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‘Constant in gain Lead in phase’ element -

Application in precision motion control
Niranjan Saikumar, Rahul Kumar Sinha, S. Hassan HosseinNia

Precision and Microsystems Engineering,

Faculty of Mechanical Engineering, TU Delft, The Netherlands

Abstract—This work presents a novel ‘Constant in gain Lead
in phase’ (CgLp) element using nonlinear reset technique. PID is
the industrial workhorse even to this day in high-tech precision
positioning applications. However, Bode’s gain phase relationship
and waterbed effect fundamentally limit performance of PID
and other linear controllers. This paper presents CgLp as a
controlled nonlinear element which can be introduced within the
framework of PID allowing for wide applicability and overcoming
linear control limitations. Design of CgLp with generalized first
order reset element (GFORE) and generalized second order reset
element (GSORE) (introduced in this work) is presented using
describing function analysis. A more detailed analysis of reset
elements in frequency domain compared to existing literature
is first carried out for this purpose. Finally, CgLp is integrated
with PID and tested on one of the DOFs of a planar precision
positioning stage. Performance improvement is shown in terms
of tracking, steady-state precision and bandwidth.

Index Terms—Reset control, Precision control, Motion control,
Mechatronics, Nonlinear control

I. INTRODUCTION

P ID continues to be popular in the industry due to its wide

applicability, simplicity and ease of design and imple-

mentation. PID is used in high-tech applications from wafer

scanners for production of integrated circuits and solar cells to

atomic force microscopes for high-resolution scanning. With

well-designed mechanisms and feed-forward techniques, high

precision, bandwidth and robustness are being achieved. PID

also lends itself to industry standard loop shaping technique for

designing control using frequency response function obtained

from the plant. However, the constantly growing demands on

precision and bandwidth are pushing PID to its limits. PID

being a linear controller suffers from fundamental limitations

of Bode’s gain phase relationship and waterbed effect [1],

[2]. It is self-evident that these can only be overcome using

nonlinear techniques. However, most nonlinear techniques in

literature presented for precision control [3]–[6] are more

complicated to design and/or implement and do not fit within

techniques like loop shaping which are popular and widely

used in the industry.

Reset control is a nonlinear technique which has gained

popularity over the years and has the advantage of fitting

within the framework of PID for improved performance. Reset

involves the resetting of a subset of controller states when a

reset condition is met. Reset was first introduced by J C Clegg

in [7] for integrators to improve performance. Advantage of

reset is seen in reduced phase lag compared to its linear

counterpart [8]. This work has been extended over the years

with other reset elements from First Order Reset Element

(FORE) [9], Generalized FORE (GFORE) [10] and finally

to Second Order Reset Element (SORE) [11] introduced and

used in control applications. Significant work can be found

in literature showing the advantages of reset control [12]–

[21]. However, in most of these cases, reset control has mainly

been used for it’s phase lag reduction advantage. Some works

exist where reset has been used for phase compensation.

In [22], Ying et al. use the reset element to overcome the

waterbed effect through mid frequency disturbance rejection

by lowering the sensitivity peak. In this case, reset is used

to achieve a narrowband phase compensator, hence improving

phase margin and performance. This compensator was further

modified for improved performance and phase compensation

in [23] allowing for the use of notch for disturbance rejection

without affecting stability margins. Reset control with opti-

mized resetting action for improved performance has also been

presented in [24]. Some preliminary work towards broadband

phase compensation can be found in [25], [26].

In this work, we present a novel reset element termed ‘Con-

stant in gain Lead in phase (CgLp)’ element which extends

the use of reset to be used for broadband phase compensation.

The element is designed using describing function analysis to

work well within existing framework of PID, thus achieving

industry compatibility. Improvement in precision and tracking

is shown on a precision positioning stage. In Section II, basics

of reset systems are provided along with the definitions of reset

elements present in literature. The novel GSORE element is

presented in Section III. Further, while reset elements have

mainly been analysed for their phase lag reduction in literature,

other properties of generalized reset elements in frequency

domain critical to CgLp design are discussed. Design and

analysis of CgLp are presented in Section IV followed by the

inclusion of CgLp within framework of PID for broadband

phase compensation. The application of this modified CgLp-

PID controller on a precision positioning stage is dealt with

in Section V to show improvement in performance. The

conclusions and future work are provided in Section VI.

II. PRELIMINARIES

A. Definition of Reset control

A general reset controller can be defined using the following

differential inclusions:

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. 
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ΣR =











ẋr(t) = Arxr(t) +Bre(t) if e(t) 6= 0

xr(t
+) = Aρxr(t) if e(t) = 0

u(t) = Crxr(t) +Dre(t)

(1)

where Ar, Br, Cr, Dr are state-space matrices of the base

linear system, Aρ is reset matrix determining the state after

reset values. e(t) is the error signal fed to the controller and

u(t) is the output of controller which is used as control input

for plant. While other forms of reset like reset band and fixed

instant reset exist in literature, the form provided above is the

most popular, widely applied and tested. The reset controller

of Eqn. 1 generally consists of both linear and nonlinear reset

part. The Aρ matrix is defined to reset only the appropriate

states of controller.

B. Describing function

The nonlinearity of reset elements creates the problem of

designing controllers in frequency domain especially using

industry popular loop shaping technique which uses Bode,

Nyquist and Nichols plots. In literature, sinusoidal input

describing function analysis has been used to analyse reset

elements in frequency domain. In fact, the phase lag reduction

advantage was seen by Clegg in 1958 using this technique.

Although describing function does not accurately capture all

the frequency domain aspects of reset, it is useful in providing

necessary information for design and analysis.

The describing function of generic reset systems as defined

by Eqn. 1 is provided in [10] and this is used to obtain under-

standing of the system in frequency domain. The sinusoidal

input describing function is obtained as

G(jω) = CT
r (jωI −Ar)

−1(I + jΘρ(ω))Br +Dr (2)

where

Θρ =
2

π
(I + e

πAr
ω )
( I −Aρ

I +Aρe
πAr
ω

)((Ar

ω

)2

+ I
)

−1

C. Stability of reset elements and systems

Stability conditions given in [27] can be used to check

closed-loop stability of reset control systems for SISO plants.

The following condition has to be satisfied for ensuring

quadratic stability:

Theorem 2.1: There exists a constant β ∈ ℜnr×1 and

positive definite matrix Pρ ∈ ℜnr×nr , such that the restricted

Lyapunov equation

P > 0, AT
clP + PAcl < 0 (3)

BT
0 P = C0 (4)

has a solution for P , where C0 and B0 are defined by

C0 =
[

βCp 0nr×nnr
Pρ

]

, B0 =





0np×nr

0nnr×nr

Inr



 (5)

Acl is the closed loop matrix A-matrix

Acl =

[

Ap BpCr

−BrCp Ar

]

(6)

in which (Ar, Br, Cr, Dr) are the state space matrices of the

controller defined by Eqn. 1 with nr being the number of states

being reset and nnr being the number of non-resetting states.

(Ap, Bp, Cp, Dp) are the state space matrices of the plant.

D. Reset elements

The reset part of controllers defined by Eqn. 1 have been

presented as different reset elements in literature.

1) Clegg Integrator (CI): Clegg or Reset integrator is the

first introduction of reset technique in literature [7]. The action

of resetting integrator output to zero when input crosses zero

results in favoured behaviour of reducing phase lag from

90◦ to 38.1◦. CI is the most extensively studied and applied

reset element in literature due to advantages seen in reduced

overshoot and increased phase margins.

The matrices of CI for Eqn. 1 are

Ar = 0, Br = 1, Cr = 1, Dr = 0, Aρ = 0

2) First Order Reset Element - FORE and its general-

ization: CI was extended to a first order element as FORE

by Horowitz et al. in [9]. FORE provides the advantage

of filter frequency placement unlike CI and has been used

for narrowband phase compensation in [22]. The matrices

of FORE for Eqn. 1 where the base linear filter has corner

frequency ωr are

Ar = −ωr, Br = ωr, Cr = 1, Dr = 0, Aρ = 0

FORE was generalized in [10] to obtain Generalized FORE

(GFORE) which provides the additional freedom of having

a non-zero resetting parameter Aρ and hence controlling the

level of reset. This is achieved by using an additional reset

parameter γ such that Aρ = γ, where γ = 1 results in a linear

filter. γ is used to influence the amount of nonlinearity and

hence phase lag. The influence of γ on phase lag and other

properties is studied in the next section.

3) Second Order Reset Element - SORE: SORE has been

recently developed by Hazelgar et. al. [11] opening new pos-

sibilities for reset controllers in the shape of notch and second

order low pass filters. SORE has the advantage of an additional

parameter, damping coefficient βr as seen in the base matrix

definitions below. This provides an extra degree of freedom in

the design of nonlinear resetting element. 2 identical FOREs in

series is a special case of SORE with βr = 1. The additional

parameters βr allows for achieving properties not possible by

combination of FOREs. The matrices of SORE as applicable

to Eqn. 1 are given as

Ar =

[

0 1
−ω2

r −2βrωr

]

, Br =

[

0
ω2
r

]

Cr =
[

1 0
]

, Dr =
[

0
]

where, ωr is the corner frequency of the filter; βr is the

damping coefficient
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III. FREQUENCY DOMAIN BEHAVIOUR OF RESET

ELEMENTS

A. Generalized SORE (GSORE) and generalization of reset

controller

Hazelgar et. al. introduced SORE in [11] where both states

are reset to zero when the reset condition is met. This can

be considered as traditional reset control system. Such a

system similar to FORE provides less flexibility of design and

overall design becomes dependent on the base linear system.

Hence, we present generalized SORE (GSORE) where Aρ ∈
R

2×2 can be an arbitrary resetting matrix. While such a system

provides greater freedom in design, 4 additional parameters

also add to the complexity of analysis during design. Hence

we limit this freedom to one parameter by defining Aρ similar

to the manner in GFORE as

Aρ = γI2×2

Broadly, reset controllers can be generalized such that

resetting matrix Aρ in Eqn. 1 is no longer a zero matrix as

originally conceived, but is of form

Aρ =









γ1 0 . . . . 0 0
0 γ2 . . . . 0 0
0 0 . . . . γnr 0
0 0 . . . . 0 Innr×nnr









where nr and nnr are number of resetting and non-resetting

states of overall controller respectively. Each resetting state has

its own factor γ determining its after reset value as a fraction of

its pre-reset value. It must be noted that while this generalized

form provides a large degree of freedom in design, this might

not be useful or convenient in all cases. This is specially true

with loop shaping technique which is generally carried out by

experienced engineers and not algorithms; and hence having

too many variables for tuning might impede design rather than

aid it.

B. Analysis of reset elements using describing function

Frequency domain behaviour analysis of reset elements

in literature has mainly focussed on phase lag reduction.

However, loop shaping requires a more comprehensive un-

derstanding of the behaviour. This knowledge is also essential

for design of CgLp presented in the next section. This analysis

is carried out using describing function method explained in

Sec II-B for the reset elements. Describing function based

frequency behaviour is obtained for GSORE for different

values of γ ∈ [−1, 1] and is shown in Fig. 1. There are three

important characteristics, two in gain and one in phase, which

needs to be noted. While the change in phase behaviour has

been studied greatly in literature, the effect of reset on gain is

not found in literature to the best of authors’ knowledge.

• Shift in corner frequency: From the figure, it can be seen

that for values of γ ∈ [0, 1], gain behaviour of reset

element is similar to that of its linear counterpart (γ = 1).

However, for values of γ < 0, while the slope of gain is

still −40 db/decade at high frequencies, there is a shift

in the corner frequency of the filter. While this is shown
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Fig. 1: Describing function based frequency response of

GSORE for different values of γ with ωr = 2π100 and βr = 1

here for GSORE, this is also true for filters of other orders

[28]. This shift is parametrized as fraction α where

α =
Corner frequency of reset element

Corner frequency of base linear element

The value of α as a function of γ is plotted in Fig. 2

for GFORE and GSORE (βr = 1). While the value of α
can be used to modify the base linear system to ensure

that the corner frequency of reset filter is at the desired

value, these α values are close to 1 for values of γ ≥ 0.

However, they increase in an almost exponential manner

as value of γ is reduced further. This limits the values of

γ for which GFORE and GSORE can be effectively used

in practice.

• Phase lag reduction: While the difference in gain is only

seen for lower values of γ, reduction in phase lag is seen

to be sensitive and is seen for all values of γ < 1. The

phase lag of GSORE for different values of γ is shown in

Fig. 3. Phase lag achieved with GFORE is also shown in

the same figure for comparison. It can be seen that large

phase lag reductions are seen for smaller values of γ with

phase lag being zero at γ = −1. However, due to the

corresponding change in corner frequency of GSORE as

seen in Fig. 1, use of these generalized elements becomes

limited.

• Change in damping factor: Another interesting charac-

teristic of GSORE is seen in change in the damping

factor of the designed linear filter and achieved GSORE

filter. This is shown in Fig. 4 for different values of βr,

where it can be seen that even for βr = 0 (resulting in a

Q factor = ∞ in the case of linear filter), the resonance

peak is less than 10 dB. Although change in gain plot

vs βr is negligible, there is change in phase plot with

changing βr values and this can be used advantageously

to obtain a sharp change in phase without the cost of a

resonance peak. This additional advantage is only seen

with GSORE due to presence of damping factor βr and

not in GFORE.

In the above frequency domain analysis of reset elements,

sinusoidal input describing function analysis has been used

to obtain the frequency response. While this pseudo-linear

technique is useful, it is only an approximation technique. To
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Fig. 2: Fraction α denoting extent of change in corner fre-

quency as a function of γ for GFORE and GSORE (βr = 1)
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Fig. 3: Reduction in phase lag with reset for both GSORE and

GFORE

verify the accuracy of this method, we obtained the frequency

response of GSORE directly by applying chirp and step

inputs and using the tfestimate function of MATLAB and

comparing the response to the one obtained from describing

function. The coherence Cxy which gives a measure of the

accuracy of obtained frequency response using tfestimate
is also obtained and plotted in Fig. 5. The plots show good

match between the describing function based results and those

obtained through estimation in MATLAB.

IV. CONSTANT-GAIN LEAD-PHASE (CGLP)

Reset is used in controls for its phase lag reduction. SORE

helps in this regard, with generalization further providing the
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Fig. 4: Change in damping value of GSORE with γ = 0
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Fig. 5: Gain, Phase and Coherence relation for different values

of γ. Dashed line represents the values from the describing

function. ωr = 2π200

freedom to choose the level of reset and hence the level of

nonlinearity introduced. However, low pass filters are generally

used in controls at high frequency for noise attenuation. While

these can be replaced by reset low pass filters in the form of

GFORE or GSORE advantageously, this use of reset results

only in phase lag reduction. Reset for phase lead which can

be used advantageously in region of bandwidth has not been

explored sufficiently in literature. The main works in this

regard as noted earlier are [22] and [23]. Here, we introduce

a new reset element termed Constant in gain Lead in phase

(CgLp) which uses GFORE (or GSORE) to provide broadband

phase compensation in the required range of frequencies.

A. Definition

Broadband phase compensation is achieved in CgLp by

using a reset lag filter R (GFORE or GSORE) in series with

a corresponding order linear lead filter L as given below.

R(s) =
1

✘
✘
✘

✘
✘

✘
✘
✘
✘
✘
✘
✘✘✿

γ

(s/ωrα)
2 + (2sβr/ωrα) + 1

or
1

✘
✘
✘

✘
✘✿

γ

s/ωrα + 1
(7)

and

L(s) =
(s/ωr)

2 + (2sβr/ωr) + 1

(s/ωf )2 + (2s/ωf ) + 1
or

s/ωr + 1

s/ωf + 1
(8)

correspondingly with ωf >> ωr, ωrα. The arrow indicates the

resetting nature of R. ωrα = ωr/α accounting for the shift in

corner frequency with reset as noted in Sec. II-B and can be

obtained from Fig. 2 for the chosen value of γ.

The reset state matrices of CgLp using GFORE are given

below as

Ar =

[

−ωrα 0
ωf −ωf

]

, Br =

[

ωrα

0

]
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Fig. 6: Broadband phase lead achieved with CgLp using

GSORE in range [ωr, ωf = 100ωr] with γ = 0 and βr = 1.

For γ = 0, value of α = 1.2 is obtained from Fig. 2 resulting

in ωrα = 0.8333ωr

Cr =

[

ωf

ωr

(

1−
ωf

ωr

)]

, Dr =
[

0
]

Aρ =

[

γ 0
0 1

]

and CgLp using GSORE are given below as

Ar =









0 1 0 0
−ω2

rα −2βrωrα 0 0
0 0 0 1
1 0 −ωf

2 −2ωf









, Br =









0
ω2
rα

0
0









Cr =

[

ωf
2

ωr
2

0

(

ωf
2 −

ωf
4

ωr
2

) (

2βrωf
2

ωr

−
2ωf

3

ωr
2

)]

Dr =
[

0
]

, Aρ =

[

γI 0
0 I

]

These matrices are used to describe CgLp element in the

general form of reset as in Eqn. 1.

In the conventional case, with both lag and lead filters

placed at the same frequency we have

Gain of linear lead filter − Gain of linear lag filter = 0 dB

Phase of linear lead filter − Phase of linear lag filter = 0◦

However, with reset applied to lag filter R, assuming that we

account for change in corner frequency with correct value of

α, the gains still cancel each other. But with phase,

Phase of linear lead filter − Phase of reset lag filter > 0◦

resulting in phase lead in range [ωr, ωf ] where the value of

phase lead obtained is dependent on choice of GFORE or

GSORE for design and also on value of γ providing freedom

of choice to the control engineer. Broadband phase lead

achieved through CgLp is shown in the frequency response

of an example CgLp element in Fig. 6.
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Fig. 7: Phase lead obtained through CgLp for different values

of γ

B. Comparison between CgLp using GSORE and GFORE

A first order lead filter can provide maximum of 90◦ phase

lead and a corresponding reset lag filter GFORE can have

a phase lag of 0◦ at γ = −1 as seen in Fig. 3, resulting

in a maximum phase compensation of 90◦. Similarly, with a

second order lead filter and GSORE, a phase lead of up to

180◦ can be achieved. However, as noted earlier, for values

of γ < 0, the value of α in Fig. 2 increases exponentially

and becomes very large. Hence we limit the value of γ ≥ 0
in this study. This correspondingly limits the maximum phase

compensation that can be achieved to 51.9◦ and 128.1◦ for

CgLp with GFORE and GSORE respectively. The phase lead

achieved at different values of γ is shown in Fig. 7.

Resetting parameter γ controls the deviation from linear

configuration and is associated with the level of nonlinearity.

Although we have considered describing function to analyse

frequency domain behaviour, the resetting action results in

higher order harmonics. And we can assume that higher the

level of nonlinearity, higher is the presence and negative effect

of harmonics on system performance. This leads to a trade-off

between phase compensation and effects of harmonics. So it

can be said that to minimize the effect of harmonics, GSORE

is the obvious choice in CgLp, since it minimizes |1− γ| for

the same phase lead compensation and reduces the inherent

trade-off. However, with GSORE, two states are being reset

and this could lead to more unwanted harmonics compared

to GFORE. These theories need to be investigated further in

future work to determine optimal design of CgLp.

C. CgLp in PID framework

The phase lead achieved over a large range of frequencies

with a corresponding 0 dB/dec slope line in gain allows

CgLp to overcome Bode’s gain phase relation which limits

linear controllers. While this broadband phase compensation of

CgLp can be used advantageously in different areas of control,

here we deal with integrating CgLp into framework of PID to

improve performance in terms of precision and tracking for

high-tech applications.
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The general structure of series PID as used in the industry

for loop shaping is given as:

PID = Kp

(

s+ ωi

s

)(

1 + s
ωd

1 + s
ωt

)(

1

1 + s
ωf

)

(9)

where ωi is the frequency at which integrator action is ter-

minated, ωd and ωt are the starting and taming frequencies

of differentiator action, and ωf is corner frequency of low

pass filter used to attenuate noise at high frequencies with

ωi < ωd < ωt < ωf . Additional notch, anti-notch or low

pass filters may also be included in design of PID depending

on system to be controlled. In this structure of PID, it is

easy to interpret the different functions of its parts. While

the integrator creates high gain at low frequencies improving

tracking, low pass filters reduces gain at high frequencies

improving noise attenuation and hence precision. Derivative

action adds phase in region of bandwidth and hence contributes

to stability and robustness.

To ensure that maximum phase achieved through derivative

action coincides with bandwidth (ωc), ωd and ωt are chosen

as ωd = ωc/a and ωt = aωc where a > 1. The value of scale

a determines the phase provided by derivative. [2] suggests

a = 3 as rule of thumb for design of PID for high-precision

mechatronic systems along with ωi = ωc/10 and ωf = 10ωc.

The value of scale a determines not only the phase margin

(PM) and hence stability/robustness of closed-loop system but

also the tracking and precision performances. This is because

derivative action adds gain at high frequencies and reduces

gain at low frequencies hence negatively affecting noise at-

tenuation and tracking respectively. Hence increasing value

of a to increase PM negatively affects the other performance

aspects and vice-versa. Bode’s gain-phase relation which de-

termines this behaviour is a limitation which affects all linear

controllers. This fundamental problem can be overcome by

integrating CgLp into framework of PID so that either a

fraction or complete phase to be added at bandwidth can be

obtained through CgLp.

Hence, 3 different extreme scenarios can be considered

where some of the performance criteria can be improved while

ensuring that the others are not compromised in the process.

These are listed out below.

• The values of ωd and ωt can be fixed to the values

obtained for linear PID and CgLp designed to add

required additional phase and hence improve stability

and robustness without affecting precision, tracking or

bandwidth.

• CgLp can be designed first to provide part of the phase

resulting in a smaller scale a for derivative action (to ob-

tain same PM) which should result in improved tracking

and precision without affecting stability and bandwidth.

• CgLp can be designed to provide part of the phase again

as in the second case, but instead of improving precision,

the closed loop bandwidth of the system can be increased

which thereby increases tracking as well without affecting

stability or precision.

While these are the extreme cases portrayed, intermediate

options where stability, robustness, tracking, precision and

CgLp PID System

Noise n

Reference r Output y

Feedforward

Cff(s)

+
+

+
+

+
-

Fig. 8: General block diagram of CgLp-PID controlled closed

loop system

bandwidth are simultaneously improved can also be explored.

Only the second option (same stability and bandwidth, im-

proved tracking and precision performance) and third option

(same stability and precision, improved bandwidth and track-

ing performance) are explored further in this paper and the rest

will have to be part of future work. The general block-diagram

of CgLp-PID can be visualized as shown in Fig. 8 which

also consists of a feedforward block for improved tracking

performance.

V. APPLICATION ON PRECISION MECHATRONIC SYSTEM

A. Design of CgLp-PID for performance comparison

The world of precision high-tech industry is pushing to-

wards faster, more precise and better tracking systems con-

stantly. Hence we explore the option of using CgLp-PID to

improve these performance aspects while maintaining stability

margins at same level. Since the controllers are designed for

performance comparison, we have established a baseline in

design. For design of PID part, ωi = ωc/10 and ωf = 10ωc

which are rules of thumb are used for all controllers designed.

For design of CgLp, we have chosen ωr = ωc as common.

CgLp designs using both GFORE and GSORE are considered

for improved performance in terms of tracking and precision

improvement, while only CgLp using GFORE is considered

and tested for improvement in bandwidth and tracking.

1) Tracking and precision improvement: In this part, we

look at CgLp-PID design for improvement in tracking and pre-

cision without compromising stability and bandwidth. These

are the steps followed in detail.

(i) For CgLp element, choose ωr = ωc, ωf = 10ωc.

(ii) Choose value of γ ∈ [0, 1] and correspondingly choose

value of α from Fig. 2 to calculate ωrα to account for

shifting of corner frequency.

(iii) Compute phase added by CgLp element at ωc using

describing function analysis as Phnl.

(iv) For PID, choose ωi = ωc/10, ωf = 10ωc.

(v) Additional phase that needs to be obtained through

derivative action within PID = Required PM − Phnl.

(vi) Choose scale a and obtain values of ωd and ωt such

that this additional phase is achieved to ensure overall

Required PM .

2) Bandwidth and tracking improvement: Here, closed-loop

bandwidth of system is increased using CgLp-PID design

which results in improvement in tracking. This improvement is

achieved without compromising precision and stability. While

the steps in the previous case are straightforward, this is
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Fig. 9: 3 DOF planar precision positioning ‘Spyder’ stage.

Voice coil actuators 1A, 1B and 1C control 3 masses (indicated

as 3) which are constrained by leaf flexures. The 3 masses

are connected to central mass (indicated by 2) through leaf

flexures. Linear encoders (indicated by 4) placed under masses

’3’ provide position feedback.

not true here with multiple iterations required. These are the

steps followed to design a separate set of controllers. Since

the controllers are designed to achieve same precision, it

is necessary to calculate the precision achieved with linear

PID. This can be obtained from the open-loop gain value at

a sufficiently high frequency ωhigh, where the behaviour is

asymptotic. Let this value be Gpre.

(a) Choose bandwidth ωc.

(b) Follow steps (i) - (vi) from Sec. V-A1.

(c) Calculate gain of open-loop at ωhigh to check if same

precision is achieved (with a margin of error). If achieved

precision is higher than Gpre, increase ωc and go back

to step (b). If lower, reduce ωc and go back to step (b).

B. Precision positioning stage

A precision planar positioning stage shown in Fig. 9 is

used for validation and performance analysis of developed

CgLp-PID controllers. 2 sets of controllers are designed for

both the cases considered above in terms of performance

improvement. For sake of simplicity, only one of the actuators

(1A) is considered and used for controlling position of mass

’3’ attached to same actuator resulting in a SISO system. All

designed controllers are implemented on FPGA of NI Myrio

system to achieve fast real-time control. LM388 linear power

amplifier is used to power the actuator and Mercury M2000

linear encoder is used to obtain position feedback with a

resolution of 100 nm.

In keeping with industry techniques, frequency response

data of system is obtained by applying a chirp signal and this is
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Fig. 10: Frequency response data of system as seen from

actuator ’1A’ to position of mass ’3’ attached to same actuator.

Frequency response of simplified estimated transfer function

is also plotted for comparison.

shown in Fig. 10. The system behaviour is similar to that of a

collocated double mass-spring-damper system with additional

dynamics at higher frequencies. The system can, however,

be simplified to a second-order system as given below. The

frequency response of this simplified second order system is

also given in Fig. 10 for comparison. This transfer function

is used for stability analysis using theorems presented in Sec.

II-C.

System G(s) =
1.429e8

175.9s2 + 7738s+ 1.361e6
(10)

Although we design the controllers using frequency re-

sponse data with the assumption that the system is linear, it

must be noted that the spring stiffness of the leaf flexures used

is not constant over the full stroke length and hence results in

variations in gain and resonance frequencies over the tested

stroke.

C. Designed controllers

Controllers are to be designed to achieve a bandwidth of

ωc = 100 Hz along with PM of 30◦. The phase of system

at ωc is −195◦ and hence a phase lead of 45◦ needs to be

achieved by all the designed controllers.

1) Controllers using Reset Integrator: Reset integrator has

been popularly used in literature for its phase lag reduction

advantage. As a benchmark for comparison, 6 controllers are

designed for different values of γ with the integrator part of

Eqn. 9, i.e., (1/s) being reset and the rest of the equation used

as the linear controller. The controllers are designed using

the same 6 steps mentioned for design of CgLp-PID with

the modification that the phase compensation comes from the

reduced phase lag of the resetting integrator and not from

CgLp. The value of scale a obtained in step (vi) for each

corresponding value of γ is provided in Table. I.
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Reset Integrator CgLp with GFORE CgLp with GSORE

γ scale a

1.0 2.9 2.9 2.9

0.8 2.35 2.63 2.27

0.6 1.89 2.43 1.81

0.4 1.52 2.27 1.46

0.2 1.23 2.12 1.24

0.0 1.01 1.98 1.09

TABLE I: Values of scale a used in derivative action corre-

sponding to value of γ used in the designed controllers. In

combination, they achieve phase lead of 45◦ at ωc = 100 Hz.
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Fig. 11: Frequency response of 2 controllers designed with

GFORE for improvement in precision and tracking obtained

through describing function analysis.

2) Controllers for increase in tracking and precision:

6 controllers are designed with CgLp using GFORE and 6

other controllers with CgLp using GSORE according to the

steps mentioned in Sec. V-A1 for values of γ ranging from 1

resulting in purely linear controller to 0 in steps of 0.2. The

value of scale a obtained in step (vi) for each corresponding

value of γ is provided in Table. I.

The frequency responses of designed controllers for the two

extreme cases of CgLp with GFORE, i.e., γ = 1 (resulting in

linear PID) and γ = 0 obtained through describing function

are shown in Fig. 11. It can be seen that for γ = 0, since

a large phase lead is achieved through CgLp element, phase

lead required from derivative action is less resulting in a much

smaller value of scale a as seen in Table. I. Further, this

value of scale a is even more reduced in the case of CgLp

with GSORE and also reset integrator. This results in reduced

gain at high frequencies and increased gain at low frequencies

and hence better precision and tracking respectively are to be

expected.

3) Controllers for increase in bandwidth and tracking: A

separate set of controllers are designed to obtain the same

precision. In this case, only controllers with CgLp using

GFORE are designed for comparison. For this, the controller

with γ = 1 which results in linear PID is designed at

ωc = 100 Hz as before. The theoretical precision that can

be achieved with this is estimated by obtaining the open-loop

gain at 10 KHz and this is found to be Gpre = −76.18 dB.

This along with PM = 30◦ is used as reference to design 5

other controllers for values of γ from 0.8 to 0 in intervals of

γ Bandwidth (Hz) scale a

1.0 100 2.9

0.8 107 2.73

0.6 113 2.60

0.4 118.5 2.47

0.2 123 2.35

0.0 127 2.27

TABLE II: Values of bandwidth ωc and scale a used in

derivative action corresponding to value of γ used in CgLp

with GFORE. In combination, they achieve PM of 30◦ and

same open-loop gain value at ωhigh = 10 KHz resulting in

same precision theoretically.
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Fig. 12: Frequency response of 2 controllers designed for

improved bandwidth and tracking obtained through describing

function analysis.

0.2 by following the steps given in Sec. V-A2. The bandwidth

and scale a values obtained for the designed controllers are

provided in Table. II. The frequency response of the two

extreme cases is obtained using describing function analysis

and shown in Fig. 12. The additional increase in tracking as

compared to the extreme cases of Fig. 11 can be seen due

to the increase in bandwidth. Further, it can also be noticed

that since phase of the system decreases at higher frequencies,

additional phase has to be generated to ensure required PM .

This is the reason that values of scale a in Table. I for CgLp

with GFORE and Table. II do not match each other.

D. Results

All designed controllers are discretized with sampling fre-

quency of 10 KHz and implemented on the practical setup.

Tracking and precision performance aspects are analysed. For

the purpose of tracking a fourth order prefiltered trajectory

is planned as explained in [29] for a triangular reference of

peak-to-peak amplitude of 1 mm. The inverse of estimated

system transfer function of Eq. 10 is made strictly proper

with a third order filter with corner frequency of 1000 Hz
(same corner frequency as that of LPF used in PID) and

is used as feedforward controller (Cff (s)). The RMS error

values for the controllers designed to check improvement

in tracking and precision are given in Table. III, while the

results for the second set of controllers designed for evaluating

improvement in bandwidth and tracking are provided in Table.

IV. For evaluating precision, although the sensor signal is
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noisy, additional noise is added at the point shown in Fig. 8

in the form of uniform gaussian noise of maximum amplitude

5000 nm. The reference is made zero for this and the output

precision analysed. The RMS and maximum error values

obtained are given in the same tables, Table. III and Table.

IV.

The performance indices values from Table. III clearly show

the improvement in both tracking and precision as expected

with CgLp compared to linear controller (γ = 1). In fact, in

all cases irrespective of value of γ < 1, tracking and precision

have improved significantly. However, it is also seen that while

these improvements were also expected for γ = 0 compared

to γ = 0.2, this is not the case. Performance improves as

γ is reduced from 1 and is best close to 0.4 for both cases

of CgLp controllers and then slightly deteriorates again. The

role of the higher order harmonics on performance can also

be noted from these results. From Table. I, it is seen that

the value of scale a is the same for CgLp with GFORE and

GSORE for γ = 0.4 and γ = 0.8 respectively. From describing

function analysis, this should result in matching tracking and

precision performance for both these controllers. However

from the results of Table. III, it is clear that CgLp with GSORE

outperforms the other. The role of higher order harmonics on

performance needs to studied for accurate analysis of these

reset elements.

In the case of reset integrator, the introduction of reset

results in large increase in tracking error. This is due to the na-

ture of resetting integrator action. Since, the integrator is reset

when the error crosses zero, limit cycles are seen in position

tracking. This is a well studied problem in literature. This

problem is generally solved using a feed-forward controller

in parallel which ensures that required steady state output is

maintained when the integrator is reset. In the experiments

conducted, although a feed-forward controller was used as

shown in Fig. 8, the feed-forward controller is designed using

the inverse of the estimated plant transfer function. Errors

in estimation coupled with non-linearity of the leaf flexure

stiffness result in an incorrect steady state output from the

feed-forward and hence limit cycles. These results further

confirm the advantage of using reset action through CgLp

for broadband phase compensation rather than the traditional

method of resetting the integrator.

From the results of Table. IV, while tracking performance

improvement is seen with use of CgLp, large improvement is

not seen from γ = 0.4 to γ = 0 with deterioration in tracking

performance seen. Interestingly, although the controllers were

designed to obtain similar precision performance in terms of

gain at high frequencies, improvement is also seen in precision.

Additionally, similar to the performance seen in Table. III, it

is noticed that while precision improves with use of CgLp, it

does not consistently improve as value of γ is lowered, but

instead increases again for lower values of γ.

In the analysis and design of CgLp for both cases, de-

scribing function has been used to obtain frequency response

behaviour. However, this is only an approximation method.

From the results obtained, it can be positively said that this

approximation is useful for design. However, from the seen

deterioration of results from γ = 0.4 to γ = 0 in first case and

also deviation of precision performance (although resulting in

improvement) in second case, it can be said that more accurate

methods than describing function are needed. Since resetting

action results in higher order harmonics, these need to be

considered to get a more accurate representation of system

in frequency domain.

VI. CONCLUSION AND FUTURE WORK

Industrial workhorse PID is limited by linear controller

limitations which can only be overcome by nonlinear con-

trollers. Reset is one such controller which lends itself to

standard loop shaping techniques through describing function

analysis. While most works in reset have focussed on reduced

phase lag of reset filters, this paper has presented a more

detailed analysis of reset elements in frequency domain. This

knowledge has been used to develop the novel ’Constant in

gain Lead in phase’ (CgLp) element which is capable of

providing broadband phase compensation which had not been

explored in literature.

CgLp-PID controller where the additional phase lead pro-

vided by CgLp can be used to improve performance metrics is

explained in detail. This concept is tested on one of the DOFs

of a precision planar positioning stage and the results validate

the improvement expected from theoretical analysis.

However, it is also noted that while all controllers designed

for first set with γ < 1 outperformed the linear controller

(γ = 1), performance slightly deteriorated at smaller val-

ues of γ. Similarly deviation in precision performance was

noted. While describing function analysis is accurate enough

for understanding and preliminary design analysis of CgLp,

alternative methods which take the higher order harmonics

introduced by reset into consideration are needed to better

explain results. Such a tool would also help in better design

of reset elements including CgLp.

Also since this paper presents preliminary performance

comparison and validation using CgLp, design using GFORE

and GSORE (with βr = 1) has been tested. Further, fre-

quencies ωr and ωf of CgLp are heuristically chosen using

rules of thumb. However considering the presence of higher

order harmonics, the choice of these values will play a

significant role in determining performance and this needs to

be investigated further. Additionally, if CgLp is designed using

GSORE, the value of βr can be used to shape the phase of

open loop further. In summary, tuning of CgLp needs to be

investigated further to obtain best possible performance.
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