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ABSTRACT 

A novel constant force feedback mechanism based on fuzzy logic for tapping mode Atomic Force Microscopes (AFM) 

is proposed in this paper. A mathematical model for characterizing the cantilever-sample interaction subsystem which is 

nonlinear and contains large uncertainty is first developed. Then, a PID-like fuzzy controller, combing a PD-like fuzzy 

controller and a PI controller, is designed to regulate the controller efforts and schedule the applied voltage of the Z-axis 

of the piezoelectric tube scanner to maintain a constant tip-sample interaction force during sample-scanning. Using the 

PID-like fuzzy controller allows the cantilever tip to track sample surface rapidly and accurately even though the to- 

pography of the surface is arbitrary and not given in advance. This rapid tracking response facilitates us to observe 

samples with high aspect ratio micro structures accurately and quickly. Besides, the overshoot which will result in tip 

crash in commercial AFMs with a traditional PID controller could be avoided. Additionally, the controller efforts can be 

intelligently scheduled by using the fuzzy logic. Thus, continuous manual gain-tuning by trial and error such as those in 

commercial AFMs is alleviated. In final, computer simulations and experimental verifications are provided to demon- 

strate the effectiveness and confirm the validity of the proposed controller. 
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1. Introduction 

In 1986, Binnig, Quate, and Gerber invented the AFM to 

investigate nano-scale surfaces of insulators in a nonin- 

vasive manner [1]. The technique provides a true three- 

dimensional surface-profile and is especially good for 

examining local properties for a wide range of material 

properties, including surface topology, surface and near 

surface friction, ferroelectric domain structure, electric 

potential and impedance, and the atomic structure of 

crystals at surfaces [2-4]. Mainly, there are three opera- 

tion modes in AFMs, including the contact mode, non- 

contact mode, and tapping mode. Recently, tapping mode 

AFMs have received more attention and is focus of this 

study. In this operation mode, a microcantilever with a 

sharp tip is vibrated near its 1mechanical resonant fre- 

quency by an external sinusoidal input and the tip con- 

tacts with the sample periodically in each cycle of the  

oscillation during sample-scanning. The deflection of the 

tip dynamics in the vertical direction is detected optically. 

In the presence of tip-sample force interaction, the am- 

plitude, resonant frequency, and phase angle of the oscil- 

lating tip are altered. Normally, the variations of these 

physical quantities can be measured to infer sample to- 

pography and material properties in sample surface. 

A simplified electromechanical system of a typical 

AFM is shown in Figure 1. The system consists of a 

microcantilever driving subsystem, a microcantilever 

deflection detection subsystem, a signal conversion sub- 

system, a sample-positioning subsystem, and an intelli- 

gent feedback controller subsystem. The microcantilever 

driving subsystem consists of a microcantilever with a 

sharp tip driven mechanically by a piezoelectric bimorph. 

The driving signal of the piezoelectric bimorph is gener- 

ated by a high frequency resolution numerically-con- 

trolled oscillator. Further, the microcantilever deflection 

detection subsystem, consisting of a position-sensitive 

photo detector (PSPD), a current-to-voltage converter, a 

preamplifier, and a low-pass filter, is designed to opti- 

1This is a revised and extended version of the paper, “Constant force 

feedback controller design using fuzzy technique for a tapping mode 

Atomic Force Microscope,” published at the 2009 Chinese Control and 

Decision Conference. 
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Figure 1. An electromechanical system of a typical AFM. 
 

cally measure the dynamic bending of the microcantile- 

ver in the vertical direction. Moreover, the signal conver- 

sion system, cascaded with the microcantilever deflection 

detection subsystem, is exploited to real-time convert the 

amplitude and phase signals of the oscillating cantilever 

into corresponding voltage signals. Furthermore, the sam- 

ple-positioning subsystem, comprised of a piezoelectric 

tube scanner and a precision stepping motor, enables 

positioning of the AFM probe both parallel (along the X 

and Y axes) and perpendicular (along the Z axis) to the 

sample surface. In addition, the intelligent feedback con- 

troller subsystem is utilized to monitor and regulate the 

vertical deflection of the microcantilever. Figure 2 is a 

picture of the experimental setup of the homemade tap- 

ping mode AFM. Generally, depending on the tip-sample 

distance, the tip suffers from a long-range attractive force 

and a short-range repulsive force as seen in Figure 3. 

Alternatively, the interaction force is a highly nonlinear 

function of the tip-sample distance. Many experimental 

and theoretical studies have confirmed the existence of 

complex chaotic behavior under certain operating condi- 

tions [5,6]. 

In the approach mode of a tapping mode, the micro- 

cantilever with a sharp tip is disposed to face the sample 

surface through a safe approaching mechanism which 

moves the sample toward the tip step by step in nano- 

scale, exploiting the above-mentioned precision stepping 

motor. In general, the approach mode is achieved when 

an amplitude reduction of the deflection of the oscillating 

cantilever is detected. This reduction implies the exis- 

tence of a force interaction between the tip and the sam- 

ple. Successively, the sample-scanning is carried out un- 

der a pre-specified force interaction. During sample- 

scanning, as the sample is moved laterally, the AFM tip 

scans the sample surface two-dimensionally. In the mean- 

time, depending on the topography of the sample and the 

tip-sample distance, the amplitude of the oscillating mi- 

crocantilever changes accordingly. This subsequent change, 

which corresponds to the topography of the sample, is 

detected optically by the PSPD and forms a basis for 

imaging the sample topography. Usually, to maintain a 

constant tip-sample force interaction during lateral scan- 

ning of the sample surface, a feedback controller loop is 

exploited to regulate the first harmonic amplitude of the 

oscillating microcantilever by moving the sample verti- 

cally relative to the microcantilever. Most commonly, a 

piezoelectric scanner tube is employed to position the 

sample relative to the oscillating tip both in the lateral 

and vertical directions. 

The current limitations of AFMs are the length of time 

required to obtain a high quality image of samples and 

the inconvenience in adjusting the controller gains. To 
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Figure 2. Pictures of the experimental setup of the homemade tapping mode AFM. 
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Figure 3. The force and distance relations of the sample and tip. 

 

overcome these limitations, in recent years, several re- 

searchers have investigated these problems. Systems and 

control perspectives have significantly contributed to 

analyze the dynamics of AFMs as well as to develop 

novel imaging modes. Many control-based methods have 

led to considerable improvements in imaging samples at 

higher speeds [7-12]. In one such study, Battiston et al. 

applied a feedback mechanism to operate a combined 

AFM/scanning tunneling microscope (STM) [7]. This 

allows for simultaneous measuring of the resonance fre- 

quency shift of the cantilever-type spring and the mean 

tunneling current. Later, Hsu and Fu [8] integrated the 

feedback linearization and the singular perturbation tech- 

niques to design a robust output high-gain feedback con- 

troller for AFMs to perform sample-scanning at a high 

data sampling rate. This allows the cantilever tip to track 

the sample surface quickly and accurately. Further, for 

high bandwidth and robustness, in [9], Sebastian et al. 

addressed the AFM imaging problem in the framework 

of modern robust control, exploiting the stacked H-in- 

finity and Glover McFarlane controllers. They postulated 

that sample profiles can be accurately imaged without 

building explicit observers. Furthermore, the dynamical 

behavior of a tip-sample system that forms the basis for  
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the operation of AFMs is explored in [10]. In this study, 

the transfer function analysis gives a complete descrip- 

tion of AFM dynamics and the exact and analytical ex- 

pression for the multivariable infinite dimensional trans- 

fer function of a surface-coupled cantilever system is 

derived. Moreover, Wu et al. proposed a novel current 

cycle feedback iterative learning control (CCF-ILC) ap- 

proach to achieve high-speed AFM imaging [11]. In par- 

ticular, the CCF-ILC controller design methodology util- 

izes the recently-developed robust-inversion technique to 

minimize the model uncertainty effect on the feedfor- 

ward control, and removes the causality constraints ex- 

isting in other CCF-ILC approaches. Recently, Sebastian 

et al. reviewed the systems approach to the analysis of 

dynamic-mode AFMs in which the harmonic balance 

method is exploited to analyze the steady-state behavior 

of the oscillating tip in the presence of force variations 

[12]. Herein, a framework for identifying the tip-sample 

interaction force is suggested and a simple piecewise- 

linear tip-sample interaction model is identified using the 

mentioned harmonic balance method. 

The main purpose of this study is to propose a novel, 

alternative method to schedule the feedback dynamics of 

tapping mode AFMs, exploiting the PID-like Takagi- 

Sugeno fuzzy logic controller technique (TSFLC) [13-19] 

to improve tracking response both in speed and accuracy. 

Normally, these improvements will enhance imaging 

quality and enable imaging at higher speeds. The PID- 

like TSFLC is a knowledge-based system consisting of a 

fuzzifier, a fuzzy knowledge base, a fuzzy inference en- 

gine, and a defuzzifier mechanism. It is well known to 

have shorter rise and settling times than the PI-like FLC 

and thus allows system output to rapidly track desire tra- 

jectories with high accuracy [17]. Typically, in order to 

always achieve an optimal adjustment, the controller 

efforts are adapted using the fuzzy rules during operation. 

In this regard, the error and error differentiation signals 

are inputted to the fuzzy inference engine. Thus, the 

fuzzy output signal is generated from the fuzzy rule base 

and is used adaptively to schedule the controller’s efforts 

to regulate the tip-surface force interaction according to a 

prescribed force set-point property. In this way, this sys- 

tem achieves high-speed and accurate tracking of the 

sample topography. 

It should be noted that the rapid and accurate tracking 

response of the PID-like TSFLC allows us to observe 

high aspect ratio micro structures. Furthermore, the con- 

tinuous and excess on-line and manual gain-scheduling 

to improve the tracking response of the traditional PID 

tuning method can thus be avoided through the use of the 

proposed fuzzy control method. This is especially bene- 

ficial for AFM operators who are not experts in the field 

of control engineering. They could pay more attention to 

sample observation without real-time tuning the PID 

gains as needed in traditional AFMs. 

2. Mathematical Model of a Tapping Mode 
Atomic Force Microscope 

In tapping mode AFMs the microcantilever with a sharp 

tip, as seen in Figure 4, is initially driven into oscillation 

at a frequency df  slightly off resonance using a piezo- 

electric crystal element with an excitation amplitude .dA  

Normally, in this sequel the microcantilever motion stays 

almost perfectly sinusoidal. Herein, the equation charac- 

terizing the vertical displacement of the free microcanti- 

lever center with respect to the sample is 

     maxl t z t h t  ,           (1) 

where z t  denotes the dynamic amplitude equation of 

the oscillating tip and  h t  is the minimum tip-sample 

distance. Here, for ease of real-time observation and 

analysis, the continuous variations in the amplitude of the 

oscillating microcantilever are detected and then con- 

verted into their related root-mean-square (RMS) value 

utilizing a high precision and wideband RMS-to-DC con- 

verter [20]. In general, this converter provides an accu- 

rate RMS reading regardless of the type of waveforms 

being measured. The definition of the RMS value of a 

voltage signal  V t

 

 is expressed as 

 2

0

1
d , 0,

T

RMSV t V t t t
T

    

0T 

      (2) 

where  denotes the duration of the measurement. 

Equation (2) implies squaring the oscillating signal, tak- 

ing the average, and obtaining the square root. It is nota- 

ble that  V t  can be any instantaneous voltage function 

of time, but not necessarily periodic. In the following 

section, the tip dynamics will be analyzed both with and 

without tip-sample force interactions. Then, the equa- 

tions governing the tip dynamics at these two mentioned 

conditions will be established. 

2.1. Second-Order Model 

Generally, when the tip is far away from the sample, the 

tip is free and the tip-sample interaction force is minimal 

as seen in the Phase-1 of Figure 5. In others words, this 

implies    max ,l t z t 0.t   In this condition, 
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Figure 4. Schematic of an oscillating cantilever. 
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Figure 5. Tip-sample interactions in different tip-sample distances. 

 

according to Figure 5, considering the vertical motion of 

the free oscillating microcantilever with a sharp tip, the 

governing equation of the microcantilever motion with- 

out tip-sample force interaction is 

Note that A in Equations (6) and (7) denotes the actual 

deflection amplitude from the equilibrium of the end of 

the cantilever in the steady-state and   represents the 

phase lag between the driving signal  R t  and the mo- 

tion signal  z t  of the oscillating microcantilever. Ac- 

cording to Equations (7) and (8), A and 
        ,effm z t z t kz t R t   

0A  0,f

         (3) 
  are functions 

of the o
where  d  and d   cos 2π ,d dR t A f t  

,

 

denotes the sinusoidal driving signal of the piezoelectric 

bimorph at time  Moreover,  0.t  ,effm

f  and   while the mentioned dA  and df  

are fixed. Here, for ease of continuously detecting the tip 

amplitude variations, the  signal is converted into 

its corresponding RMS values. Hence, substituting Equa- 

tion (6) into Equation (2), the RMS value of the ampli- 

tude of the free oscillating microcantilever is 

  and  

are the effective mass, the damping coefficient, and the 

spring constant of the free microcantilever, respectively. 

Using Equation (3), the eigenfrequency and the quality 

factor of the free microcantilever are, respectively, 

k  z t

 
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2πo eff
 f k m ,              (4) 

and 

2π eff om f
Q




0t

.                (5) 

Solving Equation (3) for  by the method of un- 

determined coefficients, the particular solution of  z t

   cos 2πd dR t f t

 

subject to the forcing function  is 

given by 

A

    ,sin 2πA f tdz t             (6) 

where 

 2
2 2 2 2 22π 4 πeff o d d

2

, ,d
d o

A
A f f

f 
  

m f f 
    (7) 

 
1 , 0 π

2π
d

d o

eff o d

f
f f

m f f


 

 
      
  

2 2
tan , .  (8) 

2

0

1
d , 0 and 0

T

RMS
z t z t t t T

T
      ,  (9) 

  2

0

1
cos 2π d

T

dA f t t
T

    ,        (10) 

and is defined as 

  freeRMS
z t A

A

.                (11) 

Generally, in real applications, before bringing the tip 

to the sample surface that has to be imaged, one needs to 

decide a force set-point for sample-scanning which is 

relative to an amplitude set-point of the oscillating mi- 

crocantilever. This force-related amplitude set-point is 

expressed as set point .  In other words, the aim to main- 

tain a constant tip-sample force during the sample-scan- 

ning mode is equal to maintain a constant oscillation am- 

plitude of the microcantilever. Based on this mentioned 

set-point, the error and error differentiation signals are, 

respectively, defined as 
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  set pointe t A z  ( ) , 0,RMSt t          (12) 

and 

 
  set pointd

d
d

A z
e t

t

 
 , 0.

RMS
t

t 

A

A

A

 

   (13) 

Normally, the error signal in Equation (12) is used as a 

signal to estimate the termination of the approach mode. 

Further, it should be noted that the larger the set point  

the larger the oscillation tip amplitude and hence the 

smaller the tip-sample interaction force. On the contrary, 

a smaller set point  implies a smaller tip-sample distance 

and a larger tip-sample interaction force. The mentioned 

oscillation amplitude, set point  is kept constant during 

sample-scanning via a feedback loop. 

2.2. Tip-Sample Interactions 

In the approach mode, the oscillating microcantilever is 

moved closer to the sample, step by step, using the 

above-mentioned precision stepping motor. Once a re- 

duction of the RMS value of the cantilever deflection 

RMS
 is detected, the tip-sample force initiates and 

the influence of the sample on the cantilever becomes 

significant enough to be registered by the detection sys- 

tem. In this condition, the tip-sample force regime enters 

the Phase-2 of Figure 5. This also implies  

z t

   max z t   ,z t A 0.t 

0

l t  and freeRMS
  Suc- 

cessively, the microcantilever starts experiencing rela- 

tively weak attractive forces and on further approach to 

the sample, the interaction force becomes repulsive in 

nature. Conventionally, the approach mode is ended if 

either set pointRMS  
or 

 
is achieved as 

seen in the Phase-3 of Figure 5. 

 z t A   e t 

In the Phase-3 regime of Figure 5, the tip-sample in- 

teraction force alters the oscillation amplitude A , the 

phase lag ,  and the resonant frequency o  
of the os- 

cillating microcantilever. Thus, they usually are utilized 

as signals to infer the surface properties of the sample 

either in attractive or repulsive force interactions. It is 

notable that due to the interaction force between the os- 

cillating tip and the sample, the microcantilever with the 

laser beam collimated and focused on its rear side is de- 

flected and thereby changes the reflection angle of the 

laser beam spot on the four-quadrant PSPD. Thus, in this 

condition, the governing equation of the microcantilever 

motion is modified as  

f

   
 cos 2π ,d d

t kz t 
  

eff

ts

m z t z

F z t A



 

 

f t

 

  

         (14) 

where tsF z t

  
    

 is the nonlinear tip-sample interaction 

force [7], as shown in Figure 2, which demonstrates a 

long-range attractive force and a short-range repulsive 

force. Moreover, in many situations, it has highly non- 

linear characteristics and is a source of uncertainties in 

Equation (14). Further, its properties rely heavily on tip- 

sample distance, tip geometry, sample material properties, 

and operating environments. Thus, this nonlinear tip- 

sample interaction force is one of the key problems in 

achieving a stable and reliable scanning of the sample. In 

general, the common force model for the interaction of 

an intermolecular pair is known as Lennard-Jones poten- 

tial [11] which is 

    
1 2

2 8
.tsF z t

l t z t l t z t

 
  

 
   (15) 

This model shows both attractive and repulsive force 

terms between the tip and sample surface separated by 

distance  .l t  The repulsive force and the attractive 

force are defined as positive and negative, respectively, 

and 1  and
 2  in Equation (15) are the force coeffi- 

cients. 

Furthermore, once the approach mode is finished, the 

tip and the sample are operated at a prescribed force 

mechanism which is related to the above-mentioned am- 

plitude set-point 
 set point . Locally, in this short tip- 

sample distance, one can reasonably approximate the tip- 

sample force mechanism in Equation (15) and Figure 2 

as 

A

      1 ,ts z t k t z tF            (16) 

 k twhere   denotes the force constant and is relatively 

distance-dependent according to Equation (15). It should 

be noted that   0k t 
 

in the attractive force region and 

  0k t 
 

in the repulsive force region. Substituting 

Equation (16) into Equation (14), one obtains 

     
     cos 2π .

eff

d d

m z t z t kz t

k t z t A f t

 

 

 
          (17) 

Rearranging Equation (17), one has 

        
 cos 2π .

eff

d d

m z t z t k k t z t

A f t

   



 

 k k t

      (18) 

In this condition, 

 

 is the effective spring 

constant of the oscillating microcantilever with tip-sam- 

ple force interaction. According to Equation (18), the eigen- 

frequency is changed to 

  1
.

2πo efff t k k t m           (19) 

In addition, the equation describing the tip-sample dy- 

namics in the steady-state becomes  

      1 1sin 2π ,dz t A t f t t         (20) 

where 
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  

1
2 2 22π 4 π

d

eff o

A
A t

m f t
2

2 2 2

,

d df f 


  

  

  (21) 

and 

  1

1 tan
2π

d

eff o

f
t

m f
 



 

2 2
,

dt f

 

 

,

        (22) 

are the new oscillating amplitude and phase lag signals. 

According to Equations (21) and (22), since dA  d  
eff  and α are fixed, thus 1

,f

,m  A t  and  are time- 

varying functions of the resonant frequency 

 t
 of t

 which varies with respect to the effective spring constant 

 as

 

seen in Equation (19). Thus, one can easily 

observe that as long as the tip-sample force mechanism 

changes, the force constant 

 k k t

 k t  in Equations (17) and 

(18) and the eigenfrequency  of t  in Equation (19) 

will vary correspondingly. In addition, these changes also 

result in the variations of  1A t

 ,
 

and
 1  in Equa- 

tions (21) and (22).
 

As a consequence, a change in 

tip-sample force, 

 t

 1tsF z t


 gives rise to a shift in the 

resonant frequency of t  and a corresponding variation 

in the amplitude and phase lag signals of the oscillating 

microcantilever. 

While performing sample-scanning, the tip interacts 

with the sample periodically in the end of the negative 

cycle of the microcantilever oscillation. In this condition, 

variations in the tip-sample interaction force change the 

effective spring coefficient  and shift the re- 

sonant frequency 

 k k t
 of t

 

of the oscillating microcantile- 

ver. While the microcantilever with a sharp tip is initially 

driven at a fixed frequency d  below its resonance fre- 

quency, this shift of the resonant frequency yields in the 

reduction of the tip amplitude and the variation of the 

phase lag. In other words, 

f

 1A t  and 1  will vary 

with respect to the topography of the sample when the 

microcantilever with a sharp tip is interacting with the 

sample. As a consequence, when imaging, one possible 

method to infer the variations of the force gradient acting 

on the microcantilever end and to measure the topogra- 

phy of the sample is to dynamically detect the amplitude 

and phase lag changes of the oscillating microcantilever. 

 t

2.3. Feedback Control 

During sample-scanning, electric voltages are applied 

between the inner and outer diameter of a thin-walled 

piezo-tube. This tube is silvered both inside and outside 

and operates according to the transversal piezo effect. 

The inside electrode is grounded and the outside elec- 

trode is separated into four 90-degree segments, which 

are the +X, −X, +Y, and –Y, as seen in Figure 5. Since 

this piezo-tube has four 90-degree segments, it can posi- 

tion the sample, placed over the piezo-tube, in two lateral  

directions (along the X and Y axes) and one vertical 

direction (along the Z axis) to the sample surface. Typi- 

cally, the voltage signals subjecting to two opposite elec- 

trodes, for instance +X and −X, have the same mag- 

nitude but are out of phase. Hence, placing any applied 

voltages on opposing electrodes leads to the bending of 

one end of the piezo-tube if the other end is clamped. 

Accordingly, the flex in the X and Y directions moves 

the sample laterally. In general, when the sample trans- 

lates horizontally relative to the tip, any change in the 

height of the sample surface causes the tip-sample force 

  tsF z t

f 

 to change simultaneously. In the mean time, 

when the driving frequency of the microcantilever is near 

its mechanical resonance frequency o  shown in Equ- 

ation (19), the local force gradient shifts this resonance 

frequency. This shift in the resonance frequency causes 

the amplitude variation of the oscillating microcantilever. 

The vertical deflection of the micricantilever is sensed by 

a four-quadrant PSPD using the optical lever method. In 

this arrangement a small deflection of the microcan- 

tilever tilts the reflected laser beam and changes the po- 

sition of the laser beam spot on the PSPD. 

The vertical deflection of the microcantilever, which 

corresponds to a relative tip-sample force, is held con- 

stant as  z t A

 z t A

 z t A

set pointRMS   
while sample-scanning is 

being performed as seen in T1 of Figure 6. In other 

words, this deflection signal, set pointRMS   is ta- 

ken as a reference operation signal. Typically, if the de- 

flection signal increases to set pointRMS   
as seen in 

T3 of Figure 6, this implies the cantilever tip is farther 

from the sample than the previous point was. Conversely, 

since the deflection signal decreases to
   z t A

A

set pointRMS   as shown in T2 of Figure 6, this 

represents that the point of the microcantilever tip is 

closer to the sample than the previous point. Hence, in 

order to maintain the microcantilever at the constant os- 

cillation amplitude set point  and therefore to maintain a 

constant interaction force applied to the sample while 

performing sample-scanning, a feedback control system 

is necessarily to adjust the input voltage of the Z-axis of 

the piezoelectric tube scanner to schedule the vertical 

deflection of this scanner, either downward or upward. In 

other words, the goal of the probe positioning in the 

Z-axis is to maintain a constant amplitude set-point value, 

which corresponds to a constant normal force between 

the tip and the sample, during the sample-scanning proc- 

ess. Ideally, for any sample height and tip-sample force 

variations, the reaction of the feedback controller should 

be made instantaneously and exactly. 

While the tip-sample force is held constant by a feed- 

back controller during sample-scanning, the controller’s 

output signal that allows the probe to follow the contour 

of the surface corresponds to the height of the sample 

surface. Thus, usually, changes in the vertical Z-axis de- 
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Figure 6. The tip-sample relations while performing sample-scanning. 
 

the tracking accuracy and the image quality, and to pro- 

vide a more user-friendly interface of AFMs for those 

scientists who are not experts in the field of control en- 

gineering, an intelligent PID-like fuzzy controller is in- 

troduced in the following section. 

flection of the piezoelectric tube scanner are also taken as 

measures of sample topography. In other words, the im- 

age of the sample topography can be inferred and esti- 

mated by using the vertical Z-axis control signal or the 

amplitude deflection signal of the microcantilever. Ac- 

cordingly, to achieve good image quality of the sample 

surface and to prevent the tip from touching the sample, 

it is crucial to have a high speed and accuracy feedback 

control system to optimally schedule the Z-axis position 

of the piezoelectric tube scanner. This enables the tip 

amplitude to return to the set-point amplitude quickly 

and accurately and facilitates the tip to track the pre- 

scribed tip-sample interaction force. Furthermore, it 

should be noted that a good control system allows the 

oscillating tip to scan the sample with a much smaller 

amount of force which implies a larger tip-sample dis- 

tance. This reduced force also prohibits the probe from 

crashing into the sample during sample-scanning. Hence- 

forth, the rapid and accurate tracking response of the 

feedback control system with respect to any particular 

height changes in the topography facilitates high-speed 

sample-scanning. 

3. PID-Like Fuzzy Controller Design for 
Tapping Mode AFMs 

Traditionally, control systems are developed based on 

exact mathematical models in which the control system 

is described using one or more differential equations that 

define the system responses relative to its inputs. How- 

ever, in recent years, intellectual fuzzy control technique 

has become trend in the development of modern control 

technology [13-19]. Normally, it is based on empirical 

methods and is basically a methodical trial-and-error 

approach. It is very simple conceptually and the objective 

of fuzzy control is to implant the expert’s experience into 

controller designs by means of fuzzy logic rules. Gener- 

ally, the design process of fuzzy control algorithms con- 

sists of three parts which are the fuzzification, fuzzy in- 

ference, and defuzzification, as shown in Figure 7. The 

input fuzzification stage maps sensor signals or other 

inputs to appropriate membership functions and truth 

values. In other words, the input variables are mapped 

into their corresponding membership functions which 

convert crisp input values into corresponding fuzzy val- 

ues. Then, the fuzzy inference processing stage, shown in 

the decision-making unit of Figure 7, invokes each ap- 

propriate rule, generates a result for each, and combines 

the results of the rules. Finally, the output defuzzification 

stage is an interface which converts the combined results 

derived in the fuzzy inference stage back into a specific 

control output value. One of the advantages of fuzzy con- 

trol is that it is not necessary to know the exact mathe- 

matical model of the plant under consideration. Thus, it 

is more beneficial when the considered processes are too 

complex to be analyzed by conventional quantitative 

analysis techniques or when the available information of 

the system is interpreted qualitatively, inexactly, or con- 

tains structured and unstructured modeling uncertainty. 

In order to both improve the feedback dynamics and 

shorten the required time to obtain high quality images of 

samples, in the past years, several authors have used 

fixed control strategies to regulate the piezo-tube dy- 

namics under pre-specified tip-sample interaction force. 

However, currently, only PI and PID controllers are used 

in commercial AFMs. These controllers exhibit poor 

robustness for the considered system which contains a 

cantilever-tip system that has large degree of uncertainty. 

Moreover, the parameters of the mentioned controllers 

need to be tuned properly in accordance with the charac- 

teristics of the tip-sample system dynamics. However, it 

is tedious for AFM users to manually schedule the P, I, 

and D gains of the PID controller to improve both the 

transient and steady-state responses by exploiting poten- 

tiometers. On many occasions, the complex gain-tuning 

process extends the training time for new AFM users. 

Thus, in order to maintain robustness to accommodate 

the uncertainties in tip-sample subsystems, to increase  
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Figure 7. The basic configuration of a fuzzy logic controller. 

 

Furthermore, it shows advantages over traditional control 

techniques in transient response, steady-state response, 

and robustness. 

In this section, in order to use the controller efforts to 

improve the transient response and the steady-state re- 

sponse of the constant tip-sample force feedback control 

system of the considered AFMs which contain complex 

system dynamics in the tip-sample subsystem and to pro- 

vide a more user-friendly interface for sample-scanning, 

a PID-like fuzzy controller [21] is exploited in the fol- 

lowing. In other words, the purpose of this controller is 

to rapidly and accurately stabilize the AFM dynamics at 

a prescribed tip-sample interaction force for AFMs in the 

presence of height changes in topography during sam- 

ple-scanning. Accordingly, combining Figures 1 and 7 to 

solve Equation (15) and to achieve a constant tip-sample 

force control, we obtain a simplified PID-like fuzzy con- 

trol system block diagram for a tapping mode AFM as 

shown in Figure 8. As seen in Figure 8, the deflection of 

the tip amplitude is converted into its related RMS value 

using the aforementioned RMS-to-DC converter. The 

RMS value of the amplitude of the oscillating tip is 

compared with the deflection set-point set point .
 

The 

error and error differentiation signals are then fed into the 

fuzzy controller. This fuzzy control structure with a seri- 

ally connected PI device [21] simply connects the PD 

type and the PI type fuzzy controller together in parallel 

and creates a basic PID-like fuzzy controller. Note, 1K  

and 2K  are the scaling factors of the PD-like fuzzy 

controller, and 3K  and 4K  are the gain constants of 

the mentioned PI controller. Hence,
 
this PID-like fuzzy 

controller behaves like a PID controller with time-vary- 

ing gains. 

The design of the PID-like fuzzy controller contains 

two steps. First, a PD-like fuzzy controller is designed to 

improve the transient responses and then a PI controller 

is designed and cascaded with the PD-like fuzzy control- 

ler to improve the steady-state responses. In accordance 

with these two mentioned controllers, the PID-like fuzzy 

controller allows the constant tip-sample force feedback 

control system to have a fast rise time and a small over- 

shoot as well as a short settling time. 

In order to achieve the aforementioned controller, 

herein, the input variables of the PD-like fuzzy controller 

are defined as the cantilever deflection error signal  e t  

and the change of the cantilever deflection error signal 

 de t . Besides, the output of the PD-like fuzzy control- 

ler  U tPD  is fed into the mentioned PI controller to 

compensate the steady-state response. In addition, the PI 

controller output is fed into the power operational ampli- 

fiers to dynamically adjust the applied voltage of the 

Z-axis of the piezoelectric tube scanner to regulate the 

vertical position of the sample, thus achieving a constant 

tip-sample force interaction. Accordingly, the main pur- 

pose of the PID-like fuzzy controller is to maintain the 

constant oscillation amplitude of the resonating cantile- 

ver which is related to a constant tip-sample interaction 

force. 

In order to design the PD-like fuzzy controller, the 

membership functions of the fuzzy variables,  e t  and 

 de t , are defined as [−10, 10] as seen in Figures 9 and 

10. Also, the membership functions of the output vari- 

able  U t



PD  for defuzzification are shown in Figure 11. 

After the fuzzy input and output variables are ascertained, 

the relations between the membership functions and the 

language variables need to be defined. Here, the mem- 

bership functions LP, SP, ZE, SN, and LN represent large 

positive, small positive, approximately zero, small nega- 

tive, and large negative, respectively. The triangular 

membership function is exploited to conduct the fuzzifi- 

cation and defuzzification processes. Generally, this kind 

of membership function provides good time response. 

Note, in the fuzzy variables e t  de t and , the inputs 

of SP and SN are asymmetric triangle membership func- 

tions and the others are symmetric triangles. In addition, 

all the membership functions of the fuzzy output variable 

 U t

i

PD

The fuzzy controller is designed using a T-S model [13] 

and the symbolic description of each rule is given as: 

 are of symmetric triangle form.  

: If e(t) is Ai and de(t) is Bi, then UPD(t) is Ci, PDR
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Figure 8. A simplified PID-like fuzzy logic control system block diagram for a tapping mode AFM. 
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Figure 9. The membership function of e(t). 
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Figure 10. The membership function of de(t). 

Copyright © 2013 SciRes.                                                                                  ICA 



Y.-J. WANG 273

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Controller  Output U(t)

LN SN ZE SP

D
e
g

re
e
 o

f 
m

e
m

b
e
rs

h
ip

LP

 

Figure 11. The membership function of UPD(t). 

 
  

Dwhere  represents the i-th rule and A, B, and C 

are the linguistic values of 

251  i

 e t , , and  de t  U t

 t

PD , 

respectively. Accordingly, the rules of the PD-like fuzzy 

logic controller are shown in Table 1. Herein, a total of 

25 fuzzy rules are used in this case and the control input 

PD  is inferred based on this table. Practically, the 

intersection cell of the row and the column contains the 

linguistic value for the output of the fuzzy rule. Based on 

this, the output of the fuzzy controller is a fuzzy subset. 

U

Generally, before exploiting the fuzzy controller to 

control the considered object, it is necessarily for the 

object to be defuzzificated and then converted into an 

accurate quantity. Figure 12 shows the surface viewer of 

the fuzzy controller that results from the rules shown in 

Table 1. Actually, the surface in this figure is equivalent 

to a superposition of the two fuzzy input variables. Hence- 

forth, using Figures 8-12, the output of the PD-like fuzzy 

controller can be expressed as 

        , 0,de t t 1 1PD P DU t K e t K      (23) 

where 1


PK  and 1


DK  are the equivalent fuzzy output 

gains of the PD-like fuzzy controller. According to Fig- 

ure 8, the controller output of the PID-like fuzzy con- 

troller is to cascade the PD-like fuzzy controller with a PI 

controller and can be expressed as 

    4 3PD PDU t K U t K U   d , 0t t t 

  , 0,D t t 

.   (24) 

Substituting Equation (23) into Equation (24), Equa- 

tion (24) can be further rewritten as 

        dP IU t K e t K e t t K de    (25) 

where ,PK  ,IK  and K  are the equivalent gains of 

the output of the PID-like fuzzy controller. In general, 

these gains could be intelligently self-scheduled by using 

the aforementioned PD-like fuzzy controllers. On the 

other hand, the PID-like fuzzy controller [21] mentioned 

above also retains characteristics similar to the conven- 

tional PID controllers. Thus, the PID-like fuzzy control- 

ler combines the advantages of the PD-like fuzzy con- 

troller and the PI controller, and is exploited here to im- 

prove the performance of the constant force feedback 

control systems of the AFM dynamics which contain 

nonlinear and large time-varying characteristics in the 

tip-sample force relations. For more details about the 

PID-like fuzzy controller method, refer to [21]. In the 

following section, an illustrative example is provided to 

illustrate the new technique for designing PID-like fuzzy 

controllers to achieve the rapid and accurate tip-sample 

interaction force control of tapping mode AFMs. In addi- 

tion, some experimental studies will be carried out. 

4. Simulation and Experimental Results 

In this section, some simulations and experimental stud- 

ies will be given to show the effectiveness of the pro- 

posed method. To derive a mathematical model of the 

tip-deflection subsystem, a dynamic frequency response 

analyzer software is developed using a Borland C++ 

Builder V6.0 and a DT322 multifunction data acquisition 

board [22]. Figure 13 demonstrates the frequency re- 

sponse of the tip without tip-sample force interaction, 

where the input is  R t   . and the output is 
RMS

Based on the frequency response characteristic of the 

z t  

Copyright © 2013 SciRes.                                                                                  ICA 



Y.-J. WANG 274 

 
Table 1. Fuzzy rule table of the PD-like fuzzy logic controller. 
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Figure 12. The surface viewer of the fuzzy control rule. 
 

 

Figure 13. Measured frequency response curves in terms of amplitude and phase of the oscillation tip without tip-sample 

force interaction. The resonant frequency is 169.313 KHz. 
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tip-deflection subsystem, the approximate model ob- 

tained using the curve-fitting technique in terms of trans- 

fer is 

 
11

114.3717 10 2.8667 10
G s

s s




   2 4

1.5828 10
.    (26) 

It is remarked that the  G s  in Equation (26) will 

vary with respect to different force settings and different 

tip geometries manufactured by different companies. In 

other words, when a user changes tips manufactured by 

different company with different fabrication processes, 

the transfer function in Equation (26) changes accord- 

ingly. Further, the scanner and power amplifier dynamics, 

as seen in Figure 8, are modeled in a simplified form as 

 
5

3

10
1 ,

5 10s


 
G s              (27) 

which has a dc gain of 20. In addition, the scaling factors, 

K1 and K2, and the gain constants, K3 and K4, in Figure 8 

of the PID-like fuzzy controller are given as 0.485, 0.005, 

15, and 30, respectively. Note, the surface topography of 

the sample is represented as another input signal as seen 

in Figure 8. The simulations of the PID-like fuzzy con- 

trol system are carried out using the MATLAB and Si- 

mulink softwares for verification. In the meantime, for 

comparisons, the system under consideration will also be 

controlled with a conventional PID controller, where the 

PID controller gains are given as KP = 0.5, KI = 0.05, 

and KD = 0.1, respectively. 

Figure 14 shows the simulation results of the output 

response with respect to a unit step input which is used to 

simulate a height change in topography of the sample. It 

is observed that the settling times for the system consid- 

ered, subject to a step input, are approximately 0.2 ms 

and 3 ms for the system with a PID-like fuzzy controller 

and with a traditional PID controller, respectively. Hence, 

the time for the tip to return to a prescribed oscillating 

amplitude set-point for an AFM with a PID-like fuzzy 

feedback is faster than that of an AFM with a PID con- 

troller. Besides, in Figure 14 we can also observe that 

the overshoot for the considered system with a PID-like 

fuzzy controller is smaller than that of the system with a 

conventional PID controller. This reduction in overshoot 

significantly reduces the possibility for the tip to pene- 

trate from the attractive force region to the repulsive 

force region and prevents the tip from being damaged. In 

other words, this also implies that the piezoelectric tube 

can be rapidly moved upward and downward to return to 

the desired vertical position. Thus, the movement of the 

piezoelectric tube in the vertical direction is significantly 

related to the height of the sample at each point. It should 

be noted that the rapid transient response characteristic 

facilitates the operations of the AFM at a higher band- 

width and hence under a higher rate of data sampling. 

In addition, Figure 15 shows the controller output U(t) 

of the considered feedback system with a periodic square 
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Figure 14. Simulations results of the constant force feedback control system with a step input (solid line: PID-like fuzzy con- 

trol, dotted line: PID control). 
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Figure 15. Controller output U(t) of the constant force feedback system with a periodic square wave input (solid line: 

PID-like fuzzy control, dotted line: PID control). 

 

wave input at a frequency of 250 Hz. Since the control 

effort is applied to schedule the input voltage of the 

Z-axis of the piezoelectric tube scanner, it usually is con- 

sidered as a good measure of the sample surface profile. 

In accordance with this, the large overshoot of the tradi- 

tional PID control system induces a counterfeit image of 

the sample. On the contrary, because the overshoot of the 

PID-like fuzzy control system is smaller, the image qual- 

ity and accuracy of the sample can be significantly im- 

proved. Further, Figure 16 shows the actual and refer- 

ence displacement tip trajectories of the AFM system 

with a reference square wave input at a frequency of 250 

Hz. Here, this reference square wave input is used to 

simulate a periodic up-and-down structure in the surface 

profile of the sample. Note, the thin real line, the dotted 

line, and the heavy line represent the time responses of 

the reference square wave input, the traditional PID con- 

troller, and the proposed PID-like fuzzy controller, re- 

spectively. Clearly, we can observe that the movement of 

the Z-axis of the piezoelectric tube forces the tip to track 

the reference square wave input rapidly and with high 

accuracy by using the PID-like fuzzy controller. In other 

words, even though the topology of the surface is arbi- 

trary and is not known in advance, the cantilever tip can 

rapidly succeed in tracking task subjects with only very 

little error. 

For experimental verifications, the AFM system is ex- 

ploited to examine the surface structure of a highly or- 

dered pyrolytic graphite (HOPG) sample. In general, a 

HOPG sample contains many steps with different height 

in the surface profile. Every single HOPG step may have 

one or more atomic layers. For comparisons, the PID 

control technique and the PID-like fuzzy control tech- 

nique are used to maintain a constant tip-sample force 

interaction while scanning the HOPG sample. Note, the 

HOPG sample size is 10 um * 10 um and the image size 

is selected as 256 * 256 pixels. This implies this image 

has 256 horizontal scan lines and each line has 256 pixels. 

Figure 17(a) shows the scanning results by using the 

PID controller. Clearly, the overshoots in the tracking re- 

sponses of the constant force feedback control system 

generate counterfeit images in the step edges of the 

HOPG sample. On the contrary, as seen in Figure 17(b), 

the step edges of the HOPG sample can be resolved clear- 

ly without feedback overshoot by using the proposed 

PID-like fuzzy control technique. For more detail, Fig- 

ures 17(c) and (d) show the line profiles of the Figures 

17(a) and (b), respectively, at the scan line 180. Clearly, 

overshoots are obviously found in Figure 17(c) with a 

conventional PID controller. 

By exploiting the proposed PID-like fuzzy control 

technique, rapid transient response improvements in both 

the rise time and settling time can be achieved. Shorter 

settling time enables the AFM system to scan samples at 

a higher scanning rate and allows us to observe micro 

surface structures with high aspect ratio. Moreover, a 

small percent of overshoot allows the cantilever tip to 

return to the desired vertical position rapidly and safely 
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Figure 16. Simulations results of the considered system with a periodic square wave input at a frequency of 250 Hz. 

 

 

Figure 17. Experimental results comparisons (a) PID control; (b) PID-like fuzzy control; (c) PID control: at scan line 180; (d) 

PID-like fuzzy control: at scan line 180. 

 

and allows the tip operate continuously in the net-attrac- 

tive interaction force mode. This also prevents the tip 

from contacting with the sample and the risk of the tip 

modifying the sample surface can be minimized. 

Thus, the adaptability and flexibility of the PID-like 

fuzzy controller system allows the tip to trace over indi-  
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vidual atoms without damaging the surface. Most impor- 

tantly, the controller efforts can be regulated intelligently 

by exploiting the PID-like fuzzy control technique. Con- 

tinuous and tedious manual gain-scheduling efforts such 

as those in the traditional PID control AFM systems can 

thus be alleviated. Above all, the presented simulations 

and experimental analyses prove the effectiveness and 

validity of the proposed method. 

5. Conclusion 

AFM is widely exploited as a manipulation tool for nano 

particle positioning, pushing, indenting, cutting, nano- 

lithography, and sample observation. It is known that 

AFMs contain essential and uncertain nonlinear charac- 

teristics in the tip-sample interaction subsystem. To solve 

this, regulating the vertical vibration behavior of AFMs 

in the Z-axis direction and making the microcantilever 

tip to track sample topography with high speed and ac- 

curacy in nano-scale are very critical. In this paper, com- 

bing the PD-like fuzzy controller and the PI controller, a 

theoretical PID-like fuzzy controller has been realized for 

a tapping mode AFM system. According to this, the 

feedback control in the vertical Z-axis direction for track- 

ing the sample topography at a small and constant imag- 

ing force is done. Based on this controller, simulation 

studies and experimental verifications were carried out. 

According to these simulation and experimental results, 

the controller efforts to achieve constant tip-sample force 

interaction can be self-scheduled by using the PID-like 

fuzzy control technique. Thus, excess on-line gain-sche- 

duling to achieve desired transient and steady-state re- 

sponses in AFMs with a traditional PID controller can 

thus be significantly reduced. In addition, it is seen that 

there is a significant improvement in both the transient 

and steady-state response as compared with the tradi- 

tional AFM with a manual-scheduled PID controller. 

Based on this, during sample scanning, it is possible to 

rapidly and accurately regulate the controller efforts to 

maintain a constant tip-sample interaction force and 

avoid incidental damage to the tip and sample. Most im- 

portantly, the sample scanning speed and precision can 

be remarkably improved. In accordance with these men- 

tioned advantages, more complex and heterogeneous 

surfaces can be studied in the future with this proposed 

feedback control technique. Technologically interesting 

processes, such as the oxidation of semiconductors, ca- 

talytic reactions of metals, or the assembly of bimol- 

ecular can be studied more easily. 
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