
pg. 1

Constant Information Density in Zoomable Interfaces
Allison Woodruff, James Landay, Michael Stonebraker

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Berkeley, CA 94720 USA
email: {woodruff,landay,mike}@cs.berkeley.edu

Abstract
We introduce a system that helps users construct

interactive visualizations with constant information density.
This work is an extension of the DataSplash database
visualization environment.  DataSplash is a direct
manipulation system in which users can construct and
navigate visualizations.  Objects’ appearances change as
users zoom closer to or further away from the visualization.
Users specify graphically the point at which these changes
occur.

Our experience with DataSplash indicates that users
find it difficult to construct visualizations that display an
appropriate amount of detail.  In this paper, we introduce an
extension to DataSplash based on the Principle of Constant
Information Density.   This extension gives users feedback
about the density of visualizations as they create them.

We have performed an informal study of user
navigation in applications with and without constant
information density.  Our results suggest that users avoid
higher density displays in preference for lower density
displays and that users pan more frequently in lower
density displays.  This implies that designers should take
density into account when designing applications to avoid
unexpected user navigation patterns.

Keywords
Clutter, information density, interactive graphics,

information navigation, visual interfaces, visualization,
zoomable interfaces

1. Introduction
Multiple studies have shown that clutter in visual

representations of data can have negative effects ranging
from decreased user performance to diminished visual
appeal.  For example, Phillips and Noyes demonstrated that
reducing visual clutter improved map reading performance
[15].  Similarly, Springer showed that directory assistance
operators located targets more quickly on screens with less
information [16].  For a review of a number of other
studies, see [20].

A number of visualization systems have been proposed
that address the clutter problem by allowing users to
selectively view detail.  Early work includes fisheye views
and the Spatial Data Management System (SDMS) [6,9].
More recent paradigms include the Pad zoomable interface,
Magic Lenses, and DataSplash [14,3,1].

In this paper, we describe an extension to DataSplash
that gives users feedback about the information density of
applications as they are constructing them.  In this way, we
help users create interactive applications that display the
appropriate amount of detail at all times.

Previously, we introduced a direct-manipulation
interface for constructing zoomable database visualizations
[1].  This interface has been implemented on top of the
POSTGRES object-relational database management system
[17] and released as the DataSplash software.1  In
DataSplash, objects appear in a two-dimensional canvas.
Users view the canvas as if with a camera that moves in
three-dimensional space but always points straight down at
the canvas.  Users can pan across the canvas (changing the
x,y location of the camera).  Users can also zoom in and out
above the canvas (changing the z location, or elevation, of
the camera).  Because a given set of objects looks different
when seen from different elevations, a visualization that is
appealing at one elevation is likely to be unappealing at
another.  Therefore, DataSplash objects change
representation as users zoom closer to them.  For example,
when a user zooms closer to a circle representing a city, the
name of the city may appear next to the circle.  DataSplash
provides a unique mechanism, the layer manager [22,23],
which allows users to visually program the way objects
behave during zooming.  The resulting program is called an
application.  Screenshots and further detail appear in
Section 2.

Although users generally respond positively to the
layer manager, we observe that they have difficulty
constructing applications that display an appropriate level
of detail at all elevations.  To understand this, consider the
simplest possible application – one in which the
representation of the objects never changes (scaling aside)
as the user zooms in and out.  The display seen by the user
is a fixed-size viewport onto an underlying, or native,
coordinate space defined by the x,y values of the objects.
The objects never change their native x,y position, so object
density in the native space obviously never changes.
However, any change in elevation implies a change in the
area of the native space visible in the display, which
implies (in general) that the display contains a different
number of objects.  This in turn implies a change in display
object density.  As a result, the same visualization can be

                                                          
1 This software can be obtained at

http://datasplash.cs.berkeley.edu/.



pg. 2

appealing at one elevation and cluttered at a higher
elevation.  Unfortunately, users have difficulty
extrapolating from the view at one elevation to the view at
another; multiple object representations can make density
prediction even harder.  Therefore, poor visualization
quality may result if users do not visit many elevations
(checking for appropriate detail) whenever they modify
applications.  This is a tedious, highly iterative process.
Furthermore, users of current systems must visually and
subjectively judge “appropriate” density.

A guiding principle that addresses this issue can be
derived from the Principle of Constant Information
Density, drawn from the cartographic literature [5,18].
This principle states that the number of objects per display
unit should be constant.  A more general formulation posits
that the amount of information (as defined by metrics
discussed below) should remain constant as the user pans
and zooms.  To maintain constant information density,
either (1) objects should be shown at greater detail when
the user is closer to them, or (2) more objects should appear
as the user zooms into the canvas, or (3) both.

We define a well-formed application as one that
conforms to the Principle of Constant Information Density.
By definition, as the user pans and zooms in a well-formed
application, the number of objects visible in the display
should remain constant.  We present a system that
interactively guides users in the construction of well-
formed applications.

Indirectly related work has been done in a number of
areas.  Previous work has examined appropriate amounts of
information density for specific character displays, user
interface screens, or images (the equivalent of a fixed
elevation in our system).  Useful summaries appear in
[8,20].  Other work has considered the layout of objects at
multiple granularities [10].  However, the layout problem
detailed in this work has different objectives, requiring that
no objects overlap and that the minimal amount of space be
wasted.  Further, researchers in the area of map
generalization have studied automated generation of maps
of given scales, although with limited success [4].  The
Multi-scale Tree takes a different approach [5].  Given a set
of maps produced (manually or with a computer-assisted
tool) at different scales, it automatically produces different
views of the data as the user zooms. These views have a
constant number of active pixels.  However, the system is
not interactive, gives end users and developers no direct
feedback about the density of the different levels, and gives
end users and developers no direct control over the final
presentation.

We believe our system is the first environment that
interactively guides users in the construction of
applications with constant information density.  It has the
added advantages of being a direct manipulation interface
and of producing general-purpose applications, rather than
being limited to a specific domain such as cartography.

We have conducted an informal study of user response
to interactive visualizations with varying densities.  Our

results, though highly preliminary, suggest that users avoid
higher density elevations in preference for lower density
elevations and that users pan more frequently in displays
that have lower density.  We propose that application
designers use our DataSplash extensions to ensure constant
information density and thereby minimize unexpected user
navigation patterns.

In Section 2 we describe the DataSplash database
visualization environment.  In Section 3, we discuss how
we have modified this environment to provide visual
feedback about the density of applications.  In Section 4,
we propose a semi-automated mechanism for the
modification of layers.  In Section 5, we describe our pilot
study.  In Sections 6 and 7, we discuss future work and
conclude.

2. The DataSplash Environment
In this section, we describe the existing DataSplash

environment.  In DataSplash, all objects in a canvas are
organized into layers.  Each object is a member of exactly
one layer.  Each layer is associated with exactly one
database table.  Each row in the table is assigned an x,y
location in the canvas, i.e., the rows are scattered across the
canvas, giving an effect similar to a scatter plot.  The x,y
locations are derived from data values in the rows.  For
example, if the user has a table of United States cities with
latitude and longitude columns, x and y can be assigned to
the longitude and latitude values of each city to create a
display such as that seen in the left side of Figure 1.

At any point, the user can create an object in
DataSplash’s paint program interface and duplicate that
object for every row in the database table.  As a result of
this duplication operation, a copy of the object appears at
the x,y location of every row in the table. The effect is like
splashing paint across the canvas, coating every scattered
row.  The user may also associate display properties of
objects with columns in the table, e.g., height, width, color,
and rotation of each splash object can be derived from
values in the columns of its row.  Continuing our example
of a visualization of United States cities, the user may
specify that a circle is to be drawn at the x,y location of
each city.  The user may further specify that the radius of
each circle be proportional to the population of that city to
create a display such as that seen in the left side of Figure
2.

Users can pan and zoom above the resulting two-
dimensional canvas.  When they zoom, they change their
elevation above the canvas.  Elevation is expressed as a
percentage of a user-specified maximum elevation.
DataSplash allows users to control the range of elevations
at which each layer is rendered.  To this end, each layer
appears as a vertical bar in a layer manager. The top of the
layer bar represents the highest elevation at which objects
in the layer are rendered.  Similarly, the bottom of the layer
bar represents the lowest elevation at which objects in the
layer are rendered.  The user’s current elevation is shown
with a horizontal elevation bar.  Any layer bar that is
crossed by the horizontal elevation bar is considered to be



pg. 3

Figure 1. United States cities application seen from a
high elevation.  The layer manager appears in the white
rectangle in the upper-right.  The horizontal line (the
elevation bar) indicates that the user is at a high elevation.
The only layers active at this elevation are the city dots
layer and the state outlines layer.  These layers are
rendered in the display on the left.

Figure 2. United States cities application seen from a
low elevation.  As can be seen from the position of the
horizontal elevation bar in the layer manager above, the
user has zoomed to a lower elevation.  At this elevation,
the state outlines, city circles, and city text layers are
active.  Therefore, the objects associated with these layers
are all visible in the display on the left.

active and objects in the corresponding layer are rendered.
An icon of the type of object displayed by each layer
appears in the button below its layer bar.

Users can graphically resize layer bars in the layer
manager.  In addition to resizing layer bars, users can also
shift them up and down and add or delete new layer bars.
These operations are performed in the same way as in
traditional paint programs, e.g., to resize a layer bar, the
user drags a resize handle.  DataSplash has a number of
additional features, but we do not discuss them here for the
sake of brevity.

Figures 1 and 2 show the display and layer manager of
a sample application.  The application contains four layers.
The first layer shows a dot for each of a number of cities in
the United States.  It is based on a table, Cities, which
contains the latitude, longitude, name, and population of
each city.  The second layer shows outlines of each of the
United States.  It is based on a table, StateOutlines, which
contains the polygonal outlines of the states.  The third
layer shows a circle for each city in the United States.  The
radius of the circle is based on the population of that city.
The fourth layer shows a text label for each city in the
United States.  Both the third and fourth layers are based on
the Cities table.  In Figure 1, the user is at a high elevation.
Only the city dots and the state outlines are rendered at this
elevation.  In Figure 2, the user is at a lower elevation.  At
this elevation, the state outlines, city circles, and city text
layers are rendered.

As a final note on DataSplash functionality,
DataSplash provides portals (formerly referred to as
wormholes).   Portals are windows that open onto other
canvases.  DataSplash users can automatically generate a
portal for every row in a database table.  For example, the
user can easily specify that each city in a visualization of
the United States should have a portal that goes to a map of
that city.  A portal history mechanism allows users to go
backwards and forwards between canvases.

3. Density Feedback
Users of the original DataSplash layer manager find it

difficult to construct visualizations that have appropriate
detail at all elevations.  In this section, we describe how
users can express their preferences for application
information density, how the system lets them know when
these preferences are not being met, and how the user can
correct such conditions.  We conclude with a brief
discussion of some alternative schemes for density
measurement.

We begin by considering a distribution of data that is
uniformly distributed in the x and y dimensions.  We later
discuss skewed distributions.

3.1. Measuring Information Density
We have designed a software framework in which we

can explore generalizations of the Principle of Constant
Information Density.  Since we are unlikely to anticipate
the needs of all applications, we express all of our notions
of information density in terms of extension and
configuration interfaces.  We provide two such interfaces,
one to measure density and the other to bound it.

Information density metrics are expressed using
density functions.  Expert users may define new density
functions to supplement those already included in the
system.  (These functions are currently compile-time
extensions.)  Density functions return the associated density
metric value for a given layer at a given elevation.

The system maintains maximum and minimum bounds
on the cumulative density (i.e., the density aggregated
across all visible layers).  These bounds, which can be
modified by the expert user at run-time, define a range of
acceptable densities; therefore, rather than being literally
constant, the application’s information density at each
elevation is expected to fall within this range.  Defining
acceptable density in terms of a single constant value



pg. 4

Figure 3.  A visualization of selected companies from
the Fortune 500 and Global 500 lists.  The width of each
layer bar at a given elevation now represents the density of
the layer at that elevation.  The minimum and maximum
density bounds are set to 10 and 100 objects, respectively.
The colors of the tick marks on the left side of the layer
manager indicate the density values at given elevations.
Elevations 40%-60% are too dense, elevations 14%-38%
and 62%-100% have appropriate density, and elevations
0%-12% are too sparse.

would require a change to the displayed information for
each change in elevation.  Note that the system does not
enforce the density bounds.  Instead, it provides users
with feedback using the mechanisms described below.

3.2. Providing Visual Density Feedback
We have modified two of the display objects

contained in the layer manager so that their visual
properties give the user an indication of the application’s
information density.  Specifically, we have changed the
shape of the layer bars and the color of the layer manager
trim to provide such feedback.

First, the width of each layer bar now reflects the
density of the corresponding layer at the given elevation.
The original DataSplash layer manager does not associate
the layer bar width with any property of the layer.  We
have extended the layer manager so that the width of a
layer bar at a given elevation is exactly proportional to the
layer’s density at that same elevation.  The scale is
defined in terms of a maximum layer bar width, such that
a single layer bar of maximum width would have (by
itself) 100% of the maximum cumulative density.  (This
implies that the cumulative layer bar widths at a given
elevation in a well-formed application are no greater than
this maximum width.)

Exceptional conditions can occur because the system
does not enforce the cumulative density bounds.  We crop
layer bars at the maximum width to allow the bars to have
fixed horizontal spacing.  We also enforce a minimum
width to prevent layer bars from becoming invisible.

Second, the layer manager now relates the cumulative
density value at each elevation to the density bounds.
Notice the tick marks along the left side of the layer
manager display in Figure 3. There are three possible
conditions for a given elevation: it may lie within the
density bounds, it may fall below the minimum density
bound, or it may exceed the maximum density bound.
Each tick mark is assigned one of three colors to indicate
which condition pertains at a given elevation.

Figure 3 shows a visualization of selected companies
from Fortune Magazine's Fortune 500 and Global 500 lists.
These companies are displayed as circles in an interactive
scatterplot.  The x axis represents the percent profit (profit
dollars divided by revenue dollars) of the company during a
given year.  The y axis represents the number of employees
of the company.  The color of the circle represents the
profit of the company in dollars.

The density function in the current implementation
measures density by counting the number of objects visible
in the display at a given elevation.  This metric is
essentially that of Töpfer’s original Radix Law [18], from
which the Principle of Constant Information Density is
derived; as we have mentioned before, many other density
metrics are possible.2

                                                          
2 As an aside, this metric can be represented as follows in a
Space-Scale Diagram [7]: each object can be considered as
a point.  Each point defines a ray that passes through the

Figure 3 highlights some of the interesting properties
of the object density metric.  These properties illustrate the
point we raised in the introduction: density metrics are
difficult to extrapolate.  First, note that the sides of the
layer bars in Figure 3 have a rotated parabolic shape.  To
understand this, assume for the moment that the number of
objects per unit area in the native data space remains the
same.  The area of the native space visible in the display
increases quadratically as the elevation increases.
Consequently, the number of objects visible in the display,
and therefore the object density, increases quadratically as
well.  Second, observe that the rate of change in width is
more pronounced for the layer bar on the right.  Because
the right-hand layer bar contains more objects, its density
increases more quickly.  Our extensions graphically
illustrate these properties, eliminating the need for users to
mentally compute them.

3.3. User Interaction with the New Layer
Manager
Based on the feedback provided by the extensions

described above, users can modify applications as they are
constructing them.  As the layer manager is currently
implemented, there are two primary ways users can change
the density of their applications.  (In Section 4, we propose
an extension to the layer manager with which users can
prompt the system to create layers with specified densities.)
First, users can modify the layer manager, i.e., change the

                                                                                         
scales at which the object is visible.  As the viewport is
moved throughout the diagram, the number of rays that
penetrate the viewport should remain constant.



pg. 5

elevations at which layers are active.  Second, they can
change the contents of layers.

In the DataSplash environment, users may graphically
modify the layer manager in two ways.  They may adjust
the top or bottom elevation of a layer bar.  When this
happens, the shape is extended (according to the width
calculation function) as the user makes the adjustment.
Users may also graphically drag the entire layer bar up and
down to shift the elevation range at which the layer is
visible.  When this happens, the shape of the bar changes as
the user drags it.  Additionally, as the user modifies the bar
in either of the ways just described, the colors of the tick
marks change to reflect the modification.  Intuitively, the
user moves the bar around, trying to maximize the number
of green tick marks (by default our interface uses green to
indicate appropriate density).

Users can modify the contents of layers in two ways.
First, they may use the paint program interface to modify
the contents of a layer.  For example, to modify the number
of objects, they may add or delete objects.  If other density
metrics (e.g., the number of vertices) are considered, a
variety of other operations, such as changing the shapes or
colors of objects, affect the density values as well.

The second way users may modify the contents of a
layer is by using the visual select and join mechanisms
described in [13].  These operations affect the number of
rows in the table associated with the layer, thereby
affecting the number of objects rendered.  When the user
modifies the contents of the layer using either the paint
program interface or the visual select and join mechanisms,
the layer bars and tick marks are automatically updated to
reflect the change.

As an additional note, the extensions to the layer
manager not only provide the user with feedback about
specific applications, but teach the user about the properties
of density functions in general.  For example, a user who
has not thought explicitly about the relationship between
zooming and the number of visible objects receives an
intuitive introduction to the concept by using our
extensions to the DataSplash environment.

3.4. Density Metrics
As mentioned above, our system currently determines

density according to the number of objects.  There are a
number of other metrics that could be used, e.g., Tufte’s
data density [19].  For a thorough review see [12].  Because
the focus of our work is on maintaining constant
information density for a given metric rather than on
determining good density metrics, we have not yet
implemented any additional metrics.  However, the
interface is independent of the density metric and we have
designed the system such that expert users may register
their own density functions.

It is our belief that the interface will be particularly
useful in teaching application developers about the
properties of different density metrics under zooming
conditions.  For example, the ink metric (the number of live
pixels) is not elevation sensitive. To see this, imagine that

the canvas contains a chessboard and that black pixels are
live.  Since half the pixels are white and half are black,
50% of the pixels are live.  Now imagine zooming closer to
the chessboard.  The view changes considerably, but the
pixel distribution remains the same.  Therefore, ink is
probably not an appropriate density metric for zoomable
applications.

4. Semi-automated Adjustment of
Layer Density
In the previous section, we described how users can

manually modify their visualizations to have appropriate
density.  We have designed and are in the process of
implementing a mechanism with which users can semi-
automatically adjust the density of a given layer.  We first
describe the way the system creates layers of a desired
density.  We then  describe the interface to this mechanism.

4.1. Calculating Layers of a Desired Density
In this section, we describe modification functions that

can be applied to a layer to modify its density.  These
functions operate on one of two components of the layer,
the data rows in the database table and the graphical
representation of the data.  Functions come in pairs, one
that decreases density and one that increases density.

To modify the data, DataSplash can create views of the
table.  Basic views include simple restriction or aggregation
queries.  Because more complex views may be desirable,
DataSplash can also consider views created by expert users
as potential modifications to the database table.
Modification of the graphical representation is
straightforward.

Table 1 presents modification functions that decrease
visual density.  The table uses the following visualization
of cities in the United States as an example.  We suppose
the user has created a layer based on a table of cities that
includes fields for latitude, longitude, and population of
each city.  The graphical representation of the user-created
layer is a gray circle placed at the longitude, latitude
location of each city.  The circle is assigned a size based on
the population of the city.  This “original” representation
appears in the first row of the table.  The visible area is a
zoomed-in view of Baltimore and Washington, D.C., in the
United States.

The remainder of Table 1 contains seven modification
functions.  For each modification function, the table
presents an example of a specific modification, an example
of a density metric affected by that modification (in many
cases multiple metrics are affected; for brevity we only
identify one per modification function), and the
visualization resulting from the application of that
modification to the original visualization.

The first three modifications (select, aggregate, and
reclassify) apply to the data.  When the given select
operation is applied, only the largest cities remain visible.
When the given aggregate operation is applied, the system
aggregates cities by states.  Chesapeake Bay can be seen in
the resulting visualization.  Both select and aggregate



pg. 6

reduce the number of visible objects.  The given reclassify
operation classifies cities into two groups according to their
population; the resulting visualization has fewer sizes than
the original.

The remaining four operations (change shape, change
size, remove attribute association, and change color) are
modifications to the graphical representation of each object.
When the shapes are changed from circles to triangles, or
when the size of the circles is changed, the amount of ink is
decreased.  When the association between population and
circle size is removed, the data density is decreased.
Finally, changing the color may affect the total number of
colors in the visualization (in this example, this effect
would only occur when other layers are considered as
well).3

Observe that not every modification function
decreases/increases density for a given metric.  For
example, the size of an object can be decreased (to reduce
the amount of ink) or increased (to increase the amount of
ink).  However, this operation may have little or no effect
on the number of objects being displayed.  Also observe
that in some cases a modification function may in fact
decrease density according to one metric while increasing it
according to another metric.

As mentioned above, expert users may register new
density functions.  When they do so, they may also identify
modification functions that will affect the corresponding
metric. If they perform this task, DataSplash will be able to
suggest modifications based on the new density metric.

4.2. Interface
Recall that we have extended the layer manager so that

the width of a layer bar represents its density.  To invoke
the semi-automated adjustment of a layer, we propose that
users graphically adjust the width of that layer.  In
response, DataSplash will apply modification functions to
generate a number of transformations of that layer that
conform to the density correlated with the width specified
by the user.  DataSplash will present these options to the
user in a series of portals.  The user may enter each portal
and explore it.  When they find one they prefer, they may
select it as the new version of the layer.

5. Pilot Study
We performed a small, informal study of user

navigation behavior in applications with and without
constant information density.  To our knowledge there have
been no similar studies.  Therefore, our purpose in this

                                                          
3 The graphical representation manipulation functions
represent a fairly comprehensive set in the context of our
system.  Note Bertin’s observation that there are eight
variables that provide information in two-dimensional
graphics (x and y position, size, value, texture, color,
orientation, and shape) [2]. DataSplash does not modify
value, texture, or orientation as the former two do not
pertain in our system, and the latter is not clearly desirable.

study was to gain intuition about navigation patterns and to
identify interesting directions for more formal study.  Note
that our intent was not to examine density metrics and
appropriate values for such metrics, but rather to examine
user response to density variance according to a given
metric (number of objects).

Visualizations of Fortune 500 and Global 500 data
were used in the study.  The x and y axes represented profit
% and number of employees, respectively.  The data was
sampled to create data sets with varying numbers of
objects.  Based on these data sets, we created a number of
visualizations that had varying densities at different
elevations.

Original visualization

Select
Restrict to cities with population > n
Decreases number of objects

Aggregate
Aggregate cities by state
Decreases number of objects

Reclassify
Assign to population brackets
Decreases number of sizes

Change shape
Change circles to triangles
Decreases amount of ink

Change size
Scale circle radius
Decreases amount of ink

Remove attribute association
Disassociate size from population
Decreases data density

Change color
Change color from gray to black
Decreases number of colors

Table 1.  Modification functions to decrease density.
The original visualization in the top row of the table shows
cities in the United States.  The following rows show how
that visualization changes in response to the application of
various modification functions. Density metrics affected by
these modifications are also presented in the table; while a
specific density metric is listed as an example for each
modification function, others may pertain as well.



pg. 7

Users viewed these visualizations in a Java applet that
provided simple pan and zoom functionality. The applet
was embedded in a World-Wide Web page and recorded
data about each of the panning and zooming gestures made
by the participants.

Seventy-nine participants were recruited through
technical mailing lists and news groups.  Participants were
told to locate the company they thought had the highest
revenue growth (revenue growth is expressed as percent
change from the previous year).

In this limited experiment, our results suggest that
zooming may be influenced by information density.  When
selecting an elevation, users appeared to display a
preference for layers that had lower visual density.  Users
also appeared to pan more frequently in layers that had
lower visual density.  (As a side note, nearly all pan
operations were performed at either the highest or the
lowest possible elevations.)  Further details are presented in
[21].

There are a number of obvious limitations to this pilot
study.  Because we did not control the speed of the applet,
the applet was probably less responsive when displaying
layers with higher visual density, particularly in the case of
computers on which Java runs slowly.  As a result, users
may have avoided more dense layers because of the poor
responsiveness of these layers rather than because of a
visual preference.  Based on user comments, e.g., one of
the users of a visualization that had high density in all
layers said the applet was “nicely responsive,” we hope this
effect did not significantly affect user behavior.  However,
a more formal study should minimally ensure that all layers
within a visualization are equally responsive.

Further, while the World-Wide Web was a good way
to reach a broad spectrum of users, the participants and the
testing conditions were not controlled.  Finally, several
users stated that they found the task confusing.  Such
confusion could easily have influenced the results.

Nonetheless, further study seems warranted.  If such
research does bear out our observations, designers of
zoomable applications should take density measurements
into account when designing applications.  If they do not,
users may be influenced by the information density and
behave in ways not intended by the designer.

6. Future Work
We are actively pursuing a number of issues related to

this work, as detailed in this section.

6.1. Automated Adjustment of the Layer
Manager
In some cases, a poorly-formed application can be

converted to a well-formed application simply by adjusting
the elevation ranges of existing layers.  Calculating the
solution is, however, NP-Complete [21].  We are
examining pseudo-polynomial algorithms that will
automatically adjust the elevation ranges of layers to create
a well-formed application.

6.2. VIDA
In Section 4, we described a system that suggests

modifications to individual layers.  We have also designed
a system, VIDA (Visual Information Density Adjuster) that
suggests improvements to entire applications [21].  Users
can indicate that they wish VIDA to present them with a
number of well-formed transformations of their application.
VIDA intentionally generates disparate transformations so
that the user has a broad range of options from which to
choose.  These options are presented in a single
transformation canvas.  The user can browse this canvas
using the system-provided navigation facilities, i.e., the
user can pan, zoom, go through portals, and use the portal
history mechanism.  In this way, the user can explore the
options provided by the system.  An example based on a
visualization of the cities in the United States appears in
Figure 4.  As an additional feature, VIDA tries to satisfy
multiple density metrics simultaneously.  While related
work has considered automating the design of

Figure 4.  Automatically generated transformations of
a user-created visualization.  The user has requested
transformations of a visualization of cities in the United
States.  Each automatically generated transformation
appears in a portal. Note that as the user pans and zooms,
the contents of the portals will change dynamically, e.g.,
new layers may become visible.  The user may therefore
view the transformations simply by navigating in the
transformation canvas.  Alternatively, they may enter one
or more of the portals to explore it more fully.  The portals
contain disparate transformations.  The option in the
upper-right is particularly interesting. Circles in the
original application were associated with population.  In
this transformation, the association between circle radius
and population has been removed.  However, an
association between state color and population has been
added.



pg. 8

presentations, it has not explicitly used density as a guiding
criterion [11].

6.3. Clutter and Sparseness Resolution
The work presented here ensures that a uniform

amount of data is displayed as the user zooms in and out,
i.e., it ensures uniformity in the z dimension. However,
many applications contain data that are not distributed
uniformly in the x and y dimensions.  As a result, certain
regions of the canvas may be more dense or sparse than
others.

Above, we have assumed that the Principle of Constant
Information Density applies to the display. We now extend
it to apply to subdivisions of the display. We posit that each
equally-sized subdivision of the display should contain a
constant amount of information.  If the amount of
information in a subdivision exceeds some value, we assert
that it is cluttered and show that region as though from a
higher elevation.  In other words, for that subdivision of the
display, the layer bar(s) containing the clutter become
inactive.  Layer bars that show the region at less detail
become active instead.

Similarly, if the amount of information in some
subdivision is lower than some value, we assert that it is
sparse.  We can remedy this situation by applying
techniques analogous to those described for clutter
resolution.  Observe that the techniques we describe to
resolve clutter and sparseness assume that the application is
well-formed.

6.4. Movement Optimization
As users pan and zoom, they may require less detail on

the screen than when they are not moving.  The user
interface should allow the user to differentiate between
appropriate detail for movement versus still conditions.
For example, the user may require fewer objects while
panning and zooming than when viewing a still image.
This information can be used to reduce rendering time.

6.5. User Studies
Further studies of user response to applications with

constant information density are plainly warranted.
Additionally, although we are currently focusing on
preserving constant information density for a given metric
rather than comparing density metrics and studying
appropriate values for such metrics, such studies would
plainly be useful.

7. Conclusions
We have introduced the notion of well-formed

applications, ones that display an appropriate amount of
information (as defined by user-parameterized constraints)
at any given elevation.  The notion of well-formedness
applies to other visualization systems that support multiple
representations, e.g., Pad [14].  We have introduced a
system that helps users construct well-formed applications
in the DataSplash database visualization environment, both
by providing visual feedback on application density and by
suggesting modifications to user-constructed applications.

We have also conducted a pilot study that suggests that
information density affects user navigation and should
therefore be taken into account during the construction of
visualizations.

Acknowledgments
We are grateful to Paul Aoki for many helpful

discussions and suggestions.  We thank Joe Hellerstein and
Ray Larson for helpful comments on earlier versions of this
paper.  We would also like to acknowledge the DataSplash
implementors, Michael Chu, Mark Lin, Chris Olston, and
Mybrid Spalding.  We thank Vuk Ercegovac for developing
the Java browser for the pilot study.

References
1. Aiken, A., et al., “Tioga-2: A Direct Manipulation

Database Visualization Environment,” Proc. 12th Int’l
Conf. on Data Engineering, New Orleans, Louisiana,
Feb. 1996, pp. 208-217.

2. Bertin, J., Semiology of Graphics, translated by Berg, J.,
The University of Wisconsin Press, Madison, WI, 1983.

3. Bier, E., et al., “Toolglass and Magic Lenses: The See-
through Interface,” Proc. ACM SIGGRAPH 1993,
Anaheim, Calif., Aug. 1993, pp. 73-80.

4. Buttenfield, B.P. and McMaster, R.B. (eds.), Map
Generalization: Making Rules for Knowledge
Representation, Longman, London, 1991.

5. Frank, A., and Timpf, S., “Multiple Representations for
Cartographic Objects in a Multi-scale Tree - An
Intelligent Graphical Zoom,” Computers & Graphics,
Nov.-Dec. 1994, 18(6):823-829.

6. Furnas, G.W., “The FISHEYE View: A New Look at
Structured Files,” Bell Laboratories Tech. Report,
Murray Hill, New Jersey, 1981.

7. Furnas, G.W. and Bederson, B.B. “Space-scale
Diagrams: Understanding Multiscale Interfaces,” Proc.
ACM SIGCHI 1995, Denver, Colorado, May 1995, pp.
234-241.

8. Galitz, W.O., User-interface Screen Design, QED Pub.
Group, Boston, 1993.

9. Herot, C.F., “Spatial Management of Data,”  ACM
Trans. Database Sys., Dec. 1980, 5(4):493-513.

10. Ioannidis, Y., et al., “User-Oriented Visual Layout at
Multiple Granularities,” Proc. 3rd Int’l Workshop on
Advanced Visual Interfaces, Gubbio, Italy, May 1996,
pp. 184-193.

11.Mackinlay, J., “Automating the Design of Graphical
Presentations of Relational Information,” ACM
Transactions on Graphics, Apr. 1986, 5(2):110-141.

12.Nickerson, J.V.  Visual Programming. Ph.D.
Dissertation. New York Univ., New York, 1994.



pg. 9

13.Olston, C. and Stonebraker, M., “VIQING: Visual
Interactive QueryING,” submitted for publication, Sept.
1997.

14.Perlin, K.,  and Fox, D., “Pad: An Alternative Approach
to the Computer Interface,”  Proc. ACM SIGGRAPH
1993, Anaheim, Calif., Aug. 1993, pp. 57-64.

15.Phillips, R.J. and Noyes, L., “An Investigation of Visual
Clutter in the Topographic Base of a Geological Map,”
Cartographic J., Dec. 1982, 19(2):122-131.

16.Springer, C., “Retrieval of Information from Complex
Alphanumeric Displays: Screen Formatting Variables’
Effects on Target Identification Time,” Cognitive
Engineering in the Design of Human-Computer
Interaction and Expert Sys. (Proc. 2nd Int’l Conf. on
Human-Computer Interaction, Honolulu, Hawaii, Aug.
1987, Vol. II), pp. 375-382, G. Salvendy (ed.), Elsevier,
Amsterdam, 1987.

17.Stonebraker, M. and Kemnitz, G., “The POSTGRES
Next-generation Database Management System,”
Communications of the ACM, Oct. 1991, 4(10):78-92.

18.Töpfer, F., and Pillewizer, W., “The Principles of
Selection, A Means of Cartographic Generalization,”
Cartographic J., 1966, 3(1):10-16.

19.Tufte, E.R.  The Visual Display of Quantitative
Information.  Graphics Press, Cheshire, Conn., 1983.

20.Tullis, T.S., “Screen design,” Handbook of Human-
Computer Interaction, M. Helander (ed.), Elsevier
Science Publishers B.V., Amsterdam, 1988.

21.Woodruff, A., and Stonebraker, M., “VIDA: Visual
Information Density Adjuster,” Tech. Report CSD-97-
968, Univ. of California, Berkeley, Calif., Sept. 1997.

22.Woodruff, A., et al., “Zooming and Tunneling in Tioga:
Supporting Navigation in Multidimensional Space,”
Proc. IEEE Symp. on Visual Languages, St. Louis,
Missouri, Oct. 1994, pp. 191-193.

23.Woodruff, A., et al., “Navigation and Coordination
Primitives for Multidimensional Browsers”, Visual
Database Systems 3: Visual Information Management
(Proc. 3rd IFIP 2.6 Working Conference on Visual
Database Systems, Lausanne, Switzerland, March
1995), pp. 360-371, S. Spaccapietra and R. Jain (Eds.),
Chapman & Hall, 1995.


