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1 Introduction and statement of the results

In this paper we shall present a construction of complete surfaces M in R3 with finitely
many ends and finite topology, and with nonzero constant mean curvature (CMC). This
construction is parallel to the well-known original construction by Kapouleas [5], but we
feel that ours is somewhat simpler analytically, and controls the resulting geometry more
closely. On the other hand, the surfaces we construct have a rather different, and usually
simpler, geometry than those of Kapouleas; in particular, all of the surfaces constructed
here are noncompact, so we do not obtain any of his immersed compact examples. The
method we use here closely parallels the one we developed recently [10] to study the very
closely related problem of constructing Yamabe metrics on the sphere with k isolated sin-
gular points, just as Kapouleas’ construction parallels the earlier construction of singular
Yamabe metrics by Schoen [18].

The original examples of noncompact CMC surfaces were those in the one-parameter
family of rotationally invariant surfaces discovered by Delaunay in 1841 [2]. One extreme
element of this family is the cylinder; the ‘Delaunay surfaces’ are periodic, and the
embedded members of this family (which are called unduloids) interpolate between the
cylinder and an infinite string of spheres arranged along a common axis. The family
continues beyond this, but the elements now are immersed (and are called nodoids).

The rôle of Delaunay surfaces in the theory of complete CMC surfaces is analogous
to the rôle of catenoids (and planes) in the study of complete minimal surfaces of finite
total curvature. For example, just as any complete minimal surface with two ends must
be a catenoid [19], it was proved by Meeks [14] and Korevaar, Kusner and Solomon [8]
that any Alexandrov embedded constant mean curvature surface with at most two ends
is necessarily a Delaunay surface. A rather more remarkable theorem, paralleling the fact
that any end of a complete minimal surface of finite total curvature must be asymptotic
to a catenoid or a plane, is the fact that any embedded end of a CMC surface must be
asymptotic to one of these rotationally symmetric Delaunay surfaces (and in particular,
must be cylindrically bounded).
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The fact that such CMC surfaces exist in abundance was proved, as noted above,
by Kapouleas [5] in 1987. Further developments were given in [7]. More recently, using
different methods based on the Schwarz reflection principle, Grosse-Brauckmann has
constructed families of CMC surfaces with k ends and with k-fold dihedral symmetry [3].

We shall denote by Mg,k the moduli space of CMC surfaces with genus g and k ends
of Delaunay type. This space decomposes as

Mg,k = Mu
g,k ∪Mn

g,k ∪Mm
g,k,

where Mu
g,k is the set of those surfaces all of whose ends are asympotic to embedded

Delaunay surfaces (unduloids), Mn
k,g is the set of those surfaces all of whose ends are

asympotic to immersed Delaunay surfaces (nodoids) and Mm
k,g is the set of those surfaces

having ends of both types.
The general analysis of the moduli space of Alexandrov embedded CMC surfaces

was considered by the first author, Kusner and Pollack [9] (essentially merely translating
the analogous results in [13] for the singular Yamabe problem). The results there easily
translate to the slightly more general moduli space Mg,k (the elements of which are not
required to be Alexandrov embedded, but simply have Delaunay ends) without any diffi-
culty. The basic result is that Mg,k is a locally real analytic variety of virtual dimension
3k (before dividing out by the action of the group of Euclidean motions). This virtual
dimension is attained at any point Σ ∈ Mg,k where a certain analytic nondegeneracy
criterion is satisfied. This condition will be explained in some detail below. It seems
very difficult to decide whether any of the surfaces constructed by Kapouleas satisfy
this nondegeneracy criterion. This was one motivation for the present work, because the
solutions we construct do satisfy it.

Recently, Kusner, Grosse-Brauckmann and Sullivan have shown that modulo Eu-
clidean motions, M0,3 is a 3-ball [4]; it is plausible from their work that this particular
moduli space contains no degenerate elements.

It is a consequence of the present work and our more recent paper [11] concerning
connected sums of nondegenerate CMC surfaces that many more of these CMC moduli
spaces contain nondegenerate elements and thus attain their correct dimension.

We now state our main result in more detail. This result is simply that CMC surfaces
may be constructed out of certain building blocks in a specified and controlled manner.
There are only two types of building blocks: Delaunay surfaces (or more precisely, halves
of Delaunay surfaces) and minimal k-noids. The former we have already encountered; on
the other hand, a minimal k-noid is by definition a complete minimal surface Σ of finite
total curvature with k ends. Denote the moduli space of minimal k-noids of genus g by
Hg,k. This space (or rather, a very closely associated one) has been studied by Perez
and Ros [17], and they prove the result corresponding to that of [9] that this space is
real analytic of virtual dimension 3k. Elements of these spaces have been shown to exist
by the classical Weierstrass method, and more recently elements have been constructed
for g very large by Kapouleas by a desingularization scheme [6] and a connected sum
result, analogous to that in [11], has been obtained by S. D. Yang [21]. Again there is a
notion of nondegeneracy of such surfaces, and a surface Σ is a smooth point in its cor-
responding moduli space precisely when it satisfies this nondegeneracy condition. Using
the Weierstrass representation it is possible to establish the existence of nondegenerate
minimal k-noids. For example, recently Cosin and Ros [1] have proved the existence of
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nondegenerate minimal k-noids of genus 0 with specified weight parameters (in the sense
described later here) for every k. Later in this paper, in §8.3, we survey what is currently
known about the existence of nondegenerate k-noids. Finally, as noted earlier, any end
of an element Σ ∈ Hg,k is asymptotic to the end of a plane or a catenoid. Again, we
decompose

Hg,k = Hs
g,k ∪Hm

g,k ∪H0
g,k,

where Hs
g,k is the set of surfaces all of whose ends are asymptotic to catenoids all with

the same orientation, Hm
g,k is the set of surfaces whose ends are asymptotic to catenoids

with different orientations and H0
g,k is the set of surfaces having at least one planar end.

We may now state the main result of this paper.

Theorem 1 Fix any Σ0 ∈ Hs
g,k∪Hm

g,k and assume that Σ0 is nondegenerate. Then there
exist two distinct families of CMC surfaces Σ+

ε ,Σ
−
ε ∈ Mg,k, ε ∈ (0, ε0), constructed by

gluing half-Delaunay surfaces onto each end of the dilated surface εΣ0.

The surfaces Σ±ε have the property that for any R > 0, the dilated surfaces ε−1Σ±ε
restricted to the ball BR(0) converge in the C∞ topology to the restriction of Σ0 to BR(0),
as ε tends to 0. Furthermore, if Σ0 ∈ Hs

g,k then Σ+
ε ∈ Mu

g,k and Σ−ε ∈ Mn
g,k, while if

Σ0 ∈ Hm
g,k then Σ±ε ∈Mm

g,k. Finally, Σ±ε are regular points of Mg,k.

The two distinct families of CMC surfaces in Mg,k associated to each Σ0 correspond
to gluing half-Delaunay surfaces (which may be either unduloids or nodoids) onto each
end of the dilated surface εΣ0 according to the chosen orientation for Σ0. If all ends of Σ0

are asymptotic to similarly oriented catenoids, then we attach either all unduloids or all
nodoids, whereas if the ends of Σ0 are asymptotic to differently oriented catenoids, and
if we attach unduloids to the subset of ends which correspond to one orientation, then
we must attach nodoids to the other ends, which correspond to the other orientation.

Our proof has some novel features. Rather than finding solutions as perturbations
off of degenerating families of approximate solutions, as has been common in such con-
structions, we instead find (infinite dimensional) families of CMC surfaces as normal
graphs over each of the component pieces, the half-Delaunay surfaces and a truncated
k-noid. By studying the Cauchy data of the functions producing these normal graphs,
and prove that we may match the Cauchy data from the inner piece (the graph over
the k-noid) with that from the ends, thus one advantage of this procedure is that more
of the technical complications caused by the nonlinearities are avoided than would be
otherwise. Another important issue is that in previous constructions ([5], [7], [21]) one
must face the delicate issue of balancing forces, or creating small nonvanishing forces in
the approximate configurations. We do not need to deal with this issue here because we
implicitly use the balancing of forces already existing in the minimal k-noids.

This paper achieves two main geometric goals. The first is that we establish a specific
method for passing from minimal k-noids to complete CMC surfaces with k ends. In
fact, we get an embedding of (the nondegenerate elements in) (Hs

g,k ∪Hm
g,k)× (0, ε) into

Mg,k; this parametrizes an end of this latter moduli space. Furthermore, combining the
result here with the connected sum construction of [11], we also establish the existence of
nondegenerate elements in Mg,k for many values of g and k. We shall return to this latter
problem, and a study of various other aspects of these moduli spaces, in a forthcoming
paper.
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The plan of this paper is as follows. We first discuss the Delaunay surfaces in some de-
tail, collecting and proving various technical properties concerning them that we require
later, specifically those concerned with their behavior in the singular limit, as they ap-
proach the bead of spheres. This is followed by the analysis of the Jacobi (i.e. linearized
CMC) operator, especially in this singular limit, for the half-Delaunay surfaces. We then
use this to discuss the full family of CMC surfaces in a neighborhood of these rotationally
invariant surfaces, as usual, keeping careful track of the behavior in the limit. Next, we
turn to a discussion of minimal surfaces with k catenoidal ends, i.e. the k-noids, briefly
reviewing their geometry and then treating the relevant aspects of the linear analysis of
their Jacobi operator. After that, we can approach the family of CMC surfaces obtained
as normal graphs over suitable truncations of these k-noids. At last, we can put all of
this together and prove that it is possible to match the Cauchy data, and so obtain the
proof of the main theorem.
Acknowledgment : This paper was written when the second author was visiting Stan-
ford University. He would like to take this opportunity to thank the American Institute
of Mathematics (AIM) and Stanford’s Mathematics Department for their support and
hospitality.

The authors would also like to thank K. Grosse-Brauckmann and R. Kusner for
pointing out that our construction should be extended to cover immersed as well as
embedded ends.

2 Notation, conventions and definitions

We recall some basic facts about the geometry of immersed surfaces, and review various
ways the equations for constant mean curvature may be specified. Some good references
for this material are the book by Osserman [16] and the survey article by Wente [20].

Suppose that Σ is given as the image of a regular immersion x : U −→ R3. Here U is
an open set in R2 with coordinates u = (u1, u2). The unit normal to Σ is defined to be

ν(u1, u2) =
∂u1x× ∂u2x
‖∂u1x× ∂u2x‖

,

and the components of the first and second fundamental forms g and B are then

E = 〈∂u1x, ∂u1x〉, F = 〈∂u1x, ∂u2x〉, G = 〈∂u2x, ∂u2x〉

L = 〈∂2
u1u1

x, ν〉, M = 〈∂2
u1u2

x, ν〉, N = 〈∂2
u2u2

x, ν〉. (1)

The principal curvatures k1 and k2 are the eigenvalues of B relative to g. The mean
curvature is defined to be the sum (not the average) of the principal curvatures, H :=
k1 + k2, and the Gauss curvature is their product, K := k1k2.

We shall almost always be using orthogonal parameterizations (that is to say, param-
eterizations for which F = 0), in which case the formulæ for H and K reduce to:

H =
L+N

E
, K =

LN −M2

E2
.

The important equations of surface theory are the Gauss and Codazzi equations,
which link the intrinsic and extrinsic geometry of Σ. Rather than write these down in
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general, we consider the special case where the parameterization is isothermal, so that
E = G := e2ω and F = 0. Let u = u1 + iu2 be the corresponding complex coordinate,
and define the Hopf differential

φ(u) du2 = (1/2(L−N)− iM) du2. (2)

The principal curvatures are then given by

k1 =
H

2
− |φ| e−2w, k2 =

H

2
+ |φ| e−2w.

If Σ is CMC, so H is constant, then the Codazzi equations are equivalent to the holo-
morphy of this differential. The Gauss equation is simply

∆ω +
H2

4
e2ω − |φ|2 e−2ω = 0. (3)

3 Delaunay surfaces

We now make a detailed study of the first of the basic building blocks we use later, the
Delaunay surfaces of revolution. As already mentionned in the introduction, Delaunay
surfaces can be classified into two different types : the embedded Delaunay surfaces which
are called unduloids and the immersed Delaunay surfaces which are called nodoids.

3.1 Definition and basic equations

The Delaunay surfaces mentioned in the introduction are surfaces of revolution, and so
we use cylindrical coordinates. In particular, if the axis of rotation is the vertical one,
and if t is a linear coordinate along this axis and θ is the angular variable around it, then
we consider surfaces Σ given (at least locally) by the parametrization

x(t, θ) := (ρ(t) cos θ, ρ(t) sin θ, t). (4)

The condition that such a surface has constant mean curvature 1 (or −1 depending on
the chosen orientation) gives an ordinary differential equation for the function ρ, and
solutions of this equation correspond to the Delaunay surfaces.

To obtain this ODE, first note that the unit normal of Σ at x(t, θ) is

ν(t, θ) :=
1√

1 + ρ2
t

(− cos θ,− sin θ, ρt),

where subscripts denote derivatives, and then that the metric tensor and second funda-
mental form are given by

g = (1 + ρ2
t ) dt

2 + ρ2 dθ2, B = − ρtt√
1 + ρ2

t

dt2 +
ρ√

1 + ρ2
t

dθ2. (5)

It follows that the mean curvature is given by the expression

H = −ρtt (1 + ρ2
t )
−3/2 + ρ−1 (1 + ρ2

t )
−1/2, (6)
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and so the condition H ≡ 1 leads to the equation

ρtt −
1
ρ

(1 + ρ2
t ) + (1 + ρ2

t )
3/2 = 0, (7)

while the condition H ≡ −1 yields

ρtt −
1
ρ

(1 + ρ2
t )− (1 + ρ2

t )
3/2 = 0. (8)

There are two special solutions of (7) that can be determined immediately. The first
is the constant solution ρ1 ≡ 1, the cylindrical graph of which is the cylinder of radius
1. The other, ρ0 =

√
4− (t− 2)2, for |t − 2| ≤ 2, corresponds to the sphere of radius

2 centered at (0, 0, 2). The singular limit of the Delaunay surfaces mentioned in the
introduction corresponds to the periodic extension of ρ0 to all of R.

3.1.1 Embedded Delaunay surfaces : the unduloids

For all ε ∈ (0, 1), we define ρε to be the solution of (7) which attains its minimum value
ρε(0) = ε at t = 0. By differentiating, we see that if ρ is a solution of (7) then

H(ρ, ρt) := ρ2 − 2ρ√
1 + ρ2

t

,

is constant. In particular, H(ρε, (ρε)t) = ε (ε − 2) < 0. Introduce the new parameter
τ > 0 by τ2 := ε (2− ε), so that ε = 1−

√
1− τ2 and τ ∈ (0, 1) as well. We then deduce

immediately the

Proposition 1 For all ε ∈ (0, 1), the solution ρε of (7) with ρε(0) = ε, (ρε)t(0) = 0 is
periodic and varies between the limits

ε = 1−
√

1− τ2 ≤ ρε ≤ 1 +
√

1− τ2 = 2− ε.

In particular, ρε ≤ 2 for all ε.

These solutions constitute the (embedded) Delaunay family; the surfaces determined
by them, as well as their images under Euclidean motions, are Delaunay surfaces called
unduloids.

To simplify notation, we often drop the subscript ε (which should not be confused
with the standard partial derivative notation). We also introduce a new parameterization,
changing both the independent and dependent variables, which simplifies the study of
the ρε. A change of independent variable corresponds to the introduction of a function
t = k(s), which should be a diffeomorphism of R onto itself. The function k is chosen so
that the corresponding parameterization

(s, θ) −→ (ρ ◦ k cos θ, ρ ◦ k sin θ, k),

is isothermal. This corresponds to the condition

(1 + ρ2
t ) k

2
s = ρ2. (9)
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With the initial condition k(0) = 0 and noting that ks > 0, then ρ uniquely determines k.
Also, ks 6= 0 (so long as ρ 6= 0, which is always the case here), and so using the periodicity
of ρ we see that k must be a diffeomorphism. Now, use the parameter τ ∈ (0, 1) from
above and define the function σ by

τ eσ = ρ ◦ k. (10)

A brief calculation shows that

1 + ρ2
t =

1
1− σ2

s

, and ρtt =
σss

τeσ(1− σ2
s)2

. (11)

In terms of the new variable s and function σ, the first and second fundamental forms
are now

g = τ2 e2σ
(
ds2 + dθ2

)
, B = − τ eσ σss√

1− σ2
s

ds2 + τeσ
√

1− σ2
s dθ

2, (12)

and (7) becomes
σss + τ eσ

√
1− σ2

s − (1− σ2
s) = 0. (13)

We can now see that this parameterization is indeed simpler.

Proposition 2 The function σ defined by (10) satisfies the equation

σss +
τ2

2
sinh(2σ) = 0, (14)

and in fact
σ2

s + τ2 cosh2 σ = 1. (15)

Conversely, for any τ ∈ (0, 1), suppose σ satisfies (15) (and hence also (14)) with
τ2 cosh2 σ(0) = 1, and that t = k(s), where k(0) = 0 and

ks =
τ2

2
(1 + e2σ), (16)

then, the function ρ defined by ρ ◦ k = τ eσ satisfies (7) and ρ(0) = ε where ε = 1 −√
1− τ2.

Proof: By definition of τ , we have

H(ρ, ρt) = ρ2 − 2ρ√
1 + ρ2

t

= −τ2.

Since ρ ◦ k = τ eσ and, by (11), 1 + ρ2
t = (1− σ2

s)
−1, this equality becomes

2 τ eσ
√

1− σ2
s − τ2 e2σ = τ2,

which yields directly (15), and hence (14), by differentiation.
The converse, that starting from σ and τ , then defining t = k(s) as in the statement

of the Proposition, the corresponding function ρ satisfies (7) is a straightforward calcu-
lation which we leave to the reader. Notice that the Gauss and Codazzi equations are
automatically fulfilled. 2
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Remark 1 Translating back to the notation of §2, the log of the conformal factor ω and
the norm of the coefficient function of the Hopf differential are given by

ω = σ + log τ and |φ| = τ2

2
,

c.f. (2) and (3).

Henceforth, the functions ρ, σ and k will always be related in the manner dictated by
this Proposition; furthermore, the dependence on the parameters ε and τ will not always
be written explicitly, but we shall use them interchangeably. We shall call either of these
parameters the necksize of the corresponding Delaunay solution.

3.1.2 Immersed Delaunay surfaces : the nodoids

For all ε > 0, we now define ρ̄ε to be the solution of (8) which attains its minimum value
ρ̄ε(0) = ε at t = 0. By differentiating, we see that if ρ̄ is a solution of (8) then

H̄(ρ̄, ρ̄t) := ρ̄2 +
2ρ̄√
1 + ρ̄2

t

,

is constant. In particular, H̄(ρ̄ε, (ρ̄ε)t) = ε (ε + 2) > 0. Introduce the new parameter
τ > 0 by τ2 := ε (2 + ε), so that ε =

√
1 + τ2 − 1 and τ > 0 as well. We then deduce

immediately the

Proposition 3 The solution ρ̄ε of (8) with ρ̄ε(0) = ε, (ρ̄ε)t(0) = 0 is defined in some
interval (−T̄ε, T̄ε), with 0 < T̄ε < +∞, and varies between the limits

ε =
√

1 + τ2 − 1 ≤ ρ̄ε ≤ τ =
√
ε2 + 2ε.

Moreover
lim

t→±T̄ε

ρ̄ε = τ, and lim
t→±T̄ε

(ρ̄ε)t = ±∞.

As for unduloids, we introduce an isothermal parameterization

(s, θ) −→ (τeσ̄ cos θ, τeσ̄ sin θ, k̄),

of these surfaces. Proposition 2 becomes

Proposition 4 The function σ̄ is negative and satisfies the equation

σ̄ss +
τ2

2
sinh(2σ̄) = 0, (17)

and in fact
σ̄2

s + τ2 sinh2 σ̄ = 1. (18)

Conversely, for any τ > 0, if σ̄ is negative and satisfies (18) (and hence also (17)) with
τ2 sinh2 σ̄(0) = 1, and if t = k̄(s), where k̄(0) = 0 and

k̄s =
τ2

2
(1− e2σ̄), (19)

then, the function ρ̄ defined by ρ̄◦ k̄ = τ eσ̄ satisfies (8) and ρ̄(0) = ε where ε =
√

1 + τ2−
1.
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Proof: We write ρ̄ ◦ k̄ = τeσ̄. Notice that (11) is still available. The fact that H̄(ρ̄, ρ̄t)
is constant equal to τ2 yields

2 τ eσ̄
√

1− σ̄2
s + τ2 e2σ̄ = τ2,

which gives (18), and hence (17) by differentiation. 2

Finally, for all ε > 0, we define ρ̃ε to be the solution of (7) which attains its maximum
value ρ̃ε(0) = 2 + ε at t = 0. Again, if ρ̃ is a solution of (7), we know that

H(ρ̃, ρ̃t) := ρ̃2 − 2ρ̃√
1 + ρ̃2

t

,

is constant. In particular, H(ρ̃ε, (ρ̃ε)t) = ε (ε+2) = τ2 > 0. We then deduce immediately
the

Proposition 5 For all ε > 0, the solution ρ̃ε of (7) with ρ̃ε(0) = 2 + ε, (ρ̃ε)t(0) = 0 is
defined in some interval (−T̃ε, T̃ε), with 0 < T̃ε < +∞, and varies between the limits√

ε(ε+ 2) = τ ≤ ρ̃ε ≤ 1 +
√

1 + τ2 = 2 + ε.

Moreover
lim

t→±T̃ε

ρ̃ε = τ, and lim
t→±T̃ε

(ρ̃ε)t = ∓∞.

Again, we introduce an isothermal parameterization

(s, θ) −→ (τeσ̃ cos θ, τeσ̃ sin θ, k̃),

We have

Proposition 6 The function σ̃ is positive and satisfies the equation

σ̃ss +
τ2

2
sinh(2σ̃) = 0, (20)

and in fact
σ̃2

s + τ2 sinh2 σ̃ = 1. (21)

Conversely, for any τ > 0, if σ̃ is positive and satisfies (21) (and hence also (20)) with
τ2 sinh2 σ̃(0) = 1, and if t = k̃(s), where k̃(0) = 0 and

k̃s =
τ2

2
(1− e2σ̃), (22)

then, the function ρ̃ defined by ρ̃ ◦ k̃ = τ eσ̃ satisfies (7) and ρ̃(0) = 2 + ε where ε =√
1 + τ2 − 1.
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Proof: We write ρ̃ ◦ k̃ = τ eσ̃. The fact that H(ρ̃, ρ̃t) is constant equal to τ2 yields

2 τ eσ̃
√

1− σ̃2
s − τ2 e2σ̃ = −τ2,

and again this gives (18), and hence (17). 2

The two solutions ρ̄ε and ρ̃ε can be glued together by translating the graph of ρ̃ε along
the z axis by the amount T̄ε − T̃ε and then this surface can be extended by periodicity.
Notice that the fact that one surface has mean curvature 1 and the other −1 is consistent
with the different orientations chosen for the gluing. These solutions constitute the
(immersed) Delaunay family; the surfaces determined by them, as well as their images
under Euclidean motions, are Delaunay surfaces which are called nodoids.

Notice that for the corresponding isothermal parameterizations of the two pieces of
the nodoid, the two functions σ̄ and σ̃ are solutions of the same equation. Therefore,
we shall refer to both of them as σ̄ and k̄, so that the parameterization is now global,
keeping in mind that positive σ̄ corresponds to ρ̃.

3.2 Uniform estimates for Delaunay solutions in the singular limit

In this section we present a series of technical lemmata regarding the behavior of various
quantities associated to the Delaunay solutions as ε (or τ) tends to zero. Some of the
estimates below are easier to obtain for ρ or ρ̄ and some for σ or σ̄, and we shall use these
functions interchangeably. We first estimate the period of σ; the corresponding estimate
for ρ is not required later so we merely state it and refer to [5] for its proof. Then we
obtain some simple ‘global’ estimates for ρ, which are rather weak, but frequently useful,
as well as a corresponding simple estimate for σ. Finer estimates for ρ when t is not too
large then lead to a good comparison between the variables s and t.

3.2.1 Unduloids in the singular limit

In this section, we shall only consider unduloids and we shall do so without further
comment. We start with the simple

Proposition 7 Let Sε and Tε denote the periods of σ and ρ, respectively. Then as
functions of τ and ε,

Sε = −4 log τ +O(1) = −2 log ε+O(1),

and
Tε = 4 + τ2 log(1/τ) +O(τ2) = 4 + 2 ε log(1/ε) +O(ε).

Proof: As stated above, we only check the statement about Sε. First, using (15), we see
that

1
4
Sε =

∫ 0

σ(0)

1√
1− τ2 cosh2 x

dx.

Expand the denominator into exponentials and change variables, setting u = ex. Then,
letting

A(τ) := eσ(0) =
1
τ
−
√

1
τ2
− 1 =

τ

2
+O(τ3),
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this becomes
1
4
Sε =

∫ 1

A(τ)

1√
u2 − 1

4τ
2(u2 + 1)2

du.

Changing variables once again, reduces this to an integral of the form∫ 1−O(τ2)

τ/2

1√
v2 − τ2/4

dv.

Finally, this last integral may be computed explicitly, and equals − log τ + O(1). The
estimate for Sε in terms of ε follows from the relationship between ε and τ . 2

To place the next result into context, note that one limiting solution of the basic
equation (7) is ρ0 :=

√
4− (t− 2)2, the equation for the sphere. Also, the catenoid of

necksize ε (which is a solution of the equation corresponding to (6) when H = 0) is given
as a cylindrical graph by the function ρc := ε cosh(t/ε). The function ρ may be compared
to each of these solutions.

Proposition 8 For any ε ∈ (0, 1), the Delaunay solution ρ := ρε satisfies the following
bounds

ε ≤ ρ ≤ ε cosh(t/ε), (23)

1 + ρ2
t ≤ ρ2

ε2
(comparison with the equation of a catenoid), (24)

ρ2(1 + ρ2
t ) ≤ 4 (comparison with the equation of a sphere), (25)

for any t ∈ R.

Proof: It is clear from (15) that σ is monotone increasing on [0, Sε/2] and monotone
decreasing on [Sε/2, Sε]. Correspondingly, ρ is monotone increasing on [0, Tε/2] and
monotone decreasing on [Tε/2, Tε]. In particular, its value at 0 is its absolute minimum,
so the lower bound in (23) is valid.

Now multiply (7) by 2 ρt(1 + ρ2
t )
−1 and integrate to get

log(1 + ρ2
t ) = 2 log(ρ/ε)− 2

∫ t

0
ρt

√
1 + ρ2

t du. (26)

Since ρt ≥ 0 for t ∈ [0, Tε/2], we get (24). Next, because ρ ≥ ε, we may write ρ =
ε cosh(w/ε). Inserting this into (24) leads to the inequality w2

t ≤ 1. Since w(0) = 0, we
conclude that w ≤ t for all t ∈ [0, Tε/2] and the second part of (23) follows by periodicity.

Since the final estimate (25) is not required later, we shall not prove it here. 2

Now we come to the more refined estimates for ρ.

Proposition 9 There exists c > 0 such that, for any ε ∈ (0, 1) and |t| ≤ ε

2
log(

c

ε
), the

Delaunay solution ρ = ρε satisfies

|ρ− ε cosh(t/ε)| ≤ c ε2 e3|t|/ε and |ρt − sinh(t/ε)| ≤ c ε e3|t|/ε.

11



Proof: Using the fact that τ2 = 2 ε− ε2, we can rewrite the identity

ρ2 − 2ρ√
1 + ρ2

t

= −τ2,

as

1 + ρ2
t =

(
τ2 + ε2

τ2 + ρ2

)2
ρ2

ε2
.

Since ρ ≥ ε we already obtain

0 ≥ 1 + ρ2
t −

ρ2

ε2
=

2τ2 + ε2 + ρ2

(τ2 + ρ2)2
ρ2

ε2
(ε2 − ρ2).

Using (23), we can estimate

2τ2 + ε2 + ρ2

(τ2 + ρ2)2
ρ2

ε2
≤ 2
τ2

cosh2(t/ε) ≤ 2
ε

cosh2(t/ε).

Hence

0 ≥ 1 + ρ2
t −

ρ2

ε2
≥ 2
ε

(ε2 − ρ2) cosh2(t/ε).

Set ρ = ε cosh(w/ε). The previous inequalities yield

0 ≥ w2
t − 1 ≥ −2 ε cosh2(t/ε).

Hence, we have finally proved that, for all t ∈ [0,−ε log(2ε)/2]

(1− 2ε cosh2(t/ε))1/2 ≤ wt ≤ 1. (27)

Now integrate this inequality, using that (1 − x)1/2 ≥ 1 − x when 0 < x < 1 and
cosh2 x ≤ e2|x| for all x ∈ R, to get

−ε2 e2t/ε ≤ −2ε2
∫ t/ε

0
cosh2 s ds ≤ w − t ≤ 0.

We conclude that for t ∈ [0,−ε/2 log(2ε)], we have

ε cosh(t/ε− ε e2t/ε) ≤ ρ ≤ ε cosh(t/ε).

The estimate for ρ follows at once. To get the estimate for ρt, use (27) and the relationship
ρt = wt sinh(w/ε). 2

We can finally give a quantitative estimate for the relationship between the variables
t and s, or equivalently, for the function k.

Proposition 10 For |s| < Sε/8, the function t = k(s) admits the expansion

k = εs+
ε2

8
e2s +O(ε2 log ε),

uniformly as ε→ 0.

12



Proof: It suffices to consider the case t = k(s) ≥ 0. The estimate for ρ from the last
Proposition implies

(ρ ◦ k)2 =
1
4
ε2e2k/ε +O(ε2) +O(ε3e4k/ε) +O(ε4e6k/ε).

The errors here are all of size no greater than O(ε2) precisely when |k| ≤ −ε/4 log ε (up
to an additive constant). Assuming that s0 > 0 is chosen so that this bound is satisfied,
then by the definition of τ and σ,

τ2 e2σ =
ε2

4
e2k/ε +O(ε2).

Now recall the definition of k via its derivative from Proposition 2,

ks =
τ2

2
+
τ2

2
e2σ = ε+

ε2

8
e2k/ε +O(ε2).

Since k ≤ (ε/4) log(1/ε), we obtain e2k/ε ≤ ε−1/2, and so ks = ε+O(ε3/2) in this range.
Integrate to get k = εs + O(ε3/2s) for 0 ≤ s ≤ s0. From this equation, we see that
k ≤ (ε/4) log(1/ε) provided s ≤ Sε/8, so that we may take s0 to be this last value. Now
use this formula for k in terms of s in the estimate for ks above to get that

ks = ε+
ε2

8
e2s +O(ε2),

for 0 ≤ s ≤ Sε/8. Integrating this, at last, gives the estimate of the Proposition. 2

Collecting the results of Proposition 9 and the result of Proposition 10, we obtain :

Proposition 11 There exists a constant c > 0 independent of ε such that the following
inequalities hold

τ eσ ≥ c ε3/4, τ2 cosh(2σ) ≤ c ε1/2, if s ∈ [Sε/8, 3Sε/8],

and
τ2 cosh(2σ) ≤ c ε2 e2s, if s ∈ [3Sε/8, Sε/2].

Proof: Recall that Sε = −2 log ε+O(1). It follows from Proposition 10 that

k = ε s+O(ε3/2) if s ∈ [0, Sε/8].

Therefore, using Proposition 9, we obtain the expansion

τ eσ = ε cosh s+O(ε3/2es) and τe−σ =
2

cosh s
+O(ε1/2e−s), (28)

if s ∈ [0, Sε/8]. Since σ is increasing in [0, Sε/2], we conclude that

τ eσ ≥ τ eσ(Sε/8) ≥ c ε3/4,

13



for all s ∈ [Sε/8, Sε/2]. Similarly, since |σ| is decreasing in [0, Sε/4] and increasing in
[Sε/4, Sε/2], we get

τ2 cosh(2σ) ≤ τ2 cosh(2σ(Sε/8)) ≤ c ε1/2,

for all s ∈ [Sε/8, 3Sε/8]. Finally, since we always have

σ(s) = −σ(Sε/2− s),

it follows at once that, for all s ∈ [Sε/2− Sε/8, Sε/2], we have

τ2 cosh(2σ(s)) = τ2 cosh(2σ(Sε/2− s)) ≤ c e2s−Sε ≤ c ε2 e2s.

This ends the proof of the Proposition. 2

We finally come to some simple estimates for σ. The first is that

τ2 cosh(2σ) ≤ 2− τ2. (29)

This follows trivially from multiplying cosh(2σ) = 2 cosh2 σ− 1 by τ2 and applying (15).
Next, define ξ := τ coshσ. This function is periodic of period Sε/2, attains its

maximum value sup ξ = 1 at s = 0, and its minimum inf ξ = τ at s = Sε/4. In addition,
it is a solution of the equation

ξss = (1 + τ2) ξ − 2ξ3, (30)

which satisfies
ξ2s = (ξ2 − τ2) (1− ξ2). (31)

Proposition 12 Suppose that s` is any sequence of real numbers, and that τ` → 0.
Let σ` denote the function σ when τ = τ`, we define ξ`(s) = τ` coshσ`(s + s`) and
ξ̃`(s) = τ2

` cosh(2σ`(s+ s`)). Then there exists an s0 ∈ R and subsequences of the ξ` and
ξ̃` which either converge uniformly to 0 or else converge respectively to 1/ cosh(s + s0)
and 2/ cosh2(s+ s0), uniformly on compact sets in R.

Proof : Since ξ2s = (ξ2 − τ2)(1 − ξ2), and |ξ| ≤ 1, we see that ξ is bounded in C1(R).
Using (30) we see that ξ` is bounded in C2(R). This allows us to extract a subsequence
which converges uniformly on compact subsets of R to a solution of

ξss = ξ − 2ξ3,

which satisfies
ξ2s = ξ2 (1− ξ2).

For ξ`, the claim follows since the only solutions of these equations are ξ ≡ 0 or ξ =
1/ cosh(s+ s0) for some s0 ∈ R. Finally, for ξ̃`, it is sufficient to notice that

ξ̃` = 2ξ2` − τ2
` ,

and the claim follows. 2

Because ξ attains its supremum at s = 0 we next conclude that

14



Corollary 1 As ε → 0 the families of functions τ coshσ and τ2 cosh(2σ) converge to
1/ cosh s and 2/ cosh2 s, respectively, uniformly on compact sets.

In fact, we may improve the range on which the convergence in this last Corollary
takes place.

Corollary 2 As ε→ 0,

τ coshσ = 1/ cosh s+O(ε1/2), τ2 cosh(2σ) = 2/ cosh2 s+O(ε1/2),

uniformly for |s| ≤ Sε/8.

Proof: Note that ξ = ks/ρ ◦ k. The estimates here follow from inserting the estimates
for k and ρ from Propositions 9 and 10 above. 2

Finally, since ξ is decreasing on [0, Sε/4] and increasing on [Sε/4, Sε/2], we obtain
using the previous Corollary, the

Proposition 13 For all η > 0, there exists an ε0 ∈ (0, 1) and an s0 > 0 such that
whenever ε ∈ (0, ε0) and N Sε/2 + s0 ≤ s ≤ (N + 1)Sε/2− s0 for some N ∈ Z, then

ξ = τ coshσ ≤ η and ξ̃ = τ2 cosh(2σ) ≤ η.

3.2.2 Nodoids in the singular limit

In this section, we derive for nodoids all the results which have been obtained for un-
duloids. Therefore, we shall only consider nodoids and we shall do so without further
comment, focusing our attention on the results whose proofs need modifications. We
start with the simple

Proposition 14 Let S̄ε denote the periods of σ̄ = σ̄ε. Then, as functions of τ and ε,

S̄ε = −4 log τ +O(1) = −2 log ε+O(1).

Proof: The proof is identical to the proof of Proposition 7 once we have noticed that

1
4
S̄ε =

∫ 0

σ̄(0)

1√
1− τ2 sinh2 x

dx.

We omit the details. 2

Now we come to the more refined estimates for ρ̄.

Proposition 15 There exists c > 0 such that, for any ε > 0 and |t| ≤ ε

2
log(

c

ε
), the

Delaunay solution ρ̄ = ρ̄ε satisfies

|ρ̄− ε cosh(t/ε)| ≤ c ε2 e3|t|/ε and |ρ̄t − sinh(t/ε)| ≤ c ε e3|t|/ε.
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Proof: Using the fact that τ2 = 2 ε+ ε2, we can rewrite the identity

ρ̄2 +
2ρ̄√
1 + ρ̄2

t

= τ2,

as

1 + ρ̄2
t =

(
τ2 − ε2

τ2 − ρ̄2

)2
ρ̄2

ε2
.

Since ρ̄ ≥ ε we already obtain

0 ≤ 1 + ρ̄2
t −

ρ̄2

ε2
=

2τ2 − ε2 − ρ̄2

(τ2 − ρ̄2)2
ρ̄2

ε2
(ρ̄2 − ε2) ≤ 2τ2

(τ2 − ρ̄2)2
ρ̄2

ε2
(ρ̄2 − ε2).

Let us choose Tm ∈ (0, T̄ε) to be the supremum of all T > 0 such that, for all t ∈ [0, T ]

ρ̄ ≤ 2 ε cosh(t/ε) and ρ̄ ≤ τ/
√

2.

For all t ∈ [0, Tm] we can thus estimate

0 ≤ 1 + ρ̄2
t −

ρ̄2

ε2
≤ 8
τ2

(ρ̄2 − ε2) cosh2(t/ε).

Set ρ̄ = ε cosh(w/ε) in the previous inequalities, we obtain

0 ≤ w2
t − 1 ≤ 8

ε2

2ε+ ε2
cosh2(t/ε) ≤ 4 ε cosh2(t/ε).

We have finally proved that, for all t ∈ [0, Tm]

1 ≤ wt ≤ (1 + 4 ε cosh2(t/ε))1/2, (32)

Now integrate this inequality, using that (1 + x)1/2 ≤ 1 + x/2 when 0 < x and cosh2 x ≤
e2|x| for all x ∈ R, to get

0 ≤ wε − t ≤ 2 ε2
∫ t/ε

0
cosh2 s ds ≤ ε2 e2t/ε.

We conclude that for 0 < t < Tm, we have

ε cosh(t/ε) ≤ ρ̄ ≤ ε cosh(t/ε+ ε e2t/ε).

In particular we obtain that Tm ≥ ε

2
log(c/ε) for some constant c > 0 independent of

ε > 0 and the estimate for ρ̄ follows at once. 2

Here also we can give a quantitative estimate for the relationship between the variables
t and s, or equivalently, for the function k̄.

Proposition 16 For |s| < S̄ε/8, the function t = k̄(s) admits the expansion

k̄ = εs− ε2

8
e2s +O(ε2 log ε),

uniformly as ε→ 0.
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Proof: The proof is identical to the proof of Proposition 10, the only difference being
that we must replace

ks =
τ2

2
+
τ2

2
e2σ by k̄s =

τ2

2
− τ2

2
e2σ̄.

We leave the details to the reader. 2

Proposition 11 is left unchanged and reads

Proposition 17 There exists a constant c > 0 independent of ε such that the following
inequalities hold

τeσ̄ ≥ c ε3/4, τ2 cosh(2σ̄) ≤ c ε1/2, if s ∈ [S̄ε/8, 3S̄ε/8],

and
τ2 cosh(2σ̄) ≤ c ε2 e2s, if s ∈ [3S̄ε/8, S̄ε/2].

We finally come to some simple estimates for σ̄. The first is that

τ2 cosh(2σ̄) ≤ 2 + τ2, (33)

This follows trivially from multiplying cosh(2σ̄) = 1 + cosh2 σ̄ by τ2 and applying (18).
Next, define ξ := τ cosh σ̄. This function is periodic of period S̄ε/2, attains its

maximum value sup ξ =
√

1 + τ2 at s = 0, and its minimum inf ξ = τ at s = S̄ε/4. In
addition, it is a solution of the equation

ξss = (1 + 2τ2) ξ − 2ξ3, (34)

which satisfies
ξ2s = (ξ2 − τ2) (1 + τ2 − ξ2). (35)

The results of Proposition 12 and 13 as well as the results of Corollary 1 and 2 still hold
for nodoids.

4 The Jacobi operator on degenerating unduloids

In this section we first give an explicit expression for the linearization of the mean cur-
vature operator about any one of the unduloids, and then proceed to develop its Fred-
holm theory on weighted Hölder spaces. This theory was already developed for weighted
Sobolev spaces in [9], and the results are essentially identical. In particular, we need
to find spaces on which this Jacobi operator is surjective. As usual, we also need this
surjectivity with as good control as possible as the necksize shrinks. The results and
proofs here are very close to those in [10].
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4.1 The Jacobi operator

Recall from the last section the cylindrical parameterization xε for the Delaunay surface
Σε of necksize ε, and the corresponding expression for its unit normal νε. Given any
function w on Σε, its normal graph

xw = xε + w ν

=

((
ρ− w√

1 + ρ2
t

)
cos θ,

(
ρ− w√

1 + ρ2
t

)
sin θ, t+

w√
1 + ρ2

t

)
,

(36)

gives a regular parametrization of a surface Σw, provided w is sufficiently small. In terms
of the coefficients of the first and second fundamental forms of this surface, the nonlinear
operator we are interested in takes the form

N (w) =
1
2
− LwGw − 2MwFw +NwEw

2(EwGw − F 2
w)

. (37)

It is well known that the linearization Lε of N at w = 0, which is usually called the
Jacobi operator for Σε, is given by

Lε = ∆Σε + |AΣε |2. (38)

In terms of the parameterization above, this may be written as

Lε =
1

ρ
√

1 + ρ2
t

∂t

(
ρ√

1 + ρ2
t

∂t

)
+

1
ρ2
∂2

θθ +
ρ2ρ2

tt + (1 + ρ2
t )

2

ρ2(1 + ρ2
t )3

. (39)

This looks complicated, but fortunately, becomes simpler in the (s, θ) coordinate system
introduced above. Now

Lε =
1

τ2e2σ

(
∂2

ss + ∂2
θθ + τ2 cosh(2σ)

)
. (40)

Removing the factor (τ2e2σ)−1, it will be sufficient to study the operator

Lεw = ∂2
ss + ∂2

θθ + τ2 cosh(2σ). (41)

Our main goal now is to study the boundary problem{
Lεw = f in [s0,+∞)× S1

w = φ(θ) on {s0} × S1,
(42)

uniformly down to ε = 0. Because of the rotational invariance of the operator Lε, we may
introduce the eigenfunction decomposition with respect to the cross-sectional Laplacian
∂2

θθ. In this way, we obtain operators

Lε,j = ∂2
ss + (τ2 cosh 2σ − j2), j ∈ Z.

Since we wish to deal only with real-valued functions, we shall use the eigenfunctions
χj(θ) = (1/

√
π) cos(jθ) for j > 0, χj(θ) = (1/

√
π) sin(jθ) for j < 0, and χ0(θ) = 1/

√
2π.

It will frequently be useful to separate out the operators corresponding to the indices
j = −1, 0, 1 from the rest, and we shall often use the notation L′ε to refer to the projection
of the operator acting on these three components, and L′′ε to refer to the operator acting
on all the others together. This division is natural because, by (29), the term of order
zero in Lε,j is strictly negative when |j| > 1, and so the estimates for L′′ε follow easily
from the maximum principle, but this is false when |j| ≤ 1 and τ is small.
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4.2 Jacobi fields

A deeper reason for the separation into low and high eigencomponents in the Jacobi
operator becomes apparent when one examines the Jacobi fields, i.e. the solutions of
Lεφ = 0. Any such function may be expanded into its eigenseries, φ =

∑
φj(s)χj(θ),

and then each φj solves Lε,jφj = 0. It turns out that the solutions for this problem
when j = 0,±1 may be determined explicitly in terms of the functions ρ or σ; in fact,
these Jacobi fields correspond to quite explicit one-parameter families of CMC surfaces
of which Σε is an element. To exhibit these, first note that any smooth one-parameter
family Σ(η) of CMC surfaces, with Σ(0) = Σε, will have differential at η = 0 which is
a Jacobi field on Σε. (This is meant in the sense that Σ(η) should be written, for small
η, as a normal graph over Σ(0). This is possible over any fixed compact set of Σε for
some nontrivial range of values of η which might diminish to zero as the compact set
grows. However, this is sufficient to make sense of the derivative at η = 0.) The one-
parameter families of CMC surfaces here are simple to describe: the first two families,
corresponding to the two different solutions of Lε,0φ = 0, arise from varying the necksize
parameter ε, and translating the t-variable, i.e. translating along the axis of Σε. We
denote the associated Jacobi fields by Ψ0,−

ε and Ψ0,+
ε , respectively. The other families

arise from either translating or rotating the axis of Σε, so that one such translation and
one such rotation will correspond to solutions Ψj,+

ε and Ψj,−
ε of Lε,j for j = 1, while the

translation and rotation in the orthogonal direction corresponds to solutions for j = −1.
In fact, we may determine these solutions explicitly in terms of the function ρ. Let us
write

Ψj,±
ε (t, θ) := Φj,±

ε (t)χj(θ).

We obtain :

Proposition 18 The coefficient functions Φj,±
ε of the Jacobi fields Ψj,±

ε for Σε for j =
−1, 0, 1, are given by the formulæ

Φ0,+
ε = ρt/

√
1 + ρ2

t ,

Φ1,+
ε = Φ−1,+

ε ,

= −1/
√

1 + ρ2
t ,

Φ0,−
ε = −∂ερ/

√
1 + ρ2

t ,

Φ1,−
ε = Φ−1,−

ε ,

= −(t+ ρρt)/
√

1 + ρ2
t .

Proof: First consider the families given by translations. Suppose that the function w
is chosen locally so that its normal graph is a (small) translation of magnitude d of Σε

along the x axis. Thus, for some value t′ near to t and some value of θ′ near to θ,
ρ(t) cos θ + d = ρ(t′) cos θ′ − w(t′, θ′) cos θ′

ρ(t) sin θ = ρ(t′) sin θ′ − w(t′, θ′) sin θ′

t = t′ + w(t′, θ′)ρt(t′),

This system is equivalent to

ρ2(t) = ρ2(t′)− 2w(t′, θ′)ρ(t′) + 2dw(t′, θ′) cos θ′ + w2(t′, θ′)− 2dρ(t′) cos θ′ + d2
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and
t = t′ + w(t′, θ′)ρt(t′).

After inserting the value of t from this second equation into the first and collecting the
lowest order terms we get

w(t′, θ′) = −d cos θ′/(1 + ρ2
t (t

′)) + higher order terms.

Recalling that the normal of Σε at xε(t′, θ′) is

ν(t′, θ′) =
1√

1 + ρ2
t

(− cos θ′,− sin θ′, ρt(t′)),

we get the stated expression for Φ1,+
ε . The expression for Φ−1,+

ε , corresponding to trans-
lations along the y axis, is derived in an identical manner.

In fact, nearly identical arguments work in all other cases as well. The relevant
systems of equations are

ρ(t) cos θ = ρ(t′) cos θ′ − w(t′, θ′) cos θ′

ρ(t) sin θ = ρ(t′) sin θ′ − w(t′, θ′) sin θ′

t+ d = t′ + w(t′, θ′)ρt(t′),

for the translation of size d along the z axis,
ρε+d(t) cos θ = ρε(t′) cos θ′ − w(t′, θ′) cos θ′

ρε+d(t) sin θ = ρε(t′) sin θ′ − w(t′, θ′) sin θ′

t = t′ + w(t′, θ′)(ρε)t(t′),

for the variation of necksize, and
(cos d)ρ(t) cos θ + (sin d) t = ρ(t′) cos θ′ − w(t′, θ′) cos θ′

ρ(t) sin θ = ρ(t′) sin θ′ − w(t′, θ′) sin θ′

(cos d) t− (sin d)ρ(t) cos θ = t′ + w(t′, θ′)ρt(t′),

for a rotation of size d of the z-axis toward the x-axis, and similarly for the rotation
toward the y-axis.

The calculations proceed as in the first case, and we leave the details to the reader.
2

Corollary 3 The expressions for these Jacobi fields in terms of the functions σ and k
and the parameter τ are

Φ0,+
ε = σs,

Φ0,−
ε =

√
1− τ2

τ
σs ∂τk −

√
1− τ2 eσ coshσ (1 + τ∂τ σ),

Φ1,+
ε = Φ−1,+

ε = −τ coshσ,

Φ1,−
ε = Φ−1,−

ε = −τ k (coshσ + σs e
σ).
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The proof involves simply inserting the expressions for ρ, t and ε in terms of σ, k and τ
into the previous formulæ.

We shall require later the limits of these Jacobi fields as ε tends to zero.

Proposition 19 Let I ⊂ R be any compact interval. Then the following limits exist
uniformly for s ∈ I:

lim
ε→0

Φ0,+
ε (εs) = tanh s, lim

ε→0
Φ0,−

ε (εs) = −(1− s tanh s),

lim
ε→0

Φ1,+
ε (εs) = lim

ε→0
Φ−1,+

ε (εs) = − 1
cosh s

,

lim
ε→0

1
ε
Φ1,−

ε (εs) = lim
ε→0

1
ε
Φ−1,−

ε (εs) = −(
s

cosh s
+ sinh s).

Proof: We have used the variable s in the statement of the theorem because by Propo-
sition 10, εs/t → 1 uniformly for s ∈ I. The limits may be calculated using either the
estimates for ρ from Proposition 9, or else the expressions for these Jacobi fields from
Corollary 3 in terms of σ, and then using the limiting behaviour of σ as determined in
Corollary 1. 2

The Jacobi fields we have considered so far, Ψj,±
ε , j = 0,±1, are all either bounded (in

fact periodic) or linearly growing (because both k and ∂τk are linearly growing). There
are of course, two linearly independent solutions of the equation Lε,jφ = 0 for all j with
|j| > 1 as well. It is proved in [9], following [13], that there exists a discrete sequence
of positive numbers γj → ∞, |j| > 1, with γ−j = γj , and for each j a solution Φj,±

ε of
Lε,jφ = 0 such that

e±γjsΦj,±
ε ,

are periodic functions of s. In particular,

|Φj,+
ε | ≤ c e−γjs, |Φj,−

ε | ≤ c eγjs, for all s ∈ R. (43)

In fact, Φj,−
ε (s) = Φj,+

ε (−s). Because of Corollary 3, it is natural to define γ0 = γ±1 = 0.
While there are analogous conclusions were we to be using the independent variable

t instead of s, the values of these ‘indicial exponents’ γj = γj(ε) would behave in a less
desirable way as ε tends to zero.

Proposition 20 For any η > 0, there exists an ε0 > 0 such that when ε ∈ (0, ε0), the
numbers γj satisfy γj ≥

√
4− η for |j| > 1.

Proof: The Φj,±
ε are homogeneous solutions for the ordinary differential operator −∂2

ss +
Qj , where Qj = −τ2 cosh(2σ) + j2. We are trying to estimate the exponential growth
rate of solutions for this operator. It follows from (29) that

τ2 ≤ τ2 cosh(2σ) ≤ 2− τ2.

Thus, we see that Qj ≥ j2 − 2 + τ2. In particular, for |j| ≥ 3, Qj > 4. In this
case, the result is clear: e±2s are supersolutions for the operator, and homogeneous
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solutions bounded by these supersolutions may be constructed by the shooting method,
as described next for the slightly more complicated case when j = ±2.

Let w be the unique decreasing solution of (−∂2
ss + Q2)w = 0 with w(0) = 1. This

solution may be constructed as a limit, as s1 → ∞, of solutions ws1 of this equation on
[0, s1] with ws1(0) = 1, ws1(s1) = 0. Since e−

√
2+τ2s is a supersolution for this operator

and dominates ws1 at the endpoints, s = 0 and s = s1, it gives an upper bound for ws1

on the whole interval 0 ≤ s ≤ s1. Thus the limit as s1 →∞, which we call w, exists and
is also bounded by this same function.

Now, using Proposition 13, we can choose s0 sufficiently large so that 2τ2 cosh2 σ ≤
η/2 on [s0, Sε/2− s0] for all τ small enough, say τ ≤ τ0.

For simplicity in the notations, we set S0 = Sε/2 − s0 and β :=
√

4− η/2. We
choose a, b ∈ R such that w̄ := a eβs + b e−βs satisfies w̄(s0) = w(s0) and w̄(S0) = w(S0).
Explicitly, we have

a =
w(S0) eβS0 − w(s0) eβs0

e2βS0 − e2βs0
and b =

w(s0) e−βs0 − w(S0) e−βS0

e−2βs0 − e−2βS0
.

Thanks to the fact that Q2 > β2 over [s0, S0], we may use the maximum principle to
prove that w ≤ w̄ on [s0, S0]. We are going to show that

w(S0) ≤ 2w(s0) e−β(S0−s0).

The function w being strictly decreasing, we have w(S0) < w(s0) and thus we find
that b > 0. We may as well assume that w(S0) > w(s0) e−β(S0−s0), otherwise there is
nothing to prove. Under such an assumption a > 0 and thus b ∈ (0, w(s0)eβs0) (since
w̄(s0) = w(s0).

Still using the fact that w is strictly decreasing we find that

w(S0) ≤ min
s∈[s0,S0]

w̄.

But, the infimum of w̄ over R is achieved at the point sm ≥ 0 which satisfies e2βsm = b/a.
First we rule out the case sm < S0. Indeed, in this case w(S0) < w̄(sm) = 2

√
a b.

Introducing in this inequality the expressions for both a and b, we find that

cosh2(β(S0 − s0))w2(S0)− 2 cosh(β(S0 − s0))w(S0)w(s0) + w2(s0) < 0,

which is not possible. Therefore, we always have sm ≥ S0 and this implies that

a = b e−2βsm ≤ b e−2βS0 .

In particular we obtain (since b < w(s0)eβs0)

w(S0) ≤ w̄(S0) = a eβS0 + b e−βS0 ≤ 2 b e−βS0 ≤ 2w(s0) e−β(S0−s0).

In every case, we conclude that w(S0) ≤ 2w(s0) e−β(S0−s0), where we recall that S0 =
Sε/2 − s0. Furthermore, w is monotone decreasing, so its maximum on any interval is
attained at the left endpoint and its minimum at the right endpoint. Thus w(Sε/2+s0) ≤
2w(s0) e2βs0 e−βSε/2. Reducing ε is necessary, we may assume that

2 e2βs0 e−βSε/2 ≤ e−β̃Sε/2,
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were we have set β̃ =
√

4− η.
In order to finish the proof, note that

w(s+ Sε/2) =
w(s0 + Sε/2)

w(s0)
w(s) for all s.

To see this, simply observe that W (s) := w(s0 + Sε/2)w(s) − w(s + Sε/2)w(s0) solves
(−∂2

ss +Q2)W = 0, decays exponentially at ∞ and takes the value 0 at s0, hence by the
maximum principle must vanish identically.

Hence for all N ≥ 1, we have w(NSε/2 + s0) ≤ w(s0) e−Nβ̃Sε/2. The conclusion of
the Lemma now follows at once. 2

4.3 Mapping properties of the Jacobi operator

To fully analyze the problem (42), we must study the mapping properties of the Jacobi
operator Lε, both for fixed ε > 0 and uniformly down to ε = 0. To state this result
it is first necessary to define appropriate function spaces on which the Jacobi operator
will act; these are exponentially weighted Hölder spaces. This is one of the main places
where the difference between the independent variables s and t is seen: it is possible to
obtain good mapping properties on spaces of this type, defined either in terms of the s
or t variables, for fixed ε, but it is much less pleasant to obtain the uniform behaviour
down to ε = 0 when using t. Fortunately, this uniformity does occur when using s, and
so from now on, unless saying explicitly otherwise, this choice of independent variable
will be used in the sequel.

The definition of the weighted Hölder spaces is the natural one :

Definition 1 Parametrize R×S1 by the variables (s, θ). For each r ∈ N and 0 < α < 1
and s ∈ R, let

|w|r,α,[s,s+1],

denote the usual Cr,α Hölder norm on the set [s, s + 1] × S1. Then for any µ ∈ R and
s0 ∈ R,

Cr,α
µ ([s0,+∞)× S1) =

{
w ∈ Cr,α

loc ([s0,+∞)× S1) and

||w||r,α,µ = sups≥s0
e−µs|w|r,α,[s,s+1] <∞

}
.

In particular, the function eµs is in Cr,α
µ ([s0,+∞)× S1).

Recall now the splitting of Lε into L′ε and L′′ε , corresponding to the operator induced
on the eigenspaces with |j| ≤ 1 and |j| > 1, respectively. Π′ and Π′′ are the projectors
onto the corresponding subspaces. This will often be abbreviated by letting Π′w = w′,
and so on. The main result of this section is the

Proposition 21 Fix µ with µ ∈ (1, 2). Then there exists an ε0 > 0, depending only on
µ, such that whenever ε ∈ (0, ε0), there exists a unique solution w ∈ C2,α

−µ ([Sε/8,∞)×S1)
of the problem {

Lεw = f in (Sε/8,∞)× S1

Π′′w = φ′′ on {Sε/8} × S1,
(44)
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for f ∈ C0,α
−µ ([Sε/8,∞) × S1) and φ′′ ∈ Π′′ (C2,α(S1)

)
. The solution of the homogeneous

Dirichlet problem, when φ′′ = 0, will be denoted w = Gε(f), while the Poisson operator,
which gives the solution when f = 0, will be denoted by w = Pε(φ′′). The linear maps

Gε : C0,α
−µ ([Sε/8,∞)× S1) −→ C2,α

−µ ([Sε/8,∞)× S1)

εµ/4Pε : Π′′ (C2,α(S1)
)

−→ C2,α
−µ ([Sε/8,∞)× S1),

are bounded uniformly for all ε ∈ (0, ε0).

Proof: The proof of the existence of Gε and Pε and of their uniformity is accomplished
in a number of steps. Solutions are constructed on each eigenspace of the Laplacian on
S1, and the cases where |j| ≤ 1 must be treated somewhat differently than the others.

We shall give the proof of this result in a slightly more general context where the
boundary point Sε/8 is replaced by s0 arbitrarily chosen in R.

Fix f and φ in the appropriate function spaces. We decompose w = w′ + w′′, f =
f ′ + f ′′, then we must solve

L′εw
′ = f ′ for s > s0

L′′εw
′′ = f ′′ for s > s0

w′′ = φ′′ for s = s0.

(45)

Notice that no boundary conditions are imposed on w′ at s = s0. We will also need to
decompose

w′(s, θ) =
1√
π
w−1(s) sin θ +

1√
2π
w0(s) +

1√
π
w1(s) cos θ,

and
f ′(s, θ) =

1√
π
f−1(s) sin θ +

1√
2π
f0(s) +

1√
π
f1(s) cos θ.

Step 1: We first consider the problem where φ′′ = 0. Thus f ∈ C0,α
−µ , and multiplying

by a suitable factor, we may assume that

||f ′||0,α,−µ + ||f ′′||0,α,−µ = 1.

In this step, we only consider the restriction of the problem to the high eigencomponents.
We first show that for every s1 > s0 there is a unique solution of

L′′εw
′′
∗ = f ′′ in (s0, s1)× S1

w′′∗ = 0 on {s0} × S1

w′′∗ = 0 on {s1} × S1.

(46)

The existence of w′′∗ follows from a standard variational argument using the energy func-
tional

E(w) =
∫ s1

s0

∫
S1

(|∂sw|2 + |∂θw|2 − τ2 cosh(2σ) |w|2 + f ′′w) ds dθ.
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Using the fact that ∀|j| > 1, we have j2 − τ2 cosh(2σ) > 2, we see that when we restrict
the domain of E to the span of the eigenfunctions χj(θ) with |j| > 1, this functional is
convex and proper, and the existence of a unique minimizer for it, which we denote by
w′′∗ , is then immediate.

We claim that there exists a constant ε0 > 0 and a constant C = C(µ) > 0, indepen-
dent of s0 < s1 and ε ∈ (0, ε0), such that

sup
θ∈S1

sup
s∈[s0,s1]

eµs|w′′∗(s, θ)| ≤ C(µ).

Assuming that the claim is already proven, we can choose a sequence s1,i tending to +∞
and build w′′∗,i the corresponding solutions of (46). The uniform bound above allows us
to extract from the sequence w′′∗,i a subsequence which converges to a solution w′′ of{

L′′εw
′′ = f ′′ in (s0,+∞)× S1

w′′ = 0 on {s0} × S1,

which satisfies
sup
θ∈S1

sup
s∈[s0,s1]

eµs |w′′| ≤ C(µ).

and then, by classical elliptic estimates, that

||w′′||2,α,−µ ≤ c(µ),

for some constant c(µ) > 0 independent of s0 ∈ R and ε ∈ (0, ε0).
The claim is proved by contradiction. By assumption, we have eµs|f ′′(s, θ)| ≤ 1 for

s0 ≤ s ≤ s1, θ ∈ S1. If the assertion were not true, then there would exist sequences of
numbers s0,i, s1,i, functions f ′′i , Delaunay parameters εi and corresponding solutions w′′∗,i
such that

Ai := sup
θ∈S1

sup
s0,i≤s≤s1,i

eµs |w′′∗,i| −→ ∞,

and
sup
θ∈S1

sup
s0,i≤s≤s1,i

eµs |f ′′i | ≤ 1.

Suppose that this maximum, for each i, is attained at some point (si, θi), and define

w̃′′i (s, θ) = A−1
i eµsiw′′s1,i

(s+ si, θ), f̃ ′′i (s, θ) = A−1
i eµsif ′′(s+ si, θ).

Then
sup
θ∈S1

sup
s0,i−si≤s≤s1,i−si

eµs |w̃′′i | = 1,

and this supremum is attained on {0} × S1, while f̃ ′′i → 0 in norm. Furthermore,

L′′ε w̃
′′
i = ∂2

ssw̃
′′
i + ∂2

θθw̃
′′
i + τ2

i cosh(2σi(·+ si))w̃′′i = f̃ ′′i

on [s0,i − si, s1,i − si]× S1.
Passing to a subsequence if necessary, we assume that s0,i − si converges to v1 ∈

R∪{−∞} and s1,i−si converges to v2 ∈ R∪{+∞}. By using the result of Proposition 12,
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the bounds above, as well as those provided by elliptic estimates, we can also assume
that w̃′′i converges, along with all its derivatives, over any compact subset of (v1, v2)×S1

(including endpoints if either is finite) to a function w̃′′, which satisfies eµs|w̃′′| ≤ 1 over
this set, is nonvanishing (because of the normalization of w̃′′i at s = 0), and which solves
one of the following equations:

∂2
ssw̃

′′ + ∂2
θθw̃

′′ + τ2 cosh(2σ(s+ s̄))w̃′′ = 0, (47)

for some ε ∈ (0, ε0) and s̄ ∈ R,

∂2
ssw̃

′′ + ∂2
θθw̃

′′ = 0, (48)

or
∂2

ssw̃
′′ + ∂2

θθw̃
′′ +

2
cosh2(s+ s̄)

w̃′′ = 0, for some s̄ ∈ R, (49)

on [v1, v2]×S1. In addition, if either v1 or v2 is finite, then w̃′′ vanishes at that endpoint.
We must analyze a few cases, depending on the values of v1 and v2 and which of the

equations above is satisfied by w̃′′. The goal in each case is to show that w̃′′ must, in
fact, vanish identically, which would be a contradiction.

The point, in all cases, is that we wish to multiply the appropriate equation for w̃′′

by w̃′′ and integrate by parts, to obtain∫ v2

v1

∫
S1

|∂sw̃
′′|2 + |∂θw̃

′′|2 − τ2 cosh(2σ(s+ s̄)) |w̃′′|2 ds dθ = 0,

∫ v2

v1

∫
S1

|∂sw̃
′′|2 + |∂θw̃

′′|2 ds dθ = 0,

or ∫ v2

v1

∫
S1

|∂sw̃
′′|2 + |∂θw̃

′′|2 − 2
cosh2(s+ s̄)

|w̃′′|2 ds dθ = 0.

In each of these three cases we see that the integrand is positive, because we always have
the inequality ∫ v2

v1

|∂θw̃
′′|2 ds ≥ 4

∫ v2

v1

|w̃′′|2 ds,

and so we would conclude that w̃′′ ≡ 0, which is a contradiction.
To make this argument work, it suffices to show that the boundary terms in the

integration by parts vanish. When either v1 or v2 is finite, this is immediate from the
Dirichlet conditions at that boundary, so it remains to show that if either v1 or v2 is
infinite, then w̃′′ decays exponentially in that direction. Any unbounded solution of (48)
on a half-line must grow at least at the rate e2|s|, which would violate the condition
eµs|w̃′′| ≤ 1, so we see that w̃′′ must decrease exponentially in this case. The same
argument works when w̃′′ satisfies (49) because solutions of that equation have the same
asymptotic rates of growth or decay as solutions of (48). Finally, if w̃′′ satisfies (47), we
first choose η > 0 such that

√
4− η > µ, then, we apply Proposition 20, which states

that any unbounded solution must grow at least at the rate e
√

4−η|s| provided ε is less
than, say, ε0. Therefore, we can eliminate the possibility of exponential growth. This
ends the proof of the claim.
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Step 2: We now consider the cases when |j| ≤ 1. The argument when j = ±1 is
almost identical to the one for j = 0, so we shall just consider the latter case, commenting
on the end on the very minor changes that need to be made. Thus, recalling that we are
no longer requiring any boundary conditions, we wish to find a solution to the problem

Lε,0w0 := ∂2
ssw0 + τ2 cosh(2σ)w0 = f0 in [s0,∞), (50)

with the desired decay property at infinity. We find this solution again as a limit of
functions w∗ solutions of Lε,0w∗ = f0 on [s0, s1), where now w∗(s1) = ∂sw∗(s1) = 0.
For convenience, we choose a C0,α extension of f0, vanishing when s < s0 − 1, say, and
consider the solution w∗ for this extended right hand side, now defined on (−∞, s1].

As in Step 1, we claim that there exists a constant C = C(µ), independent of s0, s1
and ε, such that

sup
s∈(−∞,s1]

eµs |w∗| ≤ C.

Once this claim is proved, the arguments of the proof are identical to those in Step 1, so
we shall omit them.

Again this is proved by contradiction. First, note that when s < s0−1, ws1 is a linear
combination of the Jacobi fields Φ0,±

ε , hence is at most linearly growing. If the assertion
were false, there would exist sequences f0,i, s0,i, s1,i, εi, and w∗,i such that

Ai := sup
s∈(−∞,s1,i]

eµs |w∗,i| −→ ∞,

and
sup

s∈(−∞,s1,i]
eµs |f0,i| ≤ 1.

If this maximum is attained at (si, θi), si ∈ (−∞, s1,i), then we rescale the functions and
translate the independent variable by si to obtain a solution of

d2w̃i

ds2
+ τ2

i cosh(2σi)w̃i = f̃0,i,

in (−∞, s1,i − si] which satisfies

sup
s∈(−∞,s1,i−si]

eµs |w̃i| = 1,

while f̃0,i tends to zero in norm.
Passing to a subsequence, we obtain in the limit a nontrivial solution w̃ of one the

following equations:

d2w̃

ds2
+ τ2 cosh(2σ(s+ s̄))w̃ = 0, for some ε ∈ (0, ε0) and s̄ ∈ R,

d2w̃

ds2
+

2
cosh2(s+ s̄)

w̃ = 0, for some s̄ ∈ R,

or
d2w̃

ds2
= 0,
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over some interval (−∞, v], and in each case, |w̃| ≤ e−µs in (−∞, v].
Clearly v cannot be finite, because if it were then w̃ would have to satisfy w̃(v) =

∂sw̃(v) = 0, which would imply that it would vanish identically.
Now, for each of the three equations we know that there are no exponentially de-

creasing solutions; for the second and third equations this is obvious, while for the first it
follows because we know the family of solutions explicitly. However, since we know that
w̃ does decay exponentially as s→∞, we again would have to conclude that it vanishes
identically, and this is a contradiction.

When j = ±1, the changes that need to be made in this argument are minor. For
example, when j = 1, for all s1 > s0, the solution w∗ is defined as before to be the
solution of

Lε,1w∗ := ∂2
ssw∗ − w∗ + τ2 cosh(2σ)w∗ = f1 in [s0, s1),

which satisfies w∗(s1) = ∂sw∗(s1) = 0 and where f1 has been extended by 0 in (−∞, s0−
1].

And to establish its uniform bound, we proceed by contradiction. In this case, how-
ever, the limiting equations are now

d2w̃

ds2
− w̃ + τ2 cosh(2σ(s+ s̄)) w̃ = 0, for some ε ∈ (0, ε0) and s̄ ∈ R,

d2w̃

ds2
− w̃ +

2
cosh2(s+ s̄)

w̃ = 0, for some s̄ ∈ R,

or
d2w̃

ds2
− w̃ = 0,

on (−∞, v] × S1, with boundary condition w̃(v) = ∂sw̃(v) = 0 if v is finite, and where
|w̃| ≤ e−µs for all s ∈ (−∞, v].

Once again, v cannot be finite, but now the equations do admit exponentially de-
creasing solutions at ±∞. However, all such solutions decay no faster than e−s, whereas
we have assumed that µ ∈ (1, 2), so once again we obtain a contradiction.

Step 3: Finally consider the problem when f = 0 and φ′′ 6= 0. We may as well
assume that ‖φ′′‖2,α = 1. Let η(s) be a smooth cutoff function equal to 1 for s ≤ 0 and
vanishing for s ≥ 1. Then

L′′εw = 0, w(s0, θ) = φ′′(θ),

is equivalent to
L′′ε w̄ = −L′′ε(η(s− s0)φ′′(θ)), w(s0, θ) = 0,

which has already been solved in Step 1. Moreover, since

||ηφ′′||0,α,−µ ≤ c eµs0 ,

it follows from Step 1 that
||w||2,α,−µ ≤ c eµs0 ,

as we wished. This completes the proof in all cases. 2
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Corollary 4 Fix µ ∈ (1, 2). Then there exists a constant c > 0 and an ε0 > 0, depending
only on µ, such that for ε ∈ (0, ε0), we have

||(Pε − P0)(φ′′)||2,α,−µ ≤ c ε−µ/4
(
ε1/2 + ε(6−3µ)/4

)
||φ′′||2,α.

Here, if φ′′ ∈ Π′′ (C2,α(S1)
)
, the function P0(φ′′) is the unique solution in C2,α

−2 ([Sε/8,∞)×
S1) of the problem {

∆w = 0 in [Sε/8,∞)× S1

w = φ′′ on {Sε/8} × S1.
(51)

Proof: Write wε = Pεφ
′′ and w0 = P0φ

′′. If wε = w0 +h, then Lεh = −(τ2 cosh(2σ))w0

and Π′′h(Sε/8, θ) = 0, and so h = −Gε(τ2 cosh(2σ)w0). We first estimate

||h||2,α,−µ ≤ c ||τ2 cosh(2σ)w0||0,α,−µ.

Using
||w0||0,α,[s,s+1] ≤ c e−2(s−Sε/8)||φ′′||0,α ≤ c ε−1/2 e−2s ||φ′′||0,α,

we bound this by

c ε−1/2

(
sup

s≥Sε/8
e(µ−2)s ||τ2 cosh 2σ||0,α,[s,s+1]

)
||φ′′||0,α.

When Sε/8 ≤ s ≤ 3Sε/8, we know from Proposition 11 that

τ2 cosh(2σ) + |∂sτ
2 cosh(2σ)| ≤ ε1/2.

Therefore

ε−1/2 e(µ−2)s ||τ2 cosh(2σ)||0,α,[s,s+1] ≤ c ε(µ−2)Sε/8 = c ε1/2 ε−µ/4.

Next, when 3Sε/8 ≤ s ≤ Sε/2, we know, still from Proposition 11, that we may estimate

τ2 cosh(2σ) + |∂s(τ2 cosh(2σ))| ≤ c ε2 e2s,

hence

ε−1/2 e(µ−2)s|| τ2 cosh(2σ)||0,α,[s,s+1] ≤ c ε−1/2+2−µ = c ε(6−3µ)/4 ε−µ/4.

Finally, for Sε/2 ≤ s we use the fact that τ2 cosh(2σ) ≤ 2, and proceed as before. This
proves the Corollary. 2

5 CMC surfaces near to a half unduloid

In this section we construct by perturbation methods the full space of CMC surfaces near
to a fixed (half) unduloid D of necksize ε, as usual controlling the behaviour as ε → 0.
Assume that D has the parametrization

x(s, θ) = (τ eσ cos θ, τ eσ sin θ, k),
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where τ ∈ (0, 1), σ and k are as in Proposition 2. The unit normal at x(s, θ) is defined
to be

ν(s, θ) = (−τ coshσ cos θ,−τ coshσ sin θ, σs). (52)

Therefore, surfaces which may be written as normal graphs over D admit the parametriza-
tion

xw = x + w ν,

for some sufficiently small function w on D. We denote by Dw the surface obtained in
this way. The components of its metric tensor are

Ew = τ2 (eσ − sinhσ w)2 + w2
s , Fw = wswθ,

and
Gw = τ2 (eσ − coshσ w)2 + w2

θ .

The components of the second fundamental form are considerably less simple. In com-
puting the following, we use that we always have the bounds τ eσ ≤ 2, τ2 sinh2 σ ≤ 1
and σ2

s ≤ 1. After substantial work, we find that√
EwGw − F 2

w Lw = τ3 e3σ

(
τ sinhσ + P1

(
w

τ eσ
,
∇w
τ eσ

,
∇2w

τ eσ

))
,

where P1 is some polynomial (of degree at most 3) without any constant term, the
coefficients of which are functions of s and such that they and their derivatives are
bounded uniformly in s and ε. In a similar manner we derive that√

EwGw − F 2
w Mw = τ3 e3σ P2

(
w

τ eσ
,
∇w
τ eσ

,
∇2w

τ eσ

)
and √

EwGw − F 2
w Nw = τ3 e3σ

(
τ coshσ + P3

(
w

τ eσ
,
∇w
τ eσ

,
∇2w

τ eσ

))
,

where P2 and P3 have the same properties as P1.
The equation that Dw has mean curvature 1 is

LwGw − 2MwFw +NwEw − (EwGw − F 2
w) = 0. (53)

This is a rather complicated nonlinear elliptic equation for w which we shall not write
out in full. Notice that it is satisfied when w = 0. Using the previous formula for the
coefficients of the first and second fundamental forms, we find that its Taylor expansion
about w = 0 is

Lεw = τ eσ Q

(
w

τ eσ
,
∇w
τ eσ

,
∇2w

τ eσ

)
, (54)

where
Lεw = ∂2

ssw + ∂2
θθw + τ2 cosh(2σ)w,

and Q is again a polynomial (now of higher order) without any constant or linear terms,
the coefficients of which have partial derivatives bounded uniformly in s and ε. We also
write, for brevity,

Q(w) := τ eσ Q

(
w

τ eσ
,
∇w
τ eσ

,
∇2w

τ eσ

)
.
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Given φ′′ ∈ Π′′ (C2,α(S1)
)
, we would like to solve the boundary value problem{

Lεw = Q(w) in [Sε/8,+∞)× S1

Π′′w = φ′′ on {Sε/8} × S1.
(55)

Let wε be the unique solution in C2,α
−µ ([Sε/8,+∞)× S1), 1 < µ < 2, of{

Lεwε = 0 in [Sε/8,+∞)× S1

Π′′wε = φ′′ on {Sε/8} × S1,

which is given by Proposition 21. Setting w = wε + v, then we would like to find
v ∈ C2,α

−µ ([Sε/8,+∞)× S1) such that{
Lεv = Q(wε + v) in [Sε/8,+∞)× S1

Π′′v = 0 on {Sε/8} × S1.

Notice that, it is sufficient to find a fixed point of the mapping

K(v) = Gε Q(wε + v), (56)

at least when ε is sufficiently small.

Proposition 22 There exist constants c0, c1 > 0 such that if ||φ′′||2,α ≤ c0 ε
3/4, then

||Gε(Q(wε))||2,α,−µ ≤
c1
2
ε−(µ+3)/4 ||φ′′||22,α

and
||Gε(Q(wε + v2)−Q(wε + v1))||2,α,−µ ≤ 1/2 ||v2 − v1||2,α,−µ,

for all v1, v2 in Bc1 := {v : ||v||2,α,−µ ≤ c1 ε
−(µ+3)/4 ‖φ′′‖2

2,α}. Thus, K is a contraction
mapping on the ball Bc1 into itself. Consequently, K has a unique fixed point v in this
ball.

Proof: We shall use that

||wε||2,α,[s,s+1] ≤ c ε−µ/4 ||φ′′||2,α e
−µs. (57)

First consider s in the range [Sε/8, 7Sε/8]. Here, from Proposition 11, we get

τ eσ ≥ c ε3/4.

Together with the fact that all derivatives of σ are bounded, this gives

eµs ||Q(wε)||0,α,[s,s+1] ≤ c ε−(µ+3)/4 ‖φ′′‖2
2,α.

We chose c1 to be equal to twice the constant which appears in this last estimate.
Now

||v||2,α,[s,s+1] ≤ c1 ε
−(µ+3)/4 ‖φ′′‖2

2,α e
−µs, (58)
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for v ∈ Bc1 and we see that

eµs ||Q(wε + v1)−Q(wε + v2))||0,α,[s,s+1]

can be estimated by the sum of products of eµs||v1 − v2||2,α,[s,s+1] with various terms of
the form

||(wε + v1)j(wε + v2)j′(τeσ)−j−j′ ||0,α,[s,s+1], where j + j′ ≥ 1.

Each of these can be bounded by c (c0 ε3/4)j+j′ ε−(3/4)(i+j)e(j+j′)µ(Sε/8−s) ≤ c cj+j′

0 , and
so can be made as small as desired provided c0 is chosen small enough.

For s ≥ 7Sε/8, we will simply use the fact that

τ eσ ≥ τ eσ(0) = ε.

Arguing as before, we get first that

eµs ||Q(wε)||0,α,[s,s+1] ≤ c ε(5µ−1)/4 ε−(µ+3)/4 ||φ′′||22,α.

Furthermore

eµs||Q(wε + v1)−Q(wε + v2))||0,α,[s,s+1] ≤ c c0 ε
−1/4 eµ(Sε/8−s) ||v2 − v1||2,α,[s,s+1]

≤ c c0 ε
(6µ−1)/4 ||v2 − v1||2,α,−µ,

and again the coefficient can be made as small as desired when ε is chosen small enough.
Putting the estimates in these two domains together, and using that Gε is bounded,

we have now checked all the conditions necessary to ensure that K is a contraction
mapping. Therefore there is a unique element v ∈ Bc1 such that K(v) = v, and the proof
is complete. 2

Examining this proof more carefully, we also obtain the

Corollary 5 There exists a constant c0 > 0 and an ε0 > 0 such that, for all ε ∈ (0, ε0)
and for any φ′′ ∈ Π′′ (C2,α(S1)

)
with ||φ′′||2,α ≤ c0 ε

3/4, the problem (55) has a unique
solution w. The mapping

Π′′ (C2,α(S1)
)
3 φ′′ −→ w ∈ C2,α

−µ ([Sε/8,∞)× S1),

is continuous and the solution w satisfies the estimates

||w||2,α,−µ ≤ c ε−µ/4(||φ′′||2,α + ε−3/4||φ′′||22,α), (59)

and
||(w −Π′′w)(Sε/8, ·)||2,α + ||∂s(w −Π′′w)(Sε/8, ·)||1,α ≤ cε−3/4||φ′′||22,α. (60)

Finally, if w0 = P0(φ′′) ∈ C2,α
−µ ([Sε/8,+∞)× S1) as in Corollary 4, then

||w − w0||2,α,−µ ≤ c ε−µ/4
(
(ε1/2 + ε(6−3µ)/4)||φ′′||2,α + ε−3/4||φ′′||22,α

)
. (61)

Proof: The solution w is a sum wε + v and we already know that ||wε||2,α,−µ ≤
c ||φ′′||2,α. For fixed φ′′, the map K is a contraction on the balls of radius a constant
times ε−(µ+3)/4 ||φ′′||22,α, and so the norm of v is at most this large. And this gives (59).
The second estimate (60) follows by evaluting at s = Sε/8. Finally, for (61), we write

||w − w0||2,α,−µ ≤ ||wε − w0||2,α,−µ + ||v||2,α,−µ,

and use Corollary 4. 2
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6 CMC surfaces near to a half nodoid

We now want to obtain the results which are valid for unduloids in the case of nodoids.
More precisely, we want to construct by perturbation methods the full space of CMC
surfaces near to a fixed nodoid D of necksize ε, as usual controlling the behaviour as
ε→ 0. Assume that D has the parametrization

x(s, θ) = (τeσ̄ cos θ, τeσ̄ sin θ, k̄),

where we retrict our attention to τ ∈ (0, 1), σ̄ and k̄ are as in Proposition 4. Here it is
important to notice that the normal at x(s, θ) is defined to be

ν(s, θ) = (−τ sinh σ̄ cos θ,−τ sinh σ̄ sin θ, σ̄s). (62)

Furthermore, the linearized mean curvature operator is

Lε =
1

τ2e2σ̄
(∂2

ss + ∂2
θθ + τ2 cosh(2σ̄))

Denote by γj the indicial roots of Lε. Proposition 20, which is a key point in the analysis
of the mappings properties of Lε, holds with minor modifications in the proof.

The statement and proof of Proposition 21 as well as all the results of §5 remain the
same up to obvious notational modifications.

7 k-noids

The second type of component in our construction of CMC surfaces are a somewhat
restricted class of minimal surfaces of finite total curvature with k ends, or as we shall
call them, k-noids. In this brief section we discuss some of the global and asymptotic
aspects of the geometry and topology of k-noids, and in the next, discuss Jacobi operators
on these surfaces and their compact truncations.

It is well-known that any k-noid Σ has finite topology, and in fact is conformally
equivalent to the complement of a finite number of points in a compact Riemann surface
Σ̄, i.e. Σ = Σ̄ \ {p1, . . . , pk}. As in the introduction, we denote the space of k-noids of
genus g by Hg,k. When g > 0, Hg,1 and Hg,2 are empty, while H0,1 and H0,2 contain only
the plane and catenoid, respectively. The standard catenoid C1 is a surface of revolution,
given in cylindrical coordinates by the parametrization

x(s, θ) = (cosh s cos θ, cosh s sin θ, s).

This is a conformal parametrization, and the unit normal, metric tensor and second
fundamental forms are given by

ν(s, θ) =
1

cosh s
(− cos θ,− sin θ, sinh s),

g = cosh2 s (ds2 + dθ2), A = −ds2 + dθ2.

In particular, the mean curvature vanishes, and the catenoid is minimal.
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We shall be discussing the space of moduli of k-noids. Just as with CMC surfaces, it
is possible to determine the moduli space explicitly in the simplest case, when k = 2. In
fact, the only complete minimal surfaces in R3 with two ends are images of the standard
catenoid C1 by rigid motions and homotheties. While we shall frequently not distinguish
between C1 and its translates or rotations, it will be important to keep track of the
homothety factor. The dilation of C1 by the factor a will be denoted Ca, and has the
parametrization

x(a)(s, θ) = (a cosh s cos θ, a cosh s sin θ, as).

Thus any element of H0,2 is given as a rigid motion of some Ca. The metric tensor and
second fundamental forms for this parametrization are

ga = a2 cosh2 s (ds2 + dθ2), Aa = a(−ds2 + dθ2). (63)

The plane and catenoid provide the asymptotic models for the ends of any k-noid: the
basic structure theorem for k-noids states that an end of any k-noid may be written as
a normal graph of a decaying function over an end of some suitably translated, rotated
plane or dilated catenoid. The corresponding ends will then be referred to as planar
or catenoidal. Only k-noids with all ends catenoidal will be used in our construction;
henceforth this will

always be assumed.
Using this asymptotics theorem, we may assign a dilation, or weight, parameter a` to

each end E` of Σ ∈ Hg,k, ` = 1, . . . , k, signifying that that end is the normal graph over
(some translated and rotated copy of) Ca`

. This is analogous to the necksize parameters
of the ends of CMC surfaces. This defines, at least in neighbourhoods of the moduli
space where some ordering of the ends is fixed, a map Hg,k → Rk.

Fix Σ ∈ Hg,k. We describe the parametrization of the ends more carefully. Assume
that Σ has been rotated and translated so that the the end E` is asymptotic to the
model Ca`

. By definition, there is a function w, defined on Ca`
∩ {s ≥ s`}, such that E`

is parametrized by
xw := xaj + w ν, s ≥ s`.

This gives a canonical cylindrical coordinate system (s, θ) on E`, which we will always
use. The function w is assumed a priori only to decay, but in fact admits an asymptotic
expansion

w(s, θ) ∼
∑
|j|>1

ajχj(θ)e−js, as s→∞.

8 The Jacobi operator on k-noids

Continuing our treatment of analysis on k-noids paralleling that on Delaunay surfaces,
we now consider the Jacobi operator L = LΣ, which is the linearization of (half) the
mean curvature operator M over Σ. This is

LΣ = ∆Σ + |AΣ|2,

where the term of order zero is the squared norm of the second fundamental form of Σ.
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8.1 Mapping properties of L and Jacobi fields

Just as for Delaunay surfaces, we require detailed knowledge of the mapping properties
of L, first over all of Σ, then in a later section for the Dirichlet problem on certain
(deformations of) compact truncations Σε of Σ, and finally uniformly as ε→ 0.

The analysis for L over the complete surface Σ is based on the fact that the ends have
good asymptotic models. In fact, using the canonical cylindrical coordinates on each end
E`, we see that the Jacobi operator for the model catenoid is

La`
= a−2

` cosh−2 s

(
∂2

ss + ∂2
θθ +

2
cosh2 s

)
, (64)

and so the true Jacobi operator is equal, as s → ∞ in E`, to the sum of this model
operator and a correction term, which is a second order operator each coefficient of
which decays at least like e−5s.

We let L act on the weighted Hölder spaces Cr,α
µ (Σ), where φ is in this space if it is

locally in Cr,α(Σ) and on each end may be written as eµsψ where ψ ∈ Cr,α(R+
s ×S1

θ ). The
basic mapping properties for L are summarized in the

Proposition 23 The operator

L : C2,α
µ (Σ) −→ C0,α

µ−2(Σ),

is Fredholm provided µ /∈ Z. In addition, L is surjective on C2,α
µ (Σ) if and only if it is

injective on C2,α
−µ (Σ).

The drop of two in the weight parameter comes from the factor (cosh(a`s))−2 in the
expression for L on E`. This sort of result is fairly standard by now; it may be proved by
constructing local parametrices, or solution operators, for the model operators on each
of the ends E` using explicit ODE techniques on each of the cross-sectional eigenspaces,
joining these to a parametrix for the interior compact region, and finally using standard
perturbation techniques and Fredholm theory.

This Proposition leads naturally to the issue of determining the values of the weight
parameters µ for which L is surjective or injective. Although for a given k-noid Σ this
may be quite difficult to determine, the following condition is essential for the moduli
space theory:

Definition 2 A k-noid Σ is called nondegenerate if its Jacobi operator L is surjective on
C2,α

µ (Σ) whenever µ > 1, µ 6= 2, 3, . . ., or equivalently, whenever there are no anomalous
decaying Jacobi fields and so L is injective on C2,α

−µ (Σ) for µ > 1.

We cannot preclude the existence of Jacobi fields in C2,α
µ (Σ) for |µ| ≤ 1, and in fact

these always exist, at least locally on each end, for geometric reasons. They may be
exhibited explicitly on the catenoid: just as for the Delaunay surfaces, solutions of Lw =
0 corresponding to the eigenvalues of the cross-sectional Laplacian with |j| ≤ 1 arise
from translations, rotations and dilations (which substitute for changes in Delaunay
parameter):
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Proposition 24 The Jacobi fields

Ψ0,+ = tanh s, Ψ0,− = s tanh s− 1,

correspond to vertical translation along the axis of the catenoid, and change of the dilation
parameter a, respectively. The Jacobi fields

Ψ1,+ = ψ+ sin θ, Ψ−1,+ = ψ+ sin θ,

correspond to horizontal translations in the x1 and x2 directions, while

Ψ1,− = ψ− cos θ, Ψ−1,− = ψ− sin θ,

correspond to rotations about the x2-axis and x1-axis, respectively. Here

ψ+ =
1

cosh s
ψ− =

s

cosh s
+ sinh s.

Proof: As with the analogous statement in the Delaunay case, these Jacobi fields may
be computed by finding the parametrizations of the one-parameter family of minimal
surfaces in each case and differentiating to get the deformation vector field, the inner
product of which with the unit normal of Ca yields the appropriate expression. We leave
the details to the reader. 2

Jacobi fields asymptotic to these exist on the ends of any k-noid. Let Σ̃ denote some
fixed truncation of the k-noid Σ, and let E1, . . . , Ek denote the components of Σ\Σ̃.
These are in one to one correspondence with the ends of Σ, and are minimal surfaces
with boundary.

Proposition 25 On each end E` of Σ, there exists a six-dimensional space of functions
Ψj,±

` , j = 0,±1, such that each LΨj,±
` = 0, and which are asymptotic to the corresponding

model Jacobi fields Ψj,± for the catenoid Ca`
modelling E` in the sense that∣∣∣Ψj,+

` −Ψj,+
∣∣∣ ≤ C e−(j+3)s,∣∣∣Ψj,−

` −Ψj,−
∣∣∣ ≤ C s e(j−3)s.

Proof: These new Jacobi fields are produced by the same geometric process, namely
forming the families of minimal surfaces with boundary, E`(η), by translating, rotating
or dilating E`, and then differentiating with respect to the parameter η at η = 0, and
taking the inner product of the resulting vector field along E` with the unit normal. The
statement about asymptotics is obtained from the fact that E` is a normal graph over
Ca`

of a function φ` which decays like e−2s. 2
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8.2 Moduli space theory

Following these preliminaries, we now briefly sketch the moduli space theory for k-noids.
This was developed by Perez and Ros [17] at around the same time that the very similar
moduli space theory was set down for solutions of the singular Yamabe problem and
CMC surfaces in [13] and [9], using slightly different (but equivalent) methods. The
parallels between the three problems are discussed carefully in [12]. We state results here
following these latter three papers, though emphasize that the results are originally due
to Perez and Ros. For Σ ∈ Hg,k, define the 6k-dimensional space

W = ⊕k
`=1W`, where W` = {η`Ψ

j,±
` , j = 0,±1}.

and where η` is a cutoff function vanishing on Σ̃ and equalling one outside of a slight
enlargement of this truncation on the end E`. At least around non-degenerate k-noids,
the moduli space theory is based on the implicit function theorem. For this one requires
surjectivity of L on some geometrically natural function spaces, but unfortunately the
spaces on which L is surjective in Proposition 23 have positive exponential weight, hence
are ill-suited for the nonlinear operator. To remedy this one uses the following more
refined linear result.

Proposition 26 Suppose Σ is nondegenerate. Fix µ with µ ∈ (1, 2). Then the mapping

L : C2,α
−µ (Σ)⊕W −→ C0,α

−µ−2(Σ), (65)

is surjective. Its nullspace, B := BΣ (which we call the bounded nullspace) is 3k-
dimensional.

The proof is essentially identical to the one in [13] and [9], although the linear theory here
is more elementary than the analysis on asymptotically periodic ends in those papers.
The dimension count for B is obtained by a relative index theorem (which is essentially
equivalent to the Riemann-Roch theorem).

To make sense of the mean curvature operator N on elements of the domain space
in (65), we use that elements of W correspond to geometric motions. Thus N(u′, ũ)
calculates the mean curvature of the normal graph of the function ũ ∈ C2,α

−µ over the
surface Σu′ obtained by slightly deforming the ends of Σ in the manner prescribed by
the components of u′ ∈W . (More specifically, one considers an ‘exponential map’ from a
neighbourhood of 0 in W to a space of surfaces deforming Σ, such that the derivatives of
the families of surfaces Σ(λu′), for u′ ∈W , at λ = 0 equal u′.) Proposition 26 then states
that the differential of this map N is surjective at (0, 0) when Σ is nondegenerate, and
so the first part of the following is a trivial application of the standard implicit function
theorem:

Corollary 6 In the neighbourhood of any one of its nondegenerate points, the moduli
space Hg,k of k-noids of genus g is a real analytic manifold of dimension 3k. In the
neighbourhood of an arbitrary point, it has the structure of a locally defined (possibly
singular) real analytic variety.

Perez and Ros note that the second part of this result follows from the general theory of
Weierstrass representations of k-noids. It may also be proved in a manner more consistent
with the first part by the Kuranishi method, as in [9], cf. also [12].
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8.3 Existence of nondegenerate k-noids

In this brief section we survey the results in the literature concerning the existence of
nondegenerate k-noids, and then state some new existence results which may be deduced
from these. This survey is included to show that our construction yields many new
examples of CMC surfaces.

Many of the moduli spaces Hg,k are known to be nonempty. The Weierstrass rep-
resentation yields some infinite families of examples of complete, Alexandrov embedded
minimal surfaces of finite total curvature, while Kapouleas’ desingularization construc-
tion gives various examples for very large values of g. It is quite plausible that all of these
moduli spaces, when nonempty, contain nondegenerate elements, but unfortunately this
has been proved only in special cases. There are two main results in this regard which
we quote here. The first, by Cosin and Ros [1] and already stated in the introduction,
gives the existence of nondegenerate elements in H0,k for any k ≥ 2. Incidentally, all of
these surfaces have catenoidal ends. Secondly, the well-known family of Hoffman-Meeks
minimal surfaces, which are elements of Hg,3 for arbitrary genus g ≥ 1, have been studied
by Nayatani [15]. He has shown that these are nondegenerate when g ≤ 37. Unfortu-
nately, the ‘middle’ end of all of these surfaces is planar, but using the nondegeneracy it
is possible to find nearby surfaces for which all ends are catenoidal.

These two theorems give nondegenerate k noids for a large number of values of g
and k. Using them we can construct many more examples using the connected sum
construction of [11]. Although the results there are written for CMC surfaces, it is clear
that all those constructions carry over verbatim for nondegenerate minimal surfaces. Of
course, Yang [21] also constructs such minimal connected sums, but does not address the
issue of nondegeneracy of the resulting surfaces. However, this is done in [11]; it turns
out to be a fairly delicate problem. Hence we may conclude that, for i = 1, . . . , r, if Σi

are non degenerate elements of Hgi,ki
then, one can construct a non degenerate element

of Hg,k, where g = g1 + . . . + gr and k = k1 + . . . + kr. In addition, following Yang,
we can also add a finite number of catenoidal ends by gluing halves catenoids to a non
degenerate element of Hg,k and produce a nondegenerate element of Hg,k′ for any k′ ≥ k.
We therefore conclude that

Proposition 27 Assume that, for i = 1, . . . , r Hgi,ki
contains a nondegenerate element,

then, Hg,k contains a nondegenerate element if g = g1 + . . .+ gr and k ≥ k1 + . . .+ kr.

A similar result holds for the moduli space Mg,k of CMC surfaces. We shall return
to this issue, as well as a number of other interesting new aspects of these moduli spaces,
in a forthcoming paper.

9 Truncated k-noids and their deformations

In this section we first introduce the compact truncations Σε which fill out the k-noid
Σ as ε→ 0. These are the building blocks occupying the central portion of the surfaces
we shall construct. The reason for introducing them is that there are no surfaces of
mean curvature one which may be written as normal graphs over all of Σ, but there
are many which are graphs over any one of the Σε. Next we study a natural boundary
problem for the Jacobi operator on these compact surfaces and analyze its behaviour as
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ε tends to zero. Finally, we introduce a finite dimensional family of deformations of the
Jacobi operator, corresponding to the elements of W , and show that the preceding linear
analysis carries over to the operators in this family.

9.1 The Jacobi operator on truncated k-noids

We start by defining the truncations Σε. Recall that each end E` of Σ admits the
parametrization

x`(s, θ) = a` (cosh s cos θ +O(e−3s), cosh s sin θ +O(e−3s), s+O(e−2s)). (66)

We simply define Σε to be the union of the compact piece K of Σ and the portion of
each of the ends up to s = Sε/8 (which is of the order −1

4 log ε).
Preliminary to the nonlinear analysis, in the next section, of the family of surfaces

of constant mean curvature one which are normal graphs over the Σε, we shall require
information about a certain inhomogeneous boundary problem for the Jacobi operator L
on Σε, in particular its solvability and the uniformity of this solution with respect to ε.

We will identify the space C2,α(∂Σε) with [C2,α(S1)]k and, for later use we also define

C2,α(∂Σε)′′ =
{
w ∈ C2,α(∂Σε) : w|E`

:= w`(θ) ∈ Span {χj(θ)}|j|≥2

}
.

We now set up the boundary problem for the Jacobi operator on the surfaces Σε.
That the mapping

L : {u ∈ C2,α(Σε) : u|∂Σε
= 0} −→ C0,α(Σε),

is surjective when is ε is sufficiently small is fairly easy to establish. Unfortunately, the
norm of the inverse is not uniformly bounded as ε→ 0. This happens for a good reason:
the range of the inverse may be too close to the restriction of the bounded nullspace B
to Σε. Therefore we impose a boundary condition, the corresponding solution operator
for which does have the uniformity we need later.

Finally, for f ∈ C0,α
µ−2(Σ) and φ′′ ∈ C2,α(∂Σε)′′, consider the boundary problem{

Lu = f |Σε
in Σε

Π′′(u) = φ′′ on ∂Σε.
(67)

Proposition 28 Fix µ with µ ∈ (1, 2). There exists an ε0 > 0 and for all ε ∈ (0?ε0)
linear maps

Ḡε : C0,α
µ−2(Σε) −→ C2,α

µ (Σε)

εµ/4 P̄ε :
(
C2,α(∂Σε)

)′′ −→ C2,α
µ (Σε),

which are bounded uniformly for ε ∈ (0, ε0) such that if f ∈ C0,α
µ−2(Σ) and φ′′ ∈ C2,α(∂Σε)′′,

then w = Ḡε(f) + P̄ε(φ′′) is a solution of (67).

Proof: To start, use a bounded extension operator in the C2,α(∂Σε) → C2,α
µ (Σ) in

the usual way to reduce to the case where φ′′ = 0.
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We are going to show that, for all ε small enough, there exists

Ĝε : C0,α
µ−2(Σε) −→ C2,α

µ (Σε),

which is uniformly bounded as ε tends to 0 and for which

‖LĜε(f)− f‖0,α,µ−2 ≤ c εµ/2 ‖f‖0,α,µ−2

The proposition follows from this claim by perturbation.
First step. Let us choose sm fixed larger than any of the s`. For each end E` of Σ,

we find a solution ū` ∈ C2,α
µ (E`) of
La`

ū` = f |E`
in (sm, Sε/8)× S1

ū`|∂E`
= 0 on {sm} × S1

Π′′ū`|∂E`
= 0 on {Sε/8} × S1.

This solution is not unique, but we can proceed as in the proof of Proposition 21 and
first project the operator La`

over the eigenspaces χj and then chose the (unique) right
inverse for which Π′(∂sū`) = 0 on {sm} × S1. Let us denote by G` this right inverse.
Following the proof of Proposition 21, it is easy to see that the norm of G` is bounded
independently of ε and also of sm ≥ sup` s`.

Now, using a perturbation argument, we can always assume, increasing sm if neces-
sary, that the result is also true when La`

is replaced by L since we have

‖(L− La`
)w‖0,α,µ−2 ≤ c e−3s` ‖w‖2,α,µ.

We denote by u` the corresponding solutions. We can patch together the functions u` to
all Σε by defining v := χū`, where χ is smooth, vanishes for s ≤ sm +1 and equals one for
s ≥ sm + 2 on each E`. Since Lv = f` in each end E`, we have now reduced our problem
to the case where on the right hand side of (67) the function is supported in a compact
set which is independent of ε. We set g := f − Lv and we extend this function by 0 on
each end. The norm of this extension is bounded in C0,α

−µ−2(Σ) by a constant times the
norm of f in C0,α

µ (Σε).
Second step. With the help of Proposition 26, we can solve globally in Σ

Lw = g,

where this time g has support away from the ends and w ∈ C2,α
−µ ⊕W . Near each end E`

we can decompose
w|E`

= Π′(w|E`
) + Π′′(w|E`

).

Finally, we modify w near each ∂E` by

w̃ = Π′(w|E`
) + χ̃Π′′(w|E`

),

where χ̃ is smooth, vanishes for s ≥ Sε/8 and equals one for s ≤ Sε/8 − 1. Naturally
L(w̃+v) = f everywhere except near each ∂E`. Moreover, making use of Proposition 25,
it is then a simple exercise to prove that

‖L(w̃ + v)− f‖0,α,µ−2 ≤ c e−µ Sε/4 ‖f‖0,α,µ−2.

We define Ĝε(f) := w̃ + v. The proof of the claim is complete. 2
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9.2 Deformations of Σε

Now we shall take up the task of defining slightly different truncations of the scaled
surface εΣ, which we shall call Σ̃ε,P (the P here refers to a parameter set which we
shall define below), which will be more convenient later. In the next subsection we shall
also consider the Jacobi operators which correspond to writing nearby surfaces as graphs
using vector fields which are small deformations of the normal vector field on Σ̃ε,P .

Fix one end E` of Σ, and recall its parametrization (66). The end εE` can therefore
be parametrized as

x` = ε` (cosh s cos θ +O(e−3s), cosh s sin θ +O(e−3s), s+O(e−2s)). (68)

where here and later, we use the notation

ε` := a` ε.

There is a Delaunay surface D`, with Delaunay parameter ε`, which ‘best fits’ the model
catenoid for εE` near the region where s = Sε`

/8 and whose orientation in this region
is compatible with the chosen orientation of Σ. If D` is an unduloid, it will have the
parametrization

xD`
= (τ`eσ` cos θ, τ`eσ` sin θ, k`),

and unit normal

νD`
= (−τ` cosh(σ`) cos θ,−τ` cosh(σ`) sin θ, (σ`)s).

If D` is a nodoid, it will have the parametrization

xD`
= (τ`eσ̄` cos θ, τ`eσ̄` sin θ, k̄`),

and unit normal

νD`
= (−τ` sinh(σ̄`) cos θ,−τ` sinh(σ̄`) sin θ, (σ̄`)s).

Remark 2 For simplicity in the notation and statement of results, we will henceforth
assume that Σ ∈ Hs

g,k. This means that all ends of Σ are asymptotic to a catenoid whose
orientation (induced by the orientation of Σ) is the same for all ends. We shall also
assume that all D` are unduloids. We could equally well choose all D` to be nodoids and
this would require only minor changes in the subsequent arguments. When Σ ∈ Hm

g,k, so
that its ends are asymptotic to a catenoid whose orientation (induced by the orientation
of Σ) depends on the end, we may choose D` to be a nodoid when the catenoid has positive
orientation and an unduloid when it has negative orientation, or vice versa.

The deformations of D` are parametrized by translations orthogonal to, rotations of
and translations along this axis and also changes in the Delaunay parameter. We label
these by

P` = (t`1, t
`
2, r

`
1, r

`
2, d`, δ

`),

respectively. All these parameters lie in some small neighbourhood of zero. (The r’s are
identified with some small neighbourhood of the identity in the space of rotations fixing
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the x3 axis; the exact manner is not important, but to be definite, we suppose that the
diffeomorphism is given by the exponential map in SO3 orthogonal to the copy of SO2

which is the stabilizer of that axis, followed by the projection to SO3/SO2.) The full
parameter set for all ends of εΣε is

P = (P1, . . . ,Pk),

We also set
t̃ = (t11, . . . , t

k
2) ∈ R2k, r̃ = (r11, . . . , r

k
2) ∈ R2k,

d̃ = (d1, . . . , dk) ∈ Rk, and δ̃ = (δ1, . . . , δk) ∈ Rk,

and the rigid motion determined by (t`1, t
`
2, r

`
1, r

`
2, d

`) will be denoted R(t`,r`,d`). The norm
on these parameter sets which arises naturally below is given by

‖P‖ = ‖(t̃, r̃, d̃, δ̃)‖ := ε1/4‖t̃‖+ ε3/4‖r̃‖+ (log
1
ε
)−1 ‖d̃‖+ ‖δ̃‖. (69)

The Delaunay surface associated to the set of (small) deformation parameters P` will
be denoted DP` , and its induced parametrization and unit normal will be called xP` and
νP` , respectively. This surface has Delaunay parameter ε` + δ`.

We come now to the main point, which is to write a neighbourhood of ε (E` ∩ ∂Σε)
as a normal graph over each DP` , and to obtain estimates on the graph function.

Proposition 29 Fix κ ∈ (1, 3
2). Then, for all parameter sets P with ‖P‖ ≤ εκ, there is a

diffeomorphism Ψ(s, θ) = (s′, θ′) from (−2 +Sε`
/8, Sε`

/8)×S1 onto its image, satisfying

‖Ψ(s, θ)− (s, θ)‖ = O(εκ−1),

and we have
x`(s, θ) = xP`(s′, θ′) + ŵ0(s′, θ′)νP`(s′, θ′), (70)

for all ε < ε0, where ε0 depends only on κ. The graph function ŵ0 here is of the form

ŵ0(s′, θ′) = − 1
cosh s′

(t`1 cos θ′ + t`2 sin θ′)− (r`
1 cos θ′ + r`

2 sin θ′) ε` cosh s′

+d` + δ`(s′ − 1) +O(ε3/2 + ε2κ−1).

In other words, we are writing a neighbourhood of ε (E` ∩ ∂Σε) as a normal graph
over each of the family of nearby model Delaunay surfaces, up to the reparametrization
given by the diffeomorphism Ψ.

Proof : This follows from a computation similar to the one we have already done in
the proof of Proposition 18. Recall that in the range s ∈ [−4 + Sε/8, 4 + Sε/8], we have
the expansions

k = εs+O(ε3/2), τeσ = ε cosh s+O(ε5/4),

and
τ coshσ =

1
cosh s

+O(ε3/4), ∂sσ = 1 +O(ε1/2),
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which follow from (28). Here and below O(εγ) will denote functions of (s, θ) all derivatives
of which are bounded by constant multiples of εγ .

It will be most convenient to apply the transformation R−1
(t`,r`,d`)

to both sides of (70).

On the one hand, from (66), the parametrization for R−1
(t`,r`)

(x`(s, θ)) is given by

(s, θ) −→
(
ε` cosh s cos θ − t`1 +O(εκ+1/4 log ε),

ε` cosh s sin θ − t`2 +O(εκ+1/4 log ε),

(r`
1 cos θ + r`

2 sin θ)ε` cosh s+ ε`s− d` +O(ε3/2 + ε2κ−3/4)
)

for s in this range.
On the other hand, R−1

(t`,r`,d`)
(xP`(s′, θ′) + ŵ0(s′, θ′)νP`(s′, θ′)) is parameterized by

(s′, θ′) −→

(((ε` + δ`) cosh s′ − 1
cosh s′

ŵ0(s′, θ′)) cos θ′ +O(ε5/4) +O(ε3/4)ŵ0(s′, θ′),

((ε` + δ`) cosh s′ − 1
cosh s′

ŵ0(s′, θ′)) sin θ′ +O(ε5/4) +O(ε3/4)ŵ0(s′, θ′),

(ε` + δ`)s′ + ŵ0(s′, θ′) +O(ε3/2) +O(ε1/2)ŵ0(s′, θ′)),

again for s′ in this range.
Equating the third coordinates, we already find that ŵ0(s′, θ′) = ε(s−s′)+O(εκ log ε).

Assuming that |s′− s| is at least bounded, this gives ŵ0(s′, θ′) = O(ε). Similar estimates
hold for its derivatives. Now, writing out the equality of the three coordinates in turn
gives

ε` cosh s cos θ = t`1 + ((ε` + δ`) cosh s′ − 1
cosh s′

ŵ0(s′, θ′)) cos θ′ +O(ε5/4)

ε` cosh s sin θ = t`2 + ((ε` + δ`) cosh s′ − 1
cosh s′

ŵ0(s′, θ′)) sin θ′ +O(ε5/4),

and

(r`
1 cos θ + r`

2 sin θ)ε` cosh s+ ε`s− d` = (ε` + δ`)s′ + ŵ0(s′, θ′) +O(ε3/2 + ε2κ−3/4).

Using the preliminary estimate on ŵ0 together with the first identities, we conclude that

|s− s′| ≤ c εκ−1, |θ′ − θ| ≤ c εκ−1,

and then, reinserting this information back into the third equality, that

|ŵ0| ≤ c εκ | log ε|,

along with its derivatives. The third identity gives

ŵ0(s′, θ′) = −ε` (s− s′)− (r`
1 cos θ′ + r`

2 sin θ′) ε` cosh s′ + d` + δ`s′ +O(ε3/2 + ε2κ−1),

while from the first two identitites we get

ε`(cosh s− cosh s′) = t`1 cos θ′ + t`2 sin θ′ + δ` cosh s′ +O(ε5/4 + ε2κ−5/4).
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This leads finally to

ŵ0(s′, θ′) = − 1
cosh s′

(t`1 cos θ′ + t`2 sin θ′)−

(r`
1 cos θ′ + r`

2 sin θ′) ε` cosh s′ + d` + δ`(s′ − 1) +O(ε3/2 + ε2κ−1),

which is the desired expansion. 2

We may now define the deformation Σ̃ε,P when the set of deformation parameters P
satisfies ‖P‖ ≤ εκ. Choose ε0 sufficiently small that Sε`

/8− 2 > s` for each ` whenever
ε < ε0. Then for any such ε, define Σ̃ε,P as the union of the central compact portion of
εΣε and the portion of each end εE` for s` ≤ s ≤ −1 + Sε`

/8 and the graph of

(s′, θ′) −→ xP`(s′, θ′) + ŵ0(s′, θ′) νP`(s′, θ′),

for −2 + Sε`
/8 ≤ s′ ≤ Sε`

/8.

Remark 3 These definitions are compatible in the region of overlap, and all we have
done is to slightly alter the boundary of Σ̃ε,P so that it conforms better to the coordinates
(s′, θ′).

9.3 Deformed Jacobi operators

For any small parameter set P, we define on the surface Σ̃ε,P a vector field ν̃ which is
the unit normal vector field away from the boundary, and which is a perturbation of this
unit normal near to the boundary. More specifically, write εE` as the graph

(s, θ) −→ xP` + ŵ0 νP` ,

for all s ∈ [−2 + Sε`
/8, Sε`

/8]. Let η(s) be a smooth cutoff function equal to 1 for
s ≤ −3/2 and vanishing for s ≥ −1. Then, for all s ∈ [−2+Sε/8, Sε/8], the vector ν̃(s, θ)
is defined to be the unit normal to the surface parameterized by

(s, θ) −→ R(t`,r`)(xP`
+ η(s+ Sε`

/8) ŵ0 νP`
),

As desired, ν̃ is still the unit normal to Σ̃ε,P when s ≤ −3/2−Sε`
/8, and equals νP`(s, θ)

when s ∈ [−1 + Sε`
/8, Sε`

/8].
Any surface near to Σ̃ε,P may be parameterized by

Σ̃ε,P 3 p −→ p+ w(p)ν̃(p),

for some scalar valued function w. We need to consider the equation which w must satisfy
in order for this surface to have constant mean curvature one, which we shall do in a
slightly more general context.

Let S be a regular orientable surface, with unit normal vector field ν. Suppose that ν̄
is another unit vector field along S which is nowhere tangential. By the inverse function
theorem, for any p0 ∈ S there are neighbourhoods U and V near (p0, 0) in S × R and a
diffeomorphism (φ(p, s), ψ(p, s)) from U to V such that

p+ s ν(p) = φ(p, s) + ψ(p, s) ν̄(φ(p, s)). (71)
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Here φ(p, 0) = p and ψ(p, 0) = 0. To determine the first order Taylor series of these
functions in s, differentiate (71) with respect to s and set s = 0. This gives

ν(p) = ∂sφ(p, 0) + ∂sψ(p, 0) ν̄(p),

and so, taking the normal component of this, we get

1 = ∂sψ(p, 0) ν(p) · ν̄(p), or ∂sψ(p, 0) = 1/(ν(p) · ν̄(p)).

Hence
ψ(p, s) =

s

ν(p) · ν̄(p)
+O(s2).

On the other hand, taking the tangential component and using this expansion of ψ yields

0 = ∂sφ(p, 0) +
s

ν(p) · ν̄(p)
ν̄t(p),

where ν̄t(p) is the tangential component of ν̄. Thus

φ(p, s) = p− s

ν(p) · ν̄(p)
ν̄t(p) +O(s2).

Next, any surface which is C2 close to S can be parameterized either as a normal
graph of some function w over S, using the vector field ν, or as a graph of a different
function w̄ using the vector field ν̄. These functions are related by

p+ w(p) ν(p) = p̄+ w̄(p̄) ν̄(p̄) = φ(p, w(p)) + ψ(p, w(p)) ν̄(φ(p, w(p)).

Using the expansions above, we see that w̄(p) = w(p)/(ν(p) · ν̄(p)) +O(‖w‖2).
The mean curvature operators on these two functions, which we call Hν,w and Hν̄,w̄,

respectively, are related by
Hν̄,w̄(p̄) = HN,w(p). (72)

Differentiating this with respect to w̄ and setting w̄ = 0, we get

Dw̄Hν̄,0(u) = DwHν,0((ν̄ · ν)u) + (∇Hν,0 · ν̄t) u, (73)

for any scalar function u. In the special case where the surface S has constant mean
curvature, this reduces to

L̄u := Dw̄Hν̄,0(u) = DwHν,0((ν̄ · ν)u) := L((ν̄ · ν)u). (74)

We apply the previous computation to the present situation. Denote by L̃ε,P the
linearized mean curvature operator about Σ̃ε,P . Away from ∂Σ̃ε,P , we have

L̃ε,P =
1
ε2
L,

where L = ∆Σ+ |AΣ|2 is the operator we have studied in detail. Near ∂Σ̃ε,P the structure
of L̃ε,P is described by the next result, the proof of which follows from the expansions
given in Proposition 29.
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Lemma 1 In εE`, we can write

L̃ε,P =
1
ε2
L+ L̂ε,P ,

where L̂ε,P is a second order linear differential operator whose coefficients are supported

in [−2 + Sε`
/8, Sε`

/8]× S1 and are bounded by
1

ε2e2s
εκ−1.

Also, following from the same ideas as in §7.1 is the simpler

Lemma 2 In εE`, the difference

1
ε2
L− 1

ε2` cosh2 s

(
∂2

ss + ∂2
θθ

)
,

is a second order linear differential operator, the coefficients of which are bounded by a
constant times ε−2e−4s in [s`, Sε`

/8].

The proofs of both of these results are left to the reader.
From these lemmas, we can immediately generalize Proposition 21 to the deformed

Jacobi operators on the surfaces Σ̃ε,P .

Proposition 30 Fix µ with µ ∈ (1, 2). Then there exists an ε0 > 0, depending only on
µ, and whenever ε ∈ (0, ε0), there exist linear maps

G̃ε,P : C0,α
µ−2(Σ̃ε,P) −→ C2,α

µ (Σ̃ε,P),

εµ/4 P̃ε,P : Π′′ (C2,α(S1)
)k −→ C2,α

µ (Σ̃ε,P),

which are bounded uniformly as ε → 0 such that, for all f ∈ C0,α
µ−2(Σ̃ε) and φ′′ =

(φ′′1, . . . , φ
′′
k) ∈ Π′′ (C2,α(S1)

)k, the function w = G̃ε,P(f) + P̃ε,P(φ′′) is a solution of
the problem  L̃ε,Pw =

1
ε2
f in Σ̃ε,P

Π′′w = φ′′ on ∂Σ̃ε,P .
(75)

Following the results of section §4.3, we also prove

Corollary 7 Fix µ ∈ (1, 2). Then there exists a constant c > 0 and an ε0 > 0, depending
only on µ, such that for ε ∈ (0, ε0), we have

||(P̃ε,P − P̃0)(φ′′)||2,α,µ ≤ c εµ/4
(
εκ−1 + ε(2−µ)/4

)
||φ||2,α.

Here, if φ′′ = (φ1, . . . , φk) ∈ Π′′ (C2,α(S1)
)k, the function P̃0(φ′′) = w̃0 is defined to be

equal to η(s − s`)w̃` on each end εE` and 0 elsewhere, where η is some cutoff function
equal to 0 for s < 0 and equal to 1 for s > 1 and where w̃` is the unique solution, in(
C2,α

2 ((−∞, Sε`
/8]× S1)

)k
, of the problem{

∆w̃` = 0 in (−∞, Sε`
/8)× S1

w̃` = φ′′` on {Sε`
/8} × S1.

(76)
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Proof : We start by solving, for each `,{
∆w̃` = 0 in (−∞, Sε`

/8)× S1

w̃` = φ′′` on {Sε`
/8} × S1

There is a unique solution of this equation, which is in C2,α
2 ((−∞, Sε`

/8] × S1), and
satisfies

||w̃`||2,α,2 ≤ c ε1/2 ||φ′′||2,α.

Now truncate these solutions at s = s`; this allows one to define w̃0 globally on Σ̃ε,P by
setting it equal to 0 elsewhere. From Lemmas 1 and 2 if follows that on each end εE`,
the difference

L̃ε,P −
1

ε2` cosh2 s

(
∂2

ss + ∂2
θθ

)
,

is a second order linear differential operator whose coefficients are sums of terms which
are either bounded by a constant times ε−2 e−4s or are supported in [−2 + Sε`

/8, Sε`
/8]

and bounded by a constant times ε−2 e−2s εκ−1. Using this, we see that

||L̃ε,Pw̃0||0,α,µ ≤ c(ε1/2 + εκ−1+µ/4)‖φ′′‖2,α.

The result then follows from Proposition 30. 2

10 CMC surfaces near to the truncated k-noids

Just as we already did for Delaunay surfaces, we would like to analyze the family of
surfaces which are close to each Σ̃ε,P and which have constant mean curvature 1. To
this end, as in (54), we expand the mean curvature operator to see that, for any φ ∈
C2,α(∂Σ̃ε,P), our problem reduces to solve the following boundary value problem{

L̃ε,Pw = 1 + Q̃(w) in Σ̃ε,P

Π′′(w) = φ′′ on ∂Σ̃ε,P .
(77)

Here

Q̃(w) =
1
εes

Q̃

(
w

εes
,
∇w
εes

,
∇2w

εes

)
, (78)

in each end Ẽε, collects all the terms of order higher than one in w. The function Q̃ has
partial derivatives which are uniformly bounded. Denote by w̃ε the solution of{

L̃ε,Pw̃ε = 0 in Σ̃ε,P

Π′′w̃ε = φ′′ on ∂Σ̃ε,P ,

which is given by Proposition 30. By the same Proposition, we can also solve{
L̃ε,Pw̃1 = 1 in Σ̃ε,P

Π′′w̃1 = 0 on ∂Σ̃ε,P .
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We find that
||w̃1||2,α,µ ≤ c ε3/2+µ/4.

Setting w = w̃ε + w̃1 + v, then it remains to solve{
L̃ε,Pv = Q̃(w̃ε + w̃1 + v) in Σ̃ε,P

Π′′v = 0 on ∂Σ̃ε,P .

It is sufficient to find a fixed point of the mapping

K̃(v) := G̃ε,PQ̃(w̃ε + w̃1 + v), (79)

when ε is sufficiently small.

Proposition 31 There exist constants c0, c1 > 0 such that if ||φ′′||2,α ≤ c0 ε
3/4, then

||G̃ε(Q̃(w̃ε + w̃1))||2,α,µ ≤
c1
2
ε(µ−3)/4

(
||φ′′||22,α + ε3

)
,

and
||G̃ε(Q̃(w̃ε + w̃1 + v2)− Q̃(w̃ε + w̃1 + v1))||2,α,µ ≤

1
2
||v2 − v1||2,α,µ,

for all v1, v2 in B̃c1 := {v : ||v||2,α,µ ≤ c1 ε
(µ−3)/4 (‖φ′′‖2

2,α+ε3)}. Thus, K̃ is a contraction
mapping on the ball B̃c1 into itself, and therefore has a unique fixed point v in this ball.

Proof : We use that in each end εE`

||w̃ε||2,α,[s,s+1] ≤ c eµ(s−Sε`
/8) ||φ′′||2,α, (80)

and also that
||w̃1||2,α,[s,s+1] ≤ c ε3/2eµ(s−Sε`

/8). (81)

These estimates imply that on the end εE`, for s ∈ [s`, Sε`
/8], we have

e−µs||Q̃(w̃ε + w̃1)||0,α,[s,s+1] ≤ c
(
||φ′′||22,α + ε3

)
ε(µ−3)/4.

On the other hand, on the compact piece, we simply have

||Q̃(w̃ε + w̃1)||0,α ≤ c (||φ′′||22,α + ε3) ε(µ−2)/2.

The constant c1 is then taken to be equal to twice the sum of the constant which appear
in the last two estimates. The other estimate follows in the same way, and the proof is
complete. 2

As in section §4.3 we finally obtain

Corollary 8 There exists a constant c0 > 0 and an ε0 > 0 such that, for all ε ∈ (0, ε0)
and for any φ′′ ∈ Π′′ (C2,α(S1)

)k with ||φ′′||2,α ≤ c0 ε
3/4, the problem (77) has a unique

solution w. The mapping

Π′′ (C2,α(S1)
)k 3 φ′′ −→ w ∈ C2,α

µ (Σ̃ε,P),
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is continuous and the solution w satisfies the estimates

||w||2,α,µ ≤ c εµ/4(ε3/2 + ||φ′′||2,α + ε−3/4||φ′′||22,α) (82)

and
||(w −Π′′w)(Sε`

/8, ·)||2,α + ||∂s(w −Π′′w)(Sε`
/8, ·)||1,α

≤ c (ε3/2 + (εκ−1 + ε(2−µ)/4)||φ′′||2,α + ε−3/4||φ′′||22,α). (83)

Finally, if w̃0 = P̃0(φ′′) ∈ C2,α
µ (Σ̃ε,P) as in Corollary 7, then

||w − w̃0||2,α,µ ≤ c εµ/4(ε3/2 + (εκ−1 + ε(2−µ)/4)||φ′′||2,α + ε−3/4||φ′′||22,α). (84)

The proof is identical to that of Corollary 5, and so we omit it.

11 Matching the Cauchy data

Denote by U := R2k × R2k × Rk × Rk the set of parameters which is endowed with
the norm defined in (69). We have now established that, given any set of parameters
P = (t̃, r̃, d̃, δ̃) ∈ U satisfying ‖P‖ ≤ ε5/4, and for any φ′′ ∈ Π′′ (C2,α(S1)

)k such that
‖φ′′‖2,α ≤ ε5/4, we can solve the equations{

Lε`+δ`w` = Q(w`) in [Sε/8,+∞)× S1

Π′′w` = φ′′` on {Sε/8} × S1
(85)

and {
L̃ε,PwK = 1 + Q̃(wK) in Σ̃ε,P

Π′′wK = φ′′ on ∂Σ̃ε,P ,
(86)

when ε is sufficiently small. Thus we may define the mappings

Sε : Π′′ (C2,α(S1)
)k 3 φ′′ −→[

(w1, . . . , wk)|s=Sε`
/8, (∂sw1, . . . , ∂swk)|s=Sε`

/8

]
∈
(
C2,α(S1)

)k × (C1,α(S1)
)k
,

and

Tε : U ×Π′′ (C2,α(S1)
)k 3 φ′′ −→ [

((ŵ0 + wK)|εE1 , . . . , (ŵ0 + wK)|εEk
)|s=Sε`

/8,

(∂s(ŵ0 + wK)|εE1 , . . . , ∂s(ŵ0 + wK)|εEk
)|s=Sε`

/8

]
∈
(
C2,α(S1)

)k × (C1,α(S1)
)k
,

where ŵ0 is defined in Proposition 29. These would be the Cauchy data mappings for
the two nonlinear problems (85) and (86).

Finally, we extend Sε trivialy to U ×Π′′ (C2,α(S1)
)k and we set

Cε := Sε − Tε

By construction Cε has range in a subset of
(
C2,α(S1)

)k × (C1,α(S1)
)k, namely

rangeCε ⊂ (Span{1, eiθ, e−iθ})k ×
(
C1,α(S1)

)k
.

It follows from Corollary 5 and Corollary 8 that, for all ε > 0 small enough, these
mappings are well defined from the ball of radius ε5/4 in U ×

(
C2,α(S1)

)k.
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Proposition 32 For some ε0 > 0 and every ε ∈ (0, ε0), there exists a (P, φ′′) ∈ U ×(
C1,α(S1)

)k which solves Cε(P, φ′′) = 0.

This produces the desired CMC surface with k Delaunay ends.
Proof : We define mappings

S0 : Π′′ (C2,α(S1)
)k 3 φ′′ −→[

(w1, . . . , wk)|s=Sε`
/8, (∂sw1, . . . , ∂swk)|s=Sε`

/8

]
∈
(
C2,α(S1)

)k × (C1,α(S1)
)k
,

where this time w` = P0(φ′′` ) as in Corollary 4 and

T0 : U ×Π′′ (C2,α(S1)
)k 3 φ′′ −→ [

((w̌0 + w̃0)|εE1 , . . . , (w̌0 + w̃0)|εEk
)|s=Sε`

/8 ,

(∂s(w̌0 + w̃0)|εE1 , . . . , ∂s(w̌0 + w̃0)|εEk
)|s=Sε`

/8

]
∈
(
C2,α(S1)

)k × (C1,α(S1)
)k
,

where w̃0 = P̃0(φ′′) as in Corollary 7 and where we have set

w̌0|εE`
= − 1

cosh s
(t`1 cos θ + t`2 sin θ)− (r`

1 cos θ + r`
2 sin θ) ε` cosh s+ d` + δ`(s′ − 1).

It is an easy exercise to check that C0 is an isomorphism from U × Π′′ (C2,α(S1)
)k into

(Span{1, eiθ, e−iθ})k ×
(
C1,α(S1)

)k (with the norm induced by the norm of
(
C2,α(S1)

)k ×(
C1,α(S1)

)k), whose inverse is bounded independently of ε. In particular, the equation
C0(P, φ′′) = 0 has the unique solution (0, 0).

By Corollaries 5, 8 and Proposition 29, we may estimate

‖(Cε − C0)(P, φ′′)‖(C2,α(S1))k×(C1,α(S1))k ≤ c ε(7−µ)/4.

In order to solve Cε(P, φ′′) = 0, it is enough to find a fixed point for the nonlinear
mapping

Fε(P, φ′′) := C−1
0

(
(Cε − C0)(P, φ′′)

)
.

In order to prove that such a fixed point exists we would like to use Leray-Schauder
degree theory in the ball of radius ε5/4 in U × Π′′ (C2,α(S1)

)k. Continuity of Fε follows
readily from the construction of Sε and Tε. However, Fε fails to be compact. To overcome
this last difficulty, we define a family of smoothing mappings

Dq :
∑
n∈Z

an e
inθ −→

∑
n∈Z

(1 + n2)q/2 an e
inθ.

When q < 0, the mapping Dq is bounded on C2,α(S1), with norm uniformly bounded as
q → 0. We extend this mapping to U × Π′′ (C2,α(S1)

)k in the obvious way and for all
q < 0, we look for a solution of

(Pq, φ
′′
q ) = Dq C

−1
0

(
(Cε − C0)(Pq, φ

′′
q )
)
.

This operator is compact and for ε suficiently small, maps the ball of radius ε5/4 to itself,
because all the terms in Fε decay faster (in ε) than ε5/4. Hence it has a fixed point
when ε is small enough. Finally, the fixed points are bounded uniformly in q, so for
any fixed α′ < α we may extract a sequence qj → 0 such that (Aqj , φ

′′
qj

) converges in
U ×Π′′(C2,α′

(S1))k. Cε vanishes at the limit of this sequence. This completes the proof.
2
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12 The nondegeneracy of the solutions

We now show that for ε sufficiently small, the solutions we have constructed above are
nondegenerate in the sense defined in [9]. This condition ensures the smoothness of the
moduli spaces Mg,k near Σε. We begin by recalling this notion of nondegeneracy.

Definition 3 The constant mean curvature surface Σε ∈ Mg,k is nondegenerate if the
linearization of the mean curvature operator about Σε is injective on the function space
C2,α

δ (Σε) for all δ < 0.

Here for r ∈ N, α ∈ [0, 1) and δ ∈ R, Cr,α
δ (Σε) is defined to be the space of functions

φ ∈ Cr,α(Σε) which can be written on each end of Σε as eδs times a function ψ with
ψ ∈ Cr,α(R+

s × S1
θ ).

First notice that it is sufficient to prove that, for ε small enough, the Jacobi operator
L is injective on C2,α

δ (Σε) for some fixed δ ∈ (−2,−1). This is because any decaying
solution of Lu = 0 must decay exponentially near the ith end of Σε at least like e−γ2(εi)s,
and by Proposition 20, when ε is sufficiently small, 2 − γ2(εi) is as small as desired, so
that u ∈ C2,α

δ (Σε).
The proof is by contradiction. Fix δ ∈ (−2,−1) and assume that for some sequence

of εk tending to 0, the Jacobi operator

Lk = ∆Σεk
+ |AΣεk

|2,

on Σεk
is not injective on C2,α

δ (Σεk
). Then there exists some wk ∈ C2,α

δ (Σεk
) such that

Lkwk = 0 and wk 6= 0.
First normalize wk, multiplying it by a suitable constant, so that ||wk||0,0,δ = 1.

Choose a point yk ∈ Σεk
where the above norm is achieved. Suppose first that some

subsequence of the yk/εk converges to a point y0 ∈ Σ0. Then we can extract a subsequence
of the wk which converge on every compact of Σ0 to a limiting function w globally defined
on Σ0; w must be nontrivial since we also have ||w||0,0,δ = 1. Furthermore, LΣ0w = 0.
Since we have asssumed that Σ0 is nondegenerate, we have obtained a contradiction.

If, on the other hand, some subsequence of the yk satisfies limk→+∞ |yk/εk| = +∞
then, this implies that, at least for a subsequence, the points yk are always in the same
end, say the ith. Therefore, we may write,

yk = xεk,i(sk + sεk,i, θk),

with sk tending to +∞. By translating back by sk + sεk,i and multiplying by a suitable
constant, we find yet another sequence of solutions, which we again call wk, attaining
their maximum at s = 0, and which solve the translated equation, which we again
write as Lkwk = 0. Here Lk is the linearized mean curvature operator relative to the
parameterization given above near the ends. It is straightforward to see that the wk

converge to a nontrivial solution w of one of the following two limiting equations

∂2
ssw + ∂2

θθw = 0, (87)

or
∂2

ssw + ∂2
θθw +

2
cosh2(s+ s̄)

w = 0, for some s̄ ∈ R, (88)
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on R × S1. In addition, w is bounded by eδs. By decomposing into eigenfrequencies we
then see that necessarily w = 0 which is the desired contradiction.

This covers all cases, so we have showed that the linearization is injective on the
appropriate weighted Hölder spaces.
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