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CONSTANT MEAN CURVATURE SURFACES IN M2 × R

DAVID HOFFMAN, JORGE H. S. DE LIRA, AND HAROLD ROSENBERG

Abstract. The subject of this paper is properly embedded H−surfaces in
Riemannian three manifolds of the form M2 × R, where M2 is a complete
Riemannian surface. When M2 = R2, we are in the classical domain of
H−surfaces in R3. In general, we will make some assumptions about M2 in
order to prove stronger results, or to show the effects of curvature bounds in
M2 on the behavior of H−surfaces in M2 × R.

1. Introduction

There is an enormous difference between the theory of minimal surfaces (H = 0)
and nonzero constant-mean curvatures surfaces (H �= 0), and this is most evident
in R3. A properly embedded minimal surface in R3 cannot be compact; if it is
simply connected, it must be the plane or the helicoid; and if it is an annulus,
it must be the catenoid [15, 3]. For Σ, a properly embedded surface of nonzero
constant mean curvature in R3: if Σ is compact, it must be a round sphere; if Σ
is noncompact, it cannot be simply connected; and, if Σ ∼ S1 × R, it must be
rotationally symmetric (a Delaunay surface). For both H = 0 and H �= 0, there
are many known examples of finite topology with genus greater than zero and more
than two ends, all discovered in the last twenty years [6, 7, 27, 26, 28].

The theory of minimal surfaces in M2 ×R is now well developed from the point
of view of examples and theory [17, 21, 16]. However, the theory of H−surfaces in
M2 ×R is just beginning. (We will assume throughout, unless we say so explicitly,
that H �= 0.) With one exception, there are no general theorems in the literature,
but there is useful information in some special cases. The exception is when M2 =
T 2 with the flat metric. Here we are considering doubly periodic H−surfaces in
R3, and there are existence results that come from the theory of triply periodic
H−surfaces in R3 [9, 10, 5]. There are many known examples. Additional examples
come from the existence of doubly periodic H−surfaces in R3 [12].

When M2 = S2, there is a class of examples due to Hsiang and Hsiang, [8], and
Pedrosa and Ritoré, [20], who studied the isoperimetric problem in Sn×R. Among
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faires ètrangères (France) and CAPES (Brasil).

c©2005 American Mathematical Society

491

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



492 DAVID HOFFMAN, JORGE H. S. DE LIRA, AND HAROLD ROSENBERG

other things, they analyzed the rotationally-invariant H−surfaces in Sn × R. Let

B =
Sn × R
O(n)

= {(x, y)| x ∈ [0, π], y ∈ R},

and consider the generating curves γ(s) = (x(s), y(s)) satisfying

γ′(s) = (cosσ, sin σ),

where σ = σ(s) satisfies

dσ

ds
= H + (n − 1) cot(x) sin(σ).

Their O(n)−orbits are H−surfaces. Pedrosa and Ritoré found first integrals and
solutions of Delaunay-type, i.e. properly embedded and periodic H−hypersurfaces
that were annular (topologically Sn−1 × R). They also found closed profile curves
that give rise to compact tori (topologically S1 × Sn−1) that are unstable, and
bounded profile curves that define examples that are hyperspheres.

A motivating question for this paper is the following: Are there properly embedded
annular H−surfaces in S2 × R that are not of Delaunay type (i.e., rotational)?
Korevaar, Kusner and Solomon proved that, in R3, all such surfaces are Delaunay
[11].

The authors thank Rick Schoen for useful conversations concerning the rescaling
argument used in the proof of Theorem 3 in Section 5.

2. Height estimates in M2 × R

For an interval, I ⊂ R, we define MI := M2 × I ⊂ M2 × R. When I = {a}, we
will write M2

a = M2 × {a}.
We prove height estimates for compact embedded H−surfaces Σ with boundary

in some M2
a . The estimates depend on curvature bounds for M2 and on the value of

H. We also prove that when M2 is compact and Σ is a noncompact and embedded
H−surface, that Σ has both a top and a bottom end.

Proposition 1. Suppose Σ is a compact and embedded H−surface in N = M[a,∞)

with boundary in M2
a . If the Gauss curvature of M2 satisfies KM ≥ 2τ (τ ≤ 0) and

H2 > |τ |, then

(1) Σ ⊂ M[a,a+2c],

where c = H
H2−|τ | . In particular, if the sectional curvature of M2 is nonnegative

and H �= 0, then

(2) Σ ⊂ M[a,a+ 2
H ].

Our proof of Proposition 1 (and of Proposition 2 below) uses a height estimate
for H−surfaces that are graphs in M2×R with zero boundary values over compact
domains in M2

0 . Let h : Σ → R be the restriction of the projection t : M2×R → R,
to Σ. We refer to h as the height function.

Lemma 1. Suppose that the Gauss curvature of M2 satisfies KM ≥ 2τ (τ ≤ 0).
Let W be an H−surface with H2 ≥ |τ |, which is a graph over a compact region in
M2

0 , with zero boundary values. Then

(3) h ≤ H

H2 − |τ |
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on W . In particular, if the Gauss curvature of M2 is nonnegative and H �= 0, then

(4) h ≤ 1
H

.

We will provide the proof of Lemma 1 at the end of the section.

Proof of Proposition 1. Observe that translation by t0 (i.e. M2
t → M2

t+t0) is an
isometry of N = M2 × R. Therefore, without loss of generality, we may assume
that there exists b > 0 for which Σ ⊂ M[0,b], with ∂Σ ⊂ M2

0 and Σ ∩ M2
b �= ∅ and

Σ ∩ M2
s = ∅ for s > b. To prove (1), we must show that b

2 < c.
For |b− t| small, Σ∩M[t,b] is a vertical graph over a compact domain in M2

0 . By
the Alexandrov reflection technique, the part of Σ in M[ b

2 ,b] is also a graph over a
compact domain in M2

0 . To see this, first observe that since reflection in Mt cannot
be a symmetry of Σ for t > b

2 , one can do Alexandrov reflection through all the
M2

τ , as τ decreases from b to b
2 , and no accident occurs. That is, the part of Σ

above each M2
τ is a vertical graph for b

2 ≤ τ ≤ b. By Lemma 1, b
2 < c, which gives

(1). The second statement, (2), follows immediately from the first. �

We will say that a surface in M2 × R lies in a halfspace if it is contained in a
region of M2 × R of the form

M[a,∞) = {(p, t) ∈ M2 × R | t ≥ a} or M(−∞,a] = {(p, t) ∈ M2 × R | t ≤ a}.

Proposition 2. Suppose M2 is a compact surface without boundary whose Gauss
curvature is bounded below by 2τ , for some real number τ , and suppose Σ is a
noncompact properly embedded H surface in N = M2 × R. If τ < 0, assume that
H2 ≥ |τ |. Then Σ cannot lie in a halfspace. In particular, Σ must have at least
one “top” and one “bottom” end.

Proof. We first prove that H �= 0 if Σ lies in a halfspace. This is because we can
find an M2

t tangent to Σ at a point, with M2 lying on one side of Σ. By the
maximum principle we would have M2

t = Σ, a contradiction since M2 is compact
and Σ is not. This means that we satisfy the conditions of Lemma 1 even when
M2 has nonnegative curvature.

Observe that translation by t0 (i.e., M2
t → M2

t+t0) and reflection Rt0 in M2
t0

(i.e., M2
t → M2

2t0−t) are isometries of N = M2 × R. Therefore, without loss of
generality, we may assume that Σ lies in the halfspace M[0,∞) and has a nonempty
intersection with M0.

Since Σa := {(x, t) ∈ Σ| t ≤ α} is compact, we may do Alexandrov-reflection
coming up from M2

0 . For any value of a, Ra(Σa) is compact. Since Σ is not compact,
Ra is not a symmetry of Σ. This implies that for every a > 0, the compact surface
Σa must be a vertical graph over a domain in Ma. However, the hypotheses of this
proposition on the curvature of M2 and the lower bounds for H allow us to use
Lemma 1 for such a vertical graph, providing a height estimate that is violated for
a > 0 sufficiently large. This contradiction establishes the first statement of the
proposition. The second statement is an immediate consequence of the first. �

Proof of Lemma 1. We begin with some necessary general observations. For any
immersion X : Σ → N of one Riemannian manifold into another, the Laplacian of
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X is the divergence of the vector-valued one form DX

∆X :=
m∑

i=1

[
∇DX(ei)DX(ei) − DX(∇̂ei

ei)
]
,

where ∇ and ∇̂ are the Riemannian connections on N and Σ, respectively, and
the {ei} are an orthonormal framing of TΣ. If X is an isometric immersion,
then DX(∇̂ei

ei) = [∇DX(ei)DX(ei)]t, where [ ]t is the projection of TN|X(Σ) onto
X∗(TΣ). Then

∆X =
m∑

i=1

[∇DX(ei)DX(ei)]n =
m∑

i=1

B(ei, ei),

where [ ]n is projection onto the normal bundle of X(Σ) ⊂ N and B is the second
fundamental form of X. [13] Therefore, the Laplacian of X is the trace of the
second fundamental form of Σ,

∆X = m �H,

where m is the dimension of Σ and �H is the mean curvature vector field of the
isometric immersion X.

In our context, N = M2 × R. Let �n denote the unit normal to Σ and define

H := 〈 �H,�n〉 and n := 〈�n,
∂

∂t
〉.

We have
∆X = 2H�n.

A simple calculation using either the fact that the height function, h, is the pro-
jection onto a one-dimensional subspace in a Riemannian splitting, or that ∂

∂t is a
Killing field, gives

(5) ∆h = 2Hn.

We will also have need of an equation for the Laplacian of n = 〈�n, ∂
∂t 〉:

∆n = −(|A|2 + Ric(�n))n,(6)

where A is the shape operator of Σ. (Recall that A : TΣ → TΣ with A(U) = ∇U�n.)
Formula (6) can be derived as in [22] or [18] by looking at the second variation of
area of an H−surface in the direction of a normal component of a Killing field (in
this case ∂

∂t ). Alternatively, one can derive this equation, directly using the fact
that ∂

∂t is a Killing field. From general considerations,

∆n = ∆〈�n,
∂

∂t
〉 = 〈∆�n,

∂

∂t
〉 + 2〈∇�n,∇ ∂

∂t
〉 + 〈�n, ∆

∂

∂t
〉.

Because ∂
∂t is Killing, 〈∇U

∂
∂t , V 〉 is skew symmetric, which is enough to show that

the middle term on the right-hand side of the above expression vanishes. It also
allows expression of the last summand in terms if Ric(�n, ∂

∂t ). Simplification leads
to (6).

Now we restrict our attention to an H−surface W that satisfies the assumptions
of the lemma. Define

(7) φ = ch + n,
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where c is a real-valued positive constant. Since W is a graph we may choose a
“downward-pointing” unit normal vector field �n so that

n := 〈�n,
∂

∂t
〉 ≤ 0

on W . Since W is assumed to be a graph with zero boundary values, it follows that

φ = n ≤ 0

on ∂W . If we can find a value of c for which ∆φ ≥ 0 on W , it will follow from the
maximum principle that φ = ch + n ≤ 0 on W ; hence

(8) h ≤ −n/c ≤ 1/c.

We will now find such a value of c. From (5) and (6), we get

∆φ = (2cH − |A|2 − Ric(�n))n.

Since n ≤ 0, we can assert that ∆φ ≥ 0 if and only if

(9) |A|2 + Ric(�n) ≥ 2cH.

Using the simple estimate

|A|2 = tr2(A) − 2det(A)

= 2(
tr(A)

2
)2 + (

1
2
tr2(A) − 2det(A))

= 2H2 +
1
2
(a11 − a22)2 + 2a2

12

≥ 2H2,

it suffices to choose c so that

H2 +
1
2
Ric(�n) ≥ cH.

Since Ric(�n) = |Pr(�n)|2KM , where Pr( ) is the projection from TN onto TM2,
and |n| = 1, it follows from our assumption that KM ≥ 2τ , τ ≤ 0, and that
Ric(�n) ≥ 2τ . Therefore we can satisfy the condition on c above with

(10)
H2 − |τ |

H
≥ c.

The left-hand side of (10) is positive by assumption and so choosing c to equal the
left-hand side is sufficient to force ∆φ ≥ 0. The height estimate (3) follows from
(8).

If M2 has nonnegative sectional curvature, then Ric(N) ≥ 0, the requirement
(10) holds for c = H, and (8) gives the height estimate (4). �

Remark 1. The height estimate in Lemma 1 in the case that M2 × R = H2 × R
works for H > 1√

2
. However the rotational H−surfaces in H2 ×R are compact for

H > 1/2, and noncompact for H ≤ 1
2 , [17]. So one suspects our height estimates

are not sharp.
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3. First variations of area and volume

Let U be bounded domain in a Riemannian three manifold N , whose boundary,
∂U , consists of a smooth connected surface, Σ, and the union Q of finitely many
smooth, compact and connected surfaces. The closed surface ∂U is piecewise-
smooth and smooth except perhaps on ∂Σ = ∂Q. Let

�n = the outward-pointing unit normal vector field on ∂U = Σ ∪ Q;
�nΣ = the restriction of �n to Σ;
�nQ = the restriction of �n to Q.

Suppose Y is a vector field defined on a region of N that contains U . The
first-variation of the volume, |U |, of U is given by

δY |U | =
∫

U

DivY =
∫

∂U

Y · �n(11)

=
∫

Σ

Y · �nΣ +
∫

Q

Y · �nQ,

where Div = DivN is the divergence operator on N . To write down δY (|Σ|), the
first variation of area of Σ under Y , we introduce the following notation:

ν = the outward-pointing unit conormal to Σ along ∂Σ;
Y t = the tangential projection of Y onto TΣ;
Y n = Y − Y t, the projection of Y onto the normal bundle of Σ in N.

We may then write

δY (|Σ|) =
∫

Σ

divY

=
∫

Σ

divY t +
∫

Σ

divY n

=
∫

∂Σ

Y · ν −
∫

Σ

Y · �HΣ,

where div = divΣ, is the divergence operator on Σ.
If Σ is an H−surface, H := 〈 �H,�n〉 is a constant and therefore

δY (|Σ|) =
∫

∂Σ

Y · ν − H

∫
Σ

Y · �n.(12)

Putting (11) and(12) together, we have for H−surfaces,

δY (|Σ| + H|U |) =
∫

∂Σ

Y · ν + H

∫
Q

Y · �nQ.(13)

The following propostion is well known and is immediate from (13).

Proposition 3. If Y is a Killing vector field on N , and Σ is an H−surface, then

(14)
∫

∂Σ

Y · ν + H

∫
Q

Y · �nQ = 0,

where Q, ν,H and �nQ are as defined above.
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Suppose Σ is a properly embedded H−surface in N = M2 × R/, and assume
that Σ bounds a region U ⊂ N . Define:

Mt = M2 × {t};(15)
Σt = Σ ∩ Mt;

Σ[a,b] = Σ ∩ (M2 × [a, b]) =
⋃

a≤s≤b

Σs ;

U b
a = U ∩ (M2 × [a, b]);(16)

Qt = U ∩ Mt

Clearly,

∂U b
a = Σ[a,b] ∪ Qa ∪ Qb, ∂Σ = Σa ∪ Σb, �nQb

= +
∂

∂t
, �nQa

= − ∂

∂t
.

We now apply Proposition 3 to the vector field ∂
∂t . Since vertical translation

Mt → Mt+t0 is an isometry, ∂
∂t is a Killing field and we have from (14)

0 =
∫

Σ0∪Σt

∂

∂t
· ν + H

∫
Q

∂

∂t
· �nQ(17)

=
∫

Σ0

∂

∂t
· ν +

∫
Σt

∂

∂t
· ν + H(|Qt| − |Q0|).

We will state an important consequence of this computation as a proposition for
later use.

Proposition 4. Suppose Σ is a properly embedded H−surface in N = M2 × R,
M2 compact. Then the vertical flux across Σt,∫

Σt

∂

∂t
· ν,

varies within a bounded range

The proposition follows immediately from (17) and the assumption that M2 is
compact: since Qt ⊂ Mt, the volume |Qt| is bounded independent of t.

Remark 2. If Σ is a minimal surface (H = 0), then it follows from (17) that the∫
Σt

∂
∂t · ν, the vertical flux across Σt, is a constant, independent of t.

4. Linear area growth

In this section, we prove that a properly embedded H−surface in N = S2×R will
have linear area growth provided it has one additional property. For any choice of
antipodal points on S2, consider the rotations of S2 that fix these two points. These
extend to rotations of N whose common fixed point set consists of the two vertical
geodesics through these points. Choose a geodesic arc γ joining these antipodal
points and let P be the union of γ × R and any tubular neigborhoods of the two
vertical geodesics.

Theorem 1. Let Σ be a properly embedded H-surface in N = S2 × R. If Σ is
disjoint from P, then Σ has linear area growth.

A generalization of this theorem is given in Section 4.1.
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Remark 3. In the complement of P we may define θ, the angle measured from γ.
The gradient of θ is a Killing field whose length is bounded above by 1, and below by
a positive constant that depends on the radius of the tubular neigborhoods chosen
in the definition of P.

Proof. Given a > 0, we will show that

(18) |Σ[−a,a]| ≤ ca,

for some constant c that does not depend on a.
Note that (x, t) → (x,−t) is an isometry of N , and therefore

|Σ[−a,a]| = | − Σ[−a,a]|,
where −Σ = {(x,−t)| (x, t) ∈ Σ}. Hence, by working with −Σ if necessary, we
may assume, without loss of generality, that

|Σ[−a,0]| ≤ |Σ[0,a]|.
Since (x, t) → (x, t + a) is an isometry of N , the inequality (18) will follow if we
establish

(19) |Σ[0,2a]| ≤ ca, assuming |Σ[0,a]| ≤ |Σ[a,2a]|.
We will now prove (19).

On S2 − γ, we may define polar coordinates, (r, θ), with π < θ < 3π. The
function θ is well defined on N − P, a region that contains Σ by assumption.

Let ∂
∂θ be the rotational Killing field for the axis defined by the end-points of γ,

and let ∂
∂t be the Killing field defined by vertical translation. Clearly, | ∂

∂t | = 1 and,
as noted in Remark 3, | ∂

∂θ | is bounded above and also bounded away from zero.
Define the vector fields

X = t
∂

∂t
, Y = θ

∂

∂θ
, Z = tY.

A direct calculation using

divW = DivW − 〈∇nW, n〉, DivfW = 〈∇f, W 〉 + fDivW,

and the fact that for a Killing field V , 〈∇eV, e〉 = 0 and therefore

DivV = divV = 0 , and 〈∇nV, n〉 = 0,

gives

(20)

DivX = 1, divX = 1 − n2
t ,

DivY = | ∂
∂θ |2, divY = | ∂

∂θ |2 − n2
θ,

DivZ = t| ∂
∂θ |2, divZ = t(| ∂

∂θ |2 − n2
θ) − θntnθ,

where nt = �nΣ · ∂
∂t and nθ = �nΣ · ∂

∂θ . Using X as the vector field in the first variation
formula (13) on Σ[0,2a], we have∫

Σ[0,2a]

(1 − n2
t ) + H|U2a

0 | =
∫

Σ0∪Σ2a

t
∂

∂t
· ν + H

∫
Q0∪Q2a

t
∂

∂t
· �nQ

= 2a

[∫
Σ2a

∂

∂t
· ν + H

∫
Q2a

∂

∂t
· �nQ

]

= 2a

[∫
Σ2a

∂

∂t
· ν + H|Q2a|

]
.
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Σ+

Σ[0,a]

~

~

2a

6a

M0

Qa

0

Ma
a

Figure 1. Σ̃.

By Proposition 3, equation (14), the bracketed term on the right-hand side is
a constant. Moreover, since S2 has finite area, |U2a

0 | grows at most linearly in a.
Hence

(21)
∫

Σ[0,2a]

1 − n2
t ≤ c1a,

where c1 does not depend on a.
We now use (13) with the variation vector field Z. This time we will cut off Σ

below by S2
0 = S2 × {0}, and above by a surface, S, defined by

tθ = 6πa.

Note that when t = 2a, we have θ = 3π, and when t = 6a, we have θ = π. (See
Figure 1.) We will denote the parts of Σ and U between S2

0 and S by Σ̃ and Ũ ,
respectively, and define S̃ = S ∩U and ΣS = Σ ∩ S. (See Figure 1, again.) We get
from (13)∫

Σ̃

(
t(| ∂

∂θ
|2 − n2

θ) − θntnθ

)
− H

∫
Ũ

| ∂

∂θ
|2t

=
∫

Σ0∪ΣS

Z · ν + H

∫
Q0∪S̃

Z · �nQ = 6πa

[∫
ΣS

∂

∂θ
· ν + H

∫
S̃

∂

∂θ
· �nQ

]
.

Since ∂
∂θ is a Killing field, it follows from Proposition 3, equation (14), that the

bracketed term on the right is a constant that does not depend on a. Hence∫
Σ̃

t(| ∂

∂θ
|2 − n2

θ) = c2a + H

∫
Ũ

t| ∂

∂θ
|2 +

∫
Σ̃

θntnθ.

Now observe that π < θ < 3π on Σ̃; the vector fields �n and ∂
∂t both have length 1.

Moreover, the Killing field ∂
∂θ has length bounded above and is also bounded away
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from zero on Σ̃:

(22) 0 < c∗ ≤ | ∂

∂θ
| ≤ c∗.

Therefore

|θntnθ| ≤ 3πnt = 3π〈n,
∂

∂θ
〉 ≤ 3πc∗ := c4.

Also note that 0 ≤ t ≤ 6a on Ũ . Using these estimates we have
∫

Σ̃

t(| ∂

∂θ
|2 − n2

θ) ≤ c2a + c3a
2 +

∫
Σ̃

θntnθ(23)

≤ c2a + c3a
2 + c4|Σ̃|.

Here we have used the fact that S2 has finite area and therefore the volume of |Ũ |
is linear in a.

Let Σ̃+ = Σ̃ ∩ M[a,6a]. We are assuming that |Σ[0,a]| ≤ |Σ[a,2a]|, and since
Σ[a,2a] ⊂ Σ̃+,

(24) |Σ̃| = |Σ[0,a]| + |Σ̃+| ≤ 2|Σ̃+|.

From (24), (23) and (22), we get

ac2
∗

∫
Σ̃+

(1 − (
nθ

| ∂
∂θ |

)2) ≤
∫

Σ̃+

t| ∂

∂θ
|2(1 − n2

θ)

≤
∫

Σ̃

t| ∂

∂θ
|2(1 − n2

θ) ≤ c2a + c3a
2 + 2c4|Σ̃+|.

Dividing by ac2
∗ gives

∫
Σ̃+

(1 − (
nθ

| ∂
∂θ |

)2) ≤ 1
c2
∗
(c2 + c3a +

2c4

a
|Σ̃+|).

In estimate (21), we saw that
∫
Σ[0,2â]

1 − n2
t ≤ c1â, where c1 does not depend on

â. Using â = 3a and observing that Σ̃+ ⊂ Σ[0,6a], we get (using the fact that
nt

2 + ( nθ

| ∂
∂θ |

)2 ≤ 1)

|Σ̃+| ≤
∫

Σ̃+

(2−(nt
2+(

nθ

| ∂
∂θ |

)2) ≤ (
1
c2
∗
(c2+c3a)+3c1a)+

2c4

ac2
∗
|Σ̃+| = c5+c6a+

2c4

ac2
∗
|Σ̃+|.

If a > 4c4
c2
∗

, then

|Σ̃+| ≤ 2(c5 + c6a).

This estimate together with (24) produces

|Σ̃| ≤ 4(c5 + c6a),

from which (19) follows because Σ[0,2a] ⊂ Σ̃. This completes the proof of the
theorem. �
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4.1. Linear area growth in M2 ×R when M2 has a pole. The proof of The-
orem 1 will give linear area growth in more general situations. Suppose M2 has a
pole, p, a fixed point for a one-parameter group of rotational isometries. Assume
there is a region R ⊂ N , inside of which the angle of rotation is well defined and
the gradient of that angle (a Killing field) has length bounded above and also away
from zero. Let Σ ⊂ R be a properly embedded H−surface, and assume that Σ
bounds a region U ⊂ R with the property that the area of Ut = U ∩ M2

t is uni-
formly bounded. Then the proof of Theorem 1 is directly generalizable to a proof
of the linear area growth of Σ. In particular

Theorem 2. Suppose M2 is a complete surface with a pole p. The Killing field
∂
∂θ is defined in a punctured neighborhood, say D, of p, and the angle θ is defined
in the complement in D of a geodesic, say γ, starting at p and running to the cut
locus Cp of p. Let R = (D \ γ) × R, and suppose that Σ = ∂U , U ⊂ R, is a
properly embeddded H−surface. Suppose further that |Ut| = |U ∩ M2

t | is bounded
independent of t and that the Killing field ∂

∂θ associated with the pole p satisfies the
boundedness condition (22). Then Σ has linear area growth.

This theorem has an immediate corollary when M2 = H2.

Corollary 1. i) Suppose γ ⊂ H2 is a geodesic ray beginning at p. Let Σ =
∂U ⊂ R = (H2\γ)×R be a properly embedded H−surface with the property
that |Ut| is bounded independent of t. Suppose further that the Killing field
∂
∂θ associated with the pole p satisfies the boundedness condition of (22).
Then Σ has linear area growth.

ii) Suppose α : R → H2 is either a constant map or a constant-speed (= b)
parametrization of a complete geodesic. Let β(t) = (α(t), ct), c �= 0, b2 +
c2 = 1, be a parametrization of a complete unit-speed geodesic β ⊂ H2 ×R.
Suppose Σ ⊂ H2×R is a properly embedded H-surface which is cylindrically
bounded in the sense that it stays a bounded distance from β. Then Σ has
linear area growth.

Proof. The first statement follows directly from Theorem 2 and the fact that any
point p ∈ H2 is a pole whose cut locus is empty.

To prove the second statement, we work in the disk model of H2. We first observe
that without loss of generality, we may assume that either α(t) is indentically
equal to zero, or is a constant-speed parametrization (in H2) of the real axis.
Furthermore, we may assume that Σ is within distance one of β.

If β(t) = (0, ct), choose p to be a point on the imaginary axis at distance d > 3
from the origin, and let γ be the geodesic ray beginning at p and diverging along
the imaginary axis. Let R = B2(0)×R ⊂ H2 ×R. All the conditions of statement
(i) are now satisfied, so Σ has linear area growth.

If α is the real axis and the cylindrical radius is one, we again choose γ as before.
Let B = B × R, where B is the geodesic disc in H

2 centered at β(0) = O, and of
radius 3. Clearly Σ[0,c] ⊂ B. Our previous calculations in Theorem 1 show that the
area of Σ[0,c] is bounded by kc, where the constant k depends on the bounds for
|∂θ| in B. Observe that the same estimate holds for the area of Σ[c,2c], since there
is an isometry φ of H

2 ×R to itself, leaving β invariant, taking β(1) to β(0); φ−1 is
the composition of the (hyperbolic) translation of H

2, taking O to α(1), with the
vertical translation taking α(1) to β(1). This map takes β′(0) to β′(1), and hence
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leaves β invariant. Then φ(Σ[c,2c]) ⊂ B, so its area is also at most k c. Continuing
this way, we conclude Σ has linear (vertical) area growth. �

5. Curvature bounds

We will be concerned in this section with properly embedded H−surfaces, Σ ⊂
N = M2 × R, of finite topology with the additional property that the restriction
of the height function on M2 × R to Σ is proper. If M2 is compact, every such Σ
has this property. Note that an annular end of such an H−surface must be either
a top end or a bottom end.

We will assume that M2 is complete, that M2 has bounded Gauss curvature,
and that the injectivity radius of M2 is bounded away from zero. Again, all these
properties hold if M2 is compact.

Theorem 3. Let Σ and M2 satisfy the above conditions. If Σ has linear area
growth, then |A| is bounded on Σ.

Corollary 2. Suppose Σ is a properly embedded H−surface with finite topology
in S2 × R, with the additional property that Σ ⊂ D × R ⊂ S2 × R, where D is a
geodesic disk of radius strictly less than π (or, more generally satisfies the conditions
of Theorem 1). Then |A| is bounded on Σ.

The corollary follows immediately from Theorem 3, since S2 is compact and
Theorem 1 gives linear area growth. Similar results for H−surfaces Σ ⊂ H2 × R
on which the height function is proper follow from Theorem 3 and Corollary 1.

Theorem 3 will be proved after we present two preliminary results.
We begin by observing as we did in (10), that |A|2 = tr2(A)− 2det(A) = 4H2 −

2det(A) —a local formula not requiring any of our hypotheses—and that the Gauss
curvature K(p) of Σ at a point p ∈ Σ satisfies det(Ap) = K(p) − KN (p), where
KN (p) is the sectional curvature of N on the plane TpΣ. Therefore

(25) |A|2 = 4H2 + 2KN − 2K.

The geometric quantity 4H2 +2KN is bounded on Σ if M2 has bounded curvature.
Therefore

Lemma 2. Let Σ = ∂U , U ⊂ N = M2 × R, be a properly embedded H−surface.
Assume Σ has linear area growth and that M2 has bounded curvature. Then∫

Σ

4H2 + 2KN

has linear growth.

Proposition 5. Let Σ be an H−surface in M2 × R satisfying the assumptions of
Theorem 3. Then

∫
Σ
|A|2 has linear growth.

Remark 4. For the proof of this proposition, we do not require that the injectivity
radius of M2 be bounded below.

Proof. Since we are assuming that Σ has finite topology, we may decompose it into
a compact piece and a finite number of annular ends. Let E be an annular end of
Σ. We may assume, without loss of generality, that E is a top end, i.e., h(xn) → ∞,
as xn ∈ E diverges in E, where h is the height function. Then if h|∂E < 0 and
t ≥ 0, E transverse to M2

t , it is clear that E ∩ M2
t contains at least one Jordan

curve α that is a generator of π1(E). We call such an α an essential curve. We can
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assume E � M2
0 and (after replacing E by a subend) that ∂E ⊂ M2

0 . Note that E
may intersect M2

0 in other Jordan curves, but the part of E below height zero is
compact and at bounded distance from M2

0 , by our assumption that h, restricted
to Σ, is proper.

Let φ : S1 × R+ → E be a parametrization of E with the property that

φ(S1 × {0}) = ∂E ⊂ M0.

For a, b ∈ R+ with b > a, we will assume that E is transverse to M2
a and M2

b ,
an assumption that is true generically. The set Ea = E ∩ M2

a consists of a finite
number of loops, and the same is true of Eb.

The parametrization φ orders the essential loops by proximity to S1 × {0} and,
in particular, it orders the essential loops in Ea and Eb. Let α1 be the first essential
loop in Ea and let β be the first essential loop in Eb. The annulus Ê bounded by α1

and β is not necessarily contained in E[a,b]. However, by Proposition 1 in Section 2,
there exists a constant C (that depends on H and the bounds on the curvature of
M2, but not on t) such that regions of E bounded by inessential loops in M2

t must
lie at a distance of at most C from M2

t . Hence we may assert that

Ê ⊂ E[a−C,b+C].

Using Proposition 1 again, we can assert that if b− a > 2C, any essential loop that
is past β ⊂ Eb in the ordering cannot lie in Ea. Let β1 be the last essential loop in
Eb. The loops α1 and β1 bound an annulus Ẽ ⊂ E, and we can use Proposition 1
again to assert that

(26) E[a+C,b−C] ⊂ Ẽ ⊂ E[a−C,b+C].

Since we are assuming that Σ has linear area growth, we know that E ⊂ Σ has
linear area growth. This implies that there exists a constant c such that for all
t ≥ 0,

|E[t,t+1]| < c.

By the co-area formula we know that there exists, for every integer k ≥ 0, an ak,
k ≤ ak ≤ k + 1, with the property that

|Eak
| ≤ c,

where |Eak
| is the length of Eak

. Choose k0 > c + 2C, let k > k0 + 1 + 2c + 2C,
and consider Ẽ[a0,ak], the annulus bounded by the essential curves α1 ⊂ Ea0 , and
β1 ⊂ Eak

. Choose points x ∈ α1 and y ∈ β1, and let α1 (respectively β1) be the
minimizing geodesics on E homotopic to α1 relative to x (respectively homotopic
to β1 relative to y). Both α1 and β1 cannot have length greater than c. Let E be
the annulus in E bounded by α1 and β1. The exterior angle of α1 (with respect to
E) at x, and the exterior angle of β1 at y cannot be bigger than π in absolute value.
It is an annulus because we have chosen k large enough to keep α1 and β1 disjoint.
By Gauss-Bonnet, the total curvature of E is at most 2π in absolute value. By the
definition of E,

(27) E∗ := E[a0+c+C,ak−c−C] ⊂ E ⊂ E[ak0−c−C,ak+c+C] =: E∗.
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Let c0 = |4H2 + supM2KN |. Using (25), (27) and Lemma 2, we have∫
E∗

|A|2 ≤
∫

E

|A|2 =
∫

E

(4H2 + 2KN ) − 2
∫

E

K

≤ c0|E| + 4π

≤ c0|E∗| + 4π

≤ c0c(ak − a0 + 2(C + c)) + 4π

≤ c0c(k + 1 + 2(C + c)) + 4π

≤ constant × k,

for k large. Hence
∫

E∗
|A|2 has linear growth, which implies that

∫
E
|A|2 also has

this property. �

Now we present the

Proof of Theorem 3. Because Σ has finite topology, it suffices to show that |A| is
bounded on each annular end E of M . Assume that E is a top annular end of M ,
∂E ⊂ M0 = M2×{0}. Recall that E[a,b] denotes E∩(M2× [a, b]) and Et = E∩Mt.
We will assume |A| is unbounded on E and obtain a contradiction.

Let pn ∈ E satisfy |A(pn)| ≥ n, n = 1, 2, . . ., and let pn be the lowest point of E
with this property. For each integer n, let m = m(n) be the smallest integer larger
than h(pn) + 1. For q ∈ E[0,m] let d(q) = m − h(q).

Consider the continuous function F = Fn defined on E[0,m]:

F (q) =
{

|A(q)|, if h(q) ≤ m − 1,
|A(q)| d(q)2, if h(q) ≥ m − 1.

(28)

Let q̃ = q̃n ∈ E be a point where F achieves its maximum value. Clearly
|A(q̃)| ≥ n.

Let an = h(q̃) − d(q̃)
2 , b(n) = h(q̃) + d(q̃)

2 and consider E = En = E[an,bn], the
part of E between heights an and bn. If bn ≤ m − 1, then for each p ∈ E ,

|A(p)| ≤ |A(q̃)|.

If bn > m − 1 and h(q̃) < m, then for each p ∈ E[an,bn] we have d(p) ≥ 1
2 . So, if

h(p) ≥ m, then |A(p)| d(p)2 ≤ |A(q̃)|, hence

|A(p)| ≤ 4|A(q̃)|.

If h(p) ≤ m, then |A(p)| ≤ |A(q̃)|. Similarly, the reader can easily check that this
inequality also holds if h(q̃) ≥ m; so in all cases, when p ∈ E , one has

(29) |A(p)| ≤ 4|A(q̃)|.

At this point, we have produced a sequence {q̃n} whose heights h(q̃n) diverge
with n, and which have the property that |A(q̃n)| ≥ n. Moreover, on the subset
En = E[an,bn] ⊂ E, we have the estimate

|A(p)| ≤ 4|A(q̃n)|.

Since pn ∈ E was chosen to be a lowest point where |A(pn)| ≥ n, it follows that
d(q̃n) ≤ 2, which in turn implies that bn−an = d(q̃) ≤ 2. Therefore, it follows from
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Proposition 5 that

(30)
∫
En

|A|2 ≤ c,

where c does not depend on n.
For each n ≥ 0, translate E down by h(q̃n). We may consider {q̃n} to be a

sequence of points in M2
0 , and by abuse of notation, we will refer to these points by

the same notation. We also consider the subsets En to be similarly translated and
we similarly abuse notation. For each n, define λn = |A(q̃n)|. Rescale the metric
on M2 × R by λn and denote by E∗

n the surface En in the rescaled metric. The
distance between the top and the bottom of E∗

n is

λnd(q̃n) = |A(q̃n)|d(q̃n) ≥ n.

We also have from (29) the estimate

|A∗(p)| ≤ 4

on E∗
n and the normalization |A(q̃n)| = 1, where |A∗| denotes the second fundamen-

tal form in the rescaled metric. The integral in (30) is scale invariant:

(31)
∫
E∗

n

|A∗|2 ≤ c,

independent of n. Since we are assuming that Σ has linear area growth, it follows
that E also has linear area growth, and this remains true in the rescaled metrics.

For each n, denote by Un the simply connected neighborhood of the origin in
Tq̃n

(M2 × R), which corresponds via the exponential map to M2 × R minus the
cut locus of q̃n. We consider Un with the metric of M2 ×R rescaled by λn, and we
denote this metric space by U∗

n. Since the injectivity radius of M2 is bounded below,
and the Gauss curvature of M2 is bounded in absolute value, the U∗

n converge to
R2 × R = R3 with the flat metric. (The distance from the origin to ∂U∗

n goes to
infinity with n because the of the global lower bound on the injectivity radius and
the fact that λn → ∞. The curvature of U∗

n behaves like const.
λ2

n
since there is a

global bound on the curvature of M2, and hence of M2 × R.)
For each n, consider the part of En inside the cut locus of q̃∗n, and let E∗

n be the
pullback by the exponential map to U∗

n of the component of this surface containing
the point q̃∗n. The mean curvature of E∗

n is H
λn

, which goes to zero as n → ∞.
We have established in (31) bounds for the integral of |A∗|2. We are assuming
linear growth for Σ, and this implies that E∗

n has linear area growth. Therefore, we
may choose a subsequence of the E∗

n which converges—with finite multiplicity—to
an embedded minimal surface, S, in R3 with the flat metric. Moreover, S has
|A∗(0)| = 1 and

∫
S |A∗|2 is finite by (31). Since |A|2 = −2K, S has finite total

curvature, but is not the plane because |A∗(0)| �= 0. It is complete because Σ was
complete, and the distance from the origin to the boundary of Σ∗

n is not less than
the distance from the origin to the boundary of U∗

n, which diverges with n.
In the previous paragraph we have shown that S ⊂ R3 is a complete and non-

planar embedded minimal surface with finite total curvature. Such a surface must
have a top and a bottom catenoidal end. Consider a top catenoidal end Σ̄ of S. Let
γ be a Jordan curve on Σ̄, which is the tranverse intersection of Σ with some plane
orthogonal to the axis of the top catenoid end. The flux of Σ̄ along γ is a vector

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



506 DAVID HOFFMAN, JORGE H. S. DE LIRA, AND HAROLD ROSENBERG

whose component, a, in the direction of the axis of the catenoidal end, is equal to
the logarithmic growth of the end. Since the end is catenoidal, a �= 0.

Now kγ = lim γn, where γn are Jordan curves on Σ∗
n and k is the (fixed) multi-

plicity with which the E∗
n (a subsequence) are converging to S. The γn are coming

from loops βn on E ⊂ Σ by scaling by λn with λn → ∞. We know that this flux
is zero if βn is homologous to zero on E and equals some fixed vector when βn

is a generator of π1(E). Let b be the component of this vector in the direction
determined by the top catenoid end. Then one has λnb → ka, as λn → ∞. Since b
is finite, this is a contradiction. �

Remark 5. We conjecture that a properly embedded H-surface, Σ, of finite topology
in M2 × R must have linear area growth if M2 is compact. (This is true when
H = 0, [16].) Using Theorem 3 and arguing as in Corollary 2, this conjecture, if
true, implies that such a Σ would have bounded second fundamental form.
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