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CONSTANT MEAN CURVATURE 
SURFACES IN EUCLIDEAN THREE-SPACE 

NICOLAOS KAPOULEAS 

1. Introduction. A soap film in equilibrium between two regions of dif­
ferent gas pressure is characterized mathematically by the condition that the 
surface it defines has nonzero constant mean curvature. It is an old problem 
in classical differential geometry to decide which finite topological types of 
surfaces can be realized as complete, properly immersed surfaces of nonzero 
constant mean curvature in E3. 

For a long time, the only known examples of such surfaces were, besides the 
round sphere and the cylinder, a family of rotationally invariant surfaces dis­
covered in 1841 by Delaunay [D]. Alexandrov [A] proved that the only closed 
embedded surfaces of constant mean curvature are round spheres. More re­
cently, H. C. Wente [W] constructed immersed tori of constant mean curva­
ture. (Higher-dimensional examples had been constructed earlier by Wu-Yi 
Hsiang [H].) 

The finite topological types of surfaces as above can be classified by the 
genus g and the number of ends ra. We prove the following [Kl, K2], 

THEOREM 1. Given any g > 0, m > 3, or g > 2, m — 2, there are 
infinitely many cmc surfaces of genus g and with m ends. ( We adopt the 
abbreviation cmc surfaces to stand for properly immersed complete surfaces in 
E3 of constant mean curvature 1.) The ends of these surfaces are asymptotic 
with exponential rate to Delaunay surfaces. 

THEOREM 2. If g > 3 then there are infinitely many closed cmc surfaces 
of genus g. 

These theorems are a consequence of two theorems which provide general 
constructions for such surfaces. We refer the reader to [Kl, K2] for the 
technical details. 

Also doubly or triply periodic embedded cmc surfaces are constructed. 
These surfaces have the symmetries of some lattice in E3 and our construction 
yields many additional surfaces beyond those which are known [L]. 

Many of the cmc surfaces of finite topological type are proved to be em­
bedded, and work is still in progress to determine exactly for which (g, m) 
embedded examples exist. 

Sketch of the proof. The Delaunay family of surfaces can be parame­
trized by a continuous parameter r such that we have embedded surfaces for 
r < 0 and immersed ones for r > 0. The positive curvature regions tend to 
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unit spheres as r —• 0 and the negative curvature regions enlarged by a factor 
of | r | _ 1 tend to standard catenoids. Complete surfaces can be constructed by 
attaching pieces of Delaunay surfaces to (pieces of) unit spheres. On such a 
surface M the mean curvature satisfies H = 1 + ÖH, where SH = 0(f) and is 
supported on the regions of transition between the Delaunay pieces and the 
unit spheres, f is the largest absolute value of the r parameter of a Delaunay 
piece contained in M. We want to find a smooth function z on M such that 
the image of ƒ + zÇ: M —• E3 is a cmc surface, where ƒ : M —• Ez is the 
immersion of M in E3 and £ its Gauss map. 

The linearized equation for z is (A^ + 2)z = — 4\A\2SH where A is the 
second fundamental form of M and h = ^\A\2g, g being the induced metric 
on M. As f —> 0 both the positive and negative curvature regions of M with 
respect to the h metric tend to round spheres. This allows us to understand 
the spectrum of L^ = A/! + 2 on M. In particular we see that Lh has 
small eigenvalues corresponding to what we call approximate kernel. We need 
—4\A\26H to be "orthogonal" to the approximate kernel. This amounts to the 
following "balancing condition" : At each of the spheres used in constructing 
M consider the unit vectors pointing in the direction of the Delaunay pieces 
attached to this sphere. We request that the sum of these vectors at each 
sphere is 0, where the sum is weighted with weights depending only on (and 
roughly proportional to) the r parameter of the corresponding Delaunay piece. 

We try to "invert" Lh now as follows: We define three suitable functions at 
each positive or negative curvature region of M, which functions are far away 
from being orthogonal in L2 to the approximate kernel. We call their span 
the "substitute kernel" and we prove the following: Given a (smooth enough, 
bounded) function v on M there is a function u such that L^u — v = w is 
an element of the substitute kernel. Assume for a moment that there is no 
approximate kernel, as happens if we have a doubly periodic surface with a 
lot of symmetry, for example. Then we would like to prove that if f is small 
enough, there is a (small) (/> such that z+(j) solves the nonlinear problem. To do 
so we obtain suitable estimates for u and for the error of linearization and then 
we use the Schauder fixed point theorem to solve the problem. Note that these 
estimates are borderline in the sense that while 6H = 0(f) and \A\ = O^"1), 
we need z\A\ = o(f) for our scheme to work. An extra difficulty is that we 
have to define a new metric to obtain suitable higher-order (Schauder-type) 
estimates. 

In general, we do have an approximate kernel and we deal with it as follows: 
We construct a family of surfaces F around M. This family is parametrized by 
small elements w of the substitute kernel decaying sufficiently fast at infinity. 
On the surface M E F corresponding to w we have L^u + 4|A\2SH = w. (We 
identify the function spaces on M and M.) Then we apply the Schauder fixed 
point theorem on a suitable set of (w, ^)'s to prove what we want. 

The above construction settles the cases m > [g/2] -h 3. For small m's we 
have to work harder. We illustrate our approach by considering a specific 
construction in the case g = 3, m = 0. Consider the graph consisting of 
an equilateral triangle and three line segments connecting the center of the 
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triangle with its vertices. We would like to construct an M as above made of 
four spheres, each centered at one vertex, and six Delaunay pieces connecting 
the spheres and corresponding to the edges of the graph. For simplicity we 
(would) impose the maximum possible symmetry on the construction and then 
try to perturb as above to obtain what we want. This approach fails to work 
because the lengths of the Delaunay pieces would not match up in general 
to make a closed surface. (The balancing condition can be handled.) So we 
consider the universal cover of the above graph, still with maximum symmetry 
but with length of the sides different from the length of the other edges. We 
build an M around this graph and around it a family F as above. Our family 
now has an extra degree of freedom: the r-parameter of the surfaces is allowed 
to vary in some suitable interval around r. The surfaces M e F fail to close up 
by a certain period l(M) G R. By studying l(M) we prove that if we choose 
f small enough and then the lengths of the Delaunay pieces suitably large, 
we can modify the application of the Schauder fixed point theorem above to 
obtain an M G F which can be perturbed along the normal to give a cmc 
surface and which has l(M) = 0, hence producing the desired surface. The 
estimates on l(M) are based on the fact that if 2p(r) is the period of the 
Delaunay surface of parameter r, then 

1 dp 
log \T\ dr 

(Refer to [Kl] for the precise definition of r.) 
The author wishes to thank Professor R. Schoen for suggesting this problem 

to him and for many valuable suggestions and advice. 
NOTE ADDED IN PROOF. The following necessary conditions for the exis­

tence of finite type embedded cmc surfaces have been established: Each end 
is contained in a cylinder and m / 1, by W. Meeks. The ends are asymp­
totically Delaunay and they satisfy a balancing condition, and m = 2 implies 
Delaunay, by N. Korevaar, R. Kusner, and B. Solomon. 
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