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Constant Power Control of DFIG Wind Turbines
With Supercapacitor Energy Storage

Liyan Qu, Member, IEEE, and Wei Qiao, Member, IEEE

Abstract—With the increasing penetration of wind power into
electric power grids, energy storage devices will be required to
dynamically match the intermittency of wind energy. This paper
proposes a novel two-layer constant power control scheme for a
wind farm equipped with doubly fed induction generator (DFIG)
wind turbines. Each DFIG wind turbine is equipped with a su-
percapacitor energy storage system (ESS) and is controlled by the
low-layer wind turbine generator (WTG) controllers and coordi-
nated by a high-layer wind farm supervisory controller (WFSC).
The WFSC generates the active power references for the low-layer
WTG controllers according to the active power demand from or
generation commitment to the grid operator; the low-layer WTG
controllers then regulate each DFIG wind turbine to generate the
desired amount of active power, where the deviations between the
available wind energy input and desired active power output are
compensated by the ESS. Simulation studies are carried out in
PSCAD/EMTDC on a wind farm equipped with 15 DFIG wind
turbines to verify the effectiveness of the proposed control scheme.

Index Terms—Constant power control (CPC), doubly fed in-
duction generator (DFIG), energy storage, supervisory controller,
wind turbine.

I. INTRODUCTION

W IND TURBINE generators (WTGs) are usually con-

trolled to generate maximum electrical power from

wind under normal wind conditions. However, because of the

variations of the wind speed, the generated electrical power

of a WTG is usually fluctuated. Currently, wind energy only

provides about 1%–2% of the U.S.’s electricity supply. At such

a penetration level, it is not necessary to require WTGs to

participate in automatic generation control, unit commitment,

or frequency regulation.

However, it is reasonable to expect that wind power will

be capable of becoming a major contributor to the nation’s

and world’s electricity supply over the next three decades. For

instance, the European Wind Energy Association has set a

target to satisfy more than 22% of European electricity demand
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with wind power by 2030 [1]. In the U.S., according to a report

[2] by the Department of Energy, it is feasible to supply 20%

of the nation’s electricity from wind by 2030. At such high

levels of penetration, it will become necessary to require WTGs

to supply a desired amount of active power to participate in

automatic generation control or frequency regulation of the grid

[3]. However, the intermittency of wind resources can cause

high rates of change (ramps) in power generation [4], which

is a critical issue for balancing power systems. Moreover, to

optimize the economic performance of power systems with

high penetrations of wind power, it would be desired to require

WTGs to participate in unit commitment, economic dispatch,

or electricity market operation [5]. In practice, short-term wind

power prediction [6] is carried out to help WTGs provide these

functions. However, even using the state-of-the-art methods,

prediction errors are present [5]. Under these conditions, the

replacement power is supported by reserves, which, however,

can be more expensive than base electricity prices [7].

To enable WTGs to effectively participate in frequency and

active power regulation, unit commitment, economic dispatch,

and electricity market operation, energy storage devices will

be required to dynamically match the intermittency of wind

energy. In [8], the authors investigated and compared different

feasible electric energy storage technologies for intermittent

renewable energy generation, such as wind power. Currently,

pumped water and compressed air are the most commonly

used energy storage technologies for power grids due to their

low capital costs [9]. However, these two technologies are

heavily dependent on geographical location with relatively low

round-trip efficiency. Compared with their peers, batteries and

supercapacitors are more efficient, have a quicker response to

demand variations, and are easy to develop and ubiquitously de-

ployable. Compared to batteries, supercapacitors have a higher

power density, higher round-trip efficiency, longer cycle life,

and lower capital cost per cycle [10]. Therefore, supercapacitors

are a good candidate for short-term (i.e., seconds to minutes)

energy storage that enables WTGs to provide the function of

frequency regulation and effectively participate in unit commit-

ment and electricity market operation. The use of supercapac-

itors [10] or batteries [11]–[13] as energy storage devices for

WTGs has been studied by some researchers. However, these

studies only focused on control and operation of individual

WTGs and did not investigate the issues of WTGs to participate

in grid regulation.

This paper proposes a novel two-layer constant power control

(CPC) scheme for a wind farm equipped with doubly fed

induction generator (DFIG) wind turbines [14], where each

WTG is equipped with a supercapacitor energy storage system

0093-9994/$26.00 © 2011 IEEE
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Fig. 1. Configuration of a DFIG wind turbine equipped with a supercapacitor
ESS connected to a power grid.

(ESS). The CPC consists of a high-layer wind farm supervisory

controller (WFSC) and low-layer WTG controllers. The high-

layer WFSC generates the active power references for the low-

layer WTG controllers of each DFIG wind turbine according to

the active power demand from the grid operator. The low-layer

WTG controllers then regulate each DFIG wind turbine to gen-

erate the desired amount of active power, where the deviations

between the available wind energy input and desired active

power output are compensated by the ESS. Simulation studies

are carried out in PSCAD/EMTDC for a wind farm equipped

with 15 DFIG wind turbines to verify the effectiveness of the

proposed control scheme.

II. DFIG WIND TURBINE WITH ENERGY STORAGE

Fig. 1 shows the basic configuration of a DFIG wind turbine

equipped with a supercapacitor-based ESS. The low-speed

wind turbine drives a high-speed DFIG through a gearbox. The

DFIG is a wound-rotor induction machine. It is connected to

the power grid at both stator and rotor terminals. The stator is

directly connected to the grid, while the rotor is fed through

a variable-frequency converter, which consists of a rotor-side

converter (RSC) and a grid-side converter (GSC) connected

back to back through a dc link and usually has a rating of a

fraction (25%–30%) of the DFIG nominal power. As a con-

sequence, the WTG can operate with the rotational speed in

a range of ±25%–30% around the synchronous speed, and its

active and reactive powers can be controlled independently.

In this paper, an ESS consisting of a supercapacitor bank and

a two-quadrant dc/dc converter is connected to the dc link of the

DFIG converters. The ESS serves as either a source or a sink of

active power and therefore contributes to control the generated

active power of the WTG. The value of the capacitance of the

supercapacitor bank can be determined by

Cess =
2PnT

V 2
SC

(1)

where Cess is in farads, Pn is the rated power of the DFIG in

watts, VSC is the rated voltage of the supercapacitor bank in

volts, and T is the desired time period in seconds that the ESS

can supply/store energy at the rated power (Pn) of the DFIG.

The use of an ESS in each WTG rather than a large single

central ESS for the entire wind farm is based on two reasons.

First, this arrangement has a high reliability because the failure

of a single ESS unit does not affect the ESS units in other

WTGs. Second, the use of an ESS in each WTG can reinforce

Fig. 2. Overall vector control scheme of the RSC.

the dc bus of the DFIG converters during transients, thereby

enhancing the low-voltage ride through capability of the

WTG [10].

III. CONTROL OF INDIVIDUAL DFIG WIND TURBINE

The control system of each individual DFIG wind turbine

generally consists of two parts: 1) the electrical control of

the DFIG and 2) the mechanical control of the wind turbine

blade pitch angle [14], [15] and yaw system. Control of the

DFIG is achieved by controlling the RSC, the GSC, and the

ESS (see Fig. 1). The control objective of the RSC is to

regulate the stator-side active power Ps and reactive power Qs

independently. The control objective of the GSC is to maintain

the dc-link voltage Vdc constant and to regulate the reactive

power Qg that the GSC exchanges with the grid. The control

objective of the ESS is to regulate the active power Pg that

the GSC exchanges with the grid. In this paper, the mechanical

control of the wind turbine blade pitch angle is similar to that

in [15].

A. Control of the RSC

Fig. 2 shows the overall vector control scheme of the RSC,

in which the independent control of the stator active power Ps

and reactive power Qs is achieved by means of rotor current

regulation in a stator-flux-oriented synchronously rotating ref-

erence frame [16]. Therefore, the overall RSC control scheme

consists of two cascaded control loops. The outer control loop

regulates the stator active and reactive powers independently,

which generates the reference signals i∗dr and i∗qr of the d- and

q-axis current components, respectively, for the inner-loop cur-

rent regulation. The outputs of the two current controllers are

compensated by the corresponding cross-coupling terms vdr0

and vqr0 [14], respectively, to form the total voltage signals

vdr and vqr. They are then used by the pulsewidth modulation

(PWM) module to generate the gate control signals to drive the

RSC. The reference signals of the outer-loop power controllers

are generated by the high-layer WFSC.
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Fig. 3. Overall vector control scheme of the GSC.

Fig. 4. Configuration and control of the ESS.

B. Control of the GSC

Fig. 3 shows the overall vector control scheme of the GSC,

in which the control of the dc-link voltage Vdc and the reactive

power Qg exchanged between the GSC and the grid is achieved

by means of current regulation in a synchronously rotating

reference frame [16]. Again, the overall GSC control scheme

consists of two cascaded control loops. The outer control loop

regulates the dc-link voltage Vdc and the reactive power Qg ,

respectively, which generates the reference signals i∗dg and

i∗qg of the d- and q-axis current components, respectively, for

the inner-loop current regulation. The outputs of the two cur-

rent controllers are compensated by the corresponding cross-

coupling terms vdg0 and vqg0 [14], respectively, to form the total

voltage signals vdg and vqg. They are then used by the PWM

module to generate the gate control signals to drive the GSC.

The reference signal of the outer-loop reactive power controller

is generated by the high-layer WFSC.

C. Configuration and Control of the ESS

Fig. 4 shows the configuration and control of the ESS. The

ESS consists of a supercapacitor bank and a two-quadrant

dc/dc converter connected to the dc link of the DFIG. The

dc/dc converter contains two insulated-gate bipolar transistor

(IGBT) switches S1 and S2. Their duty ratios are controlled to

regulate the active power Pg that the GSC exchanges with the

grid. In this configuration, the dc/dc converter can operate in

two different modes, i.e., buck or boost mode, depending on

the status of the two IGBT switches. If S1 is open, the dc/dc

Fig. 5. Blade pitch control for the wind turbine.

converter operates in the boost mode; if S2 is open, the dc/dc

converter operates in the buck mode. The duty ratio D1 of S1 in

the buck mode can be approximately expressed as

D1 =
VSC

Vdc

(2)

and the duty ratio D2 of S2 in the boost mode is D2 = 1 − D1.

In this paper, the nominal dc voltage ratio VSC,n/Vdc,n is 0.5,

where VSC,n and Vdc,n are the nominal voltages of the superca-

pacitor bank and the DFIG dc link, respectively. Therefore, the

nominal duty ratio D1,n of S1 is 0.5.

The operating modes and duty ratios D1 and D2 of the dc/dc

converter are controlled depending on the relationship between

the active powers Pr of the RSC and Pg of the GSC. If Pr

is greater than Pg , the converter is in buck mode and D1 is

controlled, such that the supercapacitor bank serves as a sink to

absorb active power, which results in the increase of its voltage

VSC. On the contrary, if Pg is greater than Pr, the converter is in

boost mode and D2 is controlled, such that the supercapacitor

bank serves as a source to supply active power, which results

in the decrease of its voltage VSC. Therefore, by controlling the

operating modes and duty ratios of the dc/dc converter, the ESS

serves as either a source or a sink of active power to control

the generated active power of the WTG. In Fig. 4, the reference

signal P ∗
g is generated by the high-layer WFSC.

D. Wind Turbine Blade Pitch Control

Fig. 5 shows the blade pitch control for the wind turbine,

where ωr and Pe (= Ps + Pg) are the rotating speed and output

active power of the DFIG, respectively. When the wind speed is

below the rated value and the WTG is required to generate the

maximum power, ωr and Pe are set at their reference values,

and the blade pitch control is deactivated. When the wind

speed is below the rated value, but the WTG is required to

generate a constant power less than the maximum power, the

active power controller may be activated, where the reference

signal P ∗
e is generated by the high-layer WFSC and Pe takes

the actual measured value. The active power controller adjusts

the blade pitch angle to reduce the mechanical power that the

turbine extracts from wind. This reduces the imbalance between

the turbine mechanical power and the DFIG output active

power, thereby reducing the mechanical stress in the WTG

and stabilizing the WTG system. Finally, when the wind speed

increases above the rated value, both ωr and Pe take the

actual measured values, and both the speed and active power

controllers are activated to adjust the blade pitch angle.
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Fig. 6. Flowchart of implementation of the WFSC.

IV. WIND FARM SUPERVISORY CONTROL

The objective of the WFSC is to generate the reference

signals for the outer-loop power controllers of the RSC and

GSC, the controller of the dc/dc converter, and the blade pitch

controller of each WTG, according to the power demand from

or the generation commitment to the grid operator. The imple-

mentation of the WFSC is described by the flowchart in Fig. 6,

where Pd is the active power demand from or the generation

commitment to the grid operator; vwi and Vessi are the wind

speed in meters per second and the voltage of the supercapacitor

bank measured from WTG i (i = 1, . . . , N), respectively; and

N is the number of WTGs in the wind farm. Based on vwi,

the optimal rotational speed ωti,opt in radians per second of the

wind turbine can be determined, which is proportional to the

wind speed vwi at a certain pitch angle βi

ωti,opt = k(βi)vwi (3)

where k is a constant at a certain value of βi. Then, the

maximum mechanical power Pmi,max that the wind turbine

extracts from the wind can be calculated by the well-known

wind turbine aerodynamic characteristics

Pmi,max =
1

2
ρiArv

3
wiCPi(λi,opt, βi) (4)

where ρi is the air density in kilograms per cubic meter; Ar =
πR2 is the area in square meters swept by the rotor blades,

with R being the blade length in meters; and CPi is the power

coefficient, which is a function of both tip-speed ratio λi and

the blade pitch angle βi, where λi is defined by

λi =
ωtiR

vwi

. (5)

In (4), λi,opt is the optimal tip-speed ratio when the wind

turbine rotates with the optimal speed ωti,opt at the wind

speed vwi.

Given Pmi,max, the maximum active power Pei,max gener-

ated by the WTG can be estimated by taking into account the

power losses of the WTG [14]

Pei,max = Pmi,max − PLi = Psi,max + Pri,max (6)

where PLi is the total power losses of WTG i, which can

be estimated by the method in [14]; Psi,max and Pri,max are

the maximum DFIG stator and rotor active powers of WTG i,
respectively. In terms of the instantaneous variables in Fig. 1,

the stator active power Ps can be written in a synchronously

rotating dq reference frame [16] as follows:

Ps =
3

2
(vdsids + vqsiqs)

≈
3

2

[

ωsLm(iqsidr − idsiqr) + rs

(

i2ds + i2qs

)]

(7)

where vds and vqs are the d- and q-axis voltage components

of the stator windings, respectively; ids and iqs are the stator

d- and q-axis current components, respectively; idr and iqr are

the rotor d- and q-axis current components, respectively; ωs is

the rotational speed of the synchronous reference frame; and

rs and Lm are the stator resistance and mutual inductance,

respectively. Similarly, the rotor active power is calculated by

Pr =
3

2
(vdridr + vqriqr)

≈
3

2

[

−sωsLm(iqsidr − idsiqr) + rr

(

i2dr + i2qr

)]

(8)

where vdr and vqr are the d- and q-axis voltage components

of the rotor windings, respectively; s is the slip of the DFIG

defined by

s = (ωs − ωr)/ωs (9)

where ωr is the DFIG rotor speed. (7) and (8) yield

s = −
Pr − 3i2rrr

Ps − 3i2srs

(10)

where is =
√

i2ds + i2qs/2 and ir =
√

i2dr + i2qr/2. If neglect-

ing the stator copper loss 3i2srs and rotor copper loss 3i2rrr of

the DFIG, the relationship between the stator and rotor active

powers can be approximated by

Pr = −sPs. (11)

According to (6) and (10) [or (11)], Psi,max and Pri,max of each

WTG can be determined. Then, the total maximum mechanical

power Pm,max, DFIG output active power Pe,max, and stator
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Fig. 7. Flowchart of determination of Pessi,max for each WTG.

active power Ps,max of all WTGs in the wind farm can be

calculated as

Pm,max =

N
∑

i=1

Pmi,max (12)

Pe,max =

N
∑

i=1

Pei,max (13)

Ps,max =

N
∑

i=1

Psi,max. (14)

In order to supply constant power Pd to the grid, the deviation

Pess,d between the demand/commitment Pd and the maximum

generation Pe,max is the power that should be stored in or

supplied from the ESSs of the WTGs

Pess,d = Pe,max − Pd. (15)

On the other hand, the capability of each ESS to store or

supply power depends on the capacitance Cess and the voltage

Vessi of the supercapacitor bank. During normal operation, Vessi

must be maintained within the following range:

Vi,min < Vessi < Vi,max (16)

where Vi,max and Vi,min are the maximum and minimum

operating voltages of the supercapacitor bank, respectively. The

maximum power Pessi,max that can be exchanged between the

supercapacitor bank and the DFIG dc link of WTG i can be

determined by

Pessi,max = ±CessVessi

∣

∣

∣

∣

dVessi

dt

∣

∣

∣

∣

max

(17)

where |dVessi/dt|max is the maximum rate of voltage variations

of the supercapacitor bank, which is related to the current limits

of the supercapacitor bank. In (17), the positive sign indicates

storing energy, while the negative sign indicates supplying

energy by the ESS. The calculation of Pessi,max for each WTG

is subjected to (16). Fig. 7 shows how to determine Pessi,max for

each WTG. If Pess,d > 0, extra power needs to be stored in the

ESSs. In this case, if Vessi < Vi,max, Pessi,max is calculated by

(17) and takes the positive sign; otherwise, the ESS cannot store

any power and Pessi,max = 0. On the contrary, if Pess,d < 0,

active power needs to be supplied from the ESSs. In this case,

Fig. 8. Proposed two-layer CPC scheme for the wind farm.

if Vessi > Vi,min, Pessi,max is calculated by (17) and takes the

negative sign; otherwise, the ESS cannot supply any power and

Pessi,max = 0.

As shown in Fig. 6, once Pessi,max of each WTG is de-

termined, the total maximum power Pess,max that can be ex-

changed between the supercapacitor bank and the DFIG dc link

of all WTGs can be determined by

Pess,max =

N
∑

i=1

Pessi,max. (18)

Finally, depending on the relationship of Pess,d and Pess,max,

the reference signals P ∗
si (see Fig. 2) and P ∗

gi (see Fig. 4) of each

WTG can be determined. Specifically, if |Pess,d| ≤ |Pess,max|,
P ∗

si and P ∗
gi can be determined directly, as shown in Fig. 6,

where the partition coefficients ai’s are calculated by

ai =
Pri,max

Pe,max − Ps,max

(19)

and the partition coefficients bi’s are calculated by

bi =
Pessi,max

Pess,max

. (20)

The coefficients ai and bi have the following feature:

N
∑

i=1

ai = 1
N

∑

i=1

bi = 1. (21)

If |Pess,d| > |Pess,max|, depending on the sign of Pess,d, P ∗
si and

P ∗
gi can be determined, as shown in Fig. 6. If Pess,d is positive,

the ESSs of the WTGs store active power, and the total active

power generated by all DFIGs is P ∗
e , which is less than Pe,max.

Therefore, a scaling factor c is defined as follows:

c =
P ∗

e

Pe,max

(22)

and P ∗
si and P ∗

gi can be determined by using the scaling factor.

If Pess,d is negative, the ESSs of the WTGs supply active power,

the RSC of each WTG is controlled to generate the maximum

stator active power Psi,max, and the ESS of each WTG is

controlled to generate active power of P ∗
gi, where Pgi,max is

the maximum value of Pgi depending on the maximum power

capacity of the GSC.

Fig. 8 shows the block diagram of the proposed two-layer

CPC scheme for the wind farm, where Pd is the active power
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Fig. 9. Configuration of a wind farm equipped with 15 DFIG wind turbines connected to a power grid.

demand from or commitment to the grid operator. In practice,

the value of Pd should take into account the generation capabil-

ity of the wind farm and should be subjected to the following

limit:

Pd ≤ P e,max (23)

where P e,max is the average value of Pe,max over the period

that Pd will be constant and the value of Pe,max during the

period can be obtained from short-term wind power prediction

[6]. This function allows the wind farm to be able to actively

participate in automatic generation control, unit commitment,

or frequency regulation of the grid, where the deviations be-

tween the available wind energy input and desired active power

output are compensated by the ESSs. Under the condition of

(23) and the ESS of a WTG has been fully filled up, then the

power reference of the blade pitch controller in Fig. 5 is set

at Pd by the WFSC to adjust the pitch angle to reduce the

WTG output active power to Pd. Moreover, the implementation

of the WFSC (Fig. 6) subject to (23) ensures that the use of

the ESS does not need to increase the rating of the RSC or

the GSC.

The reactive power references of the RSC (Fig. 2) and GSC

(Fig. 3) controllers can be determined by controlling the power

factor (pf) or the voltage (VPCC) at the point of common

coupling (PCC) of the wind farm at the desired value or to

supply a desired amount of reactive power as required by the

grid operator. However, these issues are not in the scope of this

paper. In this paper, the reactive power references of all RSC

and GSC controllers are simply set as zero.

V. SIMULATION RESULTS

Simulation studies are carried out for a wind farm with

15 DFIG wind turbines (see Fig. 9) to verify the effectiveness

of the proposed control scheme under various operating con-

ditions. Each DFIG wind turbine (see Fig. 1) has a 3.6-MW

power capacity [14], [15]. The total power capacity of the

wind farm is 54 MW. Each DFIG wind turbine is connected to

the internal network of the wind farm through a 4.16/34.5-kV

voltage step-up transformer. The high-voltage terminals of all

transformers in the wind farm are connected by 34.5-kV power

cables to form the internal network of the wind farm. The

entire wind farm is connected to the utility power grid through

a 34.5/138-kV voltage step-up transformer at PCC to supply

active and reactive powers of P and Q, respectively. In this

paper, the power grid is represented by an infinite source. The

ESS of each WTG is designed to continuously supply/store

20% of the DFIG rated power for approximately 60 s. Then,

the total capacitance of the supercapacitor bank can be obtained

from (1). The parameters of the WTG, the ESS, and the power

network are listed in the Appendix. Some typical results are

shown and discussed in this section.

A. CPC During Variable Wind Speed Conditions

Fig. 10 shows the wind speed profiles of WTG1 (vw1),
WTG6 (vw6), and WTG11 (vw11). The wind speeds across the

three WTGs vary in a range of ±3 m/s around their mean value

of 12 m/s. The variations of wind speed cause fluctuations of

the electrical quantities of the WTGs. As shown in Fig. 11, if

the wind farm is not equipped with any energy storage devices
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Fig. 10. Wind speed profiles of WTG1, WTG6, and WTG11.

Fig. 11. Comparison of the wind farm power output (measured at PCC) and
the constant power demand from or commitment to the grid operator: Without
ESSs and the proposed CPC scheme.

Fig. 12. Comparison of the wind farm power output (measured at PCC) and
the constant power demand from or commitment to the grid operator: With
ESSs and the proposed CPC scheme.

or the proposed CPC scheme, the wind speed variations in the

wind farm result in significant fluctuations of the total output

active power at the PCC. The wind farm power output deviates

significantly from the active power demand or commitment. In

future electric power grids where the penetration of wind power

is high (e.g., 20%), such active power fluctuations can bring

severe problems to grid operation.

Fig. 12 compares the total output active power of the wind

farm with the power demand from or commitment to the grid

Fig. 13. Active powers of all WTGs and the wind farm.

Fig. 14. Stator active power (Ps1), GSC active power (Pg1), and total active
power output (Pe1) of WTG1.

Fig. 15. Rotor active power (Pr1) and active power stored in or supplied by
the ESS (Pess1) of WTG1.

operator, where each WTG is equipped with an ESS as shown

in Fig. 1. The ESS stores energy when the WTG generates

more active power than the demand/commitment and supplies

energy when the WTG generates less active power than the

demand/commitment. The resulting output power of the wind

farm is therefore controlled at a constant value as required by

the grid operator.

Fig. 13 shows the total stator active power Ps and the total

GSC active power Pg of all WTGs, as well as the total output

active power P (measured at PCC) of the wind farm. Through

the control of the proposed CPC scheme, the variations of the

stator active power are exactly compensated by the variations

of the GSC active power. Consequently, the total output active

power of the wind farm is constant. However, the total output

active power Pei of each individual WTG, which is the sum

of the stator active power Psi and the GSC active power Pgi,

is usually not constant, as shown in Fig. 14 for WTG 1. The

deviations between the RSC active power (Pri) and the GSC

active power (Pgi) of each WTG are stored in or supplied by

the ESS (Pessi), as shown in Fig. 15 for WTG 1.
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Fig. 16. Voltages of the supercapacitor banks of WTG1, WTG6, and WTG11.

Fig. 17. Power tracking performance of the wind farm during step changes in
demand from or commitment to the grid operator.

Fig. 16 shows the voltages of the supercapacitor banks of

WTG1, WTG6, and WTG11. These voltages are always main-

tained within the operating limits of [0.5, 1.1] p.u.

B. Power Tracking During Step Changes in

Demand/Commitment

Under the same wind conditions as in the previous tests, the

power demand from or commitment to the grid operator is now

step changed from time to time. The wind farm is controlled

by the proposed CPC scheme to track the variations of the

power demand. Fig. 17 shows the power tracking performance

of the wind farm. The generated active power by the wind farm

dynamically tracks the power demand/commitment with good

precision. This power tracking capability cannot be achieved

without using the ESSs or the proposed control scheme.

Fig. 18 shows the total active power outputs of WTG1 and

WTG5. Although the total output power of the wind farm is

controlled to be constant during each time interval, as shown

in Fig. 17, the total active power output of each individual

WTG is not constant. Under the regulation of the proposed CPC

scheme, including the blade pitch control, the output power of

each WTG is always kept within its limits of 3.6 MW.

Fig. 18. Total active power outputs of WTG1 (Pe1) and WTG5 (Pe5) during
step changes in demand from or commitment to the grid operator.

VI. CONCLUSION

This paper has proposed a novel two-layer CPC scheme for

a wind farm equipped with DFIG wind turbines. Each wind

turbine is equipped with a supercapacitor-based ESS, which is

connected to the dc link of the DFIG through a two-quadrant

dc/dc converter. The ESS serves as either a source or a sink

of active power to control the generated active power of the

DFIG wind turbine. Each individual DFIG wind turbine and its

ESS are controlled by low-layer WTG controllers, which are

coordinated by a high-layer WFSC to generate constant active

power as required by or committed to the grid operator.

Simulation studies have been carried out for a wind farm

equipped with 15 DFIG wind turbines to verify the effective-

ness of the proposed CPC scheme. Results have shown that

the proposed CPC scheme enabled the wind farm to effec-

tively participate in unit commitment and active power and

frequency regulations of the grid. The proposed system and

control scheme provides a solution to help achieve high levels

of penetration of wind power into electric power grids.

APPENDIX

Wind turbine (Fig. 1): Rated capacity=3.6 MW, number of

blades=3, rotor diameter=104 m, swept area=8495 m2, rotor

speed (variable)=8.5−15.3 r/min, and inertia constant=4.29 s.

Wound-rotor induction generator (Fig. 1): Nominal power =
3.6 MW, nominal stator voltage = 4.16 kV, power factor

pf = −0.9 ∼ +0.9, rs = 0.0079 p.u., rr = 0.025 p.u., rm =
66.57 p.u., Lls = 0.07937 p.u., Llr = 0.40 p.u., Lm = 4.4 p.u.,

inertia constant = 0.9 s, and base frequency f = 60 Hz.

ESS (Figs. 1 and 4): C = 20 mF, Cess = 20 F, Less =
50 mH, nominal dc-link voltage = 4 kV, and nominal voltage

of the supercapacitor bank = 2 kV. The supercapacitor bank

consists of 3700 2.7-V 3000-F cells.

Power network (Fig. 9): Each power cable is represented

by a Π equivalent circuit where Z1 = Z6 = Z11 = 0.0738 +
j0.1050 Ω and the shunt admittance is −jB1/2 = −j2.6901 ×
10−5 S; Z1,2 = Z6,7 = Z11,12 = 0.0771 + j0.1148 Ω and the

shunt admittance is −jB2/2 = −j2.2263 × 10−5 S; Z2,3 =
Z7,8 = Z12,13 = 0.1870 + j0.1444 Ω and the shunt admittance

is −jB3/2 = −j1.6388 × 10−5 S; Z3,4 = Z8,9 = Z13,14 =
0.2756 + j0.1558 Ω and the shunt admittance is −jB4/2 =
−j1.4842 × 10−5 S; and Z4,5 = Z9,10 = Z14,15 = 0.3658 +
j0.1591 Ω and the shunt admittance is −jB4/2 = −j1.3296 ×
10−5 S. The shunt admittances are not shown in Fig. 9.
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