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CONSTANT POSITIVE 2-MEAN CURVATURE
HYPERSURFACES

MARIA FERNANDA ELBERT

Abstract. Hypersurfaces of constant 2-mean curvature in spaces of
constant sectional curvature are known to be solutions to a variational

problem. We extend this characterization to ambient spaces which are
Einstein. We then estimate the 2-mean curvature of certain hypersur-
faces in Einstein manifolds. A consequence of our estimates is a gener-
alization of a result, first proved by Chern, showing that there are no
complete graphs in the Euclidean space with positive constant 2-mean

curvature.

1. Introduction

Let Mn be an oriented Riemannian n-manifold and let x : Mn −→ M
n+1

be an isometric immersion of Mn into an orientable Riemannian (n + 1)-
manifold M

n+1
. Let p ∈M and let Br(p) be a geodesic ball of M with center

p and radius r. We say that the volume of M has polynomial growth if there
are positive numbers α and c such that vol (Br(p)) ≤ crα, for large r. We have
the following result, first proved in a special case by Alencar and do Carmo
([AdC], and later generalized by do Carmo and Zhou [dCZ]).

Theorem A. Let x : Mn −→ M
n+1

be as above. Assume that x has
constant mean curvature H. Assume further that Ind(M) < ∞ and that the
volume of M is infinite and has polynomial growth. Then

H2 ≤ − 1
n

inf
M

Ricc(N).

Here N is a smooth unit normal field along M , Ricc(N) is the value of the
(non-normalized) Ricci curvature of M in the vector N , and the index of M ,
Ind(M), is defined as follows. Let

T = ∆ + ‖A‖2 + Ricc(N),
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where ∆ is the Laplacian and A is the linear operator associated with the
second fundamental form of M . For each compact domain K ⊂ M , define
IndK(L) to be the index of the quadratic form

(1) I(f) = −
∫
M

fTf dM,

for smooth functions f on M that have support in K. Then Ind(M) is defined
as

Ind(M) = sup
K⊂M

IndK(L),

where K runs over all compact domains in M .
Theorem A has a number of interesting consequences. For instance, if

x : M −→ M
n+1

is as in Theorem A and, in addition, it is assumed that the
Ricci curvature of M

n+1
satisfies Ricc > 0, then the immersion is minimal

(cf. [AdC, Corollary 1.3]). In case M
n+1

is the Euclidean space, this fact was
first observed by Chern [C].

In view of its applications, we want to extend Theorem A to hypersurfaces
with constant 2-mean curvature. We first observe that the quadratic form (1)
is (modulo a constant) the second variation of the variational problem that
characterizes the hypersurfaces with H = constant. The hypersurfaces with
H2 = constant are also characterized by a variational problem. To show this,
it is convenient to consider the following more general situation.

Let Sr be the rth symmetric function of the eigenvalues k1, . . . , kn of A,
defined as

S0 = 1,

Sr =
∑

i1<···<ir

ki1 . . . kir , 1 ≤ r ≤ n,

Sr = 0, r > n,

and define the r-mean curvature Hr of x by

Sr =
(
n

r

)
Hr.

Thus H1 = H is the mean curvature, Hn is the Gauss-Kronecker curvature,
and when the ambient space is Einstein, H2 is, modulo a constant, the scalar
curvature (see Remark 3.9).

It is known (see Section 3) that if M
n+1

has constant sectional curvature,
immersions with constant (r + 1)-mean curvature are critical points of the
functional

(2) Ar =
∫
M

Fr (S1, . . . , Sr) dM
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for compactly supported volume-preserving variations. Here the functions Fr
are well defined functions that are described in Section 3. For instance, for
the mean curvature we have F0 = 1 and for the 2-mean curvature we have
F1 = S1.

Our first goal is to extend the above variational problem, for the case of
2-mean curvature, to ambient spaces more general than spaces of constant
sectional curvature. In Section 3, we will show that it is possible to extend
the variational problem that characterizes hypersurfaces with constant 2-mean
curvature to ambient spaces that are Einstein manifolds. It will be clear in
this section that this is probably as far as one can go with the functional (2).

In the above situation, the quadratic form that corresponds to (1) is given
as follows. Define the linear map P1 by P1 = S1I−A and define a differential
operator L1, that corresponds to the Laplacian ∆, by

L1 = trace (P1 Hess f) .

Then the differential operator corresponding to T is shown to be (see Section
3)

T1 = L1 + (S1S2 − 3S3) + trace
(
P1RN

)
,

where RN (Y ) = R(N,Y )N and R is the curvature of M . Finally, our qua-
dratic form is given by

I1(f) = −
∫
M

fT1f dM,

for smooth functions on M that are compactly supported. The definition of
Ind1(M) is exactly the same as before.

By definition, A0 is the volume of M and A1 =
∫
M
S1 dM is what we call

the 1-volume of M . We observe that under the hypothesis H2 > 0, H1, and
therefore S1, can be made positive (see Proposition 2.3(a)). We say that the
1-volume of M has polynomial growth if there are positive numbers α and
c such that

∫
Br(p)

S1 dM ≤ crα, for large r. We can now state our main
theorem.

Theorem 1.1. Let x : Mn −→ M
n+1

be an isometric immersion of M
into an oriented complete Einstein manifold with H2 = constant > 0. Assume
that Ind1M < ∞ and that the 1-volume of M is infinite and has polynomial
growth. Then

H
3/2
2 ≤ − 1

n(n− 1)

(
inf
M

{
trace

(
P1RN

)})
.

When M has constant sectional curvature c, we write M
n+1

(c). As a
corollary of the proof of Theorem 1.1 we obtain:
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Theorem 1.2. Let x : Mn −→ M
n+1

(c) be an isometric immersion with
H2 = constant > 0. Assume that Ind1M < ∞ and that the 1-volume of M
is infinite and has polynomial growth. Then c is negative and

H2 ≤ −c.

Theorem 1.2 generalizes the fact, first proved by S. S. Chern ([C, commen-
tary after Theorem 2]), that there are no complete graphs in Euclidean spaces
with positive constant 2-mean curvature. This is so because complete graphs
in Euclidean spaces with H2 = constant > 0 have index zero (since they are
stable) and infinite 1-volume of polynomial growth.

As a byproduct of our proof, we obtain estimates for the first eigenvalue
of the elliptic differential operator L1 defined above. We should observe
that one can define L1 on a Riemmanian manifold M equipped with a sym-
metric Codazzi tensor A as follows: define P1 = (traceA) I − A and set
L1 = trace (P1 Hess f). To guarantee that L1 is elliptic, P1 must be definite.
Our estimates of the first eigenvalue of L1 hold equally well for this situation.

Acknowledgements. I would like to thank Manfredo do Carmo for his
suggestions and critical reading and the referee for his useful remarks.

2. Preliminaries

A domain D ⊂M is an open connected subset with compact closure D and
smooth boundary ∂D. Let us denote by C∞0 (D) (respectively C∞c (D)) the
set of smooth real functions which are zero on ∂D (respectively with compact
support in D).

Now we will state some definitions and results concerning the first eigen-
value of an elliptic self-adjoint linear differential operator

T : C∞0 (D) −→ C∞(D)

of second order. We recall that the first eigenvalue λT1 (D) of T is defined as
the smallest λ that satisfies

(3) T (g) + λg = 0,

for some nonzero function g ∈ C∞0 (D). A nonzero function g in C∞0 (D) that
satisfies (3) for λ = λT1 is called a first eigenfunction of T in D.

Lemma 2.1. If D and D′ are domains in M with D ⊂ D′ then λT1 (D) ≥
λT1 (D′) and equality holds iff D = D′.

For a proof see [Sm, Lemma 2]. We just notice that T satisfies the unique
continuation principle (see [A]).

Set

‖u‖H1 =
(∫

D

(
|u|2 + |∇u|2

)
dM

)1/2
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and let H1(D) denote the completion of C∞c (D) with respect to the norm
‖ ‖H1 . H1(D) is the Sobolev Space over D.

Lemma 2.2.

λT1 (D) = inf
{− ∫

D
fT (f) dM∫

D
f2 dM

: f ∈ H1(D), f 6≡ 0
}
.

For a proof see [Sm, Lemma 4(a)].
Suppose that M is complete and noncompact. Let Ω ⊂ M be a compact

subset. The first eigenvalue of M (resp. M \ Ω) is defined by

λ1(M) = inf {λ1(D) : D ⊂M is a domain} ,

and

λ1(M \ Ω) = inf {λ1(D) : D ⊂M \ Ω is a domain} ,

respectively. We will need the following proposition.

Proposition 2.3. For an immersion that satisfies H2 > 0 we have

(a) H2
1 ≥ H2,

(b) H1H2 ≥ H3,

and equality holds only at the umbilic points.

Proof. First we recall that

(4) Hk−1Hk+1 ≤ H2
k , k = 1, . . . , n,

where equality occurs only at umbilic points (cf. [BMV, p. 285, Remark 3]).
Taking k = 1 in (4) we obtain (a). To prove (b) we proceed as follows. First,
we notice that by (a) and by the hypothesis, H1 6= 0. Multiplying both sides
of the inequality in (a) by H2/H1 and using (4) again with k = 2 gives (b). �

For future reference, we state in the following lemma (see [BC, Lemma
2.1]) some properties of the Newton transformations Pr, defined inductively
by

P0 = I,

P1 = SrI −APr−1.

Lemma 2.4. For each 1 ≤ r ≤ n− 1 we have:

(i) Pr(ei) = Sr(Ai)ei, for each 1 ≤ i ≤ n;
(ii) trace(Pr) =

∑n
i=1 Sr(Ai) = (n− r)Sr;

(iii) trace(APr) =
∑n
i=1 kiSr(Ai) = (r + 1)Sr+1;

(iv) trace(A2Pr) =
∑n
i=1 k

2
i Sr(Ai) = S1Sr+1 − (r + 2)Sr+2.



252 MARIA FERNANDA ELBERT

3. The variational problem

Let x : Mn −→M
n+1

be as in the Introduction. Let D ⊂M be a domain.
By a variation of D we mean a differentiable map φ : (−ε, ε)×D −→M

n+1
,

ε > 0, such that for each t ∈ (−ε, ε) the map φt : {t}×D
n −→M

n+1
defined

by φt(p) = φ(t, p) is an immersion and φ0 = x|D. Set

Et(p) =
∂φ

∂t
(t, p) and ft = 〈Et, Nt〉,

where Nt is the unit normal vector field in φt(D). E is called the variational
vector field of φ.

We say that a variation φ of D is compactly supported if suppφt ⊂ K, for
all t ∈ (−ε, ε), where K ⊂ D is a compact domain. The volume associated
with φ is the function V : (−ε, ε) −→ R defined by

V (t) =
∫

[0,t]×D
φ∗
(
dM

)
,

where dM is the volume element of M . We say that the variation is volume-
preserving if V (t) ≡ 0.

When M has constant sectional curvature c, we recall that immersions with
constant (r+1)-mean curvature are critical points (cf. [BC]) of the variational
problem of minimizing the integral

Ar =
∫
M

Fr (S1, . . . , Sr) dM,

for compactly supported volume-preserving variations. The functions Fr are
defined inductively by

F0 = 1,
F1S1,

FrSr +
c(n− r + 1)

r − 1
Fr−2, 2 ≤ r ≤ n− 1.

Our aim is to extend the variational problem of hypersurfaces with H2 =
constant to a more general ambient space. To this end we first suppose that
M is an orientable Riemannian (n + 1)-manifold and compute the first and
second variation for the functional

A1 =
∫
M

S1 dM.

From the computation of the first variation we will see that if we want the
functional A1 =

∫
H1 dM to characterize hypersurfaces of constant H2, we

must restrict ourselves to ambient spaces with constant Ricci curvature, that
is to Einstein spaces.

We remark that for the r-mean curvatures with r > 1 the definition of
the functional Ar =

∫
Fr dM requires that the ambient space has constant
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sectional curvature c. So an attempt to extend the variational problem for
Hr, r > 1, to more general ambient spaces seems hopeless unless one changes
the functional Ar.

We use (·)T and (·)N , to denote, respectively, the tangent and normal
components, and ∇ and ∇, to denote, respectively, the connection of M in
the metric induced by φt and the connection of M . Let A(t) be the second
fundamental form of φt.

Lemma 3.1.

A′(t) = Hess f + fRN + fA2 +∇ET (A) .

Here RN (Y ) = R(N,Y )N , where R is the curvature of M .

Proof. Let p ∈ M and let u, v be tangent vector fields defined in a neigh-
borhood of p. Set ut = dφt(u), vt = dφt(v) and

I(t) (ut, vt) = −〈∇utNt, vt〉 = 〈A(t)ut, vt〉.

We now drop the subscript t and differentiate the expression I(t) (ut, vt) =
−〈∇utNt, vt〉 to obtain

− (I(u, v))′ = 〈∇E∇uN, v〉+ 〈∇uN,∇Ev〉(5)

= 〈∇ET∇uN, v〉+ 〈∇EN∇uN, v〉 − 〈A(u),∇Ev〉
= −〈∇ET (Au), v〉+ 〈∇u∇ENN, v〉 − 〈R(EN , u)N, v〉

+ 〈∇[EN ,u]N, v〉 − 〈A(u),∇Ev〉.

Since [E, u] = 0, we have

(6)
[
EN , u

]
= −

[
ET , u

]
and therefore

(7)
〈
∇[EN ,u]N, v

〉
=
〈
A
([
ET , u

])
, v
〉
.

Also, since 〈∇ZN,N〉 = 0 for every vector field Z, we have〈
∇ENN,u

〉
= −

〈
N,∇ENu

〉
=
〈
∇ENN,u

〉
= −

〈
N,∇uEN −

[
ET , u

]〉
= −

〈
N,∇uEN

〉
= −df(u)

and thus

(8) ∇ENN = −∇f.

Substituting (7) and (8) into (5) and using (6) again, we obtain

− (I(u, v))′ = −
〈
∇ET (A)u, v

〉
−
〈
A∇uET , v

〉
− 〈Hess f(u), v〉(9)

− f
〈
R(N,u)N, v

〉
−
〈
Au,∇Ev

〉
.
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On the other hand, if we use I(t) = 〈A(t)u, v〉 we obtain

(I(u, v))′ =
〈
∇E(Au), v

〉
+
〈
Au,∇Ev

〉
(10)

= 〈A′(u), v〉+
〈
A∇Eu, v

〉
+
〈
Au,∇Ev

〉
= 〈A′(u), v〉+

〈
A∇uE, v

〉
+
〈
Au,∇Ev

〉
= 〈A′(u), v〉 − f

〈
A2u, v

〉
+
〈
A∇uET , v

〉
+
〈
Au,∇Ev

〉
.

Notice that we are identifying A with an extended linear map in M . Com-
paring (9) and (10) completes the proof. �

Set

(11) Lrf = trace(Pr Hess f).

Proposition 3.2. We have
∂

∂t
(Sr+1) = Lr(f) + f (S1Sr+1 − (r + 2)Sr+2)

+ f trace
(
PrRN

)
+ ET (Sr+1) .

Proof. Combining Lemma 3.1 and the equation
∂

∂t
(Sr+1) = trace (A′(t)Pr)

(cf. [Re, Equation (2)]) we obtain
∂

∂t
(Sr+1) = trace(Pr Hess f) + f trace

(
PrRN

)
+ f trace

(
PrA

2
)

+ trace (Pr∇ET (A)) .

Now we use Lemma 2.4(iv) and the fact that

trace(Pr∇ETA) = ET (Sr+1)

(cf. [Ro, Equation (4.4)]) to obtain the result. �

The following lemma is well known and can be found in [Re].

Lemma 3.3. We have ∂
∂t (dMt) =

(
−S1f + div

(
ET
))
dMt, where dMt is

the volume element of φt(M).

Now we have all the ingredients to compute the formulas for the first and
second variations for

A1(t) =
∫
D

S1 dMt.

Proposition 3.4 (First Variation Formula). For any compactly supported
variation of D we have

A′1(t) =
∫
D

{
−2S2(t) + Ric (Nt)

}
f dMt,



CONSTANT POSITIVE 2-MEAN CURVATURE HYPERSURFACES 255

where Ric (Nt) is the (non-normalized) Ricci curvature of M in the direction
of Nt.

Proof. Differentiating the expression

A1(t) =
∫
D

S1 dMt

we obtain, using Proposition 3.2 and Lemma 3.3,

A′1(t) =
∫
D

{
∆f + f

(
S2

1 − 2S2

)
+ f trace

(
RNt

)
+ ET (S1)

}
dMt

+
∫
D

{
S1

(
−S1f + div

(
ET
))}

dMt

=
∫
D

{
∆f − 2S2f + fRic (Nt) + div

(
S1E

T
)}

dMt.

Now, Stokes’ Theorem implies that

A′1(t) =
∫
D

{
−2S2 + Ric (Nt)

}
f dMt +

∫
∂D

〈∇f + S1E
T , ν〉 dst,

where ν is the unit exterior normal to ∂D and dst is the volume element of
∂D. Since we are working with compactly supported variations, the result
follows. �

From Proposition 3.4 we see that if we are looking for a variational problem
in M for which the critical points are the hypersurfaces of constant 2-mean
curvature, the functional A1 =

∫
D
S1 dM is not suitable, unless we require

the ambient space to be Einstein, so that the Ricci curvature of M is con-
stant. Thus we restrict ourselves to Einstein spaces and compute the second
derivative of A1 at a critical point x for volume-preserving variations. It is
known that for volume-preserving variations we have (cf. [BdCE])

(12)
∫
D

ft dMt = 0,

where dMt is the volume element of M in the metric induced by φt.

Proposition 3.5 (The Second Variation Formula). Let x : Mn −→M
n+1

be an isometric immersion with S2 = constant. Suppose that M is Einstein.
Then for every volume-preserving variation we have

A′′1(0) = −2
∫
M

{
fL1(f) + (S1S2 − 3S3) f2 + trace

(
P1RN

)
f2
}
dM.

Proof. We differentiate the expression

A′1(t) =
∫
D

{
−2S2(t) + Ric (Nt)

}
f dMt.
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To obtain the result, we use Proposition 3.2, (12), and the fact that S2 is
constant. �

In the present situation, the differential operator associated with the second
variation formula, the Jacobi operator, is given by

T1 = L1 + (S1S2 − 3S3) + trace
(
P1RN

)
,

which reduces to the operator T1 = L1 +(S1S2 − 3S3)+c(n−1)S1 in the case
when M has constant sectional curvature c. In this case, L1, and therefore
T1, turns out to be self-adjoint. We will prove that this is also true when M
is Einstein (see Corollary 3.7).

Let ∇ denote the connection of M in the metric induced by the immersion
x : Mn −→M

n+1
. By 〈, 〉 we denote both the metric of M

n+1
and the induced

metric in M .

Proposition 3.6. If M is Einstein then

trace (u→ P1∇uv) = trace (u→ ∇uP1v)

for all v ∈ T (M).

Proof. Let us fix p ∈ M and let {ei}ni=1 be an orthonormal frame in a
neighborhood of p such that {ei}ni=1 is geodesic at p, that is, ∇eiej(p) = 0 for
i, j ∈ {1, . . . , n}. Without loss of generality, it suffices to prove the proposition
for v = ej , 1 ≤ j ≤ n. Since trace (u→ P1∇uej) (p) =

∑
i〈ei, P1∇eiej〉(p) =

0, we have to show that

(13) trace (u→ ∇uP1ej) (p) = 0.

But

trace (u→ ∇uP1ej) (p) =
n∑
i=1

〈ei,∇ei (S1ej −Aej)〉

=
n∑
i=1

〈ei, ei (S1) ej〉 −
n∑
i=1

〈ei,∇eiAej〉

= ej (S1)−
n∑
i=1

〈ei,∇ejAei〉+
n∑
i=1

〈R (ej , ei)N, ei〉

= ej (S1)−
n∑
i=1

ej〈ei, Aei〉+ RicM (ej , N)

= RicM (ej , N),

where in the third equality we used the Codazzi equation. Since M is Einstein,
the result follows. �
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Corollary 3.7. If M is Einstein then L1(f) = div(P1∇f); in particular,
L1 is self-adjoint.

Proof. We just take v = ∇f in Proposition 3.6. �

Remark 3.8. Actually, some restriction on the curvature of the ambient
space is necessary if L1 is to be self-adjoint. Indeed, let (W, g) be a Riemann-
ian manifold with metric g. Let φp : TpW −→ TpW be a linear operator and
let us write φp(X,Y ) = g(φpX,Y ), X, Y ∈ TpW . Let us consider, in W , the
operator � = trace(φHess f). S. Y. Cheng and S. T. Yau ([CY, Proposi-
tion 1]) proved that � is self-adjoint in C∞0 (D) for a domain D ⊂ M if and
only if, for each i = 1, . . . , n and for each point p ∈ D,∑

i

∇φ (ej , ei, ei) (p) = 0,

where {ei}ni=1 is a local frame defined in a neighborhood of p. Here ∇φ is the
3-tensor that is the covariant derivative of the tensor φ. If {ei}ni=1 is geodesic
at p, then ∑

i

∇P1 (ej , ei, ei) (p) = trace (u→ ∇uP1ej) (p).

Following the proof of (13) above, we see that

trace (u→ ∇uP1ej) = 0 if and only if RicM (ej , N) = 0

for all j, as we claimed.

Remark 3.9. When the ambient space is Einstein, H2 is up to a constant
equal to the scalar curvature of M . In fact, if S and S denote the (non-
normalized) scalar curvatures of M and M , the Gauss equation gives

S = S − Ric(N) + S2.

This, together with the easily verified relation

S − Ric(N) = nk0

gives
S2 = S − nk0.

By the definition of Lr (see (11)), we see that L1 is elliptic if and only if
P1 is definite. We prove:

Lemma 3.10. If H2 > 0 then L1 is elliptic. Furthermore, −L1 is non-
negative; that is, −

∫
D
fL1f dM > 0 for all nonzero functions f ∈ C∞c (D).

Proof. It is well known that

S2
1 − |A|2 = 2S2.
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Thus, since S1 = nH1 and S2 > 0, we have

nH1 > |A|

(note that we can orient M so that H1 > 0), which we can rewrite as

k1 + k2 + · · ·+ kn >
√
k2

1 + k2
2 + · · ·+ k2

n.

Thus, k1 + k2 + · · ·+ kn > |ki| ≥ ki for each i, which implies that

S1 (Ai) = k1 + · · ·+ ki−1 + ki+1 + · · ·+ kn > 0.

But S1 (Ai) , i = 1, . . . , n, are the eigenvalues of P1 (see Lemma 2.4(i)). So
L1 is elliptic and Corollary 3.7 together with Stokes’ Theorem gives the rest
of the lemma. �

Most results in Sections 3 and 4 depend essentially on the ellipticity of
L1. Therefore, in view of Lemma 3.10, unless otherwise stated, we will be
assuming that the immersion x : Mn −→ M

n+1
satisfies H2 > 0 and that M

is oriented so that P1 is positive definite (see the proof of Lemma 3.10). In
view of Lemma 2.4(ii), this choice of orientation is the one that makes H1,
and so A1, positive.

Propositions 3.11, 3.13 and 3.16 and Lemma 3.12 below are already known
for ∆. Their proofs are essentially the same for L1 and we will include them
here for completeness.

For ∆, Proposition 3.11 is proved in [CY, Theorem 4].

Proposition 3.11. Let f and g be two smooth functions defined on a
domain D of M . Suppose that g ∈ C∞0 (D) with g > 0 on D, and that f > 0
on D. Then

inf
x∈D

{
L1(g)
g

(x)− L1(f)
f

(x)
}
< 0.

Proof. Consider the function h = g/f defined on M . Applying Corollary
3.7, we get

L1(h) = div
(
P1

(
∇
(
g

f

)))
= div

(
P1

(
∇g
f
− g∇f

f2

))
= div

(
1
f
P1(∇g)− g

f2
P1(∇f)

)
= −

〈
∇f
f2

, P1(∇g)
〉

+
1
f
L1(g)−

〈
∇g
f2
− 2g∇f

f3
, P1(∇f)

〉
− g

f2
L1(f)
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= − 1
f2
〈∇f, P1(∇g)〉 − 1

f2
〈∇g, P1(∇f)〉+

2g
f3
〈∇f, P1(∇f)〉

+
1
f
L1(g)− g

f2
L1(f).

Since P1 is self-adjoint we obtain

L1(h) = − 2
f2
〈P1(∇f),∇g〉+

2g
f3
〈∇f, P1(∇f)〉+ h

[
L1(g)
g
− L1(f)

f

]
= − 2

f
〈P1(∇f),∇h〉+ h

[
L1(g)
g
− L1(f)

f

]
.

We now consider the operator G, defined by

G(h) = L1(h) +
2
f
〈P1(∇f),∇h〉 − h

[
L1(g)
g
− L1(f)

f

]
.

Since L1 is elliptic, if
[
L1(g)
g − L1(f)

f

]
≥ 0 on D, we can use the Hopf maximum

principle to conclude that the solution h of G(h) = 0 cannot attain its max-
imum in the interior of D unless h is constant. Since h ≥ 0 and h(∂D) = 0,
we conclude that h ≡ 0. This implies g ≡ 0, which is a contradiction. �

For ∆, the following lemma was proved in [AdC].

Lemma 3.12. Suppose that M is complete and noncompact. Let f be a
positive smooth function defined on M and let Ω ⊂ M be a compact subset.
Then

λL1
1 (M \ Ω) ≥ inf

M\Ω

(
−L1(f)

f

)
.

Proof. Let D ⊂M \Ω be a domain. Let g ∈ C∞0 (D) be a first eigenfunction
of L1 in D. It is known that g 6= 0 in D. From Proposition 3.11 we have

inf
x∈D

{
L1(g)
g
− L1(f)

f

}
< 0,

and therefore

inf
x∈D

{
−λL1

1 (D)− L1(f)
f

}
< 0.

Thus

λL1
1 (D) > inf

x∈D

(
−L1(f)

f

)
,

and by taking the infimum over all domains D ⊂M \Ω the lemma follows. �

For ∆, the following proposition was established in [FC-S].

Proposition 3.13. Suppose that M is complete and noncompact. The
following statements are equivalent:

(i) λT1
1 (D) ≥ 0 for every domain D ⊂M .
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(ii) λT1
1 (D) > 0 for every domain D ⊂M .

(iii) There exists a positive smooth function f on M satisfying the equation
T1f = 0.

Proof. (i) =⇒ (ii): Let D ⊂ M be a domain. Fix x0 ∈ M and choose
R > 0 large enough so that D ( Bx0(R). Then, by Lemma 2.1, λT1

1 (D) >
λT1

1 (Bx0(R)). But λT1
1 (Bx0(R)) ≥ 0 by hypothesis, so the conclusion follows.

(ii) =⇒ (iii): We want to prove the existence of a function f as described
in the statement. Let x0 ∈ M be a fixed point. We start by proving the
following lemma.

Lemma 3.14. For each R > 0, there exists a unique positive solution of
the problem

(14)

{
T1u = 0 on Bx0(R),
u = 1 on ∂Bx0(R).

Proof. Let us fix R > 0. Since λT1
1 (Bx0(R)) > 0 by hypothesis, there is no

nonzero solution of {
T1u = 0 on Bx0(R),
u = 0 on ∂Bx0(R).

Set q = − (S1Sr+1 − (r + 2)Sr+2 + c(n− r)Sr). The Fredholm Alternative
([GT, Theorem 6.15, p. 102]) implies the existence of a unique solution v on
Bx0(R) of {

T1v = q on Bx0(R),
v = 0 on ∂Bx0(R).

It follows that u = v + 1 is a unique solution of (14). We still need to prove
that u > 0 on Bx0(R). We will first show that u ≥ 0 on Bx0(R). To this end,
set Ω = {x ∈ Bx0(R) : u(x) < 0} and suppose Ω 6= ∅. Ω is open. Without
loss of generality, we can suppose Ω is connected. By the definition of Ω, u
satisfies

(15)

{
T1u = 0 on Ω,
u = 0 on ∂Ω.

Since λT1
1 (Ω) > 0 by hypothesis and since u satisfies (15), we have u ≡ 0 in

Ω. Hence, by the unique continuation principle (cf. [A]), u = 0 on Bx0(R),
contradicting the fact that u = 1 on ∂Bx0(R). We have thus shown that u ≥ 0
on Bx0(R), and since u is not identically zero, the maximum principle ([Sp,
vol. V, Corollary 19, p. 187]) implies that u > 0 on Bx0(R), which proves the
lemma. �
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For each R > 0 let us denote by uR the function given by Lemma 3.14. Set
fR(x) = uR (x0)−1

uR(x) for x ∈ Bx0(R). Thus, fR satisfies{
T1fR = 0 on Bx0(R),
fR (x0) = 1, fR > 0 on Bx0(R).

Fix a ball Bx0(σ) ⊂ M and let Ω ⊂ M be a domain such that Bx0(4σ) ⊂ Ω.
Since T1 is elliptic with smooth coefficients in M , T1 is strictly elliptic with
bounded coefficients in Ω. From the Harnack inequality ([GT, Theorem 8.20,
p. 189]), we conclude that there exists a positive constant b independent of R
such that, for R > 4σ,

(16) sup
Bx0 (σ)

fR ≤ b inf
Bx0 (σ)

fR ≤ b,

where in the last inequality we used that fR (x0) = 1. By [LM, Theorem 5.4,
p. 194] (see also [GT, Problem 6.1, p. 134]) we have

sup
Bx0 (σ)

∣∣DδfR
∣∣ ≤ dσ,|δ| ∫

Ω

|fR|2 dM,

where δ = (δ1, . . . , δn), with nonnegative integers δi, |δ| =
∑
δi, and

Dδu =
∂|δ|u

∂xδ11 . . . ∂xδnn

for local coordinates (x1, . . . , xn). Here dσ,|δ| is a positive constant depending
on σ and |δ| (but independent of R). Then, in view of (16), we see that all
derivatives of fR are bounded uniformly (independent of R) on Bx0(σ). Since
σ is arbitrary, we conclude that all derivatives of fR are bounded uniformly
(independent of R) on compact subsets of M . Using the Theorem of Arzelá-
Ascoli and the Cantor diagonal method we conclude that for each compact
subset K of M , there exists a sequence Ri → ∞ so that fRi converges uni-
formly, along with its derivatives, on K. Using the diagonal method again,
we can arrange that {fRi}, along with its derivatives, converges uniformly on
compact subsets of M to a function f satisfying T1f = 0 on M and f (x0) = 1.
Since f is not identically zero and f ≥ 0, the maximum principle ([Sp, vol. V,
Corollary (19), p. 187]) implies that f > 0 on M .

(iii) =⇒ (i): Suppose that λT1
1 (D) < 0 for some D ⊂ M . Then, since

C∞c (D) is dense in H1(D), Lemma 2.2 implies that there exists g ∈ C∞c (D)
with Ir(g, g) < 0. We conclude, using Smale’s version of the Morse Index
Theorem [Sm], that there exist a domain D′ ( D (in fact, D′ ⊂ supp g)
and a function v ∈ C∞0 (D′) with v > 0 in D′ such that T1v = 0. We will
prove in a moment that we can choose positive constants k1 and k2 such that
w = k1f − k2v ≥ 0 and w(p) = k1f(p) − k2v(p) = 0 for some point p in
D′. Since T1w = 0, by the maximum principle ([Sp, vol. V, Corollary 19,
p. 187]), it follows that w ≡ 0. This is a contradiction since v(∂D′) = 0
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and f > 0 on M . In order to complete the argument, we now describe
explicitly the constants k1 and k2. Set k1 = max

D′
v and k = min

D′
f . Define an

auxiliary function g = kv/(k1f) > 0. Let p be such that g(p) = max
D′

g. Define

k2 = k/g(p). Then we have

w(t) = k1f(t)− k2v(t) = k1f(t)− k1f(p)v(t)
v(p)

=
k1 (f(t)v(p)− f(p)v(t))

v(p)
for all t ∈ D′. By the choice of p, it is clear that w(t) ≥ 0 for all t ∈ D′ and
that w(p) = 0. �

In order to state the next proposition we recall the definition of stability.

Definition 3.15. Let x : M −→ M
n+1

satisfy H2 = constant > 0 and
let D ⊂ M be a domain. We say that D is 1-stable if I1(f) > 0 for all
f ∈ C∞c (D). Otherwise, we say that D is 1-unstable.

For ∆, the following proposition was proved in [F-C].

Proposition 3.16. Suppose that the immersion x : M −→M
n+1

satisfies
H2 = constant > 0 and that M is complete and noncompact. If Ind1M <∞
then there exist a compact set K ⊂M and a positive function f on M so that
M \K is 1-stable and T1f = 0 on M \K.

Proof. The proof of the existence of a compact set K1 so that M \K1 is
1-stable is standard and we will omit it (cf. [G] or [F-C]). The proof of the
existence of the function f is similar to that of the implication (ii) ⇒ (iii) of
Proposition 3.13. For completeness, we sketch the argument.

Let R0 > 0 be sufficiently large so that K1 ⊂ Bx0 (R0) for some x0 ∈ M .
Let Ω be a connected component of M \Bx0 (R0) and set

DR(Ω) = Ω ∩A(R0, R), R > R0,

where A(R0, R) = Bx0(R)\Bx0 (R0). Since M \K1 is 1-stable, by Lemma 2.2,
λT1

1 (DR(Ω)) ≥ 0 for each R > R0. Here we used the fact that C∞c (DR(Ω))
is dense in H1 (DR(Ω)). By Lemma 2.1, λT1

1 (DR′(Ω)) > λT1
1 (DR(Ω)) ≥ 0

for R > R′ and, in particular, λT1
1 (DR(Ω)) > 0 for any R > R0. For each

R > R0 there exists a positive solution uR of the problem{
T1u = 0 on DR(Ω),
u = 1 on ∂DR(Ω).

(This can be proved in the same way as Lemma 3.14.) Fix x1 ∈ Ω and set

fR(x) = (uR (x1))−1
uR(x), for x ∈ DR(Ω), R large enough.

Proceeding as in the proof the implication (ii) ⇒ (iii) of Theorem 3.13, we
construct a positive function f in Ω such that T1f = 0. Doing this for every
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connected component of M \Bx0 (R0), we obtain a positive function f defined
on M \Bx0 (R0) that satisfies T1f = 0. Now we set K = Bx0 (R0) and extend
the function to a positive function f on M . �

4. Proof of Theorem 1.1

We need some more preparations before we can begin with the proof of
Theorem 1.1.

Consider the second order ordinary differential equation

(17) (v(t)y′(t))′ + λv(t)y(t) = 0, t ≥ R0 > 0,

where v(t) is a positive continuous function on [R0,+∞) and λ is a positive
constant.

Definition 4.1. We say that (17) is oscillatory if its solutions y(t) have
zeros for t arbitrarily large.

The following lemma was proved in [dCZ, Theorem 2.1].

Lemma 4.2. Assume that v(t) is a positive continuous function on
[R0,+∞) and that

∫ +∞
T0

v(τ)dτ = +∞. Then (17) is oscillatory provided
that one of the following two conditions holds:

(i) λ > 0 and V (t) =
∫ t
R0
v(τ)dτ ≤ atα for some positive constants a and

α.
(ii) λ > a2/4 and V (t) =

∫ t
R0
v(τ)dτ ≤ aetα for some positive constants a

and α.

Theorem 4.3 below generalizes Theorem 3.1 of [dCZ]. It yields estimates on
the first eigenvalue of L1 for M minus a compact set under certain conditions
on the growth of the 1-volume of M .

We say that the 1-volume of M has exponential growth if there exist positive
numbers α, R0 and a such that∫

Bp(R)

S1 dM ≤ aeαR for any R ≥ R0.

Theorem 4.3. Assume that M is complete noncompact with infinite 1-
volume. Let Ω ⊂M be a compact subset. Then

(i) If the 1-volume of M has polynomial growth then λL1
1 (M \ Ω) = 0.

(ii) If the 1-volume of M has exponential growth then

λL1
1 (M \ Ω) ≤ α2

4
(n− 1).
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Proof. Let T1 < T2 be positive numbers, p ∈ M , and set A (T1, T2) =
Bp (T2) \ Bp (T1). Using Stokes’ Theorem, Corollary 3.7 and Lemma 2.2 we
see that for any f ∈ C∞0 (A (T1, T2)),

(18) λL1
1 (A (T1, T2)) ≤

∫
A(T1,T2)

〈P1∇f,∇f〉 dM∫
A(T1,T2)

f2 dM
.

The ellipticity of L1 (equivalently, the positiveness of the eigenvalues of P1 )
yields

(19)
∫
A(T1,T2)

〈P1∇f,∇f〉 dM ≤
∫
A(T1,T2)

trace (P1) |∇f |2 dM.

Using the estimate (19) in (18) and Lemma 2.4(ii) we obtain

(20) λL1
1 (A (T1, T2)) ≤

∫
A(T1,T2)

(n− 1)S1|∇f |2 dM∫
A(T1,T2)

f2 dM
.

Let v(R) =
∫
∂Bp(R)

S1 ds, where ds is the volume element of ∂Bp(R). Then,∫
Bp(R)

S1 dM =
∫ R

0

v(t) dt.

Since the 1-volume is infinite, we have
∫ +∞
T

v(t) dt = +∞ for any constant
T > 0. Since Ω is compact we can find a constant T0 such that Ω ⊂ Bp (T0).

If (i) holds, Lemma 4.2(i) says that for any λ > 0 there exists a nontrivial
oscillatory solution yλ(t) of (17) on [R0,+∞). Thus there exist two numbers
Rλ1 < Rλ2 in [R0,+∞) such that yλ

(
Rλ1
)

= yλ
(
Rλ2
)

= 0, and yλ(t) 6= 0 for
any t ∈

(
Rλ1 , R

λ
2

)
. Set R(s) = dist(s, p) and write ϕλ(s) = yλ (R(s)). Using

Lemma 2.1 and (20) we obtain

λL1
1 (M \ Ω) ≤ λL1

1

(
A
(
Tλ1 , T

λ
2

))
≤

(n− 1)
∫
(A(Tλ1 ,Tλ2 )) S1 |∇ϕλ|2 dM∫

(A(Tλ1 ,Tλ2 )) |ϕλ|
2
dM

=
(n− 1)

∫ Rλ2
Rλ1

(y′λ(R))2
v(R) dR∫ Rλ2

Rλ1
(yλ(R))2

v(R) dR

=
−(n− 1)

∫ Rλ2
Rλ1

(v(R)y′λ(R))′ yλ(R) dR∫ Rλ2
Rλ1

(yλ(R))2
v(R) dR

= λ(n− 1).

By Lemma 2.2 and Stokes’ Theorem we have λL1
1 (M \ Ω) ≥ 0 and therefore

0 ≤ λL1
1 (M \ Ω) ≤ λ(n− 1).
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Since λ is an arbitrary positive constant, it follows that λL1
1 (M \ Ω) = 0.

If (ii) holds, Lemma 4.2(ii) says that for any λ > α2/4 there exists a
nontrivial oscillatory solution yλ(t) of (17) on [R0,+∞). As in the case (i) we
obtain

λL1
1 (M \ Ω) ≤ λ(n− 1).

Since λ is an arbitrary positive constant larger than α2/4, it follows that

λL1
1 (M \ Ω) ≤ α2

4
(n− 1). �

We are now ready to prove Theorem 1.1. In fact, Theorem 1.1 follows from
the following theorem.

Theorem 4.4. Let x : Mn −→ M
n+1

be an isometric immersion of M
into an oriented complete Einstein manifold with H2 = constant > 0. Assume
that the 1-volume of M is infinite and that Ind1M <∞. Then:

(i) If the 1-volume of M has polynomial growth then

H
3/2
2 ≤ − 1

n(n− 1)

(
inf
M

{
trace

(
P1RN

)})
.

(ii) If the 1-volume of M has exponential growth then

H
3/2
2 ≤ α2

4n
− 1
n(n− 1)

(
inf
M

{
trace

(
P1RN

)})
.

Proof. By Proposition 3.16 there exist a compact set K and a positive
function f on M such that on M \K, f satisfies

0 = T1f = L1f + (S1S2 − 3S3) f +
{

trace
(
P1RN

)}
f.

By Lemma 3.12 we have

λL1
1 (M \K) ≥ inf

M\K

(
−L1(f)

f

)
= inf
M\K

{
(S1S2 − 3S3) +

{
trace

(
P1RN

)}}
= inf
M\K

{
n (n2 )H1H2 − 3 (n3 )H3 +

{
trace

(
P1RN

)}}
≥ inf

M

{
n (n2 )H1H2 − 3 (n3 )H3 +

{
trace

(
P1RN

)}}
.

Proposition 2.3(b) yields

(21) λL1
1 (M) ≥ inf

M

{
n(n− 1)H1H2 +

{
trace

(
P1RN

)}}
.

Using Proposition 2.3(a) we obtain

λL1
1 (M) ≥ inf

M

{
n(n− 1)H3/2

2 +
{

trace
(
P1RN

)}}
.
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If (i) is satisfied, then by Theorem 4.3(i) we have

0 ≥ inf
M

{
n(n− 1)H3/2

2 +
{

trace
(
P1RN

)}}
,

and since H2 = cte we obtain

H
3/2
2 ≤ − 1

n(n− 1)
inf
M

{
trace

(
P1RN

)}
.

If (ii) is satisfied, Theorem 4.3(ii) implies that

α2(n− 1)
4

≥ inf
M

{
n(n− 1)H3/2

2 +
{

trace
(
P1RN

)}}
.

Hence, since H2 = cte, we obtain

H
3/2
2 ≤ α2

4n
− 1
n(n− 1)

inf
M

{
trace

(
P1RN

)}
. �

Corollary 4.5. Let x : Mn −→ M
n+1

(c) be an isometric immersion
with H2 = constant > 0. Assume that Ind1M <∞ and that the 1-volume of
M is infinite and has polynomial growth. Then c is negative and

H
3/2
2 ≤ −c inf

M
{H1} .

Remark 4.6. It follows that there is no hypersurface in Euclidean spaces
or in the unit sphere satisfying the hypotheses of Corollary 4.5.

Remark 4.7. If we are willing to restrict ourselves to ambient spaces of
constant sectional curvature c, Theorem 1.1, and in fact Corollary 4.5, can be
extended to (r + 1)-mean curvatures with r > 1. We point out that in order
to guarantee the ellipticity of L1, r > 1, we have to require that M contains a
point at which all principal curvatures have the same sign. We also note that
the r-volume of M is

∫
M
Sr dM and that ellipticity of L1 implies Sr > 0. The

proof is analogous to the case r = 1; most details can be found in [E].

To conclude this paper, we give a proof of Theorem 1.2 of the Introduction,
which we now recall.

Let x : Mn −→M
n+1

(c) be an isometric immersion with H2 = constant >
0. Assume that Ind1M <∞ and that the 1-volume of M is infinite and has
polynomial growth. Then c is negative and H2 ≤ −c.

Proof. The result follows from the proof of Theorem 1.1. In fact, by (21)
we see that

0 ≥ λL1
1 (M \K) ≥ n(n− 1) inf

M
{H1H2 + cH1} .

Thus
inf
M
{H1(H2 + c)} ≤ 0,
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and since H1 ≥ H1/2
2 we obtain the result. �
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