = 3e¥i, where Y; 2 Exp(a).
Using the fact that the maximum and logarithm function are exchangeable,

Pfa = P (log(ZpM ') > 7 max <1ogH ;, log H X))

j=1 j=M+1

= IP|Q+ Mrlog() > 7max (Z log(B) +Y;, Z log(8) + YJ>>

j=1 j=M+1

=P Q>max<i¥}, i Y})) (13)

j=M+1

Consequently, it follows that the probability of false alarm (13) is that for
the Gaussian intensity GO-CFAR, and so an application of the results in [25]
completes the proof. Extension of this to the SO-CFAR equivalent is straight-
forward.

Again, in practical implementation, the threshold multiplier 7 is obtained
from (11) and (12) via numerical inversion.

5 Trimmed-Mean CFAR

A trimmed mean (TM) CFAR can also be constructed, which is based upon
censoring applied to ordered clutter statistics in (5). In particular, the TM-
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CFAR is

Z

AV

N-T, T
proEneR) ( 11 X(j)) : (14)
Jj=T1+1

where T) statistics are trimmed from the lower OS, while 715 are trimmed
from the top. By applying the fact that if Z, is the k'™ OS for a series of
Exponentially distributed random variables with parameter o, then the k"
OS for a series of Pareto random variables is given by X () = e?®, it can be
shown that the TM-CFAR has probability of false alarm given by

N—Ty—T;
Pla= [[ M,(7), (15)
j=1
where the function
N!

M, (1) =
) = NS oW -T Ty

I
Sail (16
=0 <m)+7
and for 2<j < N-T, -1,
a;
Muj(T) = aj+ 7 (17)
wherea; = (N-T1—j+1)/(N-T1 —Tp,—j+1).

Hence detector (14) has the CFAR property with respect to a. Expression
(15) can be found in [25], from the Gaussian intensity equivalent. The proof
is omitted for brevity.

Observe that with the choice of T} = T5 = 0, the detector (5) is recovered,
while for the choice of T} = k — 1 and Ty = N — k, the k' OS-CFAR (6)
is produced, for 1 < k < N. From a theoretical perspective, a detector that
censors 17 lower and 75 upper clutter statistics can be used to censor out an
expected number of higher-powered interfering targets. It should also be able
to tolerate clutter transitions to a certain point. As in the previous cases, 7 is
determined from (15) with numerical inversion.

6 Detector Performance in Homogeneous Clut-
ter

6.1 Vertical Polarisation Examples

As an initial examination of detector performance, it is assumed that the
clutter is homogeneous. Several examples of performance will be analysed,
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with clutter simulated using parameters estimated from real data sets. Figure
4 shows CFAR detector performance for the three detectors introduced in [17]
(denoted CFAR-Prod, CFAR-Min and CFAR-Max respectively). In addition,
the OS, SO, GO and TM versions introduced in the previous sections are
included. These are denoted CFAR-OS, CFAR-SO, CFAR-GO and CFAR-TM
respectively. In all cases, performance is measured by plotting the probability
of detection (Pd) as a function of the signal to clutter ratio (SCR). Monte
Carlo sampling with 10° runs has been used for each detection probability
estimate. The target model used is a Swerling 1 Gaussian model, as in [17].
The first example considered corresponds to the case where N = 8 and the
probability of false alarm is 1072. The motivation for choosing such a large
false alarm probability was so that the minimum CFAR would not saturate. In
this example, the clutter has parameters based upon Ingara data set run 34690,
at an azimuth angle of 225°, with vertical polarisation. Details on the Ingara
radar and clutter analysis can be found in [26] and [27] . The Pareto model fit
to the Ingara clutter is described in [11]. The clutter parameters were estimated
to be a = 15.8983 and 3 = 0.1812. The OS-CFAR used the 9" observation,
while the TM-CFAR removed the largest two observations. The SO- and GO-
CFARs are based upon censoring exactly half the observations. Figure 4 shows
that many of the detectors are matching almost exactly the performance of
the ideal CFAR (denoted CFAR-Ideal) introduced in [17]. Figure 5 shows
a magnification of Figure 4, which demonstrates the product CFAR (5) is
dominant. The minimum CFAR ( (6) with k£ = 1) has the worst performance.
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Figure 4: Examples of detector performance in vertically polarised clutter.
Shown are the detectors in [17], as well as the three new detectors introduced,
together with an ideal CFAR.
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Figure 5: A magnification of the detectors in Figure 1. Here we observe that
the product-based detector (5) has the best performance.

A second example of detector performance with vertical polarisation is
provided in Figure 6. This has been based upon the DSTO Ingara data set run
34683, with azimuth angle of 225°. In this case, the Pareto fitted parameters
are o = 11.3930 and ( = 0.3440. This is the data set used to produce Figure 1

(right subplot). Here we have selected N = 16 and the false alarm probability
is 107%. In this case, 7} = 3 and T, = 2. The OS-CFAR uses k£ = 8. In
this example the maximum-CFAR has the best performance, followed by the
product CFAR. The TM- and GO-CFAR closely match the product CFAR.

The OS-CFAR has poor performance, while the minimum saturates.
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Figure 6: Detector performance in homogeneous vertically polarised clutter.
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6.2 Horizontal Polarisation Examples

Next an example of performance in horizontally polarised clutter is provided.
In this case, the clutter parameter estimates have been based upon Ingara data
set run 34685, at an azimuth angle of 225°. The Pareto clutter parameters
have been estimated to be a = 4.4525 and 5 = 0.0147. The number of CFAR
training cells is N = 18 and the false alarm probability is 107¢. Figure 7 shows
the detector performance. Due to the spikier clutter returns, the detectors
experience difficulties in finding a target with SCR < 10 dB. This is also
attributable to the application of suboptimal detectors. Figure 7 shows that
the maximum-CFAR of [17] has the best performance, followed by the product
CFAR. The minimum CFAR completely saturates in this example. Here the
OS-CFAR uses the 4" OS, while the TM-CFAR again censors the largest two
observations. The SO-and GO-CFAR are based upon products of 9 clutter
statistics. As a second example of performance in very spiky clutter, Figure 8

CFAR Detector Performance, N=18, Pfa = 108
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Figure 7: Detector performance in horizontally polarised clutter, using the
Ingara data clutter parameter estimates.

shows detector performance with Pareto clutter whose parameters are sourced
from the McMaster University’s IPIX radar. Details of this radar can be found
in [28], which includes analysis of the data obtained from it. Additionally, [§]
examines clutter modelling of the data obtained from this radar. For the
example considered here, the polarisation is horizontal, and the fitted clutter
parameters are o = 1.5582 and 3 = 4.3286 x 10~*. Figure 8 shows the detector
performance, when N = 6 and the false alarm probability is 10~%. The OS-
CFAR uses the 3" OS, while the TM censors the two largest observations, as
before. Here the maximum CFAR has near optimal performance, while the
other detectors experience great difficulty because of the very spiky returns.
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CFAR Detector Performance, N=6, Pfa = 1074
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Figure 8: Detector performance, again with horizontally polarised clutter, but
with Pareto parameter estimates based upon the IPIX radar clutter.

Figures 4 - 8 highlight the observation in [17] that there is no dominant
CFAR, with respect to the Swerling 1 target model. However, when the clut-
ter is more Gaussian, as occurs in the vertically polarised clutter case, it is
expected that (5) should be near optimal with a Swerling 1 target model. The
observations in [17] found that the maximum CFAR had near optimal perfor-
mance for a number of different cases. A good example of this can be found in
Figure 9, which is again based upon horizontally polarised clutter. Here the
Pareto parameters have been estimated from Ingara data set run 34683, at az-
imuth angle of 225°. The parameter estimates are o = 4.7241 and § = 0.0446,
which are estimated from the data plotted in Figure 1 (left subplot). For this
example, N = 16 and the false alarm probability is 107%. Additionally the
TM-CFAR uses T = 3 and Ty = 2, while the OS-CFAR uses k = 4. Here
we see that the Max-CFAR matches very closely the performance of the ideal
detector.

These examples show that the new CFARs do not provide much of a benefit
in homogeneous clutter returns. However, it will be shown that the TM-CFAR
can be very useful in the non-homogeneous clutter case.

7 Management of Interfering Targets

7.1 Detector Parameter Selection

Although the new CFARs did not provide any improvement on the detec-
tors introduced in [17], their merit in application results from an analysis of
detector performance when the CFAR training cells are subjected to inter-
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CFAR Detector Performance, N=16, Pfa = 108
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Figure 9: Detector performance in homogeneous clutter, with horizontal po-
larisation, where the Maximum-CFAR matches the Ideal-CFAR detector very
closely.

fering targets. Although the maximum-CFAR has excellent performance in
homogeneous clutter, it will inevitably suffer with the addition of at least one
significant range cell target. The product CFAR will also suffer the same per-
formance issues. The SO-CFAR will invariably avoid this problem, but due to
the fact it is based upon a subsample of the clutter range statistics, the smaller
sample size will also reduce its performance. Additionally, as demonstrated in
[17], this detector tends to saturate in practice. Clearly the GO-CFAR will
suffer serious performance degragation in the presence of interference.

By contrast, the OS- and TM-CFAR have the potential to rectify these
issues. In particular, the TM-CFAR can be designed to accommodate an
expected number of interfering targets. It also has the capacity to filter out
smaller interfering targets because it can censor both the lower and upper
spectrum of excessive returns. Given these observations, only these two CFARs
will be analysed in the work to follow.

In order to select an appropriate k for the OS-CFAR, in view of [17], it
is important that k is not too close to the expected number of interfering
targets. Hence, for example, if one wanted to accommodate the possibility
of 2 interfering targets, it would be necessary to select a &k < N — 1. Given
the tendency for the minimum-CFAR to saturate, it is hence important to
select a k > 1. Hence a k can be selected such that 2 < k < N — 2. A general
approach could be to base the selection on the basis that if there are interfering
targets, they should appear in the top 20% of statistics. Hence we can select
k = [0.8N], where [z] is the greatest integer not exceeding .

For the design of a TM-CFAR, we can select T} and T3 by similar consid-
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erations. One approach is to trim 10% of the statistics from the bottom, and
20% from the top end. Hence we can select 77 = [0.1N] and 75 = [0.2N].
Censoring more statistics at the top end makes the detector more robust to
stronger interfering targets.

These detector parameter selection methods introduce what will be termed
an automatic censoring algorithm for the OS- and TM-CFARs.

7.2 Horizontal Polarisation Examples

For the sake of simplicity, attention is restricted to clutter generated from
a Pareto distribution with parameters @ = 4.7241 and § = 0.0446, which
have been discussed previously. Here we are interested in the analysis of the
performance of the OS- and TM-CFARs, with detector parameter selection
based upon the guidelines specified previously. For the purposes of exploration,
three interfering targets have been used, and the effect of varying N and the
probability of false alarm is examined.

In the first case the probability of false alarm is set to 10~°, while N = 10.
The OS- and TM-CFAR are subjected to up to three independent interfering
targets in the training cells, each with a SCR of 2 dB. Figure 10 shows the
performance of the detectors. The Figure shows the TM-CFAR has slightly
better performance than the OS-CFAR when there is no interference. As
the number of interfering targets in the range cells increase, both detectors
experience loss. However the TM-CFAR tends to perform the best. The
automatic censoring uses 17 = 1, 7o = 2 and k = 8. Hence the TM-CFAR
effectively eliminates up to two strong interfering targets. The detection loss
is also attributable to the reduction in the number of available clutter cells for
processing.

Figure 11 shows the effect of increasing the number of clutter cells N to
16, while maintaining the probability of false alarm and SCR of the interfering
targets. The censoring algorithm selects 77 = 2,7, = 3 and k£ = 13. Here we
see that the TM-CFAR eliminates all three interfering targets, and the overall
detector performance has improved. The OS-CFAR trails the performance of
the TM-CFAR.

Figure 12 shows the performance when N is increased to 32. For this
scenario, the censoring algorithm has chosen 77 = 3,75 = 6 and k£ = 26.
Thus, the TM-CFAR can eliminate up to 6 strongly interfering targets. The
Figure shows the same general results as noted before, except with a significant
improvement in detection performance.

To complete our analysis, we consider the case where the probability of
false alarm is decreased to 1079, while the three targets have SCR increased
to 10 dB. Figure 13 shows detector performance when N = 16. The censoring
algorithm has selected 77 = 2, T, = 3 and k£ = 13. Hence the TM-CFAR
eliminates the interfering targets. Increasing N to 32 results in improved
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Figure 10: Detector performance in horizontally polarised clutter, when there
are up to three interfering targets in the range cells. ‘OS 1 int’ refers to the
OS-CFAR where there is one interfering target, ‘TM 1 int’ refers to the TM-
CFAR where there is one interfering target, et cetera. The interfering targets
each have a SCR of 2 dB.

detector performance, as illustrated in Figure 14. In this case, T} =3, T, =6
and k = 26.

7.3 Vertical Polarisation Examples

The main difference with detection in vertically polarised clutter with inter-
fering targets is improvement in detector performance, as in the homogeneous
clutter case. Examples considered for this polarisation are based upon the
Pareto distribution with parameters a = 15.8983 and 3 = 0.1812. In the first
example, shown in Figure 15, N = 16 and the false alarm probability is 1075,
Each interfering target has SCR of 10 dB. The censoring algorithm has selected
Ty = 2, T, = 3 and k = 13. Hence the TM-CFAR should be immune to the
effects of up to three interfering targets. Here we see the TM-CFAR works
very well, and experiences a detection loss with the reduction in the number
of available clutter range cells. Increasing N improves its performance. The
OS-CFAR always seems to be inferior to the TM-CFAR, as in previous cases
considered.

For a final example, Figure 16 also uses N = 16, but with the false alarm
rate has been decreased to 107®. Due to the lack of change in N, the censoring
parameters remain the same. Again, the three interfering targets have SCR of
10 dB. The same phenomenon is repeated as illustrated in Figure 15.
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Figure 11: Detector performance with interfering targets, with same scenario
as for Figure 10, except the number of clutter range cells is increased to 16.
This increase results in improved performance in all cases.

7.4 Conclusions

The OS- and TM-CFARs were examined in the presence of up to three in-
terfering targets in the clutter range cells. Adopting an automatic censoring
algorithm resulted in the TM-CFAR managing interfering targets very well,
and generally better than the OS-CFAR. When these results are compared to
the detectors introduced in [17], their performance can be seen to be a major
improvement in the management of interfering targets. If we want to manage
a certain number of possible interfering targets, an appropriate censoring level
can be determined, as illustrated. Increasing the number of clutter range cells
will also improve detector performance when censoring is applied.

8 Performance during Clutter Transitions

The previous Section demonstrated that the TM-CFAR is robust with respect
to interfering targets in the clutter range cells. It is now important to observe
the effect of transitions in the clutter power on the design false alarm rate.
CFAR detectors are designed to operate in homogeneous independent clutter
returns in the training cells. When, for example, an airborne maritime surveil-
lance radar moves from surveying one patch of ocean to another, there may
be a change in clutter intensity. This may be due to the presence of a shallow
coral reef causing a variation in the sea states in the local area. From a sta-
tistical analysis perspective, this phenomenon is studied by slowly varying the
clutter power in the CFAR training cells, and estimating the resultant false
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Figure 12: Increasing N to 32 results in further detection improvement, even in

the case where there are thee interfering targets. This is for the same scenario
as for Figure 11.

alarm probability. Once exactly half of the clutter range cells are completely
saturated with higher powered clutter returns, the CUT is then also consid-
ered to be infected with higher power clutter. This results in a sharp jump in
the estimated probability of false alarm in many cases. Ideally, in a practical
CFAR, we would like it to avoid altering the design probability of false alarm.
However, it is inevitable during clutter power changes that some variation in
the resultant probability of false alarm will occur.

Power will be measured as the mean square of the Pareto distribution.
Hence for a Pareto distribution with parameters o and 3, the power p can
be shown to be p = a3?/(a — 2). In order to examine clutter transitions, we
suppose the scale parameter [ remains constant, without loss of generality,
while the shape parameter is varied to correspond to a required dB power
change. To this end, by applying p, if our first Pareto clutter distribution has
shape parameter aq, while the second has as, then for an  dB clutter change,
it is required that

2
(1 — 1001z {041_—2}> '
ai

8.1 Horizontal Polarisation

Qg =

For the case of horizontal polarisation, the numerical examples are based upon
Pareto clutter with parameters a = 4.7241 § = 0.0446, as used previously.
In all cases, the number of clutter cells is N = 16, so that the OS- and
TM-CFARs use the same censoring parameters as before. All estimated false
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Figure 13: Detector performance, in horizontally polarised clutter, with the

probability of false alarm reduced, and the SCR of each interfering target
increased to 10 dB.

alarm probabilities have been generated using Monte Carlo estimation, with
10° runs in each case. Figure 17 is for a design false alarm probability of
107, and the clutter power is slowly increased by 0.5 dB. This is done by
gradually increasing the number of higher powered clutter cells. The clutter
power increase is referred to as the clutter to clutter ratio (CCR). The Figure
shows the effect on the false alarm probability for both the OS- and TM-
CFARs. In all cases the logarithm of the estimated probability of false alarm
is plotted. The OS-CFAR’s resultant probability of false alarm immediately
increases, and then remains almost constant at approximately 107%5  which
is unacceptably high in practice. The TM-CFAR does not experience such a
huge change until its CUT is also infected with higher power clutter. Observe
that a 0.5 dB change is a very small power increase, but it is enough to result
in false alarm probability increases.

For a second example, Figure 18 shows the effect on the probability of false
alarm, when the design one is 107% and the clutter power is increased by 1
dB. The same phenomenon occurs as for Figure 17, although the TM-CFAR
performs better.

Figure 19 shows the performance when the clutter transition is now by 5
dB. The design false alarm probability is still 107%, and we observe the TM-
CFAR does a better job than before, until the point where the CUT is also
affected by higher powered returns.
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Figure 14: Result of increasing N for the scenario depicted in Figure 13.

8.2 Vertical Polarisation

Some examples of clutter transitions are now provided for the case of verti-
cal polarisation. For the two examples provided, the clutter has been based
upon a Pareto distribution with parameters a = 15.8983 and # = 0.1812, as
considered previously. Figure 20 shows a typical result, where N = 16, and
the design false alarm probability is 107°. The clutter power is increased by a
factor of 0.5 dB. What tends to happen with this polarisation is that the TM-
CFAR tends to result in a reduction in the probability of false alarm. Once
the CUT is affected, the probability of false alarm increases as shown. The
OS-CFAR results in the same estimated probability of false alarm behaviour
as for the horizontally polarised case.

Figure 21 shows the resultant probability of false alarm when the design
probability of false alarm is increased to 10~* and the clutter power is increased
by 1 dB. The TM-CFAR results in a reduction in the probability of false alarm
as before, before increasing as shown.

In other examples considered, when the probability of false alarm is reduced
to less than 107, the TM-CFAR yields a sharper drop in the resultant false
alarm probability, before jumping to a higher level, as illustrated in Figures 20
and 21.

8.3 Conclusions

All CFAR processes experience a change in their design probability of false
alarm when subjected to clutter transitions. The TM-CFAR tended to have
more desirable behaviour than the OS-CFAR. Its performance can be im-
proved, however, by increasing the number of lower-censored clutter statistics.
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Figure 15: Detector perfromance, with vertically polarised clutter, with up to
three interfering targets, each with SCR of 10 dB.

However, this can result in detection losses in homogeneous clutter because of
the reduction in the number of clutter range cells.

9 Optimal Detector Considerations

From the examples considered in Section 6, it is clear that in the homogeneous
clutter case that there is no single dominant CFAR detector. This is, of course,
relative to a Swerling 1 target model, and the same observation was reported
in [17]. In the next few Sections this is examined further. To this end, it is
worth considering the probability of detection of (5) for a general target model.
Note that its detection probability is given by

— P <log (%) > Télog (%) ’ H1>
- P (log (%) > TW’ Hl) , (18)

where W is a Gamma random variable with parameters N and «, as explained
in [17]. It is interesting to observe that if the CUT statistic, under Hy, has
a Pareto distribution Pa(a(l + 5),3), for some S > 0, then the probability
of detection (18) reduces to the Gaussian intensity case, where S is the target

N
Pd = P <Z >N X7
j=1
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Figure 16: Result of decreasing the probability of false alarm for the scenario
in Figure 15.

signal to clutter ratio (see [19]), with an application of (4). As a consequence
of this, it follows by the optimality of the cell-averaging CFAR in Gaussian
distributed intensity clutter, any CFAR process produced by the approach of
[17] with a Pa(a(145), 8) clutter and target model will have smaller detection
probability than that of (5). Given the preservation of the UMP property under
simple transformations [24], this suggests that (5) is the optimal decision rule,
relative to the underlying target model. On the surface, this appears to have
answered the question of interest. However, it is important to now consider
the properties of the signal yielding the CUT statistic under Hj.

10 Signal Analysis

For the CUT statistic Z to have a Pa(a(1+S5), 3) intensity distribution under
Hy, the signal plus clutter in the complex domain must necessarily have a
compound Gaussian formulation, with inverse Gamma texture distribution
with parameters «(1+.5) and (5 [9]. It is hence important to explore the form
of the signal that generates this CUT statistic. The latter arises as an intensity
measurement of a single complex signal added to complex clutter.

A random variable lz has an inverse Gamma distribution if its density

230

has the form gp(t) = mt”a*le*ﬁtd, for ¢ > 0, where a and [ are non-

negative distributional parameters. We write D LG (e, ). Using the theory
of spherically invariant random processes (SIRPs), it can be shown that when
this distribution is used for the texture component of a compound Gaussian
model, the resultant marginal intensity model is Pareto distributed, with shape



CFAR detection in Pareto distributed clutter 253

False Alarm Regulation, N = 16, Pfa = 105, CCR=0.5dB

log R 0(Pfa)
!
N
&

y TM-CFAR

0 2 4 6 8 10 12 14 16
Number of higher powered clutter cells

Figure 17: Example of the result of clutter changes on the design probability of
false alarm. This example is for the case of horizontal polarisation, and when
the clutter power is increased by 0.5 dB. This is done by slowly increasing the
clutter power in the CFAR training cells. When the middle point of the range
cells is affected by higher powered clutter, the CUT is then also considered
infected by the higher power. This explains the sudden jump in the estimated

probability of false alarm.

parameter o and scale parameter 3 [9)].

Suppose ¢ is the clutter in the CUT in the complex domain. Then we
can express it in the form ¢ = w;G,, where w; 4 IG(a, B) is the inverse
Gamma texture, and G, is a bivariate 2 x 1 zero mean vector Gaussian process
with covariance matrix Mj, which is a 2 x 2 matrix. If the signal in the
CUT is s, then from the previous analysis, we require 8 + ¢ = wyG,, where
wy < IG(a(1+95), ) and G is a zero mean vector bivariate Gaussian process
with 2 x 2 covariance matrix Ms. It will be assumed, without loss of generality,
that s and ¢ are independent processes. Furthermore, it is required that s can
be generated without dependence on the Pareto clutter parameters. Although
the signal can locally affect the clutter returns, it is assumed here that these
two processes are separate.

Reverting to complex forms, we can write s+¢ = ||s+c¢||e®® and ¢ = ||e||e®®,
where © and ® are independent phases, assumed to be uniformly distributed

on the interval [0, 27], and || - || is the complex modulus. Then it follows that
s = |s+cfe®—efe”
_ | lIs+¢l[cos(©) — [|e]| cos(®) ’ (19)

Is + ¢l sin(©) — [le]| sin(P)
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Figure 18: False alarm regulation: same scenario as for Figure 17, except with

a 1 dB power increase.

where the 2 x 1 matrix has elements the real and imaginary components of
s, and is used for brevity. The signal’s intensity is analysed to determine its
properties. Taking the modulus of expression (19) shows that

Is][* = lls +ell* + llell* — 2l|s + ]l ]| cos(© — @), (20)

using a simple trigonometric identity. Intensity (20) can be further reduced to
a function of its underlying random components. To this end, the following

Lemma is required:

Lemma 10.1 IfQ < Pa(a, 3) then /Q < Pa(2a,/3).

The proof of the Lemma follows by directly evaluating the distribution func-

tions.
Applying Lemma 10.1, together with (4), to (20), it follows that the signal

intensity can be written

Hs||2 =4 [eyl + Y2 — Q¥ tYa cos(P — @)} , (21)

where Y; = Emp( (1+9)),Y- Emp( ), Y3 = 0.5Y7 and Y, = 0.5Y5. It is also
not difficult to show that COS(<I> ©) is uniformly distributed on the interval
-1, 1].

What is immediate from (21) is that the signal’s intensity distribution
varies directly with the clutter parameters. This means the signal s cannot be
decoupled from ¢, meaning no complex form will yield a CUT statistic under

H; with the desired Pareto distribution.
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Figure 19: Result of increasing the clutter power change to 5 dB, for the same

scenario in Figure 18.

Observe that, by taking expectations in (21), and using the assumed inde-
pendence of respective random variables, together with the fact that the mean

of cos(® — O) is zero,
E|s[|* = 8 [My, (1) + My, (1)], (22)

where E is the mean with respect to IP and My (¢) is the moment generating
function of Y [20]. Since Y; and Y; are both Exponentially distributed, it can

be shown that the mean squared (22) reduces to

(14 8)(2a—1)+1
@-D@l+5)+D)] (23)

The mean of the signal’s intensity clearly demonstrates the dependence the
process s has on a and . Figure 22 shows a series of plots of (23), as a
function of «, for S = 10 dB fixed, and with three values of (.

For an alternative perspective, an example is now included to illustrate the
signal’s strong dependence on the Pareto clutter parameters directly. Consider
the signal’s intensity embedded within the two Pareto clutter distributions:
Pa(5,0.01) and Pa(5.5,0.05). The SCR has been set to S = 3 dB, and 1,000
independent realisations have been produced of (21) using simulation. Figure
23 shows the signal embedded within the first clutter set, while Figure 24 is
for the second. Figure 25 plots the empirical distribution functions of each of
the signals in the respective clutter.

The sample mean for the first signal is 0.2037, with a variance of 0.0422.
For the second signal, the sample mean is 1.0999 with variance 1.2310. These
figures and results illustrate the strong dependence the signal has on the clutter

Ells||* =

parameters.
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Figure 20: Clutter transitions in vertically polarised clutter, with a 0.5 dB

clutter power increase.

11 Conclusions

A series of new CFAR detectors, for target detection in Pareto distributed
clutter, were introduced. It was found that, in the case of homogeneous clutter,
these new CFARs did not significantly improve on those introduced in [17].
However, in the case where the clutter range cells contained multiple interfering
targets, the TM-CFAR, with automatically adjusted trimming points, could be
designed to manage a number of such targets. In the context of managing the
design false alarm rate, the TM-CFAR did a generally good result, until the
CUT became saturated. This detector, however, is more robust for practical
CFAR implementation in a real system. It also improved on the performance
of the CFARs introduced in [17], in the non-homogeneous clutter case.

The existence of an optimal CFAR detector for Pareto clutter models was
also examined in this paper. It is clear that with a Swerling 1 target model,
there is no single domainant detector, as in the Gaussian intensity case. It
was also shown that it is impossible to produce a signal, independent of the
clutter, that results in the dominance of the product CFAR (5).
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Figure 21: Clutter transitions in the vertically polarised case, for a larger false
alarm probability than that used for Figure 20, with a 1 dB clutter increase.
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Figure 23: The signal with a Pa(5,0.01) clutter model, where the logarithm
of the signal’s intensity is plotted.
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Comparison of Empirical Distribution Functions
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Figure 25: A comparison of empirical distribution functions for each of the
two signal cases plotted in Figure 1 and 2. Clutter A refers to the Pa(5,0.01)
model, while Clutter B is for Pa(5.5,0.05).



