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Abstract. Here, we compute the mean curvature of the geodesic sphere at any
point in some symmetric spaces and determine the lower bound of the mean curvature
of a closed hypersurface of constant mean curvature in it. With the Hessian Comparison
Theorem, we also show that there is a lower bound for the mean curvature of any closed
hypersurface of constant mean curvature in a manifold with a pole satisfying a curvature
condition.

1. Introduction. In this article, we study closed hypersurfaces of constant mean
curvature in noncompact symmetric spaces or, more generally, the product of such
spaces with a Euclidean space. These closed hypersurfaces of constant mean curvature
are called soap bubbles in [HH89] and we refer the readers to this paper as well as
[Kap90], [Kap91] and the references there for a discussion of the historical as well as
mathematical background of these hypersurfaces. Our main theorem in this direction
is the determination of a lower bound of the mean curvature of these hypersurfaces
in terms of Λ(M), defined as follows. Let M be such a space and let p be any point in
M. For v e TpM, define a symmetric linear map Kv: !ΓpM—• TpM by

Kv(X) = R(X,v)v, for XeTpM.

We let

Λ(M) = m3iX< X Cl(υ)' veTp(M) and \\υ\\ = \

where {c^v)2,..., cn(v)2} are all the eigenvalues of Kv. Throughout this paper, we assume
that all the ct 's are nonnegative without loss of generality. This lower bound should be
compared with an earlier result in the same direction in [Hsi92]. While Hsiang's result
is in terms of roots, we shall show that the bound we obtain here is at least as big as
that of [Hsi92]; whether or not they are equal is unclear at this point.

With the Hessian Comparison Theorem, we also prove that there is a lower bound
for the mean curvature of any closed hypersurface of constant mean curvature in a
manifold with a pole when its radial curvature is < — c2 for some nonzero constant c.
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2. Constant mean curvature hypersurfaces in noncompact symmetric spaces.

2.1. Preliminary. We begin with some definitions.

DEFINITION 2.1. Let M be an π-dimensional Riemannian manifold and p be a

point in M. If expp is a diίfeomorphism in a neighborhood V of the origin in TpM, and

S={Xe TpM: \\X\\ = r} is contained in V, then exppS is called the geodesic sphere of

radius r around p and is denoted by Sp(r).

DEFINITION 2.2. Let < , > be a Riemannian metric on M and V be the Levi-Civita

connection of M. Let N be a hypersurface in M, let xeN, and let (7yV)x denote the

orthogonal complement of TXN in TXM. Choose a unit vector v in (TXN)L. Then the

symmetric operator Sx: TXN-^ TXN given by

<Sx(X),Y) = <S7xY,v} for any X, Ye TXN

is called the second fundamental form of N at x with respect to v. The mean curvature

of TV at x is the trace of Sx, denoted by h(N)(x). In case N has a constant mean curvature,

we will omit x.

By convention, we will always choose a unit vector v in (T^)1 so that the mean

curvature is positive.

Now we will prove a useful lemma.

LEMMA 2.1. Let M be an n-dimensional Riemannian manifold and fix p e M. Suppose

Sp(r) is the geodesic sphere of radius r around p for some r. For x e Sp(r), let y be the

normal geodesic joining p and x and {el9 . . . , en_1} be an orthonormal basis for Tx(Sp(r)).

Consider the Jacobi fields {Wu...9Wn^1} such that H^(0) = 0 and Wi(r) = ei for

i= 1, . . . ,«— 1. Then the mean curvature of Sp(r) at x is equal to Y^Zl O^i(r\ ei)

PROOF. Let p be the distance function relative to p and let v= — gradp. Then v

is the inward unit normal vector field to Sp(r) and Sx denotes the second fundamental

form of Sp(r) at x with respect to v. Let {el9..., en_x} be any orthonormal vectors in

Tx(Sp(ή). Now

h(sp(r))(x)=ττsx=
nΣ ( s x ( e i ) , e i y = Σ <yeiehvy=-nΣ < v e i v , β i y .

i = 1 i = 1 i = 1

For fixed /, consider the variation of γ:

Γ:[0,r]x[-c,c]-*M

such that
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• Γr(s) = Γ(r,s)eSp(r)
• Γ(ί, 0) = y(ί) and for fixed s, Γ(t, s) is a normal geodesic joining p to Γ(r, s)

Let T and V be the tangent vector fields on [0, r] x [ — c, c] corresponding to its first
and second variables. We will identify the vectors with their images under Γ. Note that
- Γis equal to v at Γr(s) and Wt{t) is equal to the restriction of V to Γ(ί, 0) = y(ί). Now
we have

D

2.2. Theorems. Let p be any point in M. For veTpM, define a linear map

Kv: TpM^TpM by

/ς(JT) = Λpr, φ , for Λf e TpM.

Note that Â y is symmetric and all the eigenvalues are real. Furthermore, they are all
nonnegative if M has nonpositive sectional curvature.

PROPOSITION 2.2. Let M be an n-dimensίonal symmetric space of noncompact type
or the product of such a space with a Euclidean space and peM. Let v be any unit vector
in TpM. If {c\, . . . , cf} are all the nonzero eigenvalues of Kv, then the mean curvature of
Sp(r) at expprv is ^ ί = 1 c t c o t h c { r + (n — t— X)\r which is greater than £ | = 1 ci for any r > 0 .

PROOF. Let γ(t) = expptv and x = expprv. We will use Lemma 2.1 and so we need

to find the Jacobi fields {Wl9..., Wn_^ along y such that ^ ( 0 ) = 0 for /= 1, ...,n- 1

and {W^r), . . ., Wn-X(r)} are orthonormal in TxSp(r).
Now choose an orthonormal basis [eu . . . , en} of TpM, consisting of eigenvectors

of Kv, that is,

κv(ei) = c^ei, for i=l,...,n

and extend the et's to vector fields {Eu . . . , En} along γ by parallel transport. For y(t),
0<t<r, define a linear map Kj(t): Tγ(t)M^>Tγ(t)M by

Km(X) = B(X,γ(tWt), for XeTγ(t)M.

Consider K^E^t)), for all 0<t<r. We have

since VR = O and Vy (ί)y(0 = Vy (f)2sί(0==0. This implies that K^E^t)) is a parallel trans-
port along y(t) of K^(r)(Ei(r)) = Kv(ei) = cfei. By the uniqueness of parallel transport,

Note that cf does not depend on t. For simplicity, we may assume En = y(t).
Now we are ready to construct the Jacobi fields Wt along γ such that
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and Wi(r) = E^r), for 1 < i < n - 1.

If Wi(t) = Yj

n

j=oa\(t)Ej(t), the coefficients α/(/)'s should satisfy the Jacobi equation

and the initial conditions: for all 1 <z<«— 1 and 1 <j<n.

Φ)= Σ t), Ek{φa\{t)= -

= - " Σ <cJEj(t), Ek(φa\{t)= -cjφ),

and

Therefore we have

i.e.,

Furthermore,

and so

α/(0) = 0 , and a\{r) = δ{.

Ί/r if Ci = O

sinh ct //sinh ct r if ct > 0 ,

if cf = 0

t (sinh c^/sinh c^E^t) if ct > 0 .

Cf(cosh ctt/sinh c^E^t) if c, > 0 ,

if Ci = O

if c £ > 0 ,

which is monotone decreasing to ct as r tends to oo. Recall that by assumption, cf =

if and only if 1 <ί<t.

By Lemma 2.1, we have

h{Sp{r)){x)=Σ <Wi{r\ W^ήy^Σ Φ)
i = 1 i = 1

ί r

= X qcothc^r+ («-/— l)/r> ^ q .

D

Now we can prove the main theorem.
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THEOREM 2.3. Let M be an n-dimensίonal symmetric space of noncompact type or
the product of such a space with a Euclidean space and p e M. Let

Φ)- vεTp(M) and \\v\\ =

where {c^v)2, . . . , cn(v)2} are all the eigenvalues of Kv. Then the mean curvature of any
closed hypersurface of constant mean curvature in M is greater than Λ(M).

PROOF. First we choose v0 e TpM such that || v01| = 1 and £ " = t Ci(v0) = Λ(M). Then
for any ε > 0, there exists a neighborhood N of v0 in a unit ball in TpM such that

Σ φ)>Λ(M)-ε for veN.
i=l

Let I1 be a closed hypersurface of constant mean curvature h in M and O be its
center of gravity. We move Σ by transvection which maps O to p and then push it by
the transvection Tt along expptv0 until Tt0(Σ) is contained in {exppsv\ veN and s>0}
for some t0. Now choose r such that TtQ(Σ) is inside Sp(r) and touches it, say, at exppsV
for some s'>0 and some v'eN. Clearly, the mean curvature h{Σ) of Σ must be greater
than or equal to the mean curvature h(Sp(r))(expps

fv') of Sp(r) at exppsV.
On the other hand, by Proposition 2.2, we have

h(Sp(r))(expps'v')> Σ Φ'),

which is >Λ(M) — ε since v'eN. Therefore we get h(Σ)>λ(M) since ε is arbitrary. •

REMARK. If λM has a metric multiplied by a constant λ, then

Λ(λM) = —Λ(M).
A

REMARK. This result should be compared with a similar one in [Hsi92], where
the lower bound of the mean curvature is expressed in terms of b(M) to be defined
below. We shall prove that our lower bound is at least as big as b(M); whether or not
they are equal is unclear at the moment except for an M with rank <2.

REMARK. Let G = I0(M) be the connected component of the isometry group I(M)
that contains the identity and K=Gp = {geG:g(p) = p} and g and f be the Lie algebras
of G and K, respectively. And let θp be the involution of g. We have g = I©m as the
decomposition of g into eigenspaces of θp: g-»g. Then the map p: G^M given by
p(g) = g(p) induces the isomorphism dp: m^TpM. Here we have useful facts:

Fact 1. Fix a maximal abelian subalgebra α in m and let α be a real linear function
on α. Then α is the restriction of a root of g if and only if there exists a vector
in m such that
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(ad H)2X= OL{H)2X for all He α .

(See [Hel78, ch. VII (2)].)

Fact 2. The curvature tensor of M at p is given by

R(x,

for all X, Y, Z e m .

(See [Hel78, ch. IV (4)].)

Note that *„(*) = R(X, v)v = [[X, ύ], v] = [v, [υ, XJ]= (ad υ)2X. With the identifica-

tion dp: m-*TpM, the above two facts imply that

n

Σ ci(v)= Σ IΦ)I f o r vea and \\v\\ = l ,
ί = l αeJ(M)

where zl(M) is the restricted root system of g with respect to α. Therefore, letting

b(M) = max\ Σ I α(i ) | : i;e α and ||t?|| = 1
lcxeA(M)

we have Λ(M)>b(M).

REMARK. This b(M) is not dependent on the choice of the maximal abelian

subspace α in m. Indeed, let α' be the other maximal abelian subspace in m. We choose

some keK such that Adkα' = α. By the above fact, if λ is the restricted root of q with

respect to α, then the linear function 2' on Q' defined by

λ'(AdkH) =

is also the restricted root of g with respect to α'. From this, we have

Σ \Φ)\= Σ |α'(Adfci7)|,
αeΔ(M) oc'eA'(M)

where Δ(M) and Δ\M) are the restricted root systems of g with respect to α and α',

respectively. Therefore, if the rank of M is <2, then

since for any nonzero vem, there is a maximal abelian subalgebra containing v.

Before going further, we recall a definition: M is said to be a manifold of s-positive

(resp. s-negatίve) curvature if s is a smallest integer such that for each peM and for any

(s+ 1) orthonormal vectors {e0, el9 . . . , es} in Mp, we have £ J = i^(^o? et)>^ (resp. <0),

where AΓ(e0, et) denotes the sectional curvature of the plane spanned by e0 and ev This

s is determined for each irreducible symmetric space in [Lee93].

For convenience, we introduce a function κs: M-*R given by letting κs(p) to be

the maximum of all ΣI=i^(^o> eί) f° r a n v ( 5 + )̂ orthonormal vectors {e0, e l 5 . . . , es}
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in TpM. And let κs{M) = maxpeMκs(p).

THEOREM 2.4. Let M be an n-dίmensional symmetric space ofnoncompact type or

the product of such a space with a Euclidean space with an s-negative curvature. If

κs(M)<—ε2, then the mean curvature of any closed hyper surface of constant mean

curvature in M is greater than (n — s)ε.

PROOF. By the definition of s-negative curvature, there exist orthonormal vectors

{eu . . . , e j in TpM for some p e M such that YJ

s

i^2K(e1,
 ei) = ® Letting υ = eu consider

the eigenvalues {c\(v)<cl{v)< <c2(v)} of Kv. Then c1(v)= =cs(v) = 0 since

Kv(ei) = 0 for all 1 <i<s. Furthermore, by hypothesis, Cj(v)>ε for all s+ 1 <j<n. Thus

Σ"=i ci(v)>(n — s)ε. Theorem 2.3 implies the conclusion. •

THEOREM 2.5. Let M{ be an nΓdίmensional symmetric space of noncompact type

or the product of such a space with a Euclidean space and have an srnegative curvature

and κs(Mi)<-εf. Then

Λ(M1 x M2)>min{(/i i-.s/)e f c: iφj, ij9 k= 1, 2} .

PROOF. It is clear that M1xM2 has s-negative curvature, where 5 = max{51 +

n2, n1 +s2} and κs(M1 x M 2)<max{ — εf, — ε\). Then we apply Theorem 2.4. •

3. Constant mean curvature hypersurfaces in manifolds with a pole.

3.1. Preliminary. We begin with some definitions.

DEFINITION 3.1. Let M be an π-dimensional Riemannian manifold. A point/? in

M is called a pole of M if exp: Mp-+M is a diffeomorphism, and an ordered pair (M, p)

a manifold with a pole.

DEFINITION 3.2. Given an (M, /?), the radial vector field is the unit vector field v

defined on M— {/?} such that for all xeM— {/?}, v(x) is the unit vector tangent to the

unique geodesic joining p and x and pointing away from p. And a plane π in Mx is

called a radial plane if π contains v(x) and the restriction of the sectional curvature

function to all the radial planes is called the radial curvature.

DEFINITION 3.3. Let V be the Levi-Civita connection and / be a C 2 function on

M. We define the Hessian of / as the second covariant differential D2f of/, i.e.,

Y) = X(Yf)-(VxY)f

for all vector fields X, Y on M. Note that D2f is a symmetric tensor field of type (0, 2).

Now we have a useful result, whose proof can be found in [GW79, pp. 19-24].

THEOREM 3.1 [Hessian Comparison Theorem]. Let (M, p) and (N, q) be manifolds

with a pole such that dim M<dimN. Let y1: [0, r~\^>M and y2 : [0, r]—>N be normal

geodesies with yι(0)=p and y2(0)~ a- PM and PN denote the distance functions on M and
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N relative to p and q, and vM and vN the radial vector fields of M and N, respectively.
Suppose each radial curvature at y2(t) is not less than every radial curvature at y^t) for
all /e[0,r]. Then for all XeMyi(r) and for all YeMγ2(r) such that ||Z|| = | |7 | | and
<^vM(y1(r))> = <r,viV(72(r))>,

D2pM(yM(X, X)>D2pN(y2(r))(Y, Y).

3.2. Theorem. We will use the Hessian Comparison Theorem to prove the main
theorem and so we need the following proposition.

PROPOSITION 3.2. Let H be an n-dimensional hyperbolic space with a constant
curvature —c2 for some positive c. Let p be any point in H and pH be the distance function
from p. Then for any x = Qxpprv with ve TpH, \\v\\ = 1 and r>0,

D2pH(X,X) = ccothcr for any Xe Tx(Sp(ή), \\X\\ = 1 .

PROOF. First we will prove that

where H îs a Jacobi field along y(t) = expptv such that W(0) = 0 and W{r) = X.
Fix an XeTx(Sp(ή) with | |*Ί| = 1. Consider the normal geodesic ζ(s) such that

ζ(0) = X. Let ys: [0, r]^M be a normal geodesic joining p to ζ(s). Then clearly yo = y.
Let W be the transversal vector field of ys along y. Note that

• the transversal vector field W of ys is a Jacobi field along y

• ^(0) = 0and W(f) = X
• W±γ.

Let L(s) denote the length of ys and T=γ. Now

(3.1) =ζζ(p)(0)-(VξQ(p)(0) =

(3.2) =<yww, τyγo+ Γ{<yτw, vτwy-(R(w, τ)τ, w>-(τ(w, τy)2}dt
Jo

, τ)τ, wy}dt= \
Jo

(3.3) =<yτw, wyγo=<yτw{r\ w{r)y = <yτw{r\xy.

We used the fact that ζ is a geodesic and WIT in (3.1) and (3.2). And in (3.3), we
needed the following by the Jacobi equation for W and integration by parts: if
{Ei]

n

i=1 are orthonormal parallel vector fields along γ and let W=Σn

i = 1aiEh then
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also so

<w,wy=t&ι"ι= Σ <R(τ,Et)τ,EjyaLjQii

i, j = 1

> Σ α ^V> Σ *jEj\ = <R(τ, w)τ, wy = (R(w, τ)τ, wy,

i.e.,

vΓ<^, wy = (w, wy + (w, wy = φ, wy + (R(w, τ)τ, wy.
On the other hand, we have

as in Proposition 2.2 of Section 2 where £(ί) is a parallel transport of X along 7. So

VΓ W{r) = c coth cr£(r) = c coth cr JT

and

D 2pH(X, X) = <VΓ W(r), X> - <c coth crZ, X> = c coth cr .

D

Let us prove the main theorem.

THEOREM 3.3. Let (M, p) &e α« n-dimensional manifold with a pole. If its radial

curvature is < — c 2 for some positive constant c, then the mean curvature of any closed

hyper surface of constant mean curvature in M is greater than (n— l)c.

PROOF. Fix x = expprv for any veTpM, ||u|| = l and for any r > 0 . First we will

show that the mean curvature h(Sp(r))(x) of Sp(r) at x is greater than (n—\)c.

Let p be the distance function relative to p and let v= — gradp. Then v is the

inward unit normal vector field to Sp(r) and Sx denotes the second fundamental form

of Sp(r) at x with respect to v. Choose an orthonormal basis {eί9 . . . , £(„-!>} for Tx(Sp(r)).

Then we have

h(Sp(r))(x) = τrSx = "Σ <SJtet)9 ^ > = " Σ <Vβ|ei5 v>= - Π Σ <yeiei9 gradp>
ί = l ί = l i = l

= - " Σ (Vβ|βίXp) = "Σ ele((p)-(V.feίXp) = "Σ ^V(e ;, ef)
i=ί ί = l i = l

If i/ is the ^-dimensional hyperbolic space with a constant curvature — c 2 and p H

be the distance function from some point qeH, then for Xe TySq(r) with \\X\\ = 1 and
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D2p(eh ei)>D2pH(X, X), (by the Hessian Comparison Theorem),

and for such X,

D2ρH(X, X)>ccothcr>c (by Proposition 3.2).

Therefore, from the above three formulas, we obtain

h(Sp(r))(x)>(n-l)c.

Note that v and r are arbitrary.

Now let TV be a closed hypersurface of constant mean curvature in M. Then we

can choose v and r such that Nis inside Sp(r) and touches it at x = expprv. Clearly this

implies the conclusion. •

We close this section with a remark.

REMARK. Let M be a symmetric space of noncompact type. Then for any peM,

(M, p) is a manifold with a pole. But except for an M with rank M= 1, there does not

exist a positive c such that the radial curvature of (M, p) is < — c2. Thus Theorem 2.3

of Section 2 and Theorem 3.3 above overlap only in the case of symmetric spaces of

rank one.
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