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Abstract

An increasingly important endeavor is to develop computational strategies that enable molecular 

dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation 

states under conditions of constant pH. The present work describes our efforts to implement the 

powerful constant-pH MD simulation method based on a hybrid nonequilibrium MD/Monte Carlo 

(neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid 

neMD/MC method has a number of appealing features; it samples the correct semi-grand 

canonical ensemble rigorously, the computational cost increases linearly with the number of 

titratable sites, and it is applicable to explicit solvent simulations. The present implementation of 

the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular 

systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can 

be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. 

Illustrative examples emphasizing medium and large scale applications on next-generation 

supercomputing architectures are provided.
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1 Introduction

Most conventional molecular dynamics (MD) simulations of biomolecular systems aim to 

sample statistical mechanical ensembles with a fixed composition. This largely stems from 

the fact that many processes of interest are well described by classical, fixed valence force-

field models (e.g., protein folding, conformational changes, ligand binding)1–3. Nonetheless, 

a vast amount of biochemistry is regulated by carefully buffered solutions and a complex 

interplay between multiple protonation states. This is clearly illustrated, for example, by the 

sensitivity of enzymes to pH (e.g., pH-rate studies) and the presence of distorted pH 

gradients in cancerous cells.4,5 In many cases, the number of relevant states is relatively 

small (perhaps two to four) and can be studied by brute force enumeration. However, this 

approach quickly becomes untenable for larger systems or even simple solutions of modest 

concentration. Even if the number of truly relevant states is manageably small compared to 

the total number of possible states, it may still not be readily obvious which of the states is 

in fact important. If the feasibility of the calculation demands such an insight the investigator 

risks heavily biasing the results. Such systems require a constant-pH simulation approach 

that naturally accounts for variation of protonation states without a priori enumeration of the 

relevant states.

A classical MD simulation in the canonical ensemble typically samples according to a 

Hamiltonian H(x), where x represents both the coordinates and momenta. Assuming that the 

system comprises m titratable sites, the Hamiltonian must be generalized to control the 

microscopic potential function upon changes in protonation states. For this purpose, we 

define a vector of coupling parameters, λ ≡ {λ1, λ2, …, λm}, where each element is a zero 

or one to indicate the absence or presence of a proton at a given site, respectively. The sum 

over all elements,  simply counts the total number of protons in the system 

that are coupled to the pH bath. It follows that the simulation samples from the probability 

distribution with partition function

(1)

where β ≡ 1/(kBT), kB is Boltzmann’s constant, T is the absolute temperature, and the 

integral is over the system (or periodic cell) volume. The vector of coupling parameters is 

explicitly kept in the notation H(x; λ) as a reminder that the model is expected to represent a 

family of protonation possibilities. A constant-pH simulation samples according to this 
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family of Hamiltonians by combining them into a single semi-grand canonical partition 

function:

(2)

The summation extends over the complete set of possible protonation states , which has at 

most 2m elements, although many of these states may be forbidden. It is also possible for λ 
to have elements representing protonation sites in solution to maintain charge neutrality, 

although this is not necessary.6 Equation (2) has a form similar to that of an expanded 

ensemble7 with the difference that each state has a weight that is explicitly pH-dependent 

and, thus, has a physical meaning. This differs from the conventional approach in which the 

weights are just arbitrary sampling devices. A Gibbs-sampling view of this problem8 

suggests that exploration of the space defined by x and λ can be accomplished by simply 

alternating sampling between the two. This is essentially the “stochastic titration” method 

first suggested by Baptista et al. 9. Such an approach hinges on either the strict use of an 

implicit-solvent model10 or else a sampling of the state space on an implicit representation 

followed by a period of solvent “relaxation”.9,11 These approximations are used in order to 

avoid very low efficiency due to steric clashes in explicit solvent.

More recently, Gibbs sampling methods have been generalized into a broad class of 

nonequilibrium MD/Monte Carlo (neMD/MC) schemes6,12–15 and this is adopted here. In 

this scheme each Monte Carlo (MC) move consists of a short MD trajectory in which the 

system is driven from its current configuration and protonation state (x, λ) into a new 

candidate state (x′, λ′). A “pure” Gibbs sampling scheme is recovered when the length of 

the trajectory is zero. The advantage of finite, non-zero length trajectories is that there is no 

need to rely on an auxiliary implicit-solvent model, which might otherwise limit either the 

transferability of the method or its extension beyond fixed-charge force fields. The 

disadvantage is that rejecting neMD/MC moves is generally expensive, since generating the 

candidate configuration requires a short MD simulation. However, it is difficult to compare 

this expense against other methods utilizing relatively expensive implicit-solvent models 

such as non-linear Poisson-Boltzmann. The latter models can be quite demanding for large 

systems and do not necessarily have cost scaling that coincides with explicit models, nor the 

same memory requirements.

Other constant-pH approaches are also possible, which do not sample the semi-grand 

canonical ensemble directly. For example, Lee et al. 16 developed a family of Hamiltonians 

based on enveloping distribution sampling (EDS), which can be reweighted to produce the 

desired statistics. Several research groups have also proposed variations based on continuous 

titration coordinates using an extended Lagrangian, whereby the elements of λ take 

fractional values and carry fictitious masses and momenta (so-called “λ-dynamics”).17,18 

However, because protonation states fractionally coexist, some implementations do not 

appear to have included rigorous long-range electrostatics until recently;19 this seems 

especially problematic for simulations of highly charged systems such as RNA.20 Some 

implementations also require spurious modification of the bonded terms in the underlying 
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force field model, for example, superposition of protonated and deprotonated carboxylate 

geometries.21

The motivation behind the current work is to address problem spaces that may not be 

appropriate for the other approaches described above. For example, methods based on an 

auxiliary implicit-solvent model are prone to fail when titrations do not occur in aqueous 

solvent, such as for membrane-bound proteins or otherwise buried sites.11,22 Another 

concern is scalability to large systems with many titratable sites. The EDS-based approach in 

particular requires concurrent simulations (replicas) on the order of 2m, such that even a 

system of modest size with 10 protonation sites would require a rather unwieldy 1,024 

replicas. A similar argument can be made for continuous titration methods, which many 

research groups analyze by creating ad hoc bins for the fractional occupations observed near 

zero and one.19 In this binning approach, the data outside of the bins is completely discarded 

in some cases. Clearly, the amount of time spent completely outside of the bins must be 

directly proportional to the number of fractional sites, thereby rendering less and less 

useable data as the system size increases. The neMD/MC approach addresses these 

shortcomings. As shown here, the new MC procedure naturally accounts for all types of 

environmental responses, including those found in crowded spaces such as lipid membranes. 

The cost of sampling also does not increase with the number of sites, although the overall 

sampling requirement obviously increases (the curse of dimensionality). The method also 

strictly respects the underlying model (e.g., no auxiliary implicit-solvent description is 

needed); the present study utilizes a fixed charge force field representation, but this is not 

algorithmically necessary. It is also noteworthy that an internally consistent description of 

tautomeric states is a natural part of the algorithm.21,23 Lastly, the neMD/MC procedure can 

be extended to permit meaningful optimization based on the simulation history,24 not least 

because of an iterative procedure for pKa estimation.6 All of these merits are seamlessly 

combined with the portability, scalability, and flexibility of the NAMD25 simulation engine 

in order to permit constant-pH simulations on both commodity and capability computing 

resources.

2 Theory

The core theoretical arguments for the neMD/MC constant-pH approach have already been 

presented by Chen and Roux 6 based on earlier ideas due to Stern 12. Some of these 

developments have also been known to the wider constant-pH community for some time 

(see, for example, a review by Mongan and Case 26 from over a decade ago). For clarity, the 

ideas needed to understand the new implementation are presented here.

2.1 Empirical Model Corrections

Consider the equilibrium of an arbitrary titratable system, A, interconverting between its 

protonated (HA) and deprotonated (A−) forms:

where
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(3)

Most classical models do not provide a realistic dissociative model for protons because they 

neglect a physical description of covalent bond energies, nuclear quantum effects, and/or 

proton solvation. As such, direct evaluation of the pKa is generally difficult and/or 

inconvenient. It is instead common to redefine the partition function ratio such that the 

model for a particular system exactly matches a known reference value :

(4)

where

(5)

and  defines the absolute free energy of a proton in solution. For many 

force fields it is easiest to compute  directly. However, this definition is 

slightly misleading since it implies that  is always a global constant. Clearly the actual 

physical quantity for  must be a constant, but this is only true for the model if it includes 

a meaningful description of bond breakage and formation. Otherwise, there are other 

additive errors in ΔFa, which are not easily separated in the definition of ΔF. In practice, 

suffice to treat ΔF as a single free energy term even though its physical meaning is rather 

complex. From here on, all factors containing ΔE are assumed to be implicitly absorbed into 

the relevant partition function ratio.

It is also worth stating that ΔE is technically ensemble dependent. That is, ΔE formally 

depends on the system composition, volume, and temperature, and this dependence is 

necessarily inherited by the redefined systems. For systems in aqueous solution the 

dependence of  on volume can be safely ignored provided that the constant-pH 

ensemble is simulated at a density reasonably similar to that at which the reference data is 

generated. However, the effect of temperatures far from that at which  is measured 

may be non-negligible and therefore requires a correction.

2.2 Statistical Mechanical Connections

The above formalism can also be understood as a statistical mechanical form of the 

Henderson-Hasselbalch equation by identifying the protonated fraction as
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(6)

where, by construction,  for the reference system. The simplest variation is take 

the same species A within some other composition but no additional protonation sites. In 

this case different partition functions  and  can be constructed, but their ratio is no 

longer directly equal to . Instead one finds that

The pKa of other systems are thus seen to be shifted with respect to  by an amount that 

can be computed as a difference of relative free energies. In this two-state case the difference 

is exclusively a function of the original Hamiltonian definitions since the  terms cancel; 

it does not depend on ΔE, except through the choice of reference state.

The construction of computing shifted pKa values is not as straightforward when dealing 

with systems that possess more than two states. As per the general case described by Eq. (2), 

the state of a system with m protonation sites is completely defined by its occupancy vector 

λ (Figure 1). The number of states described by different permutations of λ will, in general, 

be considerably greater than two and a different shift value will be needed for each pair of 

states. Accordingly, the shift must instead be written as ΔE(λ, λ′), where λ′ is the 

occupancy vector for some other state. Subsets of the elements of λ can be organized into 

residues and these are the basic units used to define different values of ΔE(λ, λ′). In 

practice, a change in λ usually only involves a few residues, and the change is computed by 

summing over the per residue shifts.

For any protonation site, the terms in Eq. (2) can be separated into two groups – those with 

and those without the proton present. This partitioning corresponds to separating the Qλ into 

two groups based on whether a particular element is one (Ξ1) or zero (Ξ0). This splitting of 

the summation can be done for any site and defines two nonoverlapping summations over 

the set:

(7)

Note also that an extra pH-dependent factor has been factored out of Ξ1 since each term in 

the summation has at least one more proton than those in Ξ0. More complicated partitioning 

schemes with more than two groups can also be performed using sets of sites. For example, 

three groups can be used to enumerate the states of histidine based on its two sites [see 

Figure (1)]. Following the same procedure as for the two-state case yields
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(8)

which is no longer a simple difference in relative free energies due to the pH-dependence. It 

is worth noting that this equation only contains the ratio Ξ0/Ξ1 such that the empirical 

corrections defined by ΔE(λ, λ′) can be applied.

The dependence of the pKa value on pH is frequently added into Eq. (6) by defining the Hill 

coefficient, n:

(9)

This asserts that the deviation is no longer with respect to , but some other “apparent” 

pKa,  (in most cases this is the pH value at which the occupied and unoccupied 

fractions are equal to 1/2). The pH dependence vanishes for n = 1 and the two-state case is 

recovered. This approximation might be considered as a first order series expansion about 

, although this viewpoint is quite different from the usual physical motivation for the 

Hill coefficient.27

2.3 neMD/MC Sampling

As in previous work6,12 the neMD/MC scheme is composed of alternating sampling in x at a 

fixed protonation state λ using standard MD and neMD/MC moves sampling in both x and 

λ (Figure 2). Only the latter warrants additional comment. The neMD/MC detailed-balance 

equation has the form:

(10)

where T is the probability of the given transition and the ratio of equilibrium distribution 

functions is

(11)

where

(12)
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and . Following Chen and Roux6, the transition probability is split into two 

parts:

(13)

where T(i) represents an “inherent” probability for the transition λ → λ′, and T(s) is the 

transition probability of an attempted x → x′ neMD “switch”, conditional on the λ → λ′ 
transition. The inherent transition probability is defined as

(14)

where the quantity  is referred to as the pairwise inherent pKa for the transition 

between λ and λ′. From this definition it follows that the conditional transition probability 

for a neMD switch is

(15)

Adding and subtracting  in the exponent preserve the equilibrium distribution. 

These detailed-balance conditions can be satisfied by simple Metropolis criteria for both T(i) 

and T(s). In the latter case, one can also use a generalized neMD/MC criterion by replacing 

the energy difference H(x′; λ) − H(x; λ) with the nonequilibrium work applied during the 

switch (see Computational Methods).6,13,15 The splitting of Eq. (13) into the transition 

probabilities T(i) and T(s) given by Eqs. (14) and (15) is a generalization of the method 

previously introduced by Chen and Roux6.

Because it cancels exactly upon multiplication, the choice of  is completely 

arbitrary and does not affect detailed balance. However, it clearly affects sampling efficiency 

by partitioning effort between the two steps. It has been previously shown that choosing 

 to be the true pKa maximizes the efficiency because the free energy of the 

switching transformation effectively becomes zero.6,24

There are a few modifications to the inherent transition step that make the algorithm more 

useful for systems that contain multiple residues and/or residues with more than two states. 

First, there is an implicit proposal component in T(i) that is fixed with respect to λ and thus 

immediately falls out of the detailed-balance condition. That is, each residue (or group of 

residues) that can be titrated is assigned a fixed weight during the simulation. At the 

beginning of the neMD/MC step, the complete set of states permitted within this group is 

selected directly according to the probability mass function defined by the (normalized) 
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weights. Two such choices are illustrated in Figure 1, whereby a carboxylate moiety and/or 

methyl imidazole group might be chosen.

Once the residue selections have been made, the remainder of the transition probability is 

split yet further into another proposal and a preliminary acceptance step:8,28

(16)

(17)

(18)

where

(19)

The first step directly samples all states that are not the current state, while the second step 

accepts or rejects this proposal using a Metropolis criterion and appropriate renormalization. 

Chodera and Shirts 8 refer to this approach as “Metropolized indepence sampling.” This is 

because, for two states,  chooses the only possible candidate state 100% of the time and 

 reduces to a simple Metropolis criterion with the conventional exponential form. 

Conversely, when p(λ, λ) is very small,  essentially evaluates to one and  becomes an 

independence sampling amongst all possible trial states.

In practice, this algorithm will tend to propose the most probable state that is not the current 

state, unless the current state is strongly favored by the system pH. For example, at low pH a 

histidine residue is most probably in its protonated state. Since the only other states are 

neutral tautomers, one of these must be proposed and with their fixed tautomeric ratio (near 

2 : 1 in single peptides29). Nonetheless, such a proposal will probably be rejected. 

Conversely, at high pH the histidine is likely to be in one of its neutral forms and the 

probability of proposing the protonated state is low. However, it is important to keep in mind 

that even if the inherent transition step is accepted, this only means that the algorithm then 

proceeds to the switch step, which itself can be accepted or rejected. Importantly, since all of 

the evaluations needed to compute  and  are exceedingly inexpensive compared to the 
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cost of the full switch trajectory, it is worth repeating the process several times in order to 

choose a good candidate. The present algorithm chooses a maximum number of attempts (by 

default, the number of titratable residues in the system) in which to propose and 

preliminarily accept a switch move, which is then performed. If the maximum number of 

attempts is reached, then no switch is performed and neMD/MC cycle is considered as 

completed.

3 Computational Methods

The constant-pH implementation described here is available as a Tcl plugin, namdcph, for 

use in conjunction with NAMD 2.12 and later versions.25 The focus here is on proteins, but 

the implementation is flexible enough to permit new residues (or molecules) with arbitrary 

numbers of sites and states, provided that force field definitions and reference pKa values are 

available. All simulations here were carried out with the CHARMM36 force field30 and thus 

the titratable amino acid selection is limited to only those definitions (serine is defined in 

CHARMM36, but not used here). Due to subtleties of the CHARMM residue-topology file 

format, terminal groups are not yet titratable and are instead fixed in their zwitterionic 

forms.

All MD simulations, constant-pH or otherwise, utilized the same simulation settings. 

Periodic boundary conditions were employed using particle mesh Ewald electrostatics31 and 

smooth switching of the Lennard-Jones forces32 between 10 and 12 Å, after which an 

isotropic long-range approximation was used. The exception to this is membrane simulations 

during which switching was performed between 8 and 10 Å and the isotropic correction was 

neglected. Langevin dynamics was employed at 298 K with a friction coefficient of 1 ps−1 

coupled to heavy atoms only. Unless otherwise specified, integration was performed with an 

r-RESPA33 multiple time-stepping scheme with an effective time step of 2 and 4 fs for short- 

and long-range interactions, respectively. The RATTLE34 and SETTLE35 algorithms were 

used to constrain covalent bonds involving hydrogen to their equilibrium lengths.

3.1 Alchemical Coupling and Force Field Modifications

When needed, alchemical coupling between protonation states was accomplished via linear 

coupling using a “dual-topology” paradigm with additional zero-length bonds between 

equivalent but otherwise non-interacting atoms (force constant 100 kcal/mol-Å2).36,37 The 

key advantage of this approach is that it resolves topological conflicts between different 

protonation states, especially when rigid bonds are used. The result of the isotropic harmonic 

bonds is that, when one set of alchemical atoms is completely uncoupled, the additional 

Boltzmann factors for the kinetic and potential energy of each atom have a Gaussian form in 

the Cartesian basis.38 This is exploited during constant-pH MD by deleting the 

noninteracting atoms during “normal” MD and then resampling them when a neMD/MC 

switching trajectory is initialized (Figure 3). After a neMD/MC move in which the candidate 

state is accepted, the newly uncoupled atoms are again deleted, otherwise the initial 

coordinates before resampling are used. As a requirement for this procedure to work, the 

number of atoms must be constant before and after the switch. This means that the 
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coordinates for a constant-pH trajectory can be analyzed and visualized as if they belonged 

to a conventional simulation with fixed composition.

Clearly, the above scheme necessitates the introduction of “dummy protons” for all 

deprotonated states. These phantom particles only interact with the system via a small 

number of bonded force-field terms. If made appropriately, these adjustments to the model 

produce the same ensemble averages, but do affect the free energy and dynamics of the 

system (see Supporting Information). Since the free energies are themselves part of the 

constant-pH simulation (via the reference free energy computations) this strategy poses no 

problem. The definition of the potential experienced by dummy atoms also affects the 

sampling efficiency and can be optimized, for example, to produce rapid transitions between 

configurations that might otherwise be separated by a barrier when the proton is coupled 

(see Supporting Information).

3.2 Switching Protocols and Alchemical Work

The neMD/MC switching trajectories additionally require a nonequilibrium protocol for 

uncoupling the initial protonation state and coupling the candidate state. Here a linear 

switching protocol is used such that the coupling constant changes at the beginning of each 

step (an asymmetric splitting of the Liouvillian39). This scheme is in line with the “BBK” 

leap-frog integrator used in NAMD.25,40 A linear switch appears to be the most efficient 

scheme (in the sense of maximizing the mean acceptance probability) when the endpoints 

are linearly coupled and the transformation is antisymmetric in time.24 With both these 

assumptions the work exerted during an N-step nonequilibrium protocol is (excluding 

integrator error15,39,41)

(20)

where U0 and U1 are the potential energy functions of the system before and after the 

switch, respectively. This form for the work is not necessarily ideal, since it assumes that the 

integrator error is completely negligible with respect to the free energy of the 

transformation. Other integrators and/or expressions for the work may improve upon this 

scheme,39,41,42 but our preliminary experience is that any such errors are negligible relative 

to normal statistical uncertainty.

3.3 Titration Curve and pKa Estimation

Sampling from a constant-pH, semi-grand canonical ensemble provides a direct estimate of 

any number of protonation-state populations by taking simple averages of the elements of 

the occupation vector, λ. Specifically, the fractional population expressions defined in terms 

of pKa and pH [Eq. (6)] can be expressed as ensemble averages of site occupancies. For 

example, if a residue has two states that differ only in the presence and absence of proton s, 

then the observed protonated fraction is simply Ps(pH) = 〈λs〉, where λs is the s-th element 

of λ and 〈·〉 indicates an average at fixed pH. By taking many observations at different pH 

values these averages can be interpreted as a titration curve. The most straightforward 
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analysis is to perform nonlinear regression using Eqs. (6) and (9) to determine both an 

apparent pKa and a Hill coefficient.

3.3.1 Macro-/Microscopic Titrations—The simple formalism of averaging elements of 

λ only describes a method for considering microscopic titrations – movements of individual 

protons. However, most residues are best characterized by their unique macroscopic 
titration, which often includes multiple sites grouped together. For the imidazole example in 

Figure 1, this means grouping together both sites, since the neutral states are distinct, but 

convert into the same protonated state. The protonated fraction for this case is thus 〈λsλs+1〉 
and this is the titration curve that can generally be observed in a laboratory titration. 

However, the two deprotonated fractions must be computed separately as 〈λs(1 − λs+1)〉 and 

〈(1 − λs)λs+1〉 and correspond to microscopic titrations.

If sites are equivalent, the macro-/microscopic distinction can still be made, but might be 

less useful. Perhaps the most obvious example is a carboxylate, for which the macroscopic 

protonated fraction is the aggregate of two equivalent sites (i.e., 〈λ1(1−λ2)+(1−λ1)λ2〉, 
Figure 1). In principle the two components can be computed separately to yield two identical 

pKa values. In general, a residue with q equivalent sites and p protons in the protonated state 

will have macroscopic (M) and microscopic (μ) values that differ as:

(21)

Since this difference is a straightforward constant, we choose the macroscopic value as more 

intuitive in nearly all instances. However, it may still be useful to monitor the microscopic 

values separately, since agreement between equivalent sites is a necessary (but not sufficient) 

condition for statistical convergence.

3.3.2 Accurate Estimation with WHAM—Here we note a simple and straightforward 

use of the unbinned weighted histogram analysis method (UWHAM),43 which has not, to 

our knowledge, been reported in the literature before. It is appropriate when data has been 

collected at multiple pH values and can be extended to variation of other parameters, such as 

temperature or additional bias potentials for enhanced sampling. The UWHAM equations 

only involve energy differences as a function of the parameter that is being varied (i.e., pH). 

Since the Hamiltonian of the system does not depend on the pH, all terms involving x cancel 

and only terms containing λ remain. If occupation vectors are tracked during simulations at 

k = 1, …, M pH values, then the protonated fraction of some state defined by the indicator 

function χ(λt) is (see the discussion above):

(22)

where
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(23)

is the effective weight of sample t (0 ≤ wt(pH) ≤ 1), nt is the number of protons observed at 

each of Nk samples observed at pHk, and . The summation over t thus 

includes all observed occupancy vectors from all pH values at which data were gathered. 

The function f(pH) is the semi-grand potential with respect to the pH, which must first be 

determined at the M values where samples were accrued.43–46 However, after this has been 

done any pH value may be inserted into Eq. (22) and so it is effectively an analytic estimate 

of the titration curve, albeit containing N parameters. This is to be contrasted with the two-

parameter Hill coefficient approach.

Although the above is a strikingly simple special case of the traditional Ferrenberg-

Swendsen, WHAM equations,43–46 it has some potentially unexpected consequences. 

Specifically, for simple systems where only one proton is titrating Eq. (22) is exactly a 

sigmoid for each state (see Supporting Information). As such, all reweighted populations 

will fall on exactly the same curve without any fitting. This means that Eq. (6) can be 

inverted at any point to give the same value for the pKa, as it should. This is clearly not the 

case when populations are counted separately at each pH, as is usually done. In practice one 

can still perform fitting on any selection of points, but the asymptotic standard error of the 

parameters will be numerically zero. This procedure obviates the need for Hill coefficients, 

since these would be exactly unity within numerical error.

In the present work, the reported titration curves are computed using UWHAM and all 

reported pKa values reflect a nonlinear regression utilizing a Hill coefficient, unless it is 

rigorously unity. The observed populations in each fit are taken only at those pH values 

where data was collected and the population is neither exactly one nor zero (i.e., when the 

pH is very different from the pKa). When applicable, the reported values are for the 

aggregate data over multiple runs and the error is the standard deviation of fits to the 

individual data sets; this quantity is generally larger and more realistic than the fitting error. 

If a replicate did not provide a meaningful estimate of a pKa then the appropriate extremal 

pH value was assigned instead.

3.4 Reference Energy Shifts

Reference energy shifts were computed using a set of terminally blocked dipeptides solvated 

in a pre-equilibrated 39 Å cube of water (1981 molecules). After minimization (500 steps) 

and equilibration (1 ns) in the protonated state the system was then converted to a dual 

topology and the same process was repeated. The free energies between pairs of states at 298 

K were first computed using a two-dimensional expanded ensemble scheme47 in which the 

alchemical coupling constant (six values linearly spaced between zero and one) and 

thermostat temperature (seven values exponentially spaced between 290 and 325 K) were 

varied. Each simulation was 200 ns long with 10 ps between proposed state changes and 

data collection. In order to make conservative estimates of the free energies, the r-RESPA 

Radak et al. Page 13

J Chem Theory Comput. Author manuscript; available in PMC 2018 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scheme was not used for these simulations and the first 500 ps were discarded as 

equilibration before analysis with UWHAM.43

A second round of energy shifts were computed for each amino acid by running constant-pH 

simulations at six pH values (eight for histidine) spaced at 0.2 unit intervals about the 

desired reference pKa. The reported titration curves and pKa values reflect the pooled data 

from eight trials, while the error bars are the scaled standard error of the individual pKa 

estimates. All simulations attempted protonation moves every 10 ps with switch times of 15 

ps (this seems to be near optimal for a solvent exposed carboxylate24) over the course of at 

least 10 ns and the first 1 ns was discarded as equilibration. In each case the computed/

observed pKa was then compared with  and the free energy value was corrected if 

necessary. After a correction the complete assay was repeated until the observed and 

reference values agreed within reasonable certainty.

3.5 Membrane Translocation of a Titratable Peptide

A 1–palmitoyl–2–oleoyl–phosphatidylcholine (POPC) bilayer was constructed with 

approximate dimensions 57 × 57 × 126 Å (100 lipid units, 9282 water molecules) using the 

CHARMM-GUI membrane builder.48 A terminally blocked pentapeptide, AADAA, was 

then immersed in the aqueous phase, roughly 50 Å away from the barycenter of the 

membrane. For comparison purposes, a reference assay of the pentapeptide immersed in a 

bulk aqueous environment was also prepared (39 Å cube, 1936 water molecules). The initial 

configurations, wherein the pentapeptide was located at distinct altitudes (between 0 and 50 

Å at 10 Å intervals) along the normal to the lipid bilayer (i.e., the z coordinate) were 

generated by a 200 ps steered MD simulation.49 Each of the six resulting structures were 

then equilibrated (50 ns) while the barycenter of the pentapeptide was held near a constant 

value of z by a positional harmonic restraint with a force constant of 100 kcal/mol-Å2.

Constant-pH MD assays of the titration curves at each z-value were determined from up to 

eleven individual simulations, representing an aggregate time ranging from about 180 to 680 

ns per z-value (2.4 μs total for the full translocation). In addition, the reference pKa, 

determined using the assay in bulk water, was obtained from up to seven individual 

simulations, amounting to an aggregate time of 310 ns. All simulations attempted 

protonation moves every 10 ps with switch times of 10 ps. In accordance with the 

expectation that the pKa value of the aspartate would increase near the membrane, the 

estimated inherent pKa value was increased (as high as six units) for smaller values of z to 

achieve a more efficient sampling.

Lastly, in order to obtain the correct baseline in water of the pKa profile as a function of z 
and, hence, account for the fact that an appreciable fraction of the simulation assay is 

occupied by the lipid bilayer, causing a shift in the electrostatic potential, a separate 10 ns 

simulation was performed in the absence of the pentapeptide. Based on this additional 

simulation, the average electrostatic potential along the z-axis was computed, from whence a 

pKa shift of 2.4 units was inferred due to a difference in the Galvani potential.50
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3.6 Simulation of a Globular Protein

Staphylococcal nuclease (PDB: 3BDC)51 was solvated in a 86 Å truncated octahedron 

(15557 water molecules) with a NaCl concentration near 100 mM after neutralization at pH 

7 (26 Na+, 31 Cl−) using CHARMM-GUI.48 This was intended to reproduce as closely as 

possible the setup used by Huang et al. 19 in their constant-pH simulations of the same 

system, except omitting their use of a hydroxide force field. All simulations of this system 

also utilized hydrogen mass repartitioning of the protein.52 The system was first minimized 

(500 steps) and then equilibrated (6 ns) with harmonic restraints (10 kcal/mol-Å2) on the 

heavy atoms set against the crystal structure reference. These were decreased by half at 200 

ps intervals and then removed completely after 1 ns. Equilibration also utilized pressure 

coupling at 1 bar with a Langevin-piston barostat (piston period of 50 fs and decay time of 

25 fs). Constant-pH MD assays of the titration curves were performed on 12 pH values 

between 2.0 and 7.5 at 0.5 unit intervals and repeated four times. All simulations attempted 

protonation moves every 10 ps over 34 ns with switch times of 20 ps (i.e., 3400 neMD/MC 

cycles) and the first 1 ns was discarded as equilibration. Inherent pKa values were assigned 

using the experimental values of Castañeda et al. 51 and fixed throughout the simulation 

(n.b., this does not affect the outcome of the simulation but only the efficiency of the 

sampling). If experimental values were not available, the reference pKa was used instead.

4 Results and Discussion

4.1 Reference Simulations

A core component of calibrating the constant-pH approach described here is the 

computation of the reference energy shifts defined by Eq. (5) These are tabulated in Table 1 

for the CHARMM36 protein force field. It is important to note that both components of 

these shifts may display some temperature dependence, although this is difficult to gauge 

unless the corresponding experimental data is available. These limitations are not specific to 

the present constant-pH treatment but are expected to arise with all simulations based on 

force fields.

After employing the results of Table 1 in constant-pH simulations, it can be seen that the 

reference pKa construction was successful as all values are reproduced within 0.2 units. 

(Figure 4). It is worth noting that the simulations here are extremely conservative in length 

and large error bars are assumed (two and a half standard deviations of the mean). Combined 

with the unavoidable error bars from the reference free energy simulations (Table 1) it would 

seem that, in practice, pKa values estimated from constant-pH simulations are only likely to 

be systematically accurate within ~0.3 units. This is because any pKa calculation based on 

constant-pH is intrinsically a relative pKa with respect to these reference quantities. These 

must always carry some statistical uncertainty into the simulation and this cannot be 

removed by additional sampling, hence it is effectively systematic. However, these errors 

could cancel considerably when examining pKa values between different residues in the 

same system. The real strength of the method should be in determination of correlations 
between titratable sites. Conventional free energy simulations will likely be superior in strict 

quantitative estimation, but would require a great deal of manual intervention for 

determining which groups meaningfully interact.
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4.2 pKa Shifts From Peptide Translocation Across a Membrane

A key motivation of the neMD/MC constant-pH approach is to enable efficient changes of 

protonation states in crowded environments, such as lipid membranes. Existing methods 

based on implicit solvation models, for example, are unlikely, to be efficient in this regime. 

As a cogent example we demonstrate a titratable pentapeptide at various levels of insertion 

above a POPC lipid bilayer. The evolution of the pKa of the central aspartate residue as a 

function of the POPC bilayer normal is shown in Figure 5. As a basis of comparison, the 

pKa of the same pentapeptide in a bulk aqueous environment was determined to be 3.9. This 

result is in excellent agreement with the potentiometric titration of 3.9 in synthetic, 

uncharged alanine–based pentapeptides,55 and consonant with the average measurement of 

3.5 in a series of folded proteins.56 From the onset, a shift of the pKa can be observed as the 

permittivity of the environment progressively changes from that of water to the interior of 

the bilayer. While the pKa remains nearly that in the bulk aqueous medium starting roughly 

15 Å away from the head–group region, it increases almost linearly as the pentapeptide 

translocates towards the center of the membrane hydrophobic core. At z = 0, the pKa peaks 

at 7.3, which corresponds to a shift of 3.4 units with respect to the bulk region, far from the 

interface. Obtaining a converged value of the pKa when the peptide is buried deep in the 

interior of the POPC bilayer constitutes a daunting task, requiring substantial sampling, 

owing to the partial hydration of the titratable amino acid. As the pentapeptide partitions into 

the membrane, it is accompanied by a retinue of water molecules trapped amidst the lipid 

chains and preserving, at least in part, the hydration state of the carboxylic-acid moiety. As a 

basis of comparison, although their constant-pH simulations do not tackle the more difficult 

scenario wherein the pentapeptide lies in the middle of the bilayer, Teixeira et al. 57 predict a 

similar trend in the shift of the pKa.

4.3 Virtual Titration of Staphylococcal Nuclease

A second motivation for the neMD/MC constant-pH approach is to enable efficient sampling 

of large numbers of protonation states. Scaling in this manner may be a limitation of 

methods that utilize intermediate states where protons are only partially interacting. As a 

demonstration of this ability we present simulations of a medium-sized globular protein, 

Staphylococcal nuclease (SNase, 143 residues), over a broad range of pH values. 

Representative titration curves (Figure 6) show that multiple titratable side chains are well 

described with a diverse set of responses to the protein environment (e.g., GLU10 and 

GLU52 differ by ~2 units in their apparent pKa). Quantitative determinations of the apparent 

pKa values (Table 2) show excellent agreement with both experimental and theoretical 

determinations of the carboxylate groups (to our knowledge, the only groups for which data 

is available). Complete fitting results, including Hill coefficient comparisons, are available in 

the Supporting Information.

Although Huang et al. 19 also used the CHARMM36 force field, it is unclear exactly how 

much agreement one can expect between the two sets of simulations. In many cases the 

values are extremely similar (as few as 0.1–0.2 units). Others differ by as much as 0.8 units, 

but these cases also have large relative statistical uncertainty. If perfect agreement is 

assumed to be possible, then our previous speculation that absolute pKa values (regardless of 

statistical uncertainties) can only be trusted within 0.5 units seems to be reasonable.
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Although SNase contains several lysine residues, nearly all of them have pKa values outside 

the pH range used here and therefore show zero protonation events. This is not because these 

residues were not permitted to titrate, but is instead an intrinsic feature of the two-step 

inherent pKa algorithm.6 Accordingly, these residues are not listed in Table 2 and can only 

be said to have pKa values greater than 7.5 based on the data here. Interstingly, LYS24 has 

an apparent pKa of 8.4 and spent as much as 10% of the simulation at pH 7.5 in its neutral 

form (see Figure 6). Our simulation does not necessarily render a physically accurate 

description of SNase, but it highlights the fact that the method used here automatically 

captures unexpected behavior without any input from the user.

4.4 Practical Considerations

The examples above are intended to be representative of both typical and challenging cases 

amenable to constant-pH simulations. It is worth discussing possible limitations and 

shortcomings of the method, specifically as they could have been encountered in these 

demonstrations. Most glaringly, there are two adjustable parameters in the method, the 

switch time and the inherent pKa, which strongly affect efficiency and, if chosen improperly, 

could have given rise to severely disappointing results. These parameters deserve closer 

individual discussion.

In previous work we analyzed the efficiency of a simple carboxylate system in explicit 

solvent and did a systematic test of short and long switch times.24 In that work it was shown 

that an optimal switch (in the sense of maximizing the transition rate between states) should 

exist and depends on both the magnitude and intrinsic time scale of equilibrium fluctuations 

in the “force” along the interaction coupling. It was found that the optimal switch time was 

roughly an order of magnitude greater than the (apparent) time scale – a strikingly 

reasonable 11 ps. The present work seems to confirm that this estimate is transferable to 

titratable groups exposed to the solvent, even non-carboxylate moieties; we therefore 

recommend an initial value of 10–20 ps for essentially all residue types presented here. A 

modest extension of the same theoretical analysis also indicates that the optimal switch time 

almost always corresponds to an optimal mean acceptance probability of 20–25% (see 

Supporting Information). Although no adjustments seemed to be necessary in this work, a 

simple and reasonable adaptive scheme would be to track the acceptance rate (this is a 

standard output in the current code) and then increase (or possibly decrease) the switch time 

based on this simple criterion.

The two-step inherent pKa algorithm is a critical component of the overall performance 

when simulating many residues across a broad range of pH values. A given simulation will 

naturally spend more time sampling residues with pKa values close to the pH and therefore 

most physically relevant. This is clearly demonstrated by the SNase example above, wherein 

several lysine residues were permitted to titrate throughout the simulation (and occasionally 

did), but nearly all protonation state changes at pH ≤ 7 were by aspartate and glutamate, 

which had predicted pKa values between two and six. In other words, the imposed pH and 

predicted pKa values must closely coincide, otherwise titration of the site will be essentially 

ignored. This is also appealing from the standpoint that setting the pKa of a residue to plus 

or minus infinity (or any large number in fact) effectively assigns a fixed protonation state. 
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This is a much more explicit practice than simply assuming a fixed valence when 

constructing the system topology.

The main disadvantage of the inherent pKa algorithm is that residues for which titration is 

desired must have estimated pKa values that are fairly accurate (or at least in the pH range 

being studied). Otherwise, efficiency will be severely impacted. If one assumes that most 

residues are only weakly shifted with respect to their reference value, then this simple 

estimate should be adequate in most cases. However, for larger shifts this can be 

problematic.

For example, consider a system with two aspartate residues, one of which is expected to be 

shifted towards neutrality by about two units, while the other is assumed to be near its 

reference value. In most biological applications, the shifted residue is of more probable 

importance and so it would seem reasonable to focus the majority of simulations near a pH 

of six. Imagine instead that these residues were misidentified and their behavior is reversed 

or, at the very least, that the residue assumed to be unshifted is also in fact shifted. In the 

former example the inherent pKa algorithm will fail almost completely in the sense that very 

few state changes are likely to be successful (much less attempted). In the latter case, the 

results may still be highly biased, since the true, shifted behavior of the aspartate may be 

hidden by the narrow range of pH values. This scenario, although contrived, is a strong 

argument in favor of using a wide range of pH values (an extent of at least four units seems 

reasonable) or even using an expanded ensemble in which the pH is able to vary.11,22,58 A 

complementary and/or alternative adjustment consists in selectively deactivating the inherent 

pKa algorithm for a small subset of residues that are either suspected of being important or 

have otherwise uncharacterized behavior. This can be done by trivially setting the inherent 

pKa equal to the pH. Since the particular value of the inherent pKa only impacts efficiency, 

these residues could even be “re-activated” at a later time if data collection indicates that the 

behavior is not of interest.

5 Conclusion

This work introduces yet another route to performing constant-pH simulations. However, far 

from being a gratuitous exercise, this approach offers several advantages and features with 

respect to existing approaches. The implementation is efficient and scalable, and represents 

one of the few methods that can be plausibly used on very large chemical systems with large 

numbers of titratable sites. The approach is also general with respect to the model and does 

not rely on any special treatment of the solvent; this aspect is of paramount importance for 

membrane simulations, for example. Additional work is ongoing to integrate the method 

with next-generation force fields such as those that include polarizability, for instance by 

means of the introduction of Drude oscillators. The method is also agnostic to the details of 

the equilibrium sampling step and thus permits easy integration with enhanced sampling 

methods. Additional perturbations could even be included in the nonequilibrium step 

without significant complication. Lastly, analysis of the method is relatively straightforward, 

with no fractional states to consider and therefore amenable to reweighting procedures such 

as WHAM,43–46 which greatly improves the accuracy and reliability of the observed titration 

curves.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The protonation state of a titratable system is completely defined by its occupancy vector λ, 

where each of its m elements is either a one or a zero depending on whether the given site, s, 

is or is not occupied, respectively. The protonation state of individual residues is determined 

by a small subset of the elements of λ such that multiple system states may contain the same 

residue state. The average of a given element of λ yields the protonated fraction for that site 

and corresponds to a microscopic pKa. Multiple sites may be equivalent such that a 

macroscopic pKa can be determined by grouping two or more sites together (e.g., the neutral 

states of carboxylate moieties). However, even non-equivalent sites can be grouped into 

macroscopic transitions, although in these cases the relationship between the two sets of pKa 

values is not always straightforward (e.g., methyl imidazole).
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Figure 2. 
The constant-pH MD algorithm consists of two part cycles in which standard equilibrium 

MD (blue and green solid lines) is performed followed by a driven nonequilibrium switch 

(orange dotted lines), which changes both the configuration and protonation state (arbitrarily 

labeled A and B). Detailed balance is restored after the nonequilibrium steps by applying a 

MC procedure in which the new configuration/state is accepted or rejected.
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Figure 3. 
A switch move contains three main steps: 1) an exact MC sampling of auxilliary sidechain 

atoms, 2) neMD propagation of the coordinates and coupling constant λ as the original 

coordinates and state (blue spheres) decouple and the new coordinates and state (green 

spheres) become coupled, and 3) removal of the non-interacting atoms. If the neMD/MC 

move is rejected, then the simulation continues from the original coordinates.
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Figure 4. 
Titration curves are easily computed for the reference dipeptides after initial 

parameterization and subsequent constant-pH simulations. Data points represent explicitly 

sampled pH values while lines represent the analytic curves predicted by UWHAM.
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Figure 5. 
Translocation of a terminally blocked, titratable pentapeptide, AADAA, across a 1–

palmitoyl–2–oleoyl–phosphatidylcholine bilayer was performed by restraining the system at 

various separations (panel B, top). The insets depict the protonation probability of the 

central aspartic–acid residue for different positions of pentapeptide along bilayer normal 

(panel A). Here, z is the Euclidian distance separating the center of mass of the pentapeptide 

from that of the membrane, projected onto the direction normal to the interface (i.e., z = 0 

corresponds to the middle of the ~27 Å thick membrane). The dashed red line in panel B 

corresponds to the pKa in bulk water.
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Figure 6. 
Representative macroscopic titration curves (8 of 22 total) for SNase indicate a wide range 

of pKa values, even amongst similar residues. Residues are colored by type and have 

different line patterns to denote the same residue in different environments (in ascending 

order as solid, dashed, and dotted lines).
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Table 2

Apparent pKa values for SNase are tabulated from Hill equation fits to the data presented here. Comparison 

values, where available, are given from both theory and experiment. Error bars have been adjusted to represent 

95% confidence intervals. Errors from Huang et al. 19 reported as zero were assumed to be 0.1 units before 

rescaling.

residue this work λ-dynamics19 expt.51

GLU

10 3.23 (0.60) 3.20 (0.25) 2.82 (0.22)

43 4.44 (0.07) 4.10 (0.25) 4.32 (0.10)

52 5.01 (0.26) 4.70 (0.50) 3.93 (0.20)

57 4.85 (0.33) 4.10 (0.75) 3.49 (0.22)

67 4.23 (0.80) 4.00 (0.50) 3.76 (0.18)

73 3.48 (0.92) 3.60 (0.25) 3.31 (0.03)

75 2.98 (1.31) 2.70 (1.00) 3.26 (0.12)

101 4.55 (0.45) 4.70 (0.50) 3.81 (0.25)

122 3.90 (0.64) 4.40 (0.25) 3.89 (0.22)

129 5.08 (0.61) 5.50 (0.25) 3.75 (0.22)

135 3.35 (0.48) 2.90 (0.25) 3.76 (0.20)

ASP 19 2.77 (0.76) 3.30 (1.50) 2.21 (0.18)

21 6.78 (0.99) 6.00 (0.75) 6.54 (0.05)

40 3.32 (0.52) 2.90 (0.25) 3.87 (0.22)

77 0.82 (0.50) <−1.00 <2.20

83 1.97 (0.72) <0.00 <2.20

95 2.74 (0.39) 3.00 (0.25) 2.16 (0.18)

143 4.41 (0.64) n/a 3.80 (0.25)

146 4.01 (0.34) n/a 3.86 (0.12)

LYS 24 8.43 (0.45) n/a n/a

HIS 8 6.66 (0.56) n/a n/a

121 5.36 (0.50) n/a n/a
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