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Abstract. We study the communication complexity of unconditionally secure multiparty computa-
tion (MPC) protocols in the honest majority setting. Despite tremendous efforts in achieving efficient
protocols for binary fields under computational assumptions, there are no efficient unconditional MPC
protocols in this setting. In particular, there are no n-party protocols with constant overhead admitting
communication complexity of O(n) bits per gate. Cascudo, Cramer, Xing and Yuan (CRYPTO 2018)
were the first ones to achieve such an overhead in the amortized setting by evaluating O(logn) copies of
the same circuit in the binary field in parallel. In this work, we construct the first unconditional MPC
protocol secure against a malicious adversary in the honest majority setting evaluating just a single
boolean circuit with amortized communication complexity of O(n) bits per gate.

1 Introduction

Secure multiparty computation (MPC) [Yao82,GMW87,CCD88,BOGW88] allows n parties to compute any
function of their local inputs while guaranteeing the privacy of the the inputs and the correctness of the
outputs even if t of the parties are corrupted by an adversary.

Given that point-to-point secure channels are established across the parties, any function can be computed
with unconditional (perfect) security, against a semi-honest adversary if n ≥ 2t+ 1 and against a malicious
adversary if n ≥ 3t + 1 [BOGW88,CCD88]. If we accept small error probability, n ≥ 2t + 1 is sufficient to
get malicious security [RBO89,Bea89].

The methods used in unconditional secure protocols tend to be computationally much more efficient than
the cryptographic machinery required for computational security. So unconditionally secure protocols are very
attractive from a computational point of view, but they seem to require a lot of interaction. In fact, such
protocols require communication complexity proportional to the size of the (arithmetic) circuit computing
the function. In this work we focus on the communication complexity per multiplication of unconditional
MPC protocols in the honest majority setting.

Known unconditional secure MPC protocols represent the inputs as elements of a finite field Fq and
represent the function as an arithmetic circuit over that finite field. Moreover, protocols that are efficient in
the circuit size of the evaluated function process the circuit gate-by-gate using Shamir secret sharing [Sha79].
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This approach usually allows non-interactive processing of addition gates but requires communication for
every multiplication gate. However, secret-sharing-based protocols require that the size of the underlying
finite field is larger than the number of parties, i.e., q > n. The work of [BTH08] based on hyper-invertible
matrices requires the underlying finite field to be q ≥ 2n.3 Other types of protocols with unconditional online
phase based on message authentication codes, such as the SPDZ-based protocol [DPSZ12], require the size
of the underlying finite field to be large, i.e., q > 2κ, where κ is the security parameter. This is based on the
fact that the cheating probability of the adversary needs to be inverse proportional to the size of the field.

In this paper, we ask a very natural question for unconditionally secure protocols which, to the best of
our knowledge, has not been studied in detail before:

Is it possible to construct unconditional MPC protocols for t < n/2 for computing an arithmetic circuit
over a small field Fq (such as q = 2) with amortized communication complexity O(n) field elements (bits)
per gate?

Note that the standard solution of applying the existing protocols to functions which are already repre-
sented as binary circuits requires to lift the circuit to a large enough extension field. That said, in such a
scenario the communication complexity incurs a multiplicative overhead of log n.

Recently, Cascudo, et al. [CCXY18] revisited the amortized complexity of unconditional MPC. At a
high level, the authors leverage the large extension field to evaluate more than one instance of the same
binary circuit in parallel. In particular, the authors compile an MPC protocol for a circuit over an extension
field to a parallel MPC protocol of the same circuit but with inputs defined over its base field. That said,
their protocol can evaluate O(log n) copies of the same circuit in the binary field in parallel and achieve
communication complexity of O(Cn) bits where C is the size of the circuit. However, such an overhead
cannot be achieved for a single copy of the circuit. The works of [DZ13,CG20] also allow efficient parallel
computation of several evaluations of the same binary circuits with a special focus on the dishonest majority.
Note that these works are based on packed secret sharing for SIMD circuits, however this induces an extra
overhead of logC in the circuit size when using for a single binary circuit.

Our Results. We answer the above question in the affirmative, obtaining an unconditional MPC protocol
in the honest majority setting for calculations over F2. Informally, we prove the following:

Theorem 1 (informal). There exists an unconditional MPC protocol for n parties secure against t < n/2
corruptions in the presence of a malicious adversary evaluating a single boolean circuit with an amortized
communication complexity of O(n) bits per gate.

We formally state our results and communication overhead in Theorem 5. To establish our result, we
propose an online phase based on additive sharings where we are able to authenticate the shares with O(Cn)
communication overhead as opposed to prior works which achieve an overhead of O(Cnκ) for a single boolean
circuit, where κ is the security parameter.

We are aware that the works of Hazay et al. [HVW20] and Boyle et al. [BGIN20] (building on Boneh
et al. [BBCG+19]) provide general compilers from semi-honest security to malicious security in the honest-
majority setting, with at most a constant communication overhead. We leave the possibility of an alternative
approach to achieve malicious security by applying these compilers to a semi-honest protocol which commu-
nicates O(n) field elements per gate, such as our semi-honest protocol, to future work.

2 Technical Overview

In the following, we will use n to denote the number of parties and t to denote the number of corrupted
parties. In the setting of the honest majority, we have n = 2t+ 1.

Our construction will utilize two kinds of secret sharing schemes:

3 In [CCXY18], Cascudo, et al. show that the requirement q ≥ 2n of using hyper-invertible matrices can be relaxed
to any field size. However, q > n is still necessary to use Shamir secret sharing in [BTH08].
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– The standard Shamir secret sharing scheme [Sha79]: We will use [x]t to denote a degree-t Shamir sharing,
or a (t+ 1)-out-of-n Shamir sharing. It requires at least t+ 1 shares to reconstruct the secret and any t
shares do not leak any information about the secret.

– An additive sharing among the first t + 1 parties: We will use 〈x〉 to denote an additive sharing, which
satisfies that the summation of the shares held by the first t + 1 parties is the secret x, and the shares
of the rest of parties are 0.

Jumping ahead, the additive sharing is used to perform the secret sharing reconstructions, and the Shamir
secret sharing scheme is used to verify the correctness of the reconstructions post execution.

In this paper, we are interested in the information-theoretic setting. Our goal is to construct a secure-
with-abort MPC protocol for a single arithmetic circuit over the binary field F2, such that the communication
complexity is O(Cn) bits (ignoring terms which are sub-linear in the circuit size), where C is the circuit size
and n is the number of parties. The structure of our overview is as follows:

1. We first provide an overview of related works and discuss why their protocols cannot achieve O(Cn) bits
for a single binary circuit.

2. Then we introduce a high-level structure of our construction. Very informally, our protocol uses additive
sharings to achieve high efficiency in the online phase. However, using additive sharings requires au-
thentications of the secrets to detect malicious behaviors. Based on the prior works, directly generating
an authentication for each sharing already requires the communication of O(Cnκ) bits, where κ is the
security parameter. The main difficulty is how to efficiently authenticate the secrets of additive sharings.

3. Next we review the notion of reverse multiplication-friendly embeddings (RMFE) introduced in [CCXY18],
which is an important building block of our protocol.

4. Finally, we introduce our main technique. Our idea stems from a new way to authenticate the secret of
an additive sharing. Combining with RMFEs, we can authenticate the secret of a single additive sharing
with the communication of O(n) bits. Relying on this new technique, we can obtain a secure-with-abort
MPC protocol for a single binary circuit with the communication complexity of O(Cn) bits.

How Previous Constructions Work. In the honest majority setting, the best-known semi-honest protocol is
introduced in the work of Damg̊ard and Nielsen [DN07] in 2007 (hereafter referred to as the DN protocol).
The communication complexity of the DN protocol is O(Cnφ) bits, where φ is the size of a field element. A
beautiful line of works [GIP+14,LN17,CGH+18,NV18,GSZ20] have shown how to compile the DN protocol
to achieve security-with-abort. In particular, the recent work [GSZ20] gives the first construction where
the communication complexity matches the DN protocol. At a high-level, these protocols follow the idea of
computing a degree-t Shamir sharing for each wire, and making use of the properties of the Shamir secret
sharing scheme to evaluate addition gates and multiplication gates. However, the Shamir secret sharing
scheme requires the field size to be at least n+ 1. It means that the size of a field element φ ≥ log n. When
we want to evaluate a binary circuit by using these protocols, we need to use a large enough extension field so
that the Shamir secret sharing scheme is well-defined, which results in O(Cn log n) bits in the communication
complexity.

Recently, a beautiful work [CCXY18] revisited the amortized complexity of information-theoretically
secure MPC. Their idea is to compile an MPC for a circuit over an extension field to a parallel MPC of the
same circuit but with inputs defined over its base field. In this way, we can evaluate O(log n) copies of the
same circuit in the binary field at the same time and achieve O(Cn) bits per circuit. The main technique is
the notion of reverse multiplication-friendly embeddings (RMFE) introduced in this work [CCXY18]. At a
high-level, RMFE allows us to perform a coordinate-wise product between two vectors of bits by multiplying
two elements in the extension field. When evaluating O(log n) copies of the same circuit in the binary field,
each multiplication is just a coordinate-wise product between the vectors of bits associated with the input
wires. Relying on RMFE, all parties can transform the computation to one multiplication between two
elements in the extension field, which can be handled by the DN protocol. This is the first paper which
sheds light on the possibility of evaluating a binary circuit with communication complexity of O(Cn) bits.
However, it is unclear how to use this technique to evaluate a single binary circuit.
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In the setting of the dishonest majority, the well-known work SPDZ [DPSZ12] shows that, with necessary
correlated randomness prepared in the preprocessing phase, we can use an information-theoretic protocol
in the online phase to achieve high efficiency. The high-level idea of the online phase protocol is to use the
notion of Beaver tuples to transform a multiplication operation to two reconstructions. We will elaborate this
technique at a later point. In the online phase, all parties will compute an additive sharing for each wire. One
benefit of the additive secret sharing scheme is that it is well-defined in the binary field and each party holds
a single bit as its share. As a result, the communication complexity in the online phase is just O(Cn) bits.
However, unlike the honest majority setting where the shares of honest parties can determine the secret of a
degree-t Shamir sharing, the secret of an additive sharing can be easily altered by a corrupted party changing
its own share. Therefore, a secure MAC is required to authenticate the secret of each additive sharing. To
make the MAC effective, the MAC size should be proportional to the security parameter κ. Although it
does not necessarily affect the sharing space, e.g., the work TinyOT [NNOB12] uses an additive sharing in
the binary field with a secure MAC in the extension field, generating a secure MAC for each sharing in the
preprocessing phase brings in an overhead of κ, which results in O(Cnκ) bits in the overall communication
complexity. We however note that, this protocol achieves a highly efficient online phase, which is O(Cn) bits.
Our starting idea is the online phase protocol in [DPSZ12]. In the honest majority setting, the preprocessing
phase can also be done by an information-theoretic protocol. In fact, the idea of using Beaver tuples has been
used in several previous works [BTH08,BSFO12,CCXY18] in the honest majority setting. We first describe
a prototype protocol of using Beaver tuples in this setting.

A Prototype Protocol of Using Beaver Tuples. This protocol follows the same structure as the protocol
in [DPSZ12], but in the honest majority setting. Recall that we use 〈x〉 to denote an additive sharing among
the first t + 1 parties. We use MAC(x) to denote an abstract MAC for x. It satisfies that all parties can
use MAC(x) to check the correctness of x. We further require that MAC(·) is linear homomorphic, i.e.,
MAC(x) + MAC(y) = MAC(x+ y). Let [[x]] := (〈x〉,MAC(x)).

In the preprocessing phase, all parties prepare a batch of Beaver tuples in the form of ([[a]], [[b]], [[c]]), where
a, b are random bits and c := a · b. These tuples will be used in the online phase to evaluate multiplication
gates.

In the online phase, all parties start with holding [[x]] for each input wire. Addition gates and multiplication
gates are evaluated in a predetermined topological order.

– For an addition gate with input sharings [[x]] and [[y]], all parties can locally compute

[[z]] := (〈z〉,MAC(z)) = (〈x〉,MAC(x)) + (〈y〉,MAC(y)) = [[x]] + [[y]].

– For a multiplication gate with input sharings [[x]] and [[y]], let ([[a]], [[b]], [[c]]) be the first unused Beaver
tuple. Note that:

z = x · y = (x+ a− a) · (y + b− b)
= (x+ a) · (y + b)− (x+ a) · b− (y + b) · a+ a · b

Therefore, if all parties know x+ a and y + b, [[z]] can be locally computed by

[[z]] := (x+ a) · (y + b)− (x+ a) · [[b]]− (y + b) · [[a]] + [[c]].

The task of computing [[z]] becomes to reconstruct [[x]] + [[a]] and [[y]] + [[b]]. We will use 〈x+a〉 and 〈y+ b〉
to do the reconstructions. All parties send their shares of 〈x + a〉, 〈y + b〉 to the first party. Then, the
first party reconstructs the x+ a, y + b, and sends the result back to other parties.

To check the correctness of the computation, it is sufficient to verify the reconstructions. For each x+ a, all
parties use [[x]], [[a]] to compute MAC(x+ a), which can be used to verify the reconstruction.

Note that we only need to communicate O(n) bits per multiplication gates. Therefore, the communication
complexity is O(Cn) bits in the online phase. The main bottleneck of this approach is how to generate Beaver
tuples efficiently. Our protocol relies on the notion of reverse multiplication-friendly embeddings and a novel
MAC to achieve high efficiency in generating Beaver tuples.
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Review of the Reverse Multiplication-Friendly Embeddings [CCXY18]. We note that a Beaver tuple can be
prepared by the following two steps: (1) prepare two random sharings [[a]], [[b]], and (2) compute [[c]] such that
c := a · b. Note that a, b are random bits. It naturally connects to the idea of RMFE, which allows us to
perform a coordinate-wise product between two vector of bits by multiplying two elements in the extension
field. We first give a quick review of this notion.

Let Fk2 denote a vector space of F2 of dimension k, and F2m denote the extension field of F2 of degree
m. A reverse multiplication-friendly embedding is a pair of F2-linear maps (φ, ψ), where φ : Fk2 → F2m and
ψ : F2m → Fk2 , such that for all x,y ∈ Fk2 ,

x ∗ y = ψ(φ(x) · φ(y)),

where ∗ denotes the coordinate-wise product. In [CCXY18], it has been shown that there exists a family of
RMFEs such that m = Θ(k).

In [CCXY18], recall that k = O(log n) copies of the same circuit are evaluated together. For each wire,
there is a vector of k bits associated with this wire, where the i-th bit is the wire value of the i-th copy
of the circuit. Thus, an addition gate corresponds to a coordinate-wise addition, and a multiplication gate
corresponds to a coordinate-wise product. In the construction of [CCXY18], for each wire, the vector x
associated with this wire is encoded to φ(x) ∈ F2m . All parties hold a degree-t Shamir sharing [φ(x)]t. Since
φ(·) is an F2-linear map, addition gates can be computed locally. The main task is to evaluate multiplication
gates:

– For a multiplication gate with input sharings [φ(x)]t, [φ(y)]t, the goal is to compute a degree-t Shamir
sharing [φ(z)]t such that z = x ∗ y.

– Relying on the DN protocol [DN07], all parties can compute a degree-t Shamir sharing [w]t := [φ(x) ·
φ(y)]t. By the property of the RMFE, we have z = ψ(w). Therefore, all parties need to transform [w]t
to [φ(ψ(w))]t.

– In [CCXY18], this is done by using a pair of random sharings ([r]t, [φ(ψ(r))]t). All parties reconstruct
[w+ r]t and compute [φ(ψ(w))]t := φ(ψ(w+ r))− [φ(ψ(r))]t. The correctness follows from the fact that
φ and ψ are F2-linear maps.

– Finally, all parties set [φ(z)]t := [φ(ψ(w))]t.

As analyzed in [CCXY18], the communication complexity per multiplication gate is O(m · n) bits. Since
each multiplication gate corresponds to k multiplications in the binary field, the amortized communication
complexity per multiplication is O(m/k · n) = O(n) bits.

Following the idea in [CCXY18], we can prepare a random tuple of sharings ([φ(a)]t, [φ(b)]t, [φ(c)]t),
where a, b are random vectors in Fk2 , and c = a ∗ b. In particular, the communication complexity per tuple
is O(m · n) bits. Suppose that a = (a1, a2, . . . , ak), b = (b1, b2, . . . , bk), and c = (c1, c2, . . . , ck). If we can
transform a random tuple ([φ(a)]t, [φ(b)]t, [φ(c)]t) to k Beaver tuples:

([[a1]], [[b1]], [[c1]]), ([[a2]], [[b2]], [[c2]]), . . . , ([[ak]], [[bk]], [[ck]]),

then the communication complexity per Beaver tuple is O(m/k · n) = O(n) bits! More concretely, our goal
is to efficiently separate a degree-t Shamir sharing [φ(a)]t to k sharings [[a1]], [[a2]], . . . , [[ak]]. For all i ∈ [k],
recall that [[ai]] = (〈ai〉,MAC(ai)). Therefore, we need to efficiently obtain an additive sharing 〈ai〉 and a
secure MAC(ai) from a degree-t Shamir sharing [φ(a)]t.

Establish a Connection between [φ(x)]t and {[[xi]]}ki=1. We first consider the following question: Given φ(x),
how can we obtain the i-th bit xi from φ(x)? Let e(i) be a vector in Fk2 such that all entries are 0 except
that the i-th entry is 1. Then e(i) ∗ x is a vector in Fk2 such that all entries are 0 except that the i-th entry
is xi. According to the definition of RMFEs, we have

e(i) ∗ x = ψ(φ(e(i)) · φ(x)).

To obtain xi from e(i) ∗ x, we can compute the summation of all entries in e(i) ∗ x. We define an F2-linear
map val(·) : F2m → F2 as follows:
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– For an input element y ∈ F2m , suppose ψ(y) = (y1, y2, . . . , yk).

– val(y) is defined to be
∑k
i=1 yi.

Therefore, we have

xi := val(φ(e(i)) · φ(x)).

Note that φ(e(i)) is an element in F2m and is known to all parties. Therefore, all parties can locally
compute [y(i)]t := φ(e(i)) · [φ(x)]t. In particular, we have val(y(i)) = xi. In the honest majority setting, a
degree-t Shamir sharing satisfies that the secret is determined by the shares of honest parties. In particular,
corrupted parties cannot alter the secret of this sharing. Therefore, [y(i)]t can be seen as a secure MAC for
xi. Thus for an element x ∈ F2, we set MAC(x) := [y]t, where y ∈ F2m satisfies that val(y) = x. Note that
[y]t can be used to check the correctness of x, and for all x, x′ ∈ F2,

MAC(x) + MAC(x′) = [y]t + [y′]t = [y + y′]t = MAC(x+ x′),

where the last step follows from the fact that val(y + y′) = val(y) + val(y′).
Recall that [[xi]] = (〈xi〉,MAC(xi)). So far, we have obtained MAC(xi) from [φ(x)]t. Therefore, the only

task is to obtain 〈xi〉. Let 〈x〉 := (〈x1〉, 〈x2〉, . . . , 〈xk〉) denote a vector of additive sharings of x ∈ Fk2 . For
each party, its share of 〈x〉 is a vector in Fk2 . For the last t parties, they take the all-0 vector as their shares.

We note that for a degree-t Shamir sharing [φ(x)]t, the secret φ(x) can be written as a linear combination
of the shares of the first t+ 1 parties. Therefore, the first t+ 1 parties can locally transform their shares of
[φ(x)]t to an additive sharing of φ(x), denoted by 〈φ(x)〉. Let ui denote the i-th share of 〈φ(x)〉. Then we

have φ(x) =
∑t+1
i=1 ui. In Section 3.3, we give an explicit construction of an F2-linear map φ̃−1 : F2m → Fk2

which satisfies that for all x ∈ Fk2 , φ̃−1(φ(x)) = x. Utilizing φ̃−1, we have

t+1∑
i=1

φ̃−1(ui) = φ̃−1(

t+1∑
i=1

ui) = φ̃−1(φ(x)) = x.

Thus, the i-th party takes φ̃−1(ui) as its share of 〈x〉.
In summary, we show that given [φ(x)]t, all parties can locally obtain {[[xi]]}ki=1. Together with RMFEs,

the communication complexity per Beaver tuple is O(n) bits. Relying on the prototype protocol of using
Beaver tuples, we obtain a secure-with-abort MPC protocol for a single binary circuit which has communica-
tion complexity O(Cn) bits. We note that these k sharings {[[xi]]}ki=1 are correlated since they are computed
from a single degree-t Shamir sharing [φ(x)]t. Our protocol will make use of additional randomness as mask
to protect the secrecy of these sharings when they are used. The preparation of this additional randomness
is done in a batch way at the beginning of the protocol and does not affect the asymptotic communication
complexity of the main protocol. We refer the readers to Section 6.3 and Section 6.4 for the additional
randomness we need in the construction.

An Overview of Our Main Construction. Our main protocol follows the same structure as the prototype
protocol of using Beaver tuples. Recall that for x ∈ F2, we use 〈x〉 to denote an additive sharing of x
among the first t + 1 parties, and the shares of the rest of parties are 0. Let (φ, ψ) be a RMFE, where
φ : Fk2 → F2m and ψ : F2m → Fk2 are F2-linear maps. Recall that val(·) : Fqm → Fq is an Fq-linear map,

defined by val(y) =
∑k
i=1 yi, where (y1, y2, . . . , yk) = ψ(y). For x ∈ F2, let [[x]] := (〈x〉, [y]t), where 〈x〉 is an

additive sharing among the first t + 1 parties in F2, and [y]t is a degree-t Shamir sharing of y ∈ F2m such
that val(y) = x.

In the preprocessing phase, all parties prepare a batch of Beaver tuples in the form of ([[a]], [[b]], [[c]]), where
a, b are random bits and c := a · b. The Beaver tuples are prepared by the following steps:

– All parties first prepare a batch of random tuples of sharings in the form of ([φ(a)]t, [φ(b)]t, [φ(c)]t),
where a, b are random vectors in Fk2 and c = a ∗ b. In our protocol, preparing such a random tuple of
sharings require the communication of O(m · n) bits.
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– For each tuple of sharings ([φ(a)]t, [φ(b)]t, [φ(c)]t), all parties locally transform it to k Beaver tuples in
the form of ([[a]], [[b]], [[c]]).

Note that the amortized cost per Beaver tuple is O(n) bits.
In the online phase, all parties start with holding [[x]] for each input wire. Addition gates and multiplication

gates are evaluated in a predetermined topological order.

– For an addition gate with input sharings [[x]] and [[y]], all parties locally compute [[z]] := [[x]] + [[y]].
– For a multiplication gate with input sharings [[x]] and [[y]], let ([[a]], [[b]], [[c]]) be the first unused Beaver

tuple. All parties use the additive sharings 〈x+a〉, 〈y+ b〉 to reconstruct x+a and y+ b. Then all parties
compute

[[z]] := (x+ a) · (y + b)− (x+ a) · [[b]]− (y + b) · [[a]] + [[c]].

All parties also locally compute [[x+ a]] := [[x]] + [[a]] and [[y+ b]] := [[y]] + [[b]]. These sharings will be used
to verify the reconstructions at the end of the protocol.

After evaluating the whole circuit, all parties together verify the value-sharing pairs in the form of (x +
a, [[x + a]]), where x + a is the reconstruction of [[x + a]]. In Section 7.3, we show that all the value-sharing
pairs can be verified together with sub-linear communication complexity in the number of pairs.

Note that addition gates can be computed locally, and the communication complexity per multiplication
gate is O(n) bits. Therefore, the communication complexity of our protocol is O(Cn) bits.

Other Building Blocks and Security Issues. We note that the work [CCXY18] only focuses on the setting
of 1/3 corruption. These protocols cannot be used directly in the honest majority setting. Some techniques
even fail when the corruption threshold increases. In this work, we rebuild the protocols in [CCXY18] to fit
the honest majority setting by combining known techniques in [BSFO12,GSZ20]. Concretely,

– We follow the definition of a general linear secret sharing scheme (GLSSS) in [CCXY18]. Following the
idea in [BSFO12] of preparing random degree-t Shamir sharings, we introduce a protocol to allow all
parties efficiently prepare random sharings of a given GLSSS. We use this protocol to prepare various
kinds of random sharings in our main construction. Let Frand denote the functionality of this protocol.

– To prepare Beaver tuples, we first prepare a random tuple of sharings

([φ(a)]t, [φ(b)]t, [φ(c)]t),

where a, b are random vectors in Fk2 and c = a ∗ b. This random tuple of sharings is prepared as follows:
• The first step is to prepare random sharings [φ(a)]t, [φ(b)]t. We show that they can be prepared by

using Frand.
• Then all parties compute [φ(a) · φ(b)]t. We rely on the multiplication protocol and the efficient

multiplication verification in [GSZ20].
• Finally, all parties need to transform a sharing [w]t to [φ(ψ(w))]t, where w = φ(a) · φ(b). We model

this process in the functionality Fre-encode. We extend the idea in [CCXY18] from the 1/3 corrup-
tion setting to the honest majority setting, and construct an efficient protocol for the functionality
Fre-encode.

More details can be found in Section 4 and Section 6.
We note that the idea of using Beaver tuples to construct an MPC protocol in the honest majority setting

has been used in several previous works [BTH08,BSFO12,CCXY18]. These protocols all have an additional
term O(D · n2) in the communication complexity, where D is the circuit depth. It is due to a verification of
the computation in each layer. Recall that relying on Beaver tuples, an multiplication can be transformed
to two reconstructions. In [GLS19], Goyal, et al. show that, without verification of the computation in each
layer, corrupted parties can learn extra information when doing reconstructions for multiplications in the
next layer. It turns out that our protocol has a similar security issue.

To avoid the verification of the computation per layer, Goyal, et al. [GLS19] rely on an n-out-of-n secret
sharing to protect the shares of honest parties. In this way, even without verifications, the share of each
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honest party is uniformly distributed. It allows Goyal, et al. to only check the correctness at the end of the
protocol. We follows the idea in [GLS19]. Concretely, we want to protect the shares of honest parties when
using 〈x + a〉, 〈y + b〉 to do reconstructions. To this end, we add a uniformly random additive sharing of 0
for each reconstruction. In this way, each honest party simply sends a uniformly random element to the first
party. It allows us to delay the verification to the end of the protocol. More details can be found in Section 7.

3 Preliminaries

3.1 The Model

In this work, we focus on functions that can be represented as arithmetic circuits over a finite field Fq of size
q with input, addition, multiplication, and output gates. We use κ to denote the security parameter and C
to denote the size of the circuit. In the following, we will use an extension field of Fq denoted by Fqm (of size
qm). We always assume that |Fqm | = qm ≥ 2κ.

For the secure multi-party computation, we use the client-server model. In the client-server model, clients
provide inputs to the functionality and receive outputs, and servers can participate in the computation but
do not have inputs or get outputs. Each party may have different roles in the computation. Note that, if
every party plays a single client and a single server, this corresponds to a protocol in the standard MPC
model. Let c denote the number of clients and n = 2t + 1 denote the number of servers. For all clients and
servers, we assume that every two of them are connected via a secure (private and authentic) synchronous
channel so that they can directly send messages to each other. The communication complexity is measured
by the number of bits via private channels.

Security Definition. Let F be a secure function evaluation functionality. An adversary A can corrupt at
most c clients and t servers, provide inputs to corrupted clients, and receive all messages sent to corrupted
clients and servers. Corrupted clients and servers can deviate from the protocol arbitrarily.

Real World Execution. In the real world, the adversary A controlling corrupted clients and servers interacts
with honest clients and servers. At the end of the protocol, the output of the real world execution includes
the inputs and outputs of honest clients and servers, and the view of the adversary.

Ideal World Execution. In the ideal world, a simulator Sim simulates honest clients and servers and interacts
with the adversary A. Furthermore, Sim has a one-time access to F , which includes providing inputs of
corrupted clients and servers to F , receiving the outputs of corrupted clients and servers, and sending
instructions specified in F (e.g., asking F to abort). The output of the ideal world execution includes the
inputs and outputs of honest clients and servers, and the view of the adversary.

We say that a protocol π securely computes F if there exists a simulator Sim, such that for all adversary
A, the distribution of the output of the real world execution is statistically close to the distribution of the
output of the ideal world execution. If π allows a premature abort, then we say π securely computes F with
abort. We refer the readers to [GIP+14] for a formal definition.

Benefits of the Client-Server Model. In our construction, the clients only participate in the input phase
and the output phase. The main computation is conducted by the servers. For simplicity, we use {P1, . . . , Pn}
to denote the n servers, and refer to the servers as parties. Let C denote the set of all corrupted parties and
H denote the set of all honest parties. One benefit of the client-server model is the following theorem shown
in [GIP+14].

Theorem 2 (Lemma 5.2 [GIP+14]). Let Π be a protocol computing a c-client circuit C using n = 2t+ 1
parties. Then, if Π is secure against any adversary controlling exactly t parties, then Π is secure against
any adversary controlling at most t parties.

This theorem allows us to only consider the case where the adversary controls exactly t parties. Therefore
in the following, we assume that there are exactly t corrupted parties.

8



3.2 Secret Sharing Scheme

Shamir Secret Sharing Scheme. In this work, we will use the standard Shamir Secret Sharing Scheme [Sha79].
Let n be the number of parties and G be a finite field of size |G| ≥ n+1. Let α1, . . . , αn be n distinct non-zero
elements in G.

A degree-d Shamir sharing of x ∈ G is a vector (x1, . . . , xn) which satisfies that, there exists a polynomial
f(·) ∈ G[X] of degree at most d such that f(0) = x and f(αi) = xi for i ∈ {1, . . . , n}. Each party Pi holds a
share xi and the whole sharing is denoted by [x]d.

We recall the properties of a degree-d Shamir sharing: (1) It requires d+1 shares to reconstruct the secret
x, and (2) any d shares do not leak any information about x.

Abstract General Linear Secret Sharing Schemes. We adopt the notion of an abstract definition of a general
linear secret sharing scheme (GLSSS) in [CCXY18]. The following notations are borrowed from [CCXY18].

For non-empty sets U and I, UI denotes the indexed Cartesian product
∏
i∈I U . For a non-empty set

A ⊂ I, the natural projection πA maps a tuple u = (ui)i∈I ∈ UI to the tuple (ui)i∈A ∈ UA. Let K be a
field.

Definition 1 (Abstract K-GLSSS [CCXY18]). A general K-linear secret sharing scheme Σ consists of
the following data:

– A set of parties I = {1, . . . , n}
– A finite-dimensional K-vector space Z, the secret space.
– A finite-dimensional K-vector space U , the share space.
– A K-linear subspace C ⊂ UI , where the latter is considered a K-vector space in the usual way (i.e.,

direct sum).
– A surjective K-linear map Φ : C → Z, its defining map.

Definition 2 ([CCXY18]). Suppose A ⊂ I is nonempty. Then A is a privacy set if the K-linear map

(Φ, πA) : C −→ Z × πA(C), x 7→ (Φ(x), πA(x))

is surjective. Finally, A is a reconstruction set if, for all x ∈ C, it holds that

πA(x) = 0⇒ Φ(x) = 0.

A Tensoring-up Lemma. We follow the definition of interleaved GLSSS: the m-fold interleaved GLSSS Σ×m

is an n-party scheme which corresponds to m Σ-sharings. We have the following proposition from [CCXY18]:

Proposition 1 ([CCXY18]). Let L be a degree-m extension field of K and let Σ be a K-GLSSS. Then
the m-fold interleaved K-GLSSS Σ×m is naturally viewed as an L-GLSSS, compatible with its K-linearity.

Let [x] denote a sharing in Σ. This proposition allows us to define λ : Σ×m → Σ×m for every λ ∈ L such
that for all [x] = ([x1], . . . , [xm]) ∈ Σ×m:

– for all λ ∈ K, λ · ([x1], . . . , [xm]) = (λ · [x1], . . . , λ · [xm]);
– for all λ1, λ2 ∈ L, λ1 · [x] + λ2 · [x] = (λ1 + λ2) · [x];
– for all λ1, λ2 ∈ L, λ1 · (λ2 · [x]) = (λ1 · λ2) · [x].

An Example of a GLSSS and Using the Tensoring-up Lemma. We will use the standard Shamir secret
sharing scheme as an example of a GLSSS and show how to use the tensoring-up lemma. For a field K (of
size |K| ≥ n + 1), we may define a secret sharing Σ which takes an input x ∈ K and outputs [x]t, i.e.,
a degree-t Shamir sharing. The secret space and the share space of Σ are K. According to the Lagrange
interpolation, the secret x can be written as a K-linear combination of all the shares. Therefore, the defining
map of Σ is K-linear. Thus Σ is a K-GLSSS.

A sharing [x]t = ([x1]t, [x2]t, . . . , [xm]t) ∈ Σ×m is a vector of m sharings in Σ. Let L be a degree-m
extension field of K. The tensoring-up lemma says that Σ×m is a L-GLSSS. Therefore we can perform
L-linear operations to the sharings in Σ×m.
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3.3 Reverse Multiplication Friendly Embeddings

Definition 3 ([CCXY18]). Let k,m be integers and Fq be a finite field. A pair (φ, ψ) is called an (k,m)q-
reverse multiplication friendly embedding (RMFE) if φ : Fkq → Fqm and ψ : Fqm → Fkq are two Fq-linear
maps satisfying

x ∗ y = ψ(φ(x) · φ(y))

for all x,y ∈ Fkq , where ∗ denotes coordinate-wise product.

Note that when picking 1 = (1, 1, . . . , 1), we have x ∗ 1 = x and therefore, x = ψ(φ(x) · φ(1)). It implies
that φ is injective. Therefore, there exists φ−1 : Im(φ)→ Fkq such that for all x ∈ Fkq , it satisfies that

φ−1(φ(x)) = x.

It is easy to verify that φ−1 is also Fq-linear.

Now we show that there exists an Fq-linear map φ̃−1 : Fqm → Fkq such that for all x ∈ Fkq ,

φ̃−1(φ(x)) = x.

Lemma 1. Let k,m be integers and Fq be a finite field. Suppose (φ, ψ) is an (k,m)q-reverse multiplication

friendly embedding. Then there exists an Fq-linear map φ̃−1 : Fqm → Fkq such that for all x ∈ Fkq ,

φ̃−1(φ(x)) = x.

Proof. Let 1 = (1, 1, . . . , 1) ∈ Fkq . We explicitly construct φ̃−1 as follows:

φ̃−1 : Fqm −→ Fkq , x 7→ ψ(φ(1) · x)

It is clear that φ̃−1 is Fq-linear. For all x ∈ Fkq , by the definition of RMFE, we have

φ̃−1(φ(x)) = ψ(φ(1) · φ(x)) = 1 ∗ x = x.

ut

In [CCXY18], Cascudo et al. show that there exist constant rate RMFEs, which is summarized in Theo-
rem 3.

Theorem 3. For every finite prime power q, there exists a family of constant rate (k,m)q-RMFE where
m = Θ(k).

3.4 Useful Building Blocks

In this part, we will introduce three functionalities which will be used in our main construction.

– The first functionality Fcoin allows all parties to generate a random element.
– The second functionality Fmult allows all parties to evaluate a multiplication with inputs being shared by

degree-t Shamir sharings. While Fmult protects the secrets of the input sharings, it allows the adversary
to add an arbitrary fixed value to the multiplication result.

– The third functionality FmultVerify allows all parties to verify the correctness of multiplications computed
by Fmult.

Generating Random Coin. The first functionality Fcoin(Fqm) allows all parties to generate a random field
element in Fqm . The description of Fcoin(Fqm) appears in Functionality 1.

An instantiation of this functionality can be found in [GSZ20] (Protocol 6 in Section 3.5 of [GS20]), which
has communication complexity O(n2) elements in Fqm (i.e., O(n2 ·m) elements in Fq).
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Functionality 1: Fcoin(Fqm)

1. Fcoin samples a random field element r in Fqm .
2. Fcoin sends r to the adversary.

– If the adversary replies continue, Fcoin sends r to honest parties.
– If the adversary replies abort, Fcoin sends abort to honest parties.

Functionality 2: Fmult

1. Let [x]t, [y]t denote the input sharings. Fmult receives from honest parties their shares of [x]t, [y]t. Then Fmult

reconstructs the secrets x, y. Fmult further computes the shares of [x]t, [y]t held by corrupted parties, and
sends these shares to the adversary.

2. Fmult receives from the adversary a value d and a set of shares {zi}i∈C .
3. Fmult computes x · y + d. Based on the secret z := x · y + d and the t shares {zi}i∈C , Fmult reconstructs the

whole sharing [z]t and distributes the shares of [z]t to honest parties.

Computing Multiplication. In [GIP+14], Genkin et al. prove that several semi-honest MPC protocols in the
honest-majority setting are secure up to an additive attack in the presence of a fully malicious adversary. An
additive attack means that the adversary is able to change the multiplication result by adding an arbitrary
fixed value. We model this kind of attack in Fmult, which takes two degree-t Shamir sharings [x]t, [y]t and
outputs the multiplication result [x · y]t. The description of Fmult can be found in Functionality 2.

This functionality can be instantiated by the multiplication protocol in the semi-honest DN proto-
col [DN07]. In [GSZ20], Goyal et al. also provide a detailed proof of the security of the multiplication protocol
in [DN07] (Lemma 4 in Section 4.1 of [GS20]). The amortized communication complexity per multiplication
is O(n) field elements per party.

Multiplication Verification. Note that Fmult does not guarantee the correctness of the multiplications. There-
fore, all parties need to verify the multiplications computed by Fmult. The functionality FmultVerify takes N
multiplication tuples as input and outputs to all parties a single bit b indicating whether all multiplication
tuples are correct. The description of FmultVerify can be found in Functionality 3.

Functionality 3: FmultVerify

1. Let N denote the number of multiplication tuples. The multiplication tuples are denoted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(N)]t.[y
(N)]t, [z

(N)]t).

2. For all i ∈ [N ], FmultVerify receives from honest parties their shares of [x(i)]t, [y
(i)]t, [z

(i)]t. Then FmultVerify

reconstructs the secrets x(i), y(i), z(i). FmultVerify further computes the shares of [x(i)]t, [y
(i)]t, [z

(i)]t held by
corrupted parties and sends these shares to the adversary.

3. For all i ∈ [N ], FmultVerify computes d(i) = z(i) − x(i) · y(i) and sends d(i) to the adversary.
4. Finally, let b ∈ {abort, accept} denote whether there exists i ∈ [N ] such that d(i) 6= 0. FmultVerify sends b to

the adversary and waits for its response.
– If the adversary replies continue, FmultVerify sends b to honest parties.
– If the adversary replies abort, FmultVerify sends abort to honest parties.
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An instantiation of FmultVerify can be found in [GSZ20] (Protocol 17 in Section 5.4 of [GS20]), which
has communication complexity O(n2 · logN · κ) bits, where n is the number of parties and κ is the security
parameter. Note that the amortized communication per multiplication tuple is sub-linear.

4 Preparing Random Sharings for Fq-GLSSS

In this section, we present the protocol for preparing random sharings for a given general Fq-linear secret
sharing scheme, denoted by Σ. Let [x] denote a sharing in Σ of secret x. For a set A ⊂ I, recall that πA([x])
refers to the shares of [x] held by parties in A. We assume that Σ satisfies the following property:

– Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, let

Σ(A, (ai)i∈A) := {[x]| [x] ∈ Σ and πA([x]) = (ai)i∈A}.

Then, there is an efficient algorithm which outputs that either Σ(A, (ai)i∈A) = ∅, or a random sharing
[x] in Σ(A, (ai)i∈A).

The description of the functionality Frand appears in Functionality 4. In short, Frand allows the adversary
to specify the shares held by corrupted parties. Based on these shares, Frand generates a random sharing in
Σ and distributes the shares to honest parties. Note that, when the set of corrupted parties is a privacy set,
the secret is independent of the shares chosen by the adversary.

Functionality 4: Frand

1. Frand receives from the adversary the set of corrupted parties, denoted by C, and a set of shares (si)i∈C such
that Σ(C, (si)i∈C) 6= ∅. Then Frand randomly samples [r] ∈ Σ(C, (si)i∈C).

2. Frand asks the adversary whether it should continue or not.
– If the adversary replies abort, Frand sends abort to honest parites.
– If the adversary replies continue, for each honest party Pi, Frand sends the i-th share of [r] to Pi.

We will follow the idea in [BSFO12] of preparing random degree-t Shamir sharings to prepare random
sharings in Σ. At a high-level, each party first deals a batch of random sharings in Σ. For each party, all
parties together verify that the sharings dealt by this party have the correct form. Then all parties locally
convert the sharings dealt by each party to random sharings such that the secrets are not known to any
single party.

Recall that κ denotes the security parameter, and the extension field Fqm satisfies that |Fqm | = qm ≥ 2κ.
In the following, instead of preparing random sharings in Σ, we choose to prepare random sharings in Σ×m,
where each sharing [x] in Σ×m is a vector of m sharings ([x1], [x2], . . . , [xm]) in Σ. According to Proposition 1,
Σ×m is an Fqm -GLSSS.

Preparing Verified Sharings. The first step is to let each party deal a batch of random sharings in Σ×m.
The protocol VerShare(Pd, N

′) (Protocol 5) allows the dealer Pd to deal N ′ random sharings in Σ×m.
Suppose the share size of a sharing in Σ is sh field elements in Fq. Then the share size of a sharing in Σ×m

is m · sh field elements in Fq. Recall that the communication complexity of the instantiation of Fcoin(Fqm)
in [GSZ20] is O(n2) elements in Fqm , which is O(n2 ·m) elements in Fq. The communication complexity of
VerShare(Pd, N

′) is O(N ′ · n ·m · sh + n2 ·m) elements in Fq.
For a sharing [s] and a nonempty set A, we say that πA([s]) is valid if Σ(A, πA([s])) is nonempty. For a

sharing [s] and a nonempty set A, we say πA([s]) is valid if Σ×m(A, πA([s])) (which can be similarly defined)
is nonempty.
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Protocol 5: VerShare(Pd, N
′)

1. For ` = 1, 2, . . . , N ′, Pd randomly samples a sharing [s(`)] in Σ×m. Pd distributes the shares of [s(`)] to all
other parties.

2. Pd randomly samples a sharing [s(0)] in Σ×m. Pd distributes the shares of [s(0)] to all other parties. This
sharing is used as a random mask when verifying the random sharings generated in Step 1.

3. All parties invoke Fcoin(Fqm) and receive a random field element α ∈ Fqm . Then, all parties locally compute

[s] := [s(0)] + α · [s(1)] + α2 · [s(2)] + . . .+ αN
′
· [s(N′)].

4. Each party Pj sends the j-th share of [s] to all other parties. Then, each party Pj verifies that [s] is a valid

sharing in Σ×m. If not, Pj aborts. Otherwise, all parties take {[s(`)]}N
′

`=1 as output.

Lemma 2. Let H ⊂ I denote the set of all honest parties. If all parties accept the verification in the last
step of VerShare(Pd, N ′), then the probability that there exists [s?] ∈ {[s(`)]}N ′

`=1 such that πH([s?]) is
invalid is bounded by N ′/2κ.

Proof. Suppose that there exists [s?] ∈ {[s(`)]}N ′

`=1 such that πH([s?]) is invalid. Now we show that the
number of α ∈ Fqm such that [s] passes the verification in the last step of VerShare(Pd, N

′) is bounded by
N ′. Then, the lemma follows from that α output by Fcoin is uniformly random in Fqm and |Fqm | = qm ≥ 2κ.
Note that if [s] passes the verification, then πH([s]) is valid since [s] ∈ Σ×m(H, πH([s])).

Now assume that there are N ′ + 1 different values α0, α1, . . . , αN ′ such that for all i ∈ {0, 1, . . . N ′},

[s′i] := [s(0)] + αi · [s(1)] + α2
i · [s(2)] + . . .+ αN

′

i · [s(N
′)].

can pass the verification, which implies that for all i ∈ {0, 1, . . . , N ′}, πH([s′i]) is valid. Let M be a matrix

of size (N ′ + 1)× (N ′ + 1) in Fqm such that Mij = αj−1i−1 . Then we have

([s′0], [s′1], . . . , [s′N ′ ])T = M · ([s(0)], [s(1)], . . . , [s(N
′)])T.

Note that M is a (N ′ + 1)× (N ′ + 1) Vandermonde matrix, which is invertible. Therefore,

([s(0)], [s(1)], . . . , [s(N
′)])T = M−1 · ([s′0], [s′1], . . . , [s′N ′ ])T.

Since Σ×m is Fqm-linear, and πH([s′i]) is valid for all i ∈ {0, 1, . . . , N ′} by assumption, we have that

πH([s(0)]), πH([s(1)]), . . . , πH([s(N
′)]) are all valid, which leads to a contradiction. ut

Converting to Random Sharings. Let [sd] denote a sharing in Σ×m dealt by Pd in VerShare. We will
convert these n sharings, one sharing dealt by each party, to (t+ 1) random sharings in Σ×m. As [BSFO12],
this is achieved by making use of the fact that the transpose of a Vandermonde matrix acts as a randomness
extractor. The description of Convert appears in Protocol 6.

Combining VerShare and Convert, we have Rand(N) (Protocol 7) which securely computes Frand.
The communication complexity of Rand(N) is O(N · n · sh + n3 ·m) elements in Fq.

Lemma 3. Protocol Rand securely computes Frand with abort in the Fcoin-hybrid model in the presence of
a malicious adversary who controls t parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.
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Protocol 6: Convert

1. For each party Pd, let [sd] denote a sharing in Σ×m dealt by Pd in VerShare. Let MT be an n × (t + 1)
Vandermonde matrix in Fqm . Then M is a matrix of size (t+ 1)× n.

2. All parties compute
([r1], . . . , [rt+1])T := M · ([s1], . . . , [sn])T.

3. All parties take [r1], . . . , [rt+1] as output.

Protocol 7: Rand(N)

1. Let N ′ = N
m(t+1)

. For each party Pd, all parties invoke VerShare(Pd, N
′). Let {[s(`)

d ]}N
′

`=1 denote the output.

2. For each ` ∈ {1, . . . , N ′}, all parties invoke Convert on {[s(`)
d ]}nd=1. Let {[r(`)

i ]}t+1
i=1 denote the output.

3. For each sharing [r
(`)
i ], all parties separate it into m sharings in Σ. Note that there are in total N ′ ·(t+1)·m =

N sharings in Σ.

Simulation for VerShare. We first consider the case where Pd is an honest party.

– In Step 1 and Step 2, Pd needs to distribute random sharings {[s(`)]}N ′

`=0 in Σ×m. For each sharing [s(`)],
S samples a random sharing [s(`)] ∈ Σ×m and sends the shares of corrupted parties πC([s

(`)]) to A.

– In Step 3, S emulates Fcoin and generates a random field element α ∈ Fqm . Then, S computes the shares
of [s] held by corrupted parties, i.e., πC([s]). Based on πC([s]), S randomly samples [s] ∈ Σ×m(C, πC([s])).

– In Step 4, S faithfully follows the protocol since the shares of [s] held by honest parties have been
explicitly generated.

When Pd is corrupted, S simply follows the protocol. If there exists some [s(`)] such that πH([s(`)]) is
invalid, S sends abort to Frand and aborts in Step 4 (even if the verification passes). Otherwise, for each
sharing [s(`)] dealt by Pd, S randomly samples [s̃(`)] ∈ Σ×m(H, πH([s(`)])), and views it as the sharing dealt
by Pd.

If some party aborts at the end of VerShare, S sends abort to Frand and aborts.

Simulation for Convert. Recall that Convert only involves local computation. For each sharing [sd], S
has computed πC([sd]) in the simulation of VerShare. In Convert, S computes πC([ri]) and sends them
to Frand. Then S sends continue to Frand.

Hybrid Arguments. Now, we show that S perfectly simulates the behaviors of honest parties with overwhelm-
ing probability. Consider the following hybrids.

Hybrid0: The execution in the real world.

Hybrid1: In this hybrid, S simulates VerShare for honest parties when the dealer Pd is corrupted.
Note that, S simply follows the protocol in this case and computes the shares held by corrupted parties.
The only difference is that S will abort if there exists some [s(`)] such that πH([s(`)]) is invalid even if the
verification in Step 4 passes. According to Lemma 2, this happens with negligible probability. Therefore, the
distribution of Hybrid1 is statistically close to the distribution of Hybrid0.

Hybrid2: In this hybrid, S first simulates VerShare for honest parties when the dealer Pd is honest.
Then, for each ` ∈ {1, . . . , N ′}, S re-samples a new random sharing [s̃(`)] ∈ Σ×m(C, πC([s(`)])). S takes
{[s̃(`)]}N ′

`=1 as the sharings dealt by Pd.
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Note that in Step 1 and Step 2, A only receives πC([s
(`)]). Therefore, [s(`)] is a random sharing in

Σ×m(C, πC([s(`)])). In Step 3, after receiving α ∈ Fqm from Fcoin, all parties compute

[s] := [s(0)] + α · [s(1)] + α2 · [s(2)] + . . .+ αN
′
· [s(N

′)].

Therefore, [s] is a random sharing in Σ×m(C, πC([s])). Note that [s] is masked by a random sharing [s(0)].
Thus, [s] is independent of {[s(`)]}N ′

`=1. Therefore, given the view of A, each sharing [s(`)] is a random
sharing in Σ×m(C, πC([s(`)])). This means that S can re-sample and use a new random sharing [s̃(`)] ∈
Σ×m(C, πC([s(`)])) instead of using the sharing [s(`)] generated in the beginning.

Thus, the distribution of Hybrid2 is the same as the distribution of Hybrid1.
Hybrid3: In this hybrid, S does not re-sample the sharings {[s̃(`)]}N ′

`=1. Instead, S simulates Convert
for honest parties, which does not need to generate the whole sharing [s̃(`)].

Let MC denote the sub-matrix of M containing columns with indices in C, and MH denote the sub-matrix
containing columns with indices in H. We have

([r1], . . . , [rt+1])T = M · ([s1], . . . , [sn])T = MC · ([sj ])Tj∈C + MH · ([sj ])Tj∈H.

Let

([r
(H)
1 ], . . . , [r

(H)
t+1])T := MH · ([sj ])Tj∈H

([r
(C)
1 ], . . . , [r

(C)
t+1])T := MC · ([sj ])Tj∈C .

Then ([r1], . . . , [rt+1]) = ([r
(C)
1 ], . . . , [r

(C)
t+1]) + ([r

(H)
1 ], . . . , [r

(H)
t+1]).

Recall that MT is a Vandermonde matrix of size n × (t + 1). Therefore MT
H is a Vandermonde matrix

of size (t+ 1)× (t+ 1), which is invertible. There is a one-to-one map from ([r
(H)
1 ], . . . , [r

(H)
t+1]) to ([sj ])j∈H.

Given ([sj ])j∈C , there is a one-to-one map from ([r1], . . . , [rt+1]) to ([r
(H)
1 ], . . . , [r

(H)
t+1]). Recall that for each

sharing [sd] dealt by a corrupted party Pd, S received the shares of honest parties πH([sd]) and sampled a
random sharing [s̃d] ∈ Σ×m(H, πH([sd])). Note that this may not be the sharing dealt by Pd since we do
not know the shares held by corrupted parties. However, we show that this does not affect the distribution
of the shares of honest parties generated by Frand.

To see this, note that for each valid ([s̃j ])j∈C , S computes {πC([rj ])}t+1
j=1 and sends them to Frand. Then

for each j ∈ {1, . . . , t+ 1}, Frand samples a random sharing [r̃j ] ∈ Σ×m(C, πC([rj ])). These random sharings
{[r̃j ]}t+1

j=1 correspond to random sharings ([s̃j ])j∈H, which are independent of ([s̃j ])j∈C . Thus, the distribution
of Hybrid3 is the same as the distribution of Hybrid2.

Note that Hybrid3 is the execution in the ideal world and Hybrid3 is statistically close to Hybrid0,
the execution in the real world. ut

5 Hidden Additive Secret Sharing

Let (φ, ψ) be an (k,m)q-RMFE. Recall that n denotes the number of parties and φ : Fkq → Fqm is an Fq-linear
map. Recall that |Fqm | = qm ≥ 2κ ≥ n+1. Thus, the Shamir secret sharing scheme is well-defined in Fqm . In
our construction, we will use φ to encode a vector x = (x(1), . . . , x(k)) ∈ Fkq . All parties will hold a degree-t
Shamir sharing of φ(x), denoted by [φ(x)]t.

Defining Additive Sharings and Couple Sharings. For x ∈ Fq, we use 〈x〉 to denote an additive sharing of x
among the first t+1 parties in Fq. Specifically, 〈x〉 = (x1, . . . , xn) where the party Pi holds the share xi ∈ Fq
such that x =

∑t+1
i=1 xi and the last t shares xt+2, . . . , xn are all 0.

Recall that ψ : Fqm → Fkq is an Fq-linear map. For all y ∈ Fqm , if ψ(y) = (y1, y2, . . . , yk), we define

val(y) :=
∑k
i=1 yi. Note that val(·) is an Fq-linear map from Fqm to Fq. We say a pair of sharings (〈x〉, [y]t)

is a pair of couple sharings if
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– 〈x〉 is an additive sharing of x ∈ Fq;
– [y]t is a degree-t Shamir sharing of y ∈ Fqm ;
– val(y) = x.

In the following, we will use [[x]] := (〈x〉, [y]t) to denote a pair of couple sharings of x ∈ Fq. Note that for the
additive sharing 〈x〉, a corrupted party in the first t+ 1 parties can easily change the secret by changing its
own share. However, the secret of [y]t is determined by the shares of honest parties and cannot be altered
by corrupted parties. Therefore, [y]t can be seen as a robust version of the sharing 〈x〉.

Properties of Couple Sharings. We note that couple sharings are Fq-linear. Concretely, for all couple sharings
[[x]] = (〈x〉, [y]t) and [[x′]] = (〈x′〉, [y′]t), and for all α, β ∈ Fq, the linear combination

α · [[x]] + β · [[x′]] := (α · 〈x〉+ β · 〈x′〉, α · [y]t + β · [y′]t)

is still a pair of couple sharings. This property follows from the fact that val(·) is an Fq-linear map.
We can also define the addition operation between a pair of couple sharings [[x]] and a field element x′ in

Fq. This is done by transforming x′ to a pair of couple sharings of x′. For 〈x′〉, we set the share of the first
party to be x′, and the shares of the rest of parties to be 0. For the degree-t Shamir sharing, we first need
to find y′ ∈ Fqm such that val(y′) = x′. This is done by choosing two vectors a, b ∈ Fkq such that:

– For a, the first entry is 1 and the rest of entries are 0.
– For b, the first entry is x′ and the rest of entries are 0.

By the property of RMFE, ψ(φ(a) · φ(b)) = a ∗ b. In particular, the first entry of a ∗ b is x′ and the rest of
entries are 0. Therefore y′ := φ(a) · φ(b) satisfies that val(y′) = x′. For [y′]t, we set the share of each party
to be y′. Finally, the addition operation between [[x]] and x′ ∈ Fq is defined by

[[x]] + x′ := (〈x〉, [y]t) + (〈x′〉, [y′]t).

Generating Couple Sharings from [φ(x)]t. In this part, we show how to non-interactively obtain k pairs of cou-
ple sharings [[x(1)]], [[x(2)]], . . . , [[x(k)]] from a degree-t Shamir sharing [φ(x)]t, where x = (x(1), x(2), . . . , x(k)) ∈
Fkq . It allows us to prepare k pairs of random couple sharings with the cost of preparing one random sharing
[φ(x)]t.

We first show how to obtain [y(i)]t such that val(y(i)) = x(i) for all i ∈ [k]. Let e(i) be a vector in Fkq such
that all entries are 0 except that the i-th entry is 1. By the property of RMFE, we have

ψ(φ(e(i)) · φ(x)) = e(i) ∗ x.

For e(i) ∗ x, all entries are 0 except that the i-th entry is x(i). Therefore by the definition of val(·), we have
val(φ(e(i)) · φ(x)) = x(i). To obtain [y(i)]t, all parties compute

[y(i)]t := φ(e(i)) · [φ(x)]t.

Now we show how to obtain 〈x(i)〉 from [φ(x)]. Let 〈x〉 := (〈x(1)〉, . . . , 〈x(k)〉) denote a vector of additive
sharings of x ∈ Fkq . For each party, its share of 〈x〉 is a vector in Fkq . For the last t parties, they take the
all-0 vector as their shares.

Recall that the degree-t Shamir sharing [φ(x)]t corresponds to a degree-t polynomial f(·) ∈ Fqm [X] such
that f(αi) is the share of the i-th party Pi and f(0) = φ(x), where α1, . . . , αn are distinct non-zero elements
in Fqm . In particular, relying on Lagrange interpolation, f(0) can be written as a linear combination of the
first t+ 1 shares. For i ∈ {1, . . . , t+ 1}, let ci =

∏
j 6=i,j∈[t+1]

αj
αj−αi . We have

f(0) =

t+1∑
i=1

cif(αi).
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Therefore, the Shamir sharing [φ(x)]t can be locally converted to an additive sharing of φ(x) among the first
t+1 parties by letting Pi take cif(αi) as its share. For each i ∈ {1, . . . , t+1}, Pi locally applies φ̃−1(cif(αi)),
which outputs a vector in Fkq . It is sufficient to show that these t+1 shares correspond to an additive sharing
of x. Note that

t+1∑
i=1

φ̃−1(cif(αi)) = φ̃−1(

t+1∑
i=1

cif(αi)) = φ̃−1(f(0)) = x.

The description of Separate appears in Protocol 8.

Protocol 8: Separate([φ(x)]t)

1. For all i ∈ [k], let e(i) be a vector in Fkq such that all entries are 0 except that the i-th entry is 1. All parties

locally compute [y(i)]t := φ(e(i)) · [φ(x)]t.
2. Let α1, . . . , αn be n distinct elements in Fqm defined in the Shamir secret sharing scheme.

– For each i ∈ {1, . . . , t + 1}, Pi locally computes ci =
∏
j 6=i,j∈[t+1]

αj
αj−αi

. Let f(αi) denote the i-th

share of [φ(x)]t. Pi locally computes φ̃−1(cif(αi)) and regards the result as the i-th share of 〈x〉 =
(〈x(1)〉, . . . , 〈x(k)〉).

– For each i ∈ {t+ 2, . . . , n}, Pi takes the all-0 vector as its share of 〈x〉.
3. For all i ∈ [k], all parties set [[x(i)]] := (〈x(i)〉, [y(i)]t). All parties take the following k pairs of couple sharings

as output:
[[x(1)]], [[x(2)]], . . . , [[x(k)]]

6 Building Blocks for Preprocessing Phase

In this section, we will introduce 4 functionalities which are used to prepare necessary correlated-randomness
for the computation.

– The first functionality Frandom allows all parties to prepare random sharings in the form of [φ(r)]t, where
(φ, ψ) is a RMFE, and r is a random vector in Fkq .

– The second functionality Ftuple allows all parties to prepare random tuple of sharings in the form of
([φ(a)]t, [φ(b)]t, [φ(c)]t), where a, b are random vectors in Fkq , and c = a ∗ b. For each tuple, relying on
Separate, all parties can locally obtain k multiplication tuples in the form of ([[a]], [[b]], [[c]]), where a, b
are random elements in Fq, and c = a · b. Such a multiplication tuple is referred to as a Beaver tuple. In
the online phase, one Beaver tuple will be consumed to compute a multiplication gate.

– Recall that we use 〈x〉 to denote an additive sharing of x ∈ Fq among the first t + 1 parties, and the
shares of the rest of parties are 0. The third functionality Fzero allows all parties to prepare random
additive sharings of 0. When evaluating a multiplication gate in the online phase, we will use random
additive sharings of 0 to protect the shares of honest parties.

– Recall that val(·) : Fqm → Fq is an Fq-linear map, defined by val(y) =
∑k
i=1 yi, where (y1, y2, . . . , yk) =

ψ(y). The last functionality Fparity allows all parties to prepare random sharings in the form of [p]t,
where val(p) = 0. These random sharings are used at the end of the protocol to verify the computation.

6.1 Preparing Random Sharings

In this part, we introduce the functionality to let all parties prepare random sharings in the form of [φ(r)]t.
Recall that (φ, ψ) is an (k,m)q-RMFE. Here each [φ(r)]t is a random degree-t Shamir sharing of the secret
φ(r) where r is a random vector in Fkq . The description of Frandom appears in Functionality 9.
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Functionality 9: Frandom

1. Frandom receives {si}i∈C from the adversary, where C is the set of corrupted parties. Then Frandom randomly
samples r ∈ Fkq and generates a degree-t Shamir sharing [φ(r)]t such that the share of Pi ∈ C is si.

2. Frandom asks the adversary whether it should continue or not.
– If the adversary replies abort, Frandom sends abort to honest parties.
– If the adversary replies continue, for each honest party Pi, Frandom sends the i-th share of [φ(r)]t to Pi.

Consider a secret sharing scheme Σ which takes a vector x ∈ Fkq and outputs a Shamir sharing of φ(x) in
Fqm , i.e., [φ(x)]t. Note that the Shamir secret sharing scheme is linear in Fqm and φ is linear in Fq. Therefore
Σ is an Fq-GLSSS. To use Frand to prepare random sharings in Σ, we need to show that:

– Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, there exists an efficient algorithm which
outputs that either Σ(A, (ai)i∈A) = ∅, or a random sharing [φ(r)]t ∈ Σ(A, (ai)i∈A).

Depending on the size of A, there are two cases:

– If |A| ≥ t + 1, by the property of the Shamir secret sharing scheme, the set of shares {ai}i∈A can
fully determine the whole sharing if exists. The algorithm checks whether the shares {ai}i∈A lie on a
polynomial f(·) of degree at most t in Fqm . If not, the algorithm outputs Σ(A, (ai)i∈A) = ∅. Otherwise,
the algorithm checks whether f(0), i.e., the secret of this Shamir sharing, is in the image of φ. This
can be done by checking whether φ(φ̃−1(f(0))) = f(0). If not, the algorithm outputs Σ(A, (ai)i∈A) = ∅.
Otherwise, the algorithm outputs the Shamir sharing determined by {ai}i∈A.

– If |A| ≤ t, by the property of the Shamir secret sharing scheme, the set of shares {ai}i∈A is independent
of the secret. Therefore, Σ(A, (ai)i∈A) 6= ∅. The algorithm randomly samples r ∈ Fkq and randomly
samples t−|A| elements in Fqm as the shares of the first t−|A| parties in I\A. Then, based on the secret
φ(r), the shares of the first t − |A| parties in I\A, and the shares {ai}i∈A, the algorithm reconstructs
the whole Shamir sharing [φ(r)]t and outputs [φ(r)]t.

Thus, Frandom can be instantiated by Frand with the secret sharing scheme Σ defined above. Note that
the share size of a sharing in Σ is sh = m elements in Fq. Therefore, when using Rand(N) to instantiate
Frand, the communication complexity of generating N random sharings in Σ is O(N ·n ·m+n3 ·m) elements
in Fq.

6.2 Preparing Beaver Tuples

In this part, we show how to prepare random tuples of sharings in Fqm in the form of ([φ(a)]t, [φ(b)]t, [φ(c)]t)
where a, b are random vectors in Fkq , and c = a ∗ b. The description of Ftuple appears in Functionality 10.

In the online phase, each tuple ([φ(a)]t, [φ(b)]t, [φ(c)]t) will be separated by Separate (Protocol 8) to k
Beaver tuples

([[a(1)]], [[b(1)]], [[c(1)]]), ([[a(2)]], [[b(2)]], [[c(2)]]), . . . , ([[a(k)]], [[b(k)]], [[c(k)]]).

A Beaver tuple ([[a(i)]], [[b(i)]], [[c(i)]]) satisfies that a(i), b(i) are random elements in Fq and c(i) = a(i) · b(i). A
multiplication gate is then evaluated by consuming one Beaver tuple. More details can be found in Section 7.2.

We will prepare these random tuples of sharings as follows:

1. All parties first prepare random tuples of sharings in the form of

([φ(a)]t, [φ(b)]t, [φ(a) · φ(b)]t)

where a, b are random vectors in Fkq . This can be done by first invoking Frandom to prepare random
sharings [φ(a)]t and [φ(b)]t. Then all parties inovke Fmult to compute [φ(a) · φ(b)]t. Finally, all parties
check the correctness of these tuples by invoking FmultVerify.

18



Functionality 10: Ftuple

1. Ftuple receives {(ui, vi, wi)}i∈C from the adversary, where C is the set of corrupted parties. Then Ftuple

randomly samples a, b ∈ Fkq and computes c = a ∗ b. Finally, Ftuple generates 3 degree-t Shamir sharings
[φ(a)]t, [φ(b)]t, [φ(c)]t such that the shares of Pi ∈ C are ui, vi, wi respectively.

2. Ftuple asks the adversary whether it should continue or not.
– If the adversary replies abort, Ftuple sends abort to honest parties.
– If the adversary replies continue, for each honest party Pi, Ftuple sends the i-th shares of

[φ(a)]t, [φ(b)]t, [φ(c)]t to Pi.

2. For each tuple ([φ(a)]t, [φ(b)]t, [φ(a) ·φ(b)]t) prepared in the first step, we need to transform [φ(a) ·φ(b)]t
to [φ(c)]t where c = a ∗ b. By the property of RMFE, we have c = ψ(φ(a) · φ(b)). Therefore, if we set
x := φ(a) · φ(b), the task becomes to transform a sharing [x]t to [φ(ψ(x))]t. The functionality of this
step is described in Fre-encode (Functionality 11).

Functionality 11: Fre-encode

1. Let [x]t denote the input sharing. Fre-encode receives from honest parties their shares of [x]t. Then Fre-encode

reconstructs the secret x. Fre-encode further computes the shares of [x]t held by corrupted parties, and sends
these shares to the adversary.

2. Fre-encode receives from the adversary a set of shares {yi}i∈C , where C is the set of corrupted parties.
3. Fre-encode computes y := φ(ψ(x)) and generates a degree-t Shamir sharing [y]t such that the share of [y]t

held by Pi ∈ C is yi.
4. Fre-encode asks the adversary whether it should continue or not.

– If the adversary replies abort, Fre-encode sends abort to honest parties.
– If the adversary replies continue, Fre-encode distributes the shares of [y]t to honest parties.

Realization of Fre-encode. We follow the idea in [CCXY18] to realize Fre-encode. Concretely, for an input
sharing [x]t, all parties first prepare a pair of random sharings ([r]t, [φ(ψ(r))]t). Then, all parties reconstruct
the sharing [x + r]t := [x]t + [r]t. Since both φ and ψ are Fq-linear, all parties can compute [φ(ψ(x))]t :=
φ(ψ(x+ r))− [φ(ψ(r))]t.

Preparing random correlated sharings. We will use Frand to prepare the random sharings ([r]t, [φ(ψ(r))]t).
Consider a secret sharing scheme Σ which takes an element r ∈ Fqm and outputs a pair of two sharings in
Fqm , where the first one is a degree-t Shamir sharing of r, and the second one is a degree-t Shamir sharing
of φ(ψ(r)). Note that the Shamir secret sharing scheme is linear in Fqm , and φ, ψ are linear in Fq. Therefore
Σ is an Fq-GLSSS. To use Frand to prepare random sharings in Σ, we need to show that:

– Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, there exists an efficient algorithm which
outputs that either Σ(A, (ai)i∈A) = ∅, or a random sharing ([r]t, [φ(ψ(r))]t) ∈ Σ(A, (ai)i∈A). Note that

each share ai is a pair of elements (a
(0)
i , a

(1)
i ) in Fqm .

Depending on the size of A, there are two cases:
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– If |A| ≥ t + 1, by the property of the Shamir secret sharing scheme, the set of shares {ai}i∈A can

fully determine the whole sharings if exist. The algorithm parses each share ai to (a
(0)
i , a

(1)
i ). Then, the

algorithm checks whether the shares {a(0)i }i∈A lie on a polynomial f(·) of degree at most t in Fqm , and,

the shares {a(1)i }i∈A lie on a polynomial g(·) of degree at most t in Fqm . If not, the algorithm outputs
Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm checks whether φ(ψ(f(0))) = g(0). If not, the algorithm
outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm outputs the two Shamir sharings determined by
{ai}i∈A.

– If |A| ≤ t, by the property of the Shamir secret sharing scheme, the set of shares {ai}i∈A is independent
of the secrets. Therefore, Σ(A, (ai)i∈A) 6= ∅. The algorithm randomly samples r ∈ Fqm and randomly
samples t− |A| pairs of elements in Fqm as the shares of the first t− |A| parties in I\A. Then, based on
the secrets r, φ(ψ(r)), the shares of the first t−|A| parties in I\A, and the shares {ai}i∈A, the algorithm
reconstructs the two Shamir sharings [r]t, [φ(ψ(r))]t and outputs ([r]t, [φ(ψ(r))]t).

Thus, we can use Frand with the secret sharing scheme Σ to prepare random sharings ([r]t, [φ(ψ(r))]t).
Note that the share size of a sharing in Σ is sh = 2m elements in Fq. Therefore, when using Rand(N) to
instantiate Frand, the communication complexity of preparing N random sharings in Σ is O(N ·n ·m+n3 ·m)
elements in Fq.

Reconstructing Shamir Sharings with Verification. The second step is to reconstruct a batch of N degree-t
Shamir sharings. The description of Fopen appears in Functionality 12.

Functionality 12: Fopen

1. Let [x]t denote the input sharing. Fopen receives from honest parties their shares of [x]t. Then Fopen re-
constructs the secret x. Fopen further computes the shares of [x]t held by corrupted parties, and sends the
shares to the adversary.

2. Fopen sends the reconstruction result x to the adversary.
– If the adversary replies abort, Fopen sends abort to honest parties.
– If the adversary replies continue, Fopen sends x to honest parties.

The reconstruction is done by asking the first party P1 to collect all the shares of [x]t, reconstruct the
secret x, and send x to all other parties. To check the correctness of reconstructions, all parties will together
examine a random linear combination of all reconstructed sharings. The description of Open appears in
Protocol 13. Regarding the communication complexity, reconstructing a single sharing in Step 1 requires the
communication of O(n ·m) elements in Fq. In Step 2, recall that the instantiation of Fcoin(Fqm) in [GSZ20]
requires the communication of O(n2 ·m) elements in Fq. In Step 3, all parties need to communicate O(n2 ·m)
elements in Fq. Therefore, the communication complexity of Open(N, {[x(`)]t}i∈[N ]) is O(N · n ·m+ n2 ·m)
elements in Fq.

Lemma 4. Protocol Open securely computes Fopen with abort in the Fcoin-hybrid model in the presence of
a malicious adversary who controls t parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.

Simulation for Open. At the beginning, for each ` ∈ [N ], S receives the shares of [x(`)]t held by corrupted
parties and the reconstruction result x(`) from Fopen. Using the shares of corrupted parties and the secret,
S can reconstruct the whole sharing [x(`)]t.

20



Protocol 13: Open(N, {[x(`)]t}i∈[N ])

1. For each ` ∈ [N ], P1 receives from all other parties their shares of [x(`)]t. Then P1 checks whether the shares
of [x(`)]t lie on a polynomial of degree at most t in Fqm . If not, P1 aborts. Otherwise, P1 reconstructs the
secret x(`) and sends x(`) to all other parties.

2. All parties invoke Fcoin(Fqm) to generate a random element r ∈ Fqm . All parties locally compute

[x]t := [x(1)]t + [x(2)]t · r + . . .+ [x(N)]t · rN−1,

x := x(1) + x(2) · r + . . .+ x(N) · rN−1.

3. For each party Pi, Pi receives from all other parties their shares of [x]t. Then Pi checks whether the shares
of [x]t lie on a polynomial of degree at most t in Fqm . If not, Pi aborts. Otherwise, Pi reconstructs the secret
x and compares it with the value computed in Step 2. If they are the same, Pi accepts the reconstructions.
Otherwise, Pi aborts.

In Step 1, S honestly sends the shares of honest parties to P1. If P1 is an honest party, S faithfully follows
the protocol by checking the consistency of the sharings. If any sharing is inconsistent, S sends abort to
Fopen and aborts the protocol. Otherwise, S sends the reconstruction results received from Fopen to corrupted
parties. If P1 is a corrupted party, S receives from P1 the reconstruction results. If P1 aborts, S sends abort
to Fopen and aborts.

In Step 2, S emulates Fcoin by randomly sampling r ∈ Fqm . Note that S knows all the sharings. Therefore,
S faithfully computes [x]t and x.

In Step 3, S honestly follows the protocol. If any party aborts, S sends abort to Fopen and aborts.
Finally, S checks whether the reconstruction results received from P1 are the same as those received from
Fopen. If not, S sends abort to Fopen and aborts. Otherwise, S sends continue to Fopen.

Hybrid Arguments. Now, we show that S perfectly simulates the behaviors of honest parties with overwhelm-
ing probability. Conisder the following hybrids.

Hybrid0: The execution in the real world.

Hybrid1: In this hybrid, S simulates the first step as described above. Note that the main difference
is that, in Hybrid0, S uses the real shares of honest parties, while in Hybrid1, S computes the shares
of honest parties from the shares of corrupted parties and the secrets received from Fopen. However, this
makes no difference since the shares of honest parties are determined by the secrets and the shares held by
corrupted parties.

The other difference is that, when P1 is an honest party and all the sharings are consistent, S sends to
corrupted parties the reconstruction results received from Fopen instead of the real reconstruction results.
Note that, the secret of a degree-t Shamir secret sharing is determined by the shares of honest parties.
Corrupted parties can only cause the sharing to be inconsistent by sending incorrect shares to P1 but cannot
change the secret. Thus, if all the sharings are consistent, it means that corrupted parties send the correct
shares to P1 and the reconstruction results should be the same as those received from Fopen.

Therefore, the distribution of Hybrid1 is identical to the distribution of Hybrid0.

Hybrid2: In this hybrid, S simulates the second step as described above. The only difference is that S
emulates Fcoin by randomly generating r ∈ Fqm . This does not change the distribution of r. Therefore, the
distribution of Hybrid2 is identical to the distribution of Hybrid1.

Hybrid3: In this hybrid, S simulates the last step as described above. The only difference is that, S
additionally checks whether the reconstruction results output by P1 are the same as those received from
Fopen, and aborts if the reconstruction results are incorrect. Note that in Hybrid2, all parties just accept
the incorrect reconstruction results.
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We use x(1), . . . , x(N) to denote the secrets of [x(1)]t, . . . , [x
(N)]t, and x̃(1), . . . , x̃(N) to denote the recon-

struction results output by P1. Assume that there exists ` ∈ [N ] such that x(`) 6= x̃(`). We show that the
probability that all parties accept the reconstructions in Step 3 is negligible. Consider the following two
polynomials:

f(r) = x(1) + x(2) · r + . . .+ x(N) · rN−1

f̃(r) = x̃(1) + x̃(2) · r + . . .+ x̃(N) · rN−1.

Then f(·) and f̃(·) are two different polynomials. The number of r such that f(r) = f̃(r) is bounded by
N − 1. Since r is randomly sampled from Fqm , the probability that f(r) = f̃(r) is at most N−1

qm ≤ N−1
2κ .

Thus, with overwhelming probability, f(r) 6= f̃(r). Note that in Step 2, we have [x]t = [f(r)]t and x = f̃(r).
If f(r) 6= f̃(r), an honest party will either receive an inconsistent sharing [x]t or reject the reconstruction
results. In either case, this honest party will abort.

In summary, the probability that all parties accept incorrect reconstruction results in Hybrid2 is neg-
ligible. Since this is the only difference between Hybrid2 and Hybrid3, the distribution of Hybrid3 is
statistically close to Hybrid2.

Note that Hybrid3 is the execution in the ideal world and Hybrid3 is statistically close to Hybrid0,
the execution in the real world. ut

Constructing the Protocol for Fre-encode. We are ready to introduce the protocol for Fre-encode. The description
of Re-Encode appears in Protocol 14. When using Rand to instantiate Frand and Open to instantiate
Fopen, the communication complexity of Re-Encode(N, {[x(`)]t}i∈[N ]) is O(N · n ·m+ n3 ·m) elements in
Fq.

Protocol 14: Re-Encode(N, {[x(`)]t}i∈[N ])

1. Let Σ be a secret sharing scheme which takes an element r ∈ Fqm and outputs a pair of two sharings
([r]t, [φ(ψ(r))]t). All parties invoke Frand to prepare N random sharings in Σ, which are denoted by

([r(1)]t, [φ(ψ(r(1)))]t), ([r
(2)]t, [φ(ψ(r(2)))]t), . . . , ([r

(N)]t, [φ(ψ(r(N)))]t).

2. For all ` ∈ [N ], all parties locally compute [x(`) + r(`)]t := [x(`)]t + [r(`)]t. Then invoke Fopen to receive the
reconstruction result x(`) + r(`).

3. For all ` ∈ [N ], all parties locally compute [φ(ψ(x))]t := φ(ψ(x(`) + r(`)))− [φ(ψ(r))]t.

Lemma 5. Protocol Re-Encode securely computes Fre-encode in the (Frand,Fopen)-hybrid model in the
presence of a malicious adversary who controls t parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.

Simulation for Re-Encode. At the beginning, for all ` ∈ [N ], S receives from Fre-encode the shares of [x(`)]t
held by corrupted parties.

In Step 1, for all ` ∈ [N ], S emulates Frand and receives from the adversary the set of shares of
([r(`)]t, [φ(ψ(r(`)))]t) of corrupted parties. If S receives abort from the adversary, S sends abort to Fre-encode

and aborts.
In Step 2, S emulates Fopen. Concretely, for all ` ∈ [N ], S chooses a random field element as the

reconstruction result and sends the reconstruction result to the adversary. Since S receives from Fre-encode
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the shares of [x(`)]t held by corrupted parties and receives from the adversary the shares of [r(`)]t held by
corrupted parties, S computes the shares of [x(`) + r(`)]t held by corrupted parties and sends them to the
adversary. If S receives abort from the adversary, S sends abort to Fre-encode and aborts.

In Step 3, for all ` ∈ [N ], S uses the shares of [φ(ψ(r(`)))]t held by corrupted parties to compute the
shares of [φ(ψ(x))]t held by corrupted parties, and sends these shares to Fre-encode. Then S sends continue
to Fre-encode.

Hybrid Arguments. Now, we show that S perfectly simulates the behaviors of honest parties. Consider the
following hybrids.

Hybrid0: The execution in the real world.

Hybrid1: In this hybrid, S simulates the last step as described above. Note that, for the degree-t Shamir
sharing [φ(ψ(x))]t, the shares of honest parties are determined by the shares of corrupted parties and the
secret φ(ψ(x)). Therefore, the distribution of Hybrid1 is identical to the distribution of Hybrid0.

Hybrid2: In this hybrid, S simulates the second step as described above. The only difference is that,
in Hybrid1, S uses the real reconstruction result x(`) + r(`), while in Hybrid2, S samples a random field
element as the reconstruction result. Note that in Step 1, r(`) is randomly sampled by Frand. Therefore,
x(`) + r(`) is uniformly random. Thus, this does not change the distribution of the reconstruction result.
Therefore, the distribution of Hybrid2 is identical to the distribution of Hybrid1.

Hybrid3: In this hybrid, S simulates the first step as described above. Note that the only difference
is that S does not generate the random sharings ([r(`)]t, [φ(ψ(r(`)))]t) explicitly. Since they are not used
anymore in the rest of the protocols, the distribution of Hybrid3 is identical to the distribution of Hybrid2.

Note that Hybrid3 is the execution in the ideal world and the distribution of Hybrid3 is identical to
the distribution of Hybrid0, the execution in the real world. ut

Realization of Ftuple. In this part, we will introduce the protocol which realizes Ftuple (Functionality 10).
The description of Tuple appears in Protocol 15.

Protocol 15: Tuple(N)

1. For all ` ∈ [N ], all parties invoke Frandom twice to prepare random sharings [φ(a(`))]t, [φ(b(`))]t.
2. For all ` ∈ [N ], all parties invoke Fmult on ([φ(a(`))]t, [φ(b(`))]t) to compute [z(`)]t := [φ(a(`)) · φ(b(`))]t.
3. All parties invoke FmultVerify to check the correctness of the following N multiplication tuples:

{([φ(a(`))]t, [φ(b(`))]t, [z
(`)]t)}N`=1.

4. For all ` ∈ [N ], all parties invoke Fre-encode on [z(`)]t to compute [φ(ψ(z(`)))]t. Let c(`) := ψ(z(`)). All parties
take

{([φ(a(`))]t, [φ(b(`))]t, [φ(c(`))]t)}N`=1

as output.

Recall that

– the communication complexity of the instantiation of Fmult in [DN07,GSZ20] is O(n) elements in Fqm ,
which is O(n ·m) elements in Fq;

– the communication complexity of th instantiation of FmultVerify in [GSZ20] is O(n2 · logN ·κ) bits. Since
we have assumed that qm ≥ 2κ, the communication complexity is bounded by (n2 · logN ·m) elements
in Fq.
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Therefore, the communication complexity of Tuple(N) is O(N · n ·m+ n3 ·m+ n2 · logN ·m) elements in
Fq.

Lemma 6. Protocol Tuple securely computes Ftuple in the (Frandom,Fmult, FmultVerify,Fre-encode)-hybrid
model in the presence of a malicious adversary who controls t parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.

Simulation for Tuple. In Step 1, S emulates Frandom and receives the shares of corrupted parties. If S
receives abort from the adversary, S sends abort to Ftuple and aborts.

In Step 2, S emulates Fmult. Concretely, for all ` ∈ [N ], S sends the shares of [φ(a(`))]t, [φ(b(`))]t held
by corrupted parties to the adversary. Note that these shares are learnt when S emulates Frandom in Step 1.
Then S receives from the adversary a value d(`) and the shares of [z(`)]t := [φ(a(`)) · φ(b(`))]t of corrupted
parties.

In Step 3, S emulates FmultVerify. Concretely, S sends to the adversary the shares of

{([φ(a(`))]t, [φ(b(`))]t, [z
(`)]t)}N`=1

held by corrupted parties. These shares are learnt either when S emulates Frandom in Step 1 or when S
emulates Fmult in Step 2. Then S sends {d(`)}N`=1 to the adversary. These values are learnt when S emulates
Fmult in Step 2. S faithfully follows the rest of steps in FmultVerify. If either the final result b = abort or the
adversary replies abort, S sends abort to Ftuple and aborts.

In Step 4, S emulates Fre-encode. Concretely, for all ` ∈ [N ], S sends the shares of [z(`)]t held by corrupted
parties to the adversary. Then S receives from the adversary the set of shares of [φ(ψ(z(`)))]t of corrupted
parties. S sets c(`) := ψ(z(`)). If S receives abort from the adversary, S sends abort to Ftuple and aborts.

Finally, S sends the shares of

{([φ(a(`))]t, [φ(b(`))]t, [φ(c(`))]t)}N`=1

held by corrupted parties to Ftuple. Then S sends continue to Ftuple.

Hybrid Arguments. Now we show that S perfectly simulates the behaviors of honest parties. Consider the
following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: S simulates the last step as described above. Note that, for a degree-t Shamir sharing, the

shares of honest parties are determined by the shares of corrupted parties and the secret. Therefore, the
only difference is that, in Hybrid0, S uses the real secrets φ(a(`)), φ(b(`)), φ(c(`)), while in Hybrid1,
φ(a(`)), φ(b(`)) are randomly sampled by Ftuple and φ(c(`)) is computed by c(`) := a(`) ∗ b(`). Note that,
in Hybrid0, (1) φ(a(`)), φ(b(`)) are randomly sampled by Frandom, (2) the functionalities Fmult,FmultVerify

guarantee the correctness of z := φ(a(`)) · φ(b(`)), and (3) the property of RMFE guarantees that c :=
ψ(z) = ψ(φ(a(`)) · φ(b(`))) = a(`) ∗ b(`). Thus, the distribution of Hybrid1 is identical to the distribution of
Hybrid0.

Hybrid2: S simulates the third step as described above. The only difference is that, in Hybrid1, S
computes the shares of corrupted parties using the shares of honest parties, and computes the actual dif-
ferences, while in Hybrid2, S uses the shares of corrupted parties and the differences received from the
adversary when honestly emulating Fmult. Note that the distribution of these shares of corrupted parties
and the differences is the same in both hybrids. Therefore, the distribution of Hybrid2 is identical to the
distribution of Hybrid1.

Hybrid3: S simulates the second step as described above. The only difference is that S does not explicitly
generate the sharing [z(`)]t for each ` ∈ [N ]. However, note that these sharings are not used in the rest of
steps. Thus, the distribution of Hybrid3 is identical to the distribution of Hybrid2.
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Hybrid4: S simulates the first step as described above. The only difference is that S does not explicitly
generate the sharings [φ(a(`))]t, [φ(b(`))]t for each ` ∈ [N ]. However, note that these sharings are not used in
the rest of steps. Thus, the distribution of Hybrid4 is identical to the distribution of Hybrid3.

Note that Hybrid4 is the execution in the ideal world and the distribution of Hybrid4 is identical to
the distribution of Hybrid0, the execution in the real world. ut

6.3 Preparing Zero Additive Sharings

With Beaver tuples prepared in the preprocessing phase, all parties only need to do reconstructions in the
online phase. To protect the shares held by honest parties, for each reconstruction, we will prepare a random
additive sharing of 0 among the first t+ 1 parties. We summarize the functionality for zero additive sharings
in Functionality 16.

Functionality 16: Fzero

1. Fzero receives {si}i∈C⋂
{1,...,t+1} from the adversary, where C is the set of corrupted parties. Then Fzero

randomly samples an additive sharing 〈o〉 such that o = 0, and for each i ∈ C
⋂
{1, . . . , t+ 1}, the i-th share

of 〈o〉 is si.
2. Fzero asks the adversary whether it should continue or not.

– If the adversary replies abort, Fzero sends abort to honest parties.
– If the adversary replies continue, Fzero distributes the shares of 〈o〉 to parties in H

⋂
{1, . . . , t + 1},

where H is the set of honest parties.

As Frandom, we will use Frand to instantiate Fzero. Consider a secret sharing scheme Σ which outputs an
additive sharing of 0 in Fq among the first t + 1 parties (and the shares of the rest of t parties are fixed to
be 0). The secret space of Σ is {0}. It is clear that Σ is an Fq-GLSSS. To use Frand to instantiate Fzero, we
need to show that:

– Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, there exists an efficient algorithm which
outputs that either Σ(A, (ai)i∈A) = ∅, or a random sharing 〈o〉 ∈ Σ(A, (ai)i∈A).

The algorithm first checks that, for all i ∈ A\{1, . . . , t + 1}, ai = 0. If not, the algorithm outputs
Σ(A, (ai)i∈A) = ∅. Depending on the size of A

⋂
{1, . . . , t+ 1}, there are two cases:

– If |A
⋂
{1, . . . , t + 1}| = t + 1, then the whole sharing is determined by {ai}i∈A. The algorithm checks

whether the summation of ai for all i ∈ A\{1, . . . , t+1} is 0. If not, the algorithm outputs Σ(A, (ai)i∈A) =
∅. Otherwise, the algorithm sets the shares of 〈o〉 of parties in A to be {ai}i∈A, and the shares of parties
in I\A to be 0. Then, the algorithm outputs 〈o〉.

– If |A
⋂
{1, . . . , t+1}| < t+1, then the set Σ(A, (ai)i∈A) is non-empty. Without loss of generality, assume

P1 6∈ A. To generate a random sharing in Σ(A, (ai)i∈A), the algorithm samples random elements in Fq
as the shares of 〈o〉 of parties in {2, . . . , t+ 1}\A. Then the algorithm reconstructs the whole sharing 〈o〉
based on the secret o = 0 and the shares of parties in {2, . . . , t+ 1}, and outputs 〈o〉.

Thus, Fzero can be instantiated by Frand with the secret sharing scheme Σ defined above. Note that the
share size of a sharing in Σ is sh = 1 element in Fq. Therefore, when using Rand(N) to instantiate Frand,
the communication complexity of generating N random sharings in Σ is O(N · n+ n3 ·m) elements in Fq.
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6.4 Preparing Parity Sharings

Recall that all parties only need to do reconstructions in the online phase. At the end of the online phase, it
is sufficient to only verify the reconstructions. To this end, we first define what we call parity elements and
parity sharings.

Recall that val(·) : Fqm → Fq is defined by val(y) =
∑k
i=1 yi, where (y1, y2, . . . , yk) = ψ(y). For an element

p ∈ Fqm , we say p is a parity element if val(p) = 0. A parity sharing is a degree-t Shamir sharing of a parity
element. At the end of the protocol, we will use uniformly random parity sharings as masks when checking
the correctness of the reconstructions. We summarize the functionality for preparing random parity sharings
in Functionality 17.

Functionality 17: Fparity

1. Fparity receives {ui}i∈C from the adversary, where C is the set of corrupted parties. Then Fparity randomly
samples p ∈ Fqm such that val(p) = 0. Finally, Fparity generates a degree-t sharing [p]t such that the share
of Pi ∈ C is ui.

2. Fparity asks the adversary whether it should continue or not.
– If the adversary replies abort, Fparity sends abort to honest parties.
– If the adversary replies continue, for each honest party Pi, Fparity sends the i-th share of [p]t to Pi.

Properties of Parity Elements. Let Vparity denote the set of all parity elements in Fqm . We show that Vparity
is an Fq-subspace. Recall that val(·) is Fq-linear. Therefore, for all p, p′ ∈ Vparity and α, β ∈ Fq, we have

val(α · p+ β · p′) = α · val(p) + β · val(p′) = 0,

which implies that α · p + β · p′ ∈ Vparity. We show that there exists an efficient algorithm to sample a
uniformly random element in Vparity.

Let e be a vector in Fkq such that the first entry is 1 and the rest of entries are 0. The algorithm computes
δ = φ(e) · φ(e). By the property of RMFE, ψ(φ(e) · φ(e)) = e ∗ e = e. Therefore, val(δ) = 1. The algorithm
randomly samples x ∈ Fqm and computes v := val(x). Then, the algorithm outputs x− v · δ.

Note that val(x − v · δ) = val(x) − v · val(δ) = 0. Therefore, x − v · δ ∈ Vparity. Also note that, for all
p ∈ Vparity, p will be output by the algorithm only when x satisfies that x = p+ v · δ for some v ∈ Fq. Since
x is randomly sampled in Fqm , the probability that the algorithm outputs p is |Fq|/|Fqm |. Note that this is
independent of p. Therefore, the algorithm outputs a uniformly random element in Vparity.

Realizing Fparity. Consider a secret sharing scheme Σ which takes an element p ∈ Vparity and outputs a
Shamir sharing of p in Fqm . Since Vparity is an Fq-subspace and the Shamir secret sharing scheme is linear
in Fqm , Σ is an Fq-GLSSS. To use Frand to instantiate Fparity, we need to show that:

– Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, there exists an efficient algorithm which
outputs that either Σ(A, (ai)i∈A) = ∅, or a random sharing [p]t ∈ Σ(A, (ai)i∈A).

Depending on the size of A, there are two cases:

– If |A| ≥ t + 1, by the property of the Shamir secret sharing scheme, the set of shares {ai}i∈A can
fully determine the whole sharing if exists. The algorithm checks whether the shares {ai}i∈A lie on a
polynomial f(·) of degree at most t in Fqm . If not, the algorithm outputs Σ(A, (ai)i∈A) = ∅. Otherwise,
the algorithm checks whether f(0), i.e., the secret of this Shamir sharing, is a parity element. If not, the
algorithm outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm outputs the Shamir sharing determined
by {ai}i∈A.

26



– If |A| ≤ t, by the property of the Shamir secret sharing scheme, the set of shares {ai}i∈A is independent
of the secret. Therefore, Σ(A, (ai)i∈A) 6= ∅. The algorithm randomly samples p ∈ Vparity and randomly
samples t−|A| elements in Fqm as the shares of the first t−|A| parties in I\A. Then, based on the secret
p, the shares of the first t − |A| parties in I\A, and the shares {ai}i∈A, the algorithm reconstructs the
whole Shamir sharing [p]t and outputs [p]t.

Thus, Fparity can be instantiated by Frand with the secret sharing scheme Σ defined above. Note that
the share size of a sharing in Σ is sh = m elements in Fq. Therefore, when using Rand(N) to instantiate
Frand, the communication complexity of generating N sharings in Σ is O(N ·n ·m+n3 ·m) elements in Fq.

7 Online Phase

Let (φ, ψ) be an (k,m)q-RMFE. Recall that

– val(·) : Fqm → Fq is defined by val(y) =
∑k
i=1 yi, where (y1, . . . , yk) = ψ(y).

– We use 〈x〉 to denote an additive sharing of x ∈ Fq among the first t + 1 parties, and the shares of the
rest of parties are 0.

– A pair of couple sharings [[x]] := (〈x〉, [y]t) contains an additive sharing of x ∈ Fq and a degree-t Shamir
sharing of y ∈ Fqm such that val(y) = x.

In the online phase, our idea is to compute a pair of couple sharings for each wire. For an addition gate,
given two pairs of couple sharings as input, all parties can locally compute the addition of these two sharings.
For a multiplication gate, relying on Beaver tuples prepared in the preprocessing phase, all parties only need
to reconstruct two pairs of couple sharings. We note that for the two sharings in a pair of couple sharings:

– The first sharing is an additive sharing in Fq. The share of each party is just a field element in Fq. We
will use this sharing to do reconstruction. However, the correctness cannot be guaranteed since a single
corrupted party can change the secret by changing its own share.

– The second sharing is a degree-t Shamir sharing in Fqm . The share of each party is a field element in Fqm .
Note that the secret is determined by the shares of honest parties, and cannot be altered by corrupted
parties. However, using this sharing to do reconstruction is expensive. Therefore, we will use this sharing
to verify the correctness of reconstruction at the end of the protocol.

7.1 Input Gates

Recall that we are in the client-server model. In particular, all the inputs belong to the clients. In this part,
we introduce a protocol Input, which allows a client to share k inputs to all parties. In the main protocol,
we will invoke Input for every client with k inputs.

The description of Input appears in Protocol 18. The communication complexity of Input(Client, {x(1), . . . , x(k)})
is O(m+ k) elements in Fq plus one call of Frandom.

Note that this protocol guarantees the security of the inputs of honest clients. This is because the input
of honest clients are masked by random vectors r’s which are chosen by Frandom. However, a corrupted client
can send different values to different parties, which leads to incorrect or inconsistent couple sharings in the
final step. We will address this issue by checking consistency of the values distributed by all clients at the
end of the protocol.

7.2 Addition Gates and Multiplication Gates

For each fan-in two addition gate with input sharings [[x(1)]], [[x(2)]], all parties locally compute

[[x(0)]] := [[x(1) + x(2)]] = [[x(1)]] + [[x(2)]].
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Protocol 18: Input(Client, {x(1), . . . , x(k)})

1. All parties invoke Frandom to prepare a random sharing [φ(r)]t, where r is a random vector in Fkq . Then, all
parties send their shares of [φ(r)]t to the Client.

2. After receiving the shares of [φ(r)]t, the Client checks whether all the shares lie on a polynomial of degree
at most t in Fqm . If not, the Client aborts. Otherwise, the Client reconstructs the secret φ(r).

3. The Client computes r from φ(r). Then, the Client sets x = (x(1), . . . , x(k)), where x(1), . . . , x(k) are its input.
The Client sends x + r to all parties.

4. After receiving x + r from the Client, all parties locally compute [φ(x)]t := φ(x + r)− [φ(r)]t.
5. All parties invoke Separate on [φ(x)]t to obtain couple sharings for the input of the Client:

(〈x(1)〉, [y(1)]t), . . . , (〈x(k)〉, [y(k)]t)

For each multiplication gate with input sharings [[x(1)]], [[x(2)]], we want to obtain a pair of couple sharings
[[x(0)]] such that x(0) = x(1) · x(2). To this end, we will use one Beaver tuple ([[a]], [[b]], [[c]]) prepared in
Section 6.2. It satisfies that a, b are random field elements in Fq and c = a · b. Note that

x(0) = x(1) · x(2)

= (a+ x(1) − a) · (b+ x(2) − b)
= (a+ x(1)) · (b+ x(2))− (b+ x(2)) · a− (a+ x(1)) · b+ a · b
= (a+ x(1)) · (b+ x(2))− (b+ x(2)) · a− (a+ x(1)) · b+ c.

Therefore, all parties only need to reconstruct the sharings [[a]] + [[x(1)]] and [[b]] + [[x(2)]], and the resulting
sharing can be computed by

[[x(0)]] = (a+ x(1)) · (b+ x(2))− (b+ x(2)) · [[a]]− (a+ x(1)) · [[b]] + [[c]].

To reconstruct [[a]] + [[x(1)]], we will use the additive sharing 〈a + x(1)〉 := 〈a〉 + 〈x(1)〉. We first add a
random additive sharing 〈o〉 of 0 (prepared in Section 6.3) to protect the shares of honest parties. The first
t+ 1 parties locally compute 〈a〉+ 〈x(1)〉+ 〈o〉 and send their shares to P1. P1 reconstructs the secret a+x(1)

and sends the result to all other parties. Similar process is done when reconstructing 〈b+x(2)〉 := 〈b〉+〈x(2)〉.
Note that 〈a〉 + 〈o〉 is a random additive sharing. The share of each honest party in {P1, . . . , Pt+1} is

uniformly distributed. Essentially, each honest party in {P1, . . . , Pt+1} uses a random element as mask to
protect its own share. The protocol Mult appears in Protocol 19. The communication complexity of Mult
is O(n) elements in Fq plus two calls of Fzero.

The protocol Mult can go wrong at three places:

– A corrupted party may send an incorrect share to P1.
– P1 is corrupted and distributes an incorrect reconstruction result to all other parties.
– P1 is corrupted and distributes different values to different parties.

Note that, relying on the random additive sharing of 0, honest parties in the first t + 1 parties only send
random elements to P1. Therefore, Mult does not leak any information about the shares of honest parties
even if the input sharings of the multiplication gate are not in the correct form. It allows us to delay the
verification of the values distributed by P1 to the end of the protocol. It also allows us to delay the verification
of the values distributed by clients in the input phase to the end of the protocol since a corrupted client
distributing different values to different parties has the same effect as P1 distributing different values to
different parties. During the verification of the computation, we will first check whether all parties receive
the same values to resolve the third issue. Then, for the first two issues, it is sufficient to check the correctness
of the reconstructions.
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Protocol 19: Mult([[x(1)]], [[x(2)]], ([[a]], [[b]], [[c]]))

1. All parties invoke Fzero to prepare two random additive sharings 〈o(1)〉, 〈o(2)〉 where o(1) = o(2) = 0.
2. Let 〈x(1) + a〉, 〈x(2) + b〉 denote the additive sharings in [[x(1) + a]], [[x(2) + b]] respectively. The first t + 1

parties locally compute 〈u(1)〉 := 〈x(1) + a〉 + 〈o(1)〉 and 〈u(2)〉 := 〈x(2) + b〉 + 〈o(2)〉. Then, they send their
shares of 〈u(1)〉, 〈u(2)〉 to the first party P1.

3. P1 reconstructs the secrets u(1), u(2) by computing the summation of the shares of 〈u(1)〉 and 〈u(2)〉 respec-
tively. Then, P1 sends u(1), u(2) to all other parties (including the last t parties).

4. After receiving u(1), u(2), all parties locally compute the resulting couple sharings

[[x(0)]] = u(1) · u(2) − u(2) · [[a]]− u(1) · [[b]] + [[c]],

and take [[x(0)]] as output.

7.3 Verification of the Computation

Before all parties revealing the outputs, we need to verify the computation. Concretely, we need to verify
that (1) the clients distributed the same values in the input phase, and P1 distributed the same values when
evaluating multiplication gates, and (2) the reconstructions are correct.

Checking the Correctness of Distribution. All parties first check whether they receive the same values when
handling input gates and multiplication gates. Note that these values are all in Fq. Assume that these
values are denoted by x(1), x(2), . . . , x(N). The protocol CheckConsistency appears in Protocol 20. The
communication complexity of CheckConsistency(N, {x(1), . . . , x(N)}) is O(n2 ·m) elements in Fq.

Protocol 20: CheckConsistency(N, {x(1), . . . , x(N)})
1. All parties invoke Fcoin(Fqm) to generate a random element r ∈ Fqm . All parties locally compute

x := x(1) + x(2) · r + . . .+ x(N) · rN−1.

2. All parties exchange their results x’s and check whether they are the same. If a party Pi receives different
x’s, Pi aborts.

Lemma 7. If there exists two honest parties who receive different set of values {x(1), . . . , x(N)}, then with
overwhelming probability, at least one honest party will abort in the protocol CheckConsistency.

Proof. Suppose Pi, Pj are two honest parties and they receive {x(1), . . . , x(N)} and {x̃(1), . . . , x̃(N)} respec-
tively. Suppose that there exists i ∈ [N ] such that x(i) 6= x̃(i). Consider the following two polynomials in
Fqm :

f(r) = x(1) + x(2) · r + . . .+ x(N) · rN−1

f̃(r) = x̃(1) + x̃(2) · r + . . .+ x̃(N) · rN−1

Since there exists i ∈ [N ] such that x(i) 6= x̃(i), f(·) and f̃(·) are two different polynomials. The number
of r such that f(r) = f̃(r) is bounded by the degree of f(·) − f̃(·), which is N − 1. Since r is uniformly
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chosen from Fqm , the probability that f(r) = f̃(r) is at most N−1
qm ≤ N−1

2κ . Therefore, with overwhelming

probability, f(r) 6= f̃(r), which means that Pi, Pj will receive different values from each other and abort in
the protocol CheckConsistency. ut

This step makes sure that all (honest) parties receive the same values from clients and P1. Therefore, the
remaining task is to verify the correctness of the reconstructions.

Verification of Reconstructions. Recall that a pair of couple sharings [[x]] := (〈x〉, [y]t) satisfies that 〈x〉 is an
additive sharing of x and [y]t is a degree-t Shamir sharing of y such that val(y) = x. For a multiplication
gate with input sharings (〈x(1)〉, [y(1)]t), (〈x(2)〉, [y(2)]t), one Beaver tuple ((〈a〉, [α]t), (〈b〉, [β]t), (〈c〉, [γ]t)) is
consumed to compute the resulting sharing. All parties reconstruct

(〈x(1)〉, [y(1)]t) + (〈a〉, [α]t) and (〈x(2)〉, [y(2)]t) + (〈b〉, [β]t),

and learn x(1) +a and x(2) +b. Note that, the secret of a degree-t Shamir sharing is determined by the shares
held by honest parties. Therefore, the correctness can be verified by checking val(y(1) + α) = x(1) + a and
val(y(2) + β) = x(2) + b.

This task can be summarized as follows: Given N value-sharing pairs

(u(1), [w(1)]t), . . . , (u
(N), [w(N)]t),

where u(i) ∈ Fq and w(i) ∈ Fqm for all i ∈ [N ], we want to verify that for all i ∈ [N ], val(w(i)) = u(i). Here
u(i) corresponds to x(1) + a and [w(i)]t corresponds to [y(1) + α]t. The functionality FcheckRecon appears in
Functionality 21.

Functionality 21: FcheckRecon

1. Let N denote the number of value-sharing pairs. These value-sharing pairs are denoted by

(u(1), [w(1)]t), (u
(2), [w(2)]t), . . . , (u

(N), [w(N)]t).

FcheckRecon will check whether val(w(i)) = u(i) for all i ∈ [N ].
2. For all i ∈ [N ], FcheckRecon receives from honest parties their shares of [w(i)]t. Then FcheckRecon reconstructs

the secret w(i). FcheckRecon further computes the shares of [w(i)]t held by corrupted parties and sends these
shares to the adversary.

3. For all i ∈ [N ], FcheckRecon computes val(w(i)) and sends u(i), val(w(i)) to the adversary.
4. Finally, let b ∈ {abort, accept} denote whether there exists i ∈ [N ] such that val(w(i)) 6= u(i). FcheckRecon

sends b to the adversary and waits for its response.
– If the adversary replies abort, FcheckRecon sends abort to honest parties.
– If the adversary replies continue, FcheckRecon sends b to honest parties.

Consider a secret sharing scheme Σ which takes a field element u ∈ Fq as input and outputs (u, [w]t),
where u is the same as the input and [w]t is a degree-t Shamir sharing of w ∈ Fqm such that val(w) = u. Recall
that val(·) : Fqm → Fq is an Fq-linear map, and the Shamir secret sharing scheme is Fqm-linear. Therefore, Σ
is an Fq-GLSSS. Therefore, FcheckRecon essentially checks the membership of (u(1), [w(1)]t), . . . , (u

(N), [w(N)]t)
in Σ.

The protocol CheckRecon appears in Protocol 22. At a high-level, instead of checking the membership
in Σ, we choose to use the m-fold interleaved sharing scheme Σ×m. All parties first transform the N sharings
in Σ (i.e., the value-sharing pairs) into N ′ = N/m sharings in Σ×m. Then all parties compute a random
linear combination of these N ′ sharings, and only test the membership of the resulting sharing in Σ×m. To
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further protect the shares of honest parties, we need to prepare a random sharing of 0 in Σ×m. Recall that
a parity sharing [p]t satisfies that val(p) = 0. Therefore, (0, [p]t) is a random sharing of 0 in Σ. All parties
will invoke Fparity to prepare m random parity sharings and transform them to m random sharings of 0 in
Σ, and then, to a random sharing of 0 in Σ×m.

The communication complexity of CheckRecon(N, {(u(1), [w(1)]t), . . . , (u
(N), [w(N)]t)}) is O(n2 · m2)

elements in Fq plus m calls of Fparity.

Protocol 22: CheckRecon(N, {(u(1), [w(1)]t), . . . , (u
(N), [w(N)]t)})

1. Let N ′ = N/m. All parties first transform the N sharings in Σ to N ′ sharings in Σ×m. Concretely, for all
i ∈ [N ′], let

(v(i), [z(i)]t) := ((u((i−1)m+1), [w((i−1)m+1)]t), . . . , (u
(i·m), [w(i·m)]t)).

2. All parties invoke Fparity to generate m random parity sharings [p(1)]t, [p
(2)]t, . . . , [p

(m)]t. All parties trans-
form these m parity sharings to a sharing of 0 in Σ×m:

(v(0), [z(0)]t) := ((0, [p(1)]t), . . . , (0, [p
(m)]t)).

3. All parties invoke Fcoin(Fqm) to generate a random element r ∈ Fqm . All parties locally compute

(v, [z]t) := (v(0), [z(0)]t) + (v(1), [z(1)]t) · r + . . .+ (v(N′), [z(N′)]t) · rN
′

4. For each party Pi, Pi receives from all other parties their shares of [z]t. Let (v, [z]t) =
((v1, [z1]t), . . . , (vm, [zm]t)). For all j ∈ [m], Pi checks whether [zj ]t is a valid degree-t Shamir sharing and
val(zj) = vj . If not, Pi aborts. Otherwise, Pi accepts the reconstructions.

Lemma 8. Protocol CheckRecon securely computes FcheckRecon with abort in the {Fparity,Fcoin}-hybrid
model in the presence of a malicious adversary who controls t parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties. Recall that
val(·) : Fqm → Fq is an Fq-linear map. For a vector z := (z1, . . . , zm) ∈ (Fqm)m, we use val(z) to denote
(val(z1), . . . , val(zm)).

Simulation for CheckRecon. At the beginning, for each i ∈ [N ], S receives the shares of [w(i)]t held by
corrupted parties and u(i), val(w(i)) from FcheckRecon.

In Step 1, S computes {v(i)}N ′

i=1 and the shares of {[z(i)]t}N
′

i=1 held by corrupted parties from {u(i)}Ni=1

and the shares of {[w(i)]t}Ni=1 held by corrupted parties.
In Step 2, S emulates Fparity and receives the shares of [p(1)]t, . . . , [p

(m)]t held by corrupted parties. If S
receives abort from the adversary, S sends abort to FcheckParity and aborts. S computes v(0) and the shares
of [z(0)]t held by corrupted parties.

In Step 3, S emulates Fcoin by randomly sampling r ∈ Fqm . S computes v and the shares of [z]t held
by corrupted parties. Let (v, [z]t) = ((v1, [z1]t), . . . , (vm, [zm]t)). According to Protposition 1, for all i ∈ [m],
(vi, [zi]t) is an Fq-linear combination of {(0, [p(i)]t)}mi=1 and {(u(i), [w(i)]t)}Ni=1. Therefore, S can compute
val(zi) from {val(p(i))}mi=1 and {val(w(i))}Ni=1. Note that each of val(p(i)) is 0 and {val(w(i))}Ni=1 are received
from FcheckRecon.

Also note that for all i ∈ [m], p(i) is a uniformly random parity element. Since zi is masked by p(i), zi
is uniformly distributed given val(zi). Let e be a vector in Fkq such that the first entry is 1 and the rest of
entries are 0. Let δ = φ(e) ·φ(e). By the property of RMFE, ψ(φ(e) ·φ(e)) = e∗e = e. Therefore, val(δ) = 1.
For all i ∈ [m], to sample a random element zi given val(zi), S randomly samples a parity element r and
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sets zi := r + val(zi) · δ. Then, based on the secret zi and the shares of [zi]t held by corrupted parties, S
computes the shares of [zi]t held by honest parties.

In Step 4, since S has computed v and the shares of [z]t held by honest parties, S faithfully follows the
protocol. If any party aborts, S sends abort to FcheckRecon and aborts. Otherwise, S sends continue to
FcheckRecon.

Hybrid Arguments. Now, we show that S perfectly simulates the behaviors of honest parties with overwhelm-
ing probability. Conisder the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S simulates the first step as described above. It does not change the messages

sent from honest parties to corrupted parties. Therefore, the distribution of Hybrid1 is identical to the
distribution of Hybrid0.

Hybrid2: In this hybrid, S simulates the second step as described above. Note that the only difference is
that, in Hybrid1, the secrets p(1), . . . , p(m) are chosen by Fparity, while in Hybrid2, these secrets are chosen
by S. However, it makes no difference since in both hybrids, p(1), . . . , p(m) are random parity elements.
Therefore, the distribution of Hybrid2 is identical to the distribution of Hybrid1.

Hybrid3: In this hybrid, S simulates the third step as described above. There are two differences between
Hybrid2 and Hybrid3:

– Instead of using the real z, S randomly chooses z based on val(z) := (val(z1), . . . , val(zm)).
– Instead of using the real shares of honest parties, S computes the shares of [z]t held by honest parties

based on the secret z and the shares of [z]t held by corrupted parties.

According to Proposition 1, val(z) can be computed (and therefore determined) by val(z(0)), . . . , val(z(N))
(i.e., {val(p(i))}mi=1 and {val(w(i))}Ni=1). Since z(0) = (p(1), . . . , p(m)) is a vector of random parity elements
chosen by S, z is a random vector of elements given val(z). Therefore, the distributions of z in both hybrids
are identical. Since the shares of honest parties are determined by the secret z and the shares held by
corrupted parties, the distributions of the shares of [z]t held by honest parties in both hybrids are identical.

Therefore, the distribution of Hybrid3 is identical to the distribution of Hybrid2.
Hybrid4: In this hybrid, S simulates the last step as described above. The only difference is that, in

Hybrid3, all parties accept the reconstructions if val(z) = v, while in Hybrid4, honest parties accept the
reconstructions (by receiving accept from FcheckRecon) only if for all i ∈ N , val(w(i)) = u(i).

Assume that there exists i ∈ [N ] such that val(w(i)) 6= u(i). This implies that there exists i ∈ [N ′] such
that val(z(i)) 6= v(i). We show that the number of r such that val(z) = v is bounded by N ′. Suppose there
are N ′ + 1 different values r0, r1, . . . , rN ′ such that for all j ∈ {0, 1, . . . N ′},

(ṽj , [z̃j ]t) := (v(0), [z(0)]t) + (v(1), [z(1)]t) · rj + . . .+ (v(N ′), [z(N ′)]t) · rN
′

j

satisfies that val(z̃j) = ṽj . Let M be a matrix of size (N ′ + 1) × (N ′ + 1) in Fqm such that Mji = ri−1j−1.
Then we have

((ṽ0, [z̃0]t), . . . , (ṽN ′ , [z̃N ′ ]t))
T = M · ((v(0), [z(0)]t), . . . , (v

(N ′), [z(N ′)]t))
T.

Note that M is an (N ′ + 1)× (N ′ + 1) Vandermonde matrix, which is invertible. Therefore,

((v(0), [z(0)]t), . . . , (v
(N ′), [z(N ′)]t))

T = M−1 · ((ṽ0, [z̃0]t), . . . , (ṽN ′ , [z̃N ′ ]t))
T.

According to the assumption, for all j ∈ {0, 1, . . . , N ′}, (ṽj , [z̃j ]t) is a valid sharing in Σ×m. Since Σ×m is
Fqm -linear, the above equation implies that for all i ∈ {0, 1, . . . , N ′}, (v(i), [z(i)]t) is a valid sharing in Σ×m,
which means that val(z(i)) = v(i). This leads to a contradiction.

Therefore, the number of r such that val(z) = v is bounded by N ′. Since r is randomly sampled from

Fqm , the probability that val(z) = v is bounded by N ′

qm ≤
N ′

2κ , which is negligible.
Therefore, the distribution of Hybrid4 is statistically close to Hybrid3.
Note that Hybrid4 is the execution in the ideal world and Hybrid4 is statistically close to Hybrid0,

the execution in the real world. ut
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7.4 Output Gates

Recall that we are in the client-server model. In particular, only the clients receive the outputs. In this part,
we will introduce a functionality Foutput which reconstructs the output couple sharings to the client who
should receive them. In the main protocol, we will invoke Foutput for every client.

Suppose we need to reconstruct the following N pairs of couple sharings to the Client:

[[x(1)]], [[x(2)]], . . . , [[x(N)]].

Recall that a pair of couple sharings [[x]] := (〈x〉, [y]t) satisfies that 〈x〉 is an additive sharing of x, and [y]t is
a degree-t Shamir sharing of y such that val(y) = x. The functionality Foutput appears in Functionality 23.

Functionality 23: Foutput

1. Let N denote the number of output gates belonging to the Client. The couple sharings are denoted by

[[x(1)]], [[x(2)]], . . . , [[x(N)]].

Foutput will reconstruct x(1), x(2), . . . , x(N) to the Client.
2. For all i ∈ [N ], suppose [[x(i)]] = (〈x(i)〉, [y(i)]t). Foutput receives from honest parties their shares of

(〈x(i)〉, [y(i)]t). Then Foutput reconstructs the secret y(i) and computes val(y(i)).
– For [y(i)]t, Foutput computes the shares of [y(i)]t held by corrupted parties and sends these shares to the

adversary.
– For 〈x(i)〉, note that the summation of all the shares should be val(y(i)). Foutput computes the summation

of the shares of corrupted parties, denoted by x
(i)
C , which can be computed from val(y(i)) and the shares

of 〈x(i)〉 held by honest parties. Foutput sends x
(i)
C to the adversary.

3. Depending on whether the Client is honest, there are two cases:
– If the Client is corrupted, Foutput sends {val(y(i))}Ni=1 to the adversary. If the adversary replies abort,
Foutput sends abort to all honest parties.

– If the Client is honest, Foutput asks the adversary whether it should continue. If the adversary replies
abort, Foutput sends abort to the Client and all honest parties. If the adversary replies continue, Foutput

sends {val(y(i))}Ni=1 to the Client.

The protocol Output appears in Protocol 24. At a high-level, the first t+1 parties send their shares of the
additive sharings to the Client to allow the Client to reconstruct the output. To verify the correctness of the
reconstructions, we follow a similar approach as that in Section 7.3. Concretely, suppose the reconstruction
results are x̃(1), . . . , x̃(N). We need to verify that for all i ∈ [N ], the value-sharing pair (x̃(i), [y(i)]t) satisfies
that val(y(i)) = x̃(i). The only difference here is that only the Client knows the reconstruction results. Note
that all the operations on value-sharing pairs in CheckRecon are coordinate-wise. Therefore, we simply let
the Client compute the part related to {x̃(i)}Ni=1 and let all parties compute the part related to {[y(i)]t}Ni=1.

The communication complexity of Output(Client, {[[x(1)]], [[x(2)]], . . . , [[x(N)]]}) is O(N ·n+n2 ·m+n ·m2)
elements in Fq plus N calls of Fzero and m calls of Fparity.

Lemma 9. Protocol Output securely computes Foutput with abort in the
{Fzero,Fparity,Fcoin}-hybrid model in the presence of a malicious adversary who controls t parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties. Recall that
val(·) : Fqm → Fq is an Fq-linear map. For a vector z := (z1, . . . , zm) ∈ (Fqm)m, we use val(z) to denote
(val(z1), . . . , val(zm)).
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Protocol 24: Output(Client, {[[x(1)]], [[x(2)]], . . . , [[x(N)]]})

1. For all i ∈ [N ], suppose [[x(i)]] = (〈x(i)〉, [y(i)]t). All parties invoke Fzero to prepare a random additive sharing
〈o(i)〉 such that o(i) = 0. The first t+ 1 parties send their shares of 〈x(i)〉+ 〈o(i)〉 to the Client.

2. For all i ∈ [N ], the Client reconstructs 〈x(i)〉+ 〈o(i)〉. Let x̃(i) denote the reconstruction result.
3. Let N ′ = N/m. For all i ∈ [N ′], let

(v(i), [z(i)]t) := ((x̃((i−1)m+1), [y((i−1)m+1)]t), . . . , (x̃
(i·m), [y(i·m)]t)).

The Client takes v(i) and all parties take [z(i)]t.
4. All parties invoke Fparity to generate m random parity sharings [p(1)]t, [p

(2)]t, . . . , [p
(m)]t. Let

(v(0), [z(0)]t) := ((0, [p(1)]t), . . . , (0, [p
(m)]t)).

The Client takes v(0) (which is just an all-0 vector) and all parties take [z(0)]t.
5. All parties invoke Fcoin(Fqm) to generate a random element r ∈ Fqm . All parties send r to the Client. The

Client takes the majority value as r.
6. Let

(v, [z]t) := (v(0), [z(0)]t) + (v(1), [z(1)]t) · r + . . .+ (v(N′), [z(N′)]t) · rN
′
.

The Client computes the part v and all parties compute the part [z]t.
7. All parties send their shares of [z]t to the Client. Let (v, [z]t) = ((v1, [z1]t), . . . , (vm, [zm]t)). For all i ∈ [m],

the Client checks whether [zi]t is a valid degree-t Shamir sharing and val(zi) = vi. If not, the Client aborts.
Otherwise, the Client accepts the reconstructions.

Simulation for Open. At the beginning, for each i ∈ [N ], S receives the shares of [y(i)]t held by corrupted

parties and x
(i)
C from Foutput. Recall that x

(i)
C is the summation of the shares of 〈x(i)〉 held by corrupted

parties. Depending on whether the Client is honest or not, there are two cases.

Case 1: The Client is honest.

In this case, since the Client is honest, the simulator only checks whether the Client can reconstruct the
correct outputs using the shares sent by corrupted parties in the first step.

In Step 1, for all i ∈ [N ], S emulates Fzero and receives the shares of 〈o(i)〉 held by corrupted parties.

Then S computes the summation of the shares of 〈o(i)〉 held by corrupted parties, denoted by o
(i)
C . S further

computes x
(i)
C + o

(i)
C .

Next, S receives the shares of 〈x(i)〉 + 〈o(i)〉 held by corrupted parties. S checks that whether the sum-

mation of the shares of 〈x(i)〉+ 〈o(i)〉 held by corrupted parties is x
(i)
C + o

(i)
C . If not, S marks this execution

as fail.

From Step 2 to Step 6, S faithfully emulates Fparity and Fcoin when they are invoked. S further computes
the shares of [z]t held by corrupted parties. These shares can be computed from the shares of {[p(i)]t}mi=1

held by corrupted parties which are received when emulating Fparity, and the shares of {[y(i)]t}Ni=1 held by
corrupted parties which are received from Foutput.

In Step 7, S receives from the adversary the shares of [z]t held by corrupted parties. If they are different
from the shares computed by S, S marks this execution as fail.

Finally, if S has marked this execution as fail, S sends abort to Foutput and aborts. Otherwise, S sends
continue to Foutput.

Case 2: The Client is corrupted.

In this case, S receives from Foutput {val(y(i))}Ni=1.
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In Step 1, for all i ∈ [N ], S emulates Fzero and receives the shares of 〈o(i)〉 held by corrupted parties.

Then S computes the summation of the shares of 〈o(i)〉 held by corrupted parties, denoted by o
(i)
C . S further

computes x
(i)
C + o

(i)
C .

Note that 〈x(i)〉+ 〈o(i)〉 should be a random additive sharing of x(i) = val(y(i)). S randomly samples the

shares of honest parties in {P1, . . . , Pt+1} such that the summation of these shares is val(y(i))− (x
(i)
C + o

(i)
C ).

Finally, S sends these shares to the Client.
From Step 2 to Step 6, S faithfully emulates Fparity and Fcoin when they are invoked. S further computes

v and the shares of [z]t held by corrupted parties. These values can be computed from {val(y(i))}Ni=1, the
shares of {[p(i)]t}mi=1 held by corrupted parties which are received when emulating Fparity, and the shares of
{[y(i)]t}Ni=1 held by corrupted parties which are received from Foutput.

Let (v, [z]t) = ((v1, [z1]t), . . . , (vm, [zm]t)). Note that for all i ∈ [N ], we should have val(zi) = vi. Also
note that for all i ∈ [m], p(i) is a uniformly random parity element. Since zi is masked by p(i), zi is uniformly
distributed given val(zi) = vi. Let e be a vector in Fkq such that the first entry is 1 and the rest of entries are
0. Let δ = φ(e) · φ(e). By the property of RMFE, ψ(φ(e) · φ(e)) = e ∗ e = e. Therefore, val(δ) = 1. For all
i ∈ [m], to sample a random element zi given val(zi) = vi, S randomly samples a parity element r and sets
zi := r + vi · δ. Then, based on the secret zi and the shares of [zi]t held by corrupted parties, S computes
the shares of [zi]t held by honest parties.

In Step 7, since S has computed the shares of [z]t held by honest parties, S faithfully follows the protocol.
If the Client aborts, S sends abort to Foutput and aborts.

Hybrid Arguments. Now, we show that S perfectly simulates the behaviors of honest parties with overwhelm-
ing probability. Conisder the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S simulates the behaviors of honest parties and the Client when the Client is

honest. Note that when the Client is honest, S does not need to send any message to the adversary. Therefore,
we only need to focus on the outputs of honest parties and the Client. There are two possible outcomes: (1)
the Client receives the correct outputs and honest parties receive nothing; (2) the Client aborts and honest
parties receive abort. We first show the following three points:

– In Step 1, for all i ∈ [N ], if and only if S marks the execution as fail when checking the shares of
〈x(i)〉 + 〈o(i)〉 held by corrupted parties, x̃(i) reconstructed by the Client in Hybrid0 is incorrect. Note
that the sharing 〈x(i)〉 + 〈o(i)〉 is reconstructed by computing the summation of all the shares. In this
hybrid, S checks the correctness of the summation of the shares held by corrupted parties. If the check
does not pass, S will mark the execution as fail, and the Client will not reconstruct the correct output.

– In Step 7, if S marks the execution as fail when checking the shares of [z]t held by corrupted parties,
the Client in Hybrid0 will abort. Note that a degree-t Shamir sharing is determined by the shares held
by honest parties. Therefore, if the shares of [z]t held by corrupted parties do not match the shares
computed by S, the Client in Hybrid0 will receive inconsistent sharings [z]t and abort.

– If there exists i ∈ [N ] such that x̃(i) reconstructed by the Client in Hybrid0 is incorrect, then with
overwhelming probability, the Client will abort in Step 7. This follows from the same argument as that
in the proof of Lemma 8.

Consider the following three cases:

– If S does not mark the execution as fail, then in Hybrid1, the Client receives the correct outputs and
honest parties receive nothing. According to the first point, the Client reconstructs the correct outputs
in Hybrid0. Also, corrupted parties provide the correct shares of [z]t in Step 7. Therefore, in Hybrid0,
the Client receives the correct outputs and honest parties receive nothing.

– If S marks the execution as fail in Step 1, then in Hybrid1, the Client aborts and honest parties receive
abort. According to the first point, at least one x̃(i) reconstructed by the Client in Hybrid0 is incorrect.
According to the third point, the Client in Hybrid0 will abort with overwhelming probability.

– If S marks the execution as fail in Step 7, then in Hybrid1, the Client aborts and honest parties receive
abort. According to the second point, the Client in Hybrid0 will also abort.
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Therefore, the distribution of Hybrid1 is statistically close to the distribution of Hybrid1.

Hybrid2: In this hybrid, S simulates the behaviors of honest parties when the Client is corrupted. Note
that in this case, honest parties do not receive any message from corrupted parties or the Client. Therefore,
we only need to focus on the shares which are sent from honest parties to the Client. There are two places
where honest parties need to send shares.

– In Step 1, for all i ∈ [N ], honest parties need to send their shares of 〈x(i)〉+ 〈o(i)〉 to the Client. Note that
the secret of 〈x(i)〉+ 〈o(i)〉 should be x(i) = val(y(i)), which is received from Foutput. Also the summation

of the shares held by corrupted parties should be x
(i)
C + o

(i)
C . Therefore, the summation of the shares held

by honest parties should be val(y(i))− (x
(i)
C + o

(i)
C ). Since 〈o(i)〉 is a uniformly random additive sharing of

0, the shares of 〈x(i)〉 + 〈o(i)〉 held by honest parties are uniformly distributed with the constraint that

the summation of these shares is val(y(i))− (x
(i)
C +o

(i)
C ). In this hybrid, S uniformly samples the shares of

honest parties in the first t+ 1 parties such that the summation of these shares is val(y(i))− (x
(i)
C + o

(i)
C ).

Thus, the shares of honest parties in both hybrids have the same distribution.

– In Step 7, honest parties need to send their shares of [z]t to the Client. Note that the secret z should
satisfies that val(z) = v. Since z(0) = (p(1), p(2), . . . , p(m)) is a vector of m uniformly random parity
elements, z should be a vector of random elements in Fqm given val(z) = v. In this hybrid, S uniformly
samples z such that val(z) = v. Therefore, z in both hybrids have the same distribution. Since the shares
of [z]t held by honest parties are determined by the shares of corrupted parties and the secret z, we
conclude that [z]t in both hybrids have the same distribution.

Therefore, the distribution of Hybrid2 is identical to the distribution of Hybrid1.

Note that Hybrid2 is the execution in the ideal world and Hybrid2 is statistically close to Hybrid0,
the execution in the real world. ut

7.5 Main Protocol

Now we are ready to introduce our main construction. Recall that we are in the client-server model. In
particular, all the inputs belong to the clients, and only the clients receive the outputs. The functionality
Fmain is described in Functionality 25. The protocol Main appears in Protocol 26.

Functionality 25: Fmain

1. Fmain receives from all clients their inputs.
2. Fmain evaluates the circuit and computes the outputs. Fmain first sends the outputs of corrupted clients to

the adversary.
– If the adversary replies continue, Fmain distributes the outputs to honest clients.
– If the adversary replies abort, Fmain sends abort to honest clients.

Theorem 4. Let c be the number of clients and n = 2t + 1 be the number of parties. The protocol Main
securely computes Fmain with abort in {Ftuple,Frandom, Fzero,Fcoin,FcheckRecon,Foutput}-hybrid model in the
presence of a fully malicious adversary controlling up to c clients and t parties.

Proof. According to Theorem 2, we assume that the adversary controls exactly t parties. Let A denote the
adversary. We will construct a simulator S to simulate the behaviors of honest parties. Let C denote the set
of corrupted parties, and H denote the set of honest parties.
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Protocol 26: Main

Let (φ, ψ) be an (k,m)q-RMFE. Recall that val(·) : Fqm → Fq is an Fq-linear map, which is defined by val(y) =∑k
i=1 yi where (y1, . . . , yk) = ψ(y). A pair of couple sharings [[x]] := (〈x〉, [y]t) satisfies that val(y) = x.

1. Preparing Beaver Tuples: Let cM denote the number of multiplication gates in the circuit. All parties
invoke Ftuple to prepare cM/k random tuples in the form of

([φ(a)]t, [φ(b)]t, [φ(c)]t),

where a, b are random vectors in Fkq and c = a ∗ b. Then all parties invoke Separate to locally transform
these cM/k tuples into cM random Beaver tuples in the form of

([[a]], [[b]], [[c]]),

where a, b are random elements in Fq and c = a · b.
2. Input Phase: For every Client with k inputs x(1), . . . , x(k) ∈ Fq, all parties and the Client in-

voke Input(Client, {x(1), . . . , x(k)}). At the end of the protocol, all parties take the couple sharings
[[x(1)]], [[x(2)]], . . . , [[x(k)]] as output.

3. Computation Phase: All parties start with holding a pair of couple sharings for each input gate. The
circuit is evaluated in a predetermined topological order.

– For each addition gate with input sharings [[x(1)]], [[x(2)]], all parties locally compute [[x(0)]] := [[x(1) +
x(2)]] = [[x(1)]] + [[x(2)]].

– For each multiplication gate with input sharings [[x(1)]], [[x(2)]], all parties invoke Mult with the first
unused Beaver tuple ([[a]], [[b]], [[c]]) to compute [[x(0)]]. Let u(1), u(2) denote the reconstruction results of
[[x(1) + a]], [[x(2) + b]] sent by P1 in Step 3 of Mult.
Suppose [w(1)]t is the degree-t Shamir sharing in [[x(1) + a]], and [w(2)]t is the degree-t Shamir sharing
in [[x(2) + b]]. All parties will use (u(1), [w(1)]t) and (u(2), [w(2)]t) to verify the reconstructions.

4. Verification phase:
– Suppose that u(1), u(2), . . . , u(cI ) are the values all parties receive from the clients in Input, and
u(cI+1), . . . , u(cI+2·cM ) are the values all parties receive from P1 in Mult, where cI denotes the number
of inputs and cM denotes the number of multiplications. All parties invoke CheckConsistency(cI + 2 ·
cM , {u(1), . . . , u(cI+2·cM )}) to verify that they receive the same values.

– Suppose (u(1), [w(1)]t), . . . , (u
(2·cM ), [w(2·cM )]t) are the value-sharing pairs generated when evaluating

multiplication gates. All parties invoke FcheckRecon to verify that for all i ∈ [2 · cM ], val(w(i)) = u(i).
5. Output Phase: For every Client, let [[x(1)]], [[x(2)]], . . . , [[x(N)]] denote the sharings associated with the output

gates, which should be reconstructed to the Client. All parties and the Client invoke Foutput on these N pairs
of couple sharings.

Simulation for Main. We describe the strategy of S phase by phase.

– Preparing Beaver Tuples: In this step, S emulates Ftuple and receives the shares of

{[φ(a(i))]t, [φ(b(i))]t, [φ(c(i))]t}cM/ki=1

held by corrupted parties. Then S follows Separate to compute the shares of

{([[a(i)]], ([[b(i)]], [[c(i)]])}cMi=1

held by corrupted parties.
– Input Phase: In this step, S emulates Frandom and receives the shares of [φ(r)]t held by corrupted

parties. Depending on whether the Client is corrupted, there are two cases:
• If the Client is corrupted, S faithfully generates the whole sharing [φ(r)]t when emulating Frandom.

Then S sends the shares of [φ(r)]t held by honest parties to the Client. After receiving x + r from
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the Client, S extracts the input of the Client. If the Client sends different values to different honest
parties, S uses the values of the first honest party and marks this execution as fail.

• If the Client is honest, S receives the shares of [φ(r)]t from corrupted parties. S checks whether these
shares are the same as the shares received when emulating Frandom. If not, S sends abort to Fmain

and aborts. Otherwise, S samples a random vector in Fkq and regards it as x + r. S sends x + r to
corrupted parties.

If S successfully extracts all the inputs of corrupted clients, S sends these inputs to Fmain. Finally, S
follows Separate to compute the shares of [[x(1)]], [[x(2)]], . . . , [[x(k)]] held by corrupted parties.

– Computation Phase: In this step, S will compute the shares of each pair of couple sharings held by
corrupted parties. Note that these shares have computed in the input phase for couple sharings associated
with the input gates.

For each addition gate, S follows the protocol to locally compute the shares of the resulting couple
sharings held by corrupted parties.

For each multiplication gate, We describe the strategy of S for Mult.

1. S emulates Fzero and receives the shares of 〈o(1)〉, 〈o(2)〉 held by corrupted parties.

2. For the additive sharing 〈u(1)〉 = 〈x(1) + a〉 + 〈o(1)〉, for each honest party in {P1, . . . , Pt+1}, S
samples a random element in Fq as its share. Similar process is done for 〈u(2)〉 = 〈x(2) + b〉+ 〈o(2)〉.
Then S sends the shares of 〈u(1)〉, 〈u(2)〉 held by honest parties to P1. S then uses the shares held by
corrupted parties to reconstruct u(1), u(2). Let [w(1)]t, [w

(2)]t denote the degree-t Shamir sharings in
[[x(1) + a]], [[x(2) + b]] respectively. S computes the shares of [w(1)]t, [w

(2)]t held by corrupted parties.

3. If P1 is honest, S faithfully follows the protocol by reconstructing 〈u(1)〉, 〈u(2)〉 using the shares
received from other parties. Let ũ(1), ũ(2) denote the reconstruction results. S sends ũ(1), ũ(2) to all
other parties. If P1 is corrupted, S receives ũ(1), ũ(2) from P1. If P1 sends different values to different
honest parties, S uses the values of the first honest party and marks this execution as fail.

4. S follows the protocol to compute the shares of [[x(0)]] held by corrupted parties.

– Verification Phase: For CheckConsistency, note that u(1), . . . , u(cI+2·cM ) are either received from
corrupted clients and the corrupted P1 or explicitly generated by S. S follows the protocol honestly. If
any party aborts or S has marked this execution as fail, S sends abort to Fmain and aborts.

For FcheckRecon, S emulates the functionality as follows:

1. The value-sharing pairs are denoted by (ũ(1), [w(1)]t), . . . , (ũ
(2·cM ), [w(2·cM )]t). Here ũ(1), . . . , ũ(2·cM )

are the results reconstructed by P1. Recall that S also computes the correct reconstruction results
when simulating Mult, which are denoted by u(1), . . . , u(2·cM ).

2. For all i ∈ [2 · cM ], S sends the shares of [w(i)]t held by corrupted parties to the adversary.

3. For all i ∈ [2 · cM ], S sends ũ(i), u(i) to the adversary.

4. If there exists i ∈ [2 · cM ] such that ũ(i) 6= u(i), S sets b = abort. Otherwise, S sets b = accept.
Then S follows this step in the functionality.

– Output Phase: S receives from Fmain the outputs of corrupted clients. For every Client who should
receive the reconstruction results of

[[x(1)]], [[x(2)]], . . . , [[x(N)]],

we describe the strategy of S for Foutput. For all i ∈ [N ], recall that S has computed the shares of
[[x(i)]] = (〈x(i)〉, [y(i)]t) held by corrupted parties. For [y(i)]t, S sends the shares held by corrupted parties
to the adversary. For 〈x(i)〉, S computes the summation of the shares of corrupted parties, denoted by

x
(i)
C , and sends x

(i)
C to the adversary. Depending on whether the Client is honest, there are two cases.

• If the Client is corrupted, S sends {val(y(i))}Ni=1 to the adversary. Note that these are the outputs of
the Client, which are received from Fmain. Then S receives the response from the adversary.

• If the Client is honest, S receives the response from the adversary.

If the adversary replies abort in any call of Foutput, S sends abort to Fmain and aborts. Otherwise, S
sends continue.
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Hybrid Arguments. Now, we show that S perfectly simulates the behaviors of honest parties with overwhelm-
ing probability. Consider the following hybrids.

Hybrid0: The execution in the real world.

Hybrid1: In this hybrid, S computes the inputs of corrupted clients and sends them to Fmain. The
distribution of Hybrid1 is identical to the distribution of Hybrid0.

Hybrid2: In this hybrid, S simulates CheckConsistency. Concretely, S checks whether all honest
parties receive the same values from clients in Input and P1 in Mult. If not, S sends abort to Fmain and
aborts. According to Lemma 7, the probability that an honest party aborts in this case is overwhelming.
Therefore, the distribution of Hybrid2 is statistically close to the distribution of Hybrid1.

Hybrid3: In this hybrid, S uses the outputs of corrupted clients received from Fmain in the output
phase. Note that in Hybrid2, S has checked that all parties receive the same values from clients in Input
and P1 in Mult. The functionality FcheckRecon ensures that the reconstructions are correct if no party
aborts. Therefore, the computation is correct and corrupted clients should receive the same outputs as those
computed by Fmain. Thus, the distribution of Hybrid3 is statistically close to the distribution of Hybrid2.

Hybrid4: In this hybrid, S computes the shares of couple sharings held by corrupted parties as described
above. Then S simulates the output phase as described above. Note that when using the shares computed
by S for corrupted parties, all the couple sharings are valid. For [y(i)]t, the shares of corrupted parties are
determined by the shares of honest parties. Therefore, the shares of [y(i)]t held by corrupted parties provided
by S in both hybrids are identical. For 〈x(i)〉, note that the secret x(i) = val(y(i)) is the summation of the
shares of all parties. Therefore, the summation of the shares held by corrupted parties is determined by x(i)

and the shares held by honest parties. Therefore, x
(i)
C provided by S in both hybrids are identical. Thus, the

distribution of Hybrid4 is identical to the distribution of Hybrid3.

Hybrid5: In this hybrid, S simulates the computation phase. Note that for addition gates, S simply
computes the shares of corrupted parties, which is identical to Hybrid4. For multiplication gates, the only
difference is that S uses uniformly random elements as the shares of 〈u(1)〉, 〈u(2)〉 for honest parties in the
first t+ 1 parties. Recall that 〈u(1)〉 = 〈x(1) + a〉+ 〈o(1)〉. Since a is uniformly sampled by Ftuple and 〈o(1)〉
is a uniformly random additive sharing of 0 given the shares of corrupted parties, 〈x(1) + a〉 + 〈o(1)〉 is a
uniformly random additive sharing given the shares of corrupted parties. Therefore, the share of 〈u(1)〉 =
〈x(1) + a〉 + 〈o(1)〉 held by an honest party in {P1, . . . , Pt+1} is uniformly distributed. A similar argument
works for 〈u(2)〉. Therefore, the distribution of Hybrid4 is identical to the distribution of Hybrid5.

Hybrid6: In this hybrid, S simulates FcheckRecon. Recall that in Hybrid4, S has computed the shares of
couple sharings held by corrupted parties. When using the shares computed by S for corrupted parties, all the
couple sharings are valid. For [w(i)]t, the shares of corrupted parties are determined by the shares of honest
parties. Therefore, the shares of [w(i)]t held by corrupted parties provided by S in both hybrids are identical.
Since S has computed the correct reconstructions when simulating Mult in Hybrid5, the values ũ(i), u(i)

provided by S in Hybrid6 are identical to ũ(i), val(w(i)) provided by FcheckRecon in Hybrid5. Therefore, the
distribution of Hybrid6 is identical to the distribution of Hybrid5.

Hybrid7: In this hybrid, S simulates the input phase. Note that the main difference is that S does not
generate the whole sharing [φ(r)]t when the Client is honest, and x + r is randomly sampled in Fkq . Since r

is uniformly distributed in Fkq , x + r is also a uniformly random vector in Fkq . Therefore, the distribution of
x+r in this hybrid is the same as that in Hybrid6. The other difference is that, when the Client is honest, S
only checks whether the shares of [φ(r)]t received from corrupted parties are identical to the shares received
when emulating Frandom. Note that the shares of [φ(r)]t held by corrupted parties are determined by the
shares of honest parties. If corrupted parties send a different set of values, then the sharing [φ(r)]t must
be inconsistent in Hybrid6. In summary, the distribution of Hybrid7 is identical to the distribution of
Hybrid6.

Hybrid8: In this hybrid, S simulates Ftuple. Note that only the shares of corrupted parties are used in
the rest of the simulation. The distribution of Hybrid8 is identical to the distribution of Hybrid7.

Note that Hybrid8 is the execution in the ideal world, and the distribution of Hybrid8 is statistically
close to the distribution of Hybrid0, the execution in the real world. ut
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Analysis of the Communication Complexity of Main. Let cI , cM , cO denote the numbers of input gates,
multiplication gates, and output gates. Recall that c is the number of clients. In Main, we need to invoke

– cM/k times of Ftuple in Step 1, which has communication complexity O(cM · n · m/k + n3 · m + n2 ·
log(cM/k) ·m) elements in Fq,

– cI/k times of Input in Step 2, which has communication complexity O(cI · (m + k)/k) elements in Fq
and cI/k calls of Frandom,

– cM times of Mult in Step 3, which has communication complexity O(cM · n) elements in Fq and 2 · cM
calls of Fzero,

– one time of CheckConsistency in Step 4, which has communication complexity O(n2 ·m) elements in
Fq,

– one time of FcheckRecon in Step 4, which has communication complexity O(n2 ·m2) elements in Fq plus
m calls of Fparity,

– c times of Foutput in Step 5, which has communication complexity O(cO ·n+c ·n2 ·m+c ·n ·m2) elements
in Fq plus cO calls of Fzero and c ·m calls of Fparity.

For Frandom,Fzero,Fparity, we will instantiate them using Rand with suitable secret sharing schemes. As
analyzed in Section 6,

– the communication complexity for cI/k calls of Frandom is O(cI · n ·m/k + n3 ·m) elements in Fq,
– the communication complexity for 2 · cM + cO calls of Fzero is O((2 · cM + cO) ·n+n3 ·m) elements in Fq,
– the communication complexity for (c+ 1) ·m calls of Fparity is O((c+ 1) ·n ·m2 +n3 ·m) elements in Fq.

Let C = cI + cM + cO be the size of the circuit. In summary, the communication complexity of Main is

O(C · n ·m/k + n2 · log(C/k) ·m+ n3 ·m+ n2 ·m2 + c · (n2 ·m+ n ·m2))

elements in Fq. Recall that we require the extension field Fqm to satisfy that qm ≥ 2κ. Therefore, we use κ
as an upper bound of m. According to theorem 3, there exists a family of constant rate (k,m)q-RMFEs with
m = Θ(k). Thus, m/k is a constant. The communication complexity becomes

O(C · n+ n2 · logC · κ+ n3 · κ+ n2 · κ2 + c · (n2 · κ+ n · κ2)) = O(C · n+ poly(c, n, κ, logC))

elements in Fq.

Theorem 5. In the client-server model, let c denote the number of clients, and n = 2t + 1 denote the
number of parties (servers). Let κ denote the security parameter, and Fq denote a finite field of size q. For
an arithmetic circuit over Fq of size C, there exists an information-theoretic MPC protocol which securely
computes the arithmetic circuit with abort in the presence of a fully malicious adversary controlling up to c
clients and t parties. The communication complexity of this protocol is O(C ·n+poly(c, n, κ, logC)) elements
in Fq.
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