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Modularly invariant equations of motion are derived that generate the isothermal-isobaric ensemble 
as their phase space averages. Isotropic volume fluctuations and fully flexible simulation cells as 
well as a hybrid scheme that naturally combines the two motions are considered. The resulting 
methods are tested on two problems, a particle in a one-dimensional periodic potential and a 
spherical model of C,, in the solid/fluid phase. 

1. INTRODUCTION 

In the past decade, equations of motion have been devel- 
oped that generate many-body thermodynamic ensembles as 
their phase space averages.lw6 Alternatives to Monte Carlo 
methods are, now, available to study systems in the canoni- 
cal, isothermal-isobaric, and isoenthalpic-isobaric en- 
sembles. 

Recently, the isobaric methods have been reexamined.6 
It was observed that while isobaric ensembles are produced, 
the trajectories have an unphysical dependence on the choice 
of basis lattice vectors?” This behavior arises because the 
equations of motion are not modularly invariant.7*8 However, 
modular invariance can be incorporated naturally into iso- 
baric schemes using the formalism developed by Hoover.4*6*9 
In this yafer, the inconsistencies of prior schemes are 
removedh4 6*9 and a new hybrid method which combines 
both isotropic volume fluctuations and full flexibility of the 
simulation cell is introduced. The methods are tested on two 
model problems, a particle in a one-dimensional periodic po- 
tential and C6s molecules in the solid/fluid phase. 

il. ISOTHERMAL-ISOBARIC ENSEMBLE 

In this section, three different approaches that generate 
the isothermal-isobaric ensemble are explored: uniform di- 
lation, full flexibility of the simulation cell, and a hybrid 
scheme. 

A. Uniform dilation 

The equations of motion proposed by Hoover have the 
following basic form for a d-dimensional system of N par- 
ticles (yf degrees of freedom; Nf=dN if there are no 
constraints):4~9~*0 

&=pI +E ri, 
mi W 

dVPE c=- P@e 
w ) 

li.=dWint- P,,,) --yj- I 

* P? P’, 
“=; , &=x k +w-(Nf+ 1)kT. 

ill 

Here, ri and pi are the position and momentum of the 
ith particle, V is the volume, pE is the barostat momentum, 
c and pc are the thermostat position and momentum, 
F,= -V,$(r, V) is the force, Pext is the external/applied 

pressure, and 

N p2 N 

7 ; + C ri.Fi--(dV) 
c=l z i=l 

y (2.2) 1 
is the internal pressure. A possible explicit dependence of the 
potential energy on the volume has been considered. Such 
terms will occur when long-range interactions 
[ 4( I-) CC 1 lrn,n G3] or long-range corrections to short-range 
potentials are present. Cutting off long-range interactions or 
neglecting long-range corrections in small systems can give 
rise to incorrect results.” Note that the barostat momentum 
pe has been coupled to the thermostat momentum pg. 

Hoover’s equations have the advantage that they auto- 
matically and naturally satisfy the constraint that the volume 
be greater than or equal to zero, namely, V(t)= V(O) 
Xexp[d/WJ@t’ p,(t’)]. The equations also have the con- 
served quantity 

N 2 

H’=x -!?- +p: +% +&r,V)+(Nf+l)kT~ 
i=, 2mi 2W 2Q 

+ pextv, 
(2.3) 

~ =~ [V,H’.~i+V~iH”iil+~Pi+~ ~ 
i=l 

+$ de+% Fi=o, 

e 

and Jacobian,‘2 

di dkc d’li dfi, 
- +-- f- +- 
d5 dpt dV dp, 

N 

+C (Vpiii+Vriti) 
i=l 

J(t)=V-l exp[(Nf+ l)f]. 
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The Jacobian is the weight associated with the phase space 
volume and is unity for systems that obey Liouville’s 
theorem.12 It represents the transform to a set of variables 
where J= 1, here, simply, {i = Nfsp$ or equivalentry, 
{log s = N#}. Using the assumption of ergodicity, the Jaco- 
bian, and the conserved quantity, the partition function asso- 
ciated with the dynamics can be constructed:12 

;.=.E +p’ r. 
L 

mi w ” 

isoenthaIpic-isobaric ensemble is produced to within the 
fluctuations of Wp’,, the barostat kinetic energy. 

In this paper, the alternative equations of motion are pro- 
posed: 

A= dpc dp, dE dV 
I 

Dcndp dr V-l 
I” 

dvp, v=- N P: PE 
w ’ d.=dV(Pint-PexJ+$ F G-Qpe, 

I 1 

exp[ ElkTj 
A=cNf+ ljkT 

H” 
Xexp --E, [ 1 

where 

(2.9) 

N P: P”, 
“=$ , r;,=c m- +F-(Nf+ 1)kT. 

i=] 1 

N 

HN=x -!f- +p: +& ++(r,V)+P,,V 
i=l 2mi 2W 2Q (2.6) 

and D(v) is the domain defined by the volume. Unfortu- 
nately, A is not the isothermal-isobaric partition function 
(within a constant) as was made clear by Hoover in the origi- 
nal derivation?Tg 

Like the prior modification, Eqs. (2.7), the new equations, 
Eqs. (2.9), have the same conserved quantity as Hoover’s 
original set, Jacobian, J=exp[(Nf+l)c] and, in principle, 
generate the isothermal-isobaric partition function (within a 
constant). Again, if the thermostats are removed, the 
isoenthalpic-isobaric ensemble is produced to within the 
fluctuations of Wpz. 

In an effort to correctly generate the isothermal-isobaric 
ensemble, it has been suggested that Hoover’s equations of 
motion be slightly modified? 

The relative merits of the modified equations of motion, 
Eqs. (2.7), and th e new equations of motion, Eqs,. (2.9), must 
be assessed. A simple physical argument based on the con- 
ditions for equilibrium in a dynamical system will be given 
in the text. A complete and rigorous analysis of the phase 
space is provided in Appendix A. 

St=2 +k (ri-rc.m.), 
I 

&=Fi-g pi--z pi, 

dvp, UP.-- PPP, 
w ’ 

I;e=dV(~int-Pe,t)-~ 7 (2.7) 

N PZ 
“=$, I;,=c m- +$-(Nf+ l)kT, 

i=l ‘ 

where r,., - -( l/M)Xirniri is the center of mass (c.m.) and 

C ; + 5 Iri-rc.d*Fi 
N pf 

ia, z- i=l 

JHr,V) 
-(dV) 7 

I 

. W) 

If a dynamical system is at equilibrium, the time average 
of the force on each of the independent variables will be 
zero. Furthermore, if the system is: ergodic than the time 
average can be taken to the trajectory average. Application of 
this principle to Hoover dynamics, Eqs. (2.1), yields 

(i)c)=d((Pi,t-P,,t)V)=O, (2.10) 

a statement of a pressure virial theorem obeyed by the 
Hoover ensemble, Eq. 2.5 (see Appendix B for a discussion 
of pressure virial theorems). Unsurprisingly, there is a feed- 
back between the equations of motion and the equilibrium/ 
limiting distribution function. Similarly, the equations of mo- 
tion proposed in this paper, Eqs. (2.9), generate 

(ad=d( (6 T g) + (CPint-P,JV)] =O- 

These equations have the same conserved quantity as the 
original set, but the Jacobian is J=exp[(Nf+ l)[]. The 
isothermal-isobaric ensemble is, therefore, in principle, gen- 
erated. For the special case of no external forces, Q,,.=O, 
considered in the original paper,6 the choice Pint=Pint was 
made. Note, another, possible but nonseparable choice is 
P,,=X~= 1 (ri - r,,) ’ SF: , where a prime indicates that a 
given term must be consistent with the periodic boundary 
conditions. For the more restrictive case of a set of free par- 
ticles, both choices reduce to, Pint=~int. Most generally, 
however, the two functions, Pint and I?int, are not equal. If the 
thermostats are decoupled from the dynamics, the 

a virial theorem obeyed by the isothermal-isobaric ensemble 
(see Appendix B). The rather strong condition, the kinetic 
virial theorem, is used to produce the necessary factor of kT. 
The modified equations, Eqs. (2.7), give 

(li.)=d{((~i~t-Pi,)V)+((Pi,-P,,)V)}=O. (2.11) 

Here, ((~,-P,)V)=(l/d)(r,.,..F,.,~ (the definition of the 
pint from the original papeP) is relied upon to generate the 
crucial factor of kT. If this term is zero, then in order to 
achieve a stable equilibrium the Hoover ensemble, Eq. (2.3, 
must be produced. 
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FIG. 1. (a) Volume distribution function of a system of ten free particles 
(I”=300 K, P,,= 100 atm, M=3) with total linear momentum conservation. 
(b) Volume distribution fimction of a system of ten free particles without 
momentum conservation. The solid line is the exact result, the short dashed 
line is the result of Eq. (2.1) or (2.7), the long dot dashed line is the result of 
E!qs. (2.9). 

The analysis based on the virial theorem seemingly con- 

tradicts the proof based on the Lioville equation (see above) 

for the modified equations of motion if F,,.=O, ~int=Pint. 

However, under these conditions, the position of the center 

of mass of the particles is an auxiliary variable, i.e., the dy- 

namics of the r,.,. depend on all the other variables but not 

vice versa. In such dynamical systems, satisfying the Liou- 

ville equation for the entire distribution is insufficient to 

guarantee that the individual pieces are properly generated. 

In Appendix A, it is shown that for systems with no external 

forces, the volume distribution generated by Eqs. (2.7) is 

reduced by one factor of the volume. In Fig. 1, the pathology 

is illustrated numerically, for a system of free particles, with 

and without the imposition of a zero linear momentum con- 

s@ah pc.m =O. In the numerical calculations, the Nose- 

Hoover thermostatting scheme, which is insufficient to 

handle the condition &,(t)#O, F,.,.=O),13924 is replaced 

by the more general Nose-Hoover chain methodi (see Ap- 

pendix C). 

d(V)=] d& Q(V,&)S(det&]- 1) 

= di;, 
I s &),V) 

dp dr exp[ - PHhdl 

X S(det[&]- l), (2.14) 

where the domain-of integration is determined by the trans- 
formation r= V”dh,p, where s are the scaled/reduced coordi- 
nates. The assumption, consistent with the isothermal- 
isobaric ensemble, is that all cells with the same volume 
OCCUT with equal a priori prgbability weighted by the appro- 
priate Boltzman factor Q (V,b). Therefore, the virial theorem 
is always obeyed, i.e., the external pressure P,,, is directly 
related to the average of the usual expression for the internal 
pressure and the correct isotropic limit is obtained. 

It is possible to transform the proposed partition func- 
tion, Eq. (2.13), to a more familiar_ form. ,By introducing the 
normal matrix of cell parameters, h = V”‘dh,, , and eliminating 
the volume using the delta function, one finds 

I 

A= 
J 

dG exp[-PP,,, det($]Q($det[c]‘-d. (2.15) 

In this form, it is possible to show that the tensorial virial 
theorem 

8 WQ6)l 
Pap-Pext~ap)= 

dh,l 

The results presented above and in Appendix A suggest 

that the new equations of motion, Eqs. (2.9), will be robust 

while the modified equations, Eqs. (2.7), may fail to generate 

the isothermal-isobaric ensemble under certain circum- 

stances, particularly, if the separable definition of lint (Ref. 

6) is employed. Therefore, the new equations of motion, Eqs. 

(2.9), appear to be superior. Tests of the new method on more 

realistic problems are described in Sec. IV. 

is satisfied and, hence, this indicates that Eq. (2.15) is the 
appropriately generalized isothermal-isobaric partition func- 
tion. Equation (2.15) is slightly different from the ensemble 
that has been used most commonly in simulations, namely, 

A= 
I 

di exp[-PP,, det(L)]Q(G). (2.17) 

The tensorial virial theorem satisfied by Eq. (2.17), 
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B. Fully flexible cells 

4179 

It is often useful to consider not only isotropic relaxation 
but full relaxation of the simulation ce11.2,5 In order to ac- 
complish this, an ensemble with anisotropic cell fluctuations 
must be introduced. The general result 

A= s dV evil--PP,,,Vlb(V), (2.12) 

where Q(V) is a canonical partition function, can be rewrit- 
ten as 

A= 
I 

dVd& exp[-/3P,,V]Q(V,~o)S(det[&]-1). 

(2.13) 

Here, 
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(2.18) 

is inconsistent with the isothermal-isobaric ensemble. Note 
that Eq. (2.15) is only valid for isotropic pressure. The fully 
nonlinear formulation of the constant tension ensemble 
which satisfies an appropriate tensorial virial theorem differ- 
ent from Eq. (2.16), and introduces a fixed reference lattice, 
has been discussed elsewhere.’ Here, the generalized 
isothermal-isobaric ensemble, Eq. (2.15) will be used. This 
is a fully nonlinear treatment of the case that isotropic ten- 
sion is applied along the instantaneous lattice vectors.i5 

The equations of motion necessary to produce the de- 
sired ensemble, Eq. (2.15), are 

N Pf 
&=$, PF;=c 6 +$ Tr[j$s]-(Nf’-t-d’)kT, 

i=l g uu 
where V-degh], 1 is the-identity matrix, Tr[$&] is the sum 
of the squares of all the elements of the matrix, 5s; and 

+ (FJ,(rJp- 

defines the pressure tensor. The modularly invariant form of 
the box momenta & are taken from earlier work.6,7,‘6 These 

& 
bi=Fi-$ pi- 

go 
equations of motion have conserved quantity: 

dvp, 
2 

Tr[ss&] +$ + ~$(r,c) 

e=- ) 

+ P, det[P]+(Nr+d’)kTe (2.22) 

and Jacobian, J=det[K]’ -’ exp[(Nf + d2) t]. This leads to 
the partition function 

dp< d: d& 
I 

- dp dr det[G]*-d 
DC4 

> (2.23) 

where 

N 2 

Ht&c pi + --ii- Tr#$s] +g + +(r,i;) 
i=, 2% 2Wg 

-I- P, det[K]. (2.24) 

The equations of motion reduce to the uniform scaling 
case when d = 1 and are modularly invariant. They also au- 

tomatically and naturally satisfy the constraint that the 
volume det[h] be greater than_ or equal tg zero, 
Tr [ss] = W~ij~iihjt * = (W,/det[h])Cijhii(d det[h]/dhij ) 
=W,log(det[h]). In addition, if the thermostat is decoupled, 
the isoenthalpic-isobaric ensemble is recovered. 

As stated above, the quantity Tr[&] is equal to 
Wg log(V) and is therefore related to PE of the previous set- 
tion. In analogy with de, the average of d Tr[&]/dt obeys 
the virial theorem (see AppendixB) 

=dkT+d(V(Pi,-P,,,))=O 
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(2.25) 

and each of the individual & satisfy the tensorial vi&l theo- 
rem 

(2.26) 

C. Hybrid method 

It is possible to separate out the isotropic volume flue- 
tuations from other changes in the simulation cell. Such a 
separation allows different time scales to be associated with 
the two types of motion (isotropic and anisotropic) through 
introduction of different masses for the independent mo- 
menta. This separation also-makes it easy to change from a 
fully flexible cell to an isotropically flexible cell within the 
same computational framework. Such an approach is only 
useful for d > 1. 

In order to separate out the isotropic fluctuations, the 
following equations of motion are proposed: 

/j =dV(p. -p E mt 

- iigoLl 
(2.27) 

g)=- 
Wgo ’ . 

N pf pz 
Pt=c pn. -l-v +$- Tr[FQ$&j-(@f+d”)kT,. 

is1 L gn 

where V”“&=c, the instantaneous pressure Pint is given by 
Eq. (2.4), and the pressure tensoris given by Eq. (2.20). The 
necessary condition that the det[ha] remain equal to one is 
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automatically satisfied provided Tr[$d is initially zero as 

log(det&]) = Tr[&]. Therefore, the ha have no dynamics 

for d<2. 
The conserved quantity for the equations of motion, Eqs. 

(2.27), is _(_, 

2 2 

Tr[ 3so$,] + Pe + pg 
2w 2Q 

+d(r,v,i;,)+P,,V+(Nf+d”)kT~ (2.28) 

and the Jacobian is J=exp[(Nf+ d*) t]. The new dynamical 
equations lead to the partition function 

exp[ElkT] 

h=(Nf+d’)kT j- dp t dp e dV di;, d&, 

H” 
X 

J &v) 
dp dr exp [ 1 - k~ S( det[ :a] - 1 j 

x Wr[&,& (2.29) 

H”=; & +L Tr[~go$+$ +$ 
i=l 2mi 2Wgo 

+ q%r, V&l + P,,,V. (2.30) 

If the thermostat is decoupled, the isoenthalpic-isobaric en- 
semble is recovered. Also, virial theorems are satisfied by 

(P6) and (&). Note, ,that both the dynamics and the en- 

semble produced by the hybrid method are equivalent to the 
preceding formulation. However, the hybrid method can be a 
computationally convenient scheme. 

D. Elimination of cell rotations 

The equations of motion for the case of .a flexible-simu- 
lation cell were-derived using thy full matrix of Cartesian 
cell parameters h or equivalently h,. The cell can therefore, 
in general, rotate in space.’ This motion can make data 
analysis difficult and should be eliminated. 

The origin of the rotational motion of the cell lies in 
pressure tensor, Pap [see Eq. (2.20)]. If the instantaneous 
value of the components of the pressure tensor are asymmet- 

ric, p,p+ ppp, then there will be a torque on the cell that 
will cause it to rotate. This suggests that there are two op- 
tions that can be used to eliminate the rotations. The tirst is 
to work with the symmetrized tensor P+= (P,+ P&/2. 
Here, if the total angular momentum of the cell is initially 
zero, the cell should not rotate. A second option is to work 
with a restricted set of cell parameters that only respond to 
the upper/lower triangle of the tensor. This freezes the rota- 
tions out. 

It is possible to implement either of these two options 
within both of the sets of equations of motion derived for 
fully flexible cells, i.e., the normal method, Eqs.. (2.19), and 
the hybrid method, Eqs. (2.27). The application to the sym- 
metrized tensor will be considered first. Here, the constraint 
g-=2 in the normal method or &=za in the hybrid method 

must be introduced to the dynamics through the use of 
Lagrange multipliers. (Note, 2 and :a are defined by the time 

integrals of W,; = & and W$,, = &,, respectively.) Elimi- 

nating the multipliers results in the replacement of Pap by 
P,;. in Eqs. (2.19) and (2.27). In the normal method, the 
constraint imposes the conservation laws 

d&-$.1 =. w dJtot 
dt + &?dt= 

o 

in two dimensions and 

d&-$1 =. w 4iJtotl 
& - &?dt=’ 

(2.3 1) 

(2.32) 

in three dimensions where the Jtot are the components pf the 
total angular momentum of the cell and the identity &, . 

= WgEvl has been used. In the hybrid method, the imposed 
conservation laws are 

: 
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4&, - $,,I 
dt 

=o~ w W-‘&l 
go dt =’ 

I .  

in two dimensions and - 

“[ii;p,- F&l 
dt 

=. w ,dCV- ‘i;J,tl 
go dt 

=o 

(2.33) 

(2.34) 

in three dimensions. The only solution consistent with initial 
condition $a = Fs or Es0 = Fs, is Jtot=O. The conservation 

laws guarantee that Jtot will remain zero and the cell will not 
rotate (i.e., a fixed point of the dynamics is utilized). 

The application to the case of an upper triangular cell is 
also simple. Here, the constraint that hii=O, i>j or 
(h,)ij=O, i>j must be enforced. Introduction and elimina- 
tion of the Lagrange multiphers reveals that only the upper 
triangle of the equations of motion need to be considered. 
This is obvious since upper triangular matrices form a’closed 
algebra. It should be noted that the dynamics produces the 
ensemble 

A= dVd&, exp[-PP,,,V]Q(V,&)S(det[&]-lj 
f 

d 

Xl-I UkJ;;‘, 

I=1 

(2.35) 

A= 
I 

dc exp[-PP,,, det(z)]Q(c) 

d 

Xn (II);,’ decg]‘-d, 
I=1 

where the space of the h@ has been weighted to account for 
the unequal a priori sampling of the upper triangular form. 

In this space, the tensorial virial theorem 
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-p&&p = 0 (2.36) 

is obeyed where p3~. Using the form of the canonical par- 
tition function, it can be shown Pap is still given by Eq. 
(2.20). However, if the matrix of cell parameters is con- 
strained to be symmetric, the pressure tensor that satisfies the 
virial theorem is no longer given by Eq. (2.20). This third 
option is therefore to be avoided. 

The two methods outlined above will eliminate rotations 
of the simulation cell. In both methods, however, some in- 
formation about the behavior of the off-diagonal components 
of the pressure tensor has also been eliminated. Therefore, 
the average of all the off-diagonal components of the pres- 
sure tensor should be monitored to ensure that each is inde- 
pendently equal to zero. This is more physically meaningful 
when the method based on the symmetrized tensor is-used 
because the weight associated with the space of the h, re- 
mains uniform. The symmetrized method must therefore be 
considered a somewhat better way to eliminate rotations of 
the simulations cell. [On a technical note, the quantity 
Nf+d” that appears in the equations of motion for pE must 
be changed to LV~+ d(d+ 1)/2 in the upper triangular case.] 

E. Temperature control 

In the equations of motion written above, a single ther- 
mostat was coupled to the particles and volume/cell vari- 
ables. While this scheme is usually effective it does not al- 
ways perform well. For example, large periodic oscillations 
in the total kinetic energy were found to develop in protein 
simulations.17 Also, the equations of motion are not always 
ergodic4 The Nose-Hoover chain method has been devel- 
oped to overcome these difficulties.14 In this method, the 
thermostats themselves are thermostatted to form a chain: 

(2.37) IV. RESULTS 

I’e,= Qj-, kT -pcj G ’ [ 1 Pii-, ‘cj+l p:wmi -- ‘SEA= [ 1 --kT , 
QM-I 

Two model problems were used to test the new methods 
proposed herein: a particle in a one-dimensional periodic po- 
tential and C6a molecules in the bulk solid/fluid phases. 

where M is the chain length. Therefore, in actual simula- 
tions, it is useful to thermostat the particles using a Nose- 
Hoover chain. It is also useful to use an independent chain to 
thermostat the volume/box variables to ensure these stiff 
variables properly sample the phase space. These additions 
are completely consistent with the results presented above. 
However, if constraints on the particle degrees of freedom 
are introduced, the volume/box variables and all degrees of 
freedom involved in the constraints, must share the same 
thermostat (see Appendix D). 

4182 Martyna, Tobias, and Klein: Constant pressure molecular dynamics algorithms 

F. Mass choice of the extended variables 

It has been shown elsewhere3.i4 that the masses of the 
particle thermostats should be taken to be QP1 = NfkT/w$ 

QPi = kTloi, where wP is the frequency at which the particle 

thermostats fluctuate. SimilarIy, the masses of the barostat/ 
cell parameter thermostats should be taken to be Qb, 

= d(d + ljkT/2w% for the upper triangle case, Qb, 

= d’kTlwt for the symmetric case, and Qbi = kTlw% in gen- 

eral. (It has been assumed that the particles and the barostats 
are independently thermostatted.) The masses of the barostat/ 
cell parameters themselves3*6 should be taken to be 
W=(Nf+d)kTlw,2, Wg= Wgo=(Nf+d)kTldo;. 

Ill. VELOCITY VERLET BASED lNTEGRATORS 

A treatment of the integration of the similar equations of 
motion under Verlet integration has been developed 
elsewhere.6 Here, a closely related treatment of velocity Ver- 
let integration is briefly presented. In velocity Verlet,” the 
relationships 

i(A.t)=i(O)+[i(O)+i(Aht)] $ +U(At3) 

(3.1) 

are used. In cases where the second time derivative depends 
on the first, the X(A.t) can be determined iteratively though 
this, in practice, sacrifices reversibility. Appendix D reviews 
the velocity Verlet integration of the equations of motion 
presented in Sec. II F. 

As discussed in Appendix D, the advantage of the hybrid 
method is apparent under Verlet-type integration. Basically, 
if a calculation constrained to permit only isotropic fluctua- 
tions of the simulations cell, Eqs. (2.9), is changed to permit 
the full fluctuations of the cell, Eqs. (2.27), the numerical 
integration of the volume is performed in exactly the same 
way. However, if the norma method, Eqs. (2.19), is used to 
generate the full fluctuations then the volume will’be deter- 
mined differently even if the anisotropic forces and velocities 
are zero. Note, this is a product of the Vet-let-type integration 
scheme and not of the equations of motion themselves (see 
Sec. IIIC). . 

A. Particle in a ID periodic potential 

In this pedagogical example, a particle is assumed to 
move in the potential 

44&v= my;r2 [ Lcos( Fj] (4.1) 

with m=f, ~=l, Q,=l, Q,=9, W=lS, kT=l, P,=l, 
M, = 1, M, =2. In the calculations, the barostat and the par- 
ticle are each given an independent Nod-Hoover chain of 
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B. Solid and fluid phase CEO 

In high-temperature solid and fluid C&,, the roughly 
spherical C6e molecules are essentially rotating freely. It is 
therefore possible to model the true molecule-molecule in- 
teraction with a simple spherical pair potential. Such an ef- 
fective pair potential can be obtained by assuming that the 
surfaces of two spheres (i.e., the molecules) have a uniform 
density of carbon atoms which interact via a Lennard-Jones 
potential. Integration over the surfaces of the two spheres 
yields l9 

6 
Y 

0 2 6 10 

FIG. 2 (a) Position distribution function of the Model problem (dotted line). 
The solid line is the exact result. (b) Volume distribution function of the 
Model problem (dotted line). The solid Line is the exact result. 

thermostats14 to ensure ergodicity (M indicates the chain 
length). The probability distribution functions obtained from 
the calculation are compared to the exact results in Fig. 2. 
The agreement is good. The average energy and volume 
were also found to be in good agreement with the exact 
results. 

CT; 1 -s”/2+s4/6 

-7 1 I) (l-s”)a ’ (4.2) 

where r is the center of mass distance between the 
molecules/spheres, s = u,-Jr, and the parameters G-., cr,, 

and UC,, are given in Table I. 

A system consisting of N=864 C,, molecules (corre- 
sponding to a 6X6X6 bee lattice with four molecules/unit 
cell) was studied at two different temperatures, T=2600 K, 
the superheated solid, and T=2700 K, the gas, at a pressure 
of 500 atm (for a complete phase diagram see Ref. 19) using 
both the isotropic and the hybrid methods. Similarly, a tran- 
sition between the two phases (solid to gas at 2700 K) was 
also studied using the two methods. The equations of motion 
were integrated by using the iterative Verlet based algorithm 
with a time step of 5 fs. The particle and volume/cell vari- 
ables were independently thermostatted with Nose-Hoover 
chains (M,= M, =5) and the thermostat and barostatkell 

TABLE I. Structure and thermodynamics data: neat Cho solid and gas. (+=33 K, 0~~~=7.1 A, o,=3.469 A). 

Z-=2600 K(solid) T=2700 K (gas) 

Quantity. Isotropic’ Hybrida Isotropicb Hybridb 

3.11x10-5 
7.34x lo* 

90.2 
90.2 
90.2 
90.0 

90.0 

90.0 
ip> (aW 500 
Pd Mm) 507 

Vu> Wd 495 

(p33) (atm) 498 
(Pd (ad -1 

(p13) W4 6 
P23) (aW -7 

-MN (K) 1.42x104 

3.71x10-5 
7.36X10' 

90.3 
90.3 

90.3 
90.0 

90.0 
90.0 

500 
498 
501 

501 
1 

l.41XlliT~ 

2.27X 10-s 3.02X10+ 
1.09x Id 1.09x106 

to3 111 
103 92.3 
103 109 
90.0 91.1 

90.0 97.2 
90.0 93.2 

500 500 
500 500 
501 500. 
499 499 

2 -2 
-1 1 
-1 0 

7.85X lo3 7.85X103 

“Averages over 100 ps. 
‘Averages over 250 ps. 

cJL”, - l/N,Bf&l[H’ (k) - H&JIH’(O)I, where H’(k) is the value of the conserved quantity at the kth time 

step and N, is the number of time steps. 
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FIG. 3. Tiie histories of simulation cell parameters during equilibrium constant NPT simulations of solid CeO at T=2600 K, P,,,=500 atm: (a) isotropic 
algorithm; (b)-(h) hybrid algorithm. 

mass parameters chosen according to the prescription given Equilibrium simulations of the fluid and solid phases are 
in Sec. II F (q,=2 ps-’ and oP= 1 ps-‘). The potential was considered first. In Figs. 3 and 4, the behavior of the volumes 
truncated at 40 w and long-range corrections to the potential and individual cell parameters from isotropic and hybrid 
energy (and the pressure through the Cal) included to ac- simulations of the two state points are compared. In both 
count for the neglected long-range attractive interactions. phases, the fluctuations of the volume are similar for two 
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FIG. 4. Tiie histories of simulation cell parameters during equilibrium constant NPT simulations-of gaseous C6,, at Ti2700 K, P,=500 atm: (a) isotropic 
algorithm; [b)-(h) hybrid algorithm. 
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E-G. 5. Time histories of simulation cell parameters during constant NPT simulations of a structural transition from solid to gaseous states of C6,, at T=2700 
K, I’,,=500 atm: (a] isotropic algorithm; (b)-(h) hybrid algorithm. 

methods and in the fully flexible studies (the hybrid calcula- 
tions) the cell remains essentially cubic on the time scale of 
the simulations. This second point is by no means guaranteed 
in the gas phase study where the partition function is inde- 
pendent of cell shape. In fact, cells with large sides (a$,~) 
and small/large angle2 are a n_on-negligible part of the free 
shape phase space Jdho G(det[&,]- 1) and will eventually ap- 
pear. However, the metastability of the roughly cubic cells is 
a useful result. With the exception of the individual cell 
lengths and angles in the hybrid gas simulation, the corre- 
sponding average structural and thermodynamic properties 
of the two phases computed using the isotropic and hybrid 
methods are identical within statistical errors (Table I) and 
agree with previous work at constant volume.“’ 

The transition from the solid to gas phase was also stud- 
ied using the two methods (see Fig. 5). Again, the behavior 
of the volume is similar for the two methods. The transition 
occurs in roughly 15 ps and the final volumes are the same. 
In the hybrid study, the cell appears to be distorting slowly, 
but significantly, from its initially cubic shape. Nonetheless, 
the transition was not affected and the results are in good 
agreement with the isotropic calculation. 

V. CONCLUSIONS 

New constant pressure methodologies have been devel- 
oped and tested on model and more realistic problems. The 
methods were found to perform well under equilibrium con- 
ditions and during structural transitions such as an evapora- 

tion of a solid to form a gas. The methods outlined above 

should find wide application in modeling condensed phase 
behavior of complex molecules. 

ACKNOWLEDGMENTS 

The research described herein was supported by the Na- 
tional Science Foundation under Grant No. CHE-92-23546. 
One of us (G. M.) would like to acknowledge startup funds 
from Indiana University. D. J. T. would like to acknowledge 
National Institutes of Health Grant No. F32 GM14463. 

APPENDIX A 

In this appendix, it is shown the conservation law, 
F cm. =O, can effect the volume distribution function gener- 
ated by the modified equations of motion, Eqs. (2.7). Basi- 
cally, satisfying the Liouville equation for the entire distribu- 
tion is insufficient to guarantee that the individual pieces are 
properly generated. 

In order to demonstrate this important result, consider a 
system of free particles in a periodic box. The modified 
equations of motion for the particle positions, the ri, are 
auxiliary variables, i.e., the dynamics of the ri depend on all 
the other dynamical variables but not vice versa. Therefore, 
the time average of any position independent quantity will 
not depend on the particle positions. The distribution func- 
tion of the reduced phase space (no positions) is, thus, all 
important. The reduced phase space (V,p only) generated by 

the modified equations of motion, Eqs. (2.7), is 
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exp[ EIkT] 

A=(Nf+l)kT s 
dpc dp,p dV VNf-l exp 

The new equations, Eqs. (2.9), however, generate 

exp[ EIKT] N 
‘=(Nf+ 1)kT 

dpc dp, dp dV V?f exp I 1 -5, 

(A3 

the isothermal-isobaric/correct result. Basically, the phase 
space associated with the particle positions serves to mask 
the fact that the volume distribution produced by Eqs. (2.7) 
is incorrect. 

In the general case, F,.,,=O and ~int=Pint+r~,~..F,.,.,6 
the modified equations of motion, Eqs. (2.7), retain the same 
pathology. In an appropriate set of normal modes, the r,.,. 
can be seen to be auxiliary variables. This leads to the real- 
ization that the volume distribution produced by the dynam- 
its is, in error, by the, now, familiar factor of V, the volume. 

APPENDIX B 

There are two important pressure virial theorems associ- 
ated with isothermal-isobaric ensemble that are used in the 
analysis presented in text. The first and more familiar theo- 
rem relates the internal and external pressure 

dV wC - PLJI I 
dp dr 

D(v) 

(pint- pex3 = 
SdV expC-PPextVIQ(V)[kT{d lodQ(Vl/Jvk pextl =. 

SdV expII-PP,VlQ(V) 

(PinJ=Pext9 @l) 
while the second and less familiar theorem relates the internal and external work, 

((Pint- Pm) v> = 
SdV wHCJlQWM~T@ W.QW)l~~V~-~extl 

SdV ew[-PP,,tVIQ(V) 
=-kT 

, 

(PintV> =Pext(V) -kT- 032) 

Both theorems are invariant properties of the isothermal- 
isobaric ensemble and as such are (both) always satisfied, 
independent of system, boundary condition, etc. (the only 
input to the derivations is the statistical mechanical definition 
of the ensemble and the pressure). Incorrect/different en- 
sembles posses incorrect/different virial theorems. For ex- 
ample, the ensemble generated by Hoover dynamics [Eq. 
(2.1)] has the two theorems 

(PinJ=Pext+kT{V-‘), 

(PintV>=PexAV~ 
where the averages are over Eq. (2.5). 

033) 

(B4) 

APPENDIX C 

It has been shown elsewhere that for systems with no 
external forces (X$!= ,Fi=O), the Nod-Hoover canonical dy- 
namics method4’5 only gives rise to the canonical distribution 
if the total linear momentum is taken to be zero.13 In this 
appendix, it will be demonstrated that this constraint can be 
eliminated under No&-.Hoover chain dynamics,‘l a simple 
extension of the No&-Hoover scheme. In addition, the other 
“problem” with No&Hoover-type methods under these 
conditions (XE ,Fi=O), that the total linear momentum can- 
not change sign or direction is addressed. 

The No&-Hoover chain method employs the equations 
of motion 

I 

;.=E I Wli ’ $j=-VjV(r)-pj ‘2, 

dNslptl . sipr, 
~l=-.-.-- 

QI 
) Sj=- 

Qt ’ 
(Cl) ’ 

where each thermostat variable (Si) is in turn thermostatted to 
form a chain. The dynamics conserves 

N 2 M Pi. 
H’(p,r,s,p&=V(r)+x Pi +c 1 +kT ln(slj 

i=l 2% i=l 2Qi 

M 

+ c kT Inisi). G? 
i=2 

However, if 2$ ,ViV(r)=O then P’(t) =P(t)si’dN(t) is also 
conserved where P(t) = CE lpi(tj is the total linear momen- 
tum. The factor of s :IdN appears in this conversation law due 
to the nonstandard but convenient definition of S, . In gen- 
eral, No&-Hoover dynamics is recovered for M = 1. 
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Fist, it will be demonstrated that the Nose-Hoover 
chain dynamics (M>l), indeed, generates the canonical dis- 
tribution for the case ZE, Fi =O. The partition function gen- 
erated by the said dynamics for an ergodic system with the 
desired constraint Xz ,Fi=O is 
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values of M, provided the parameter N in Eq. (Al) is de- 
creased by d. For a more complete treatment of the issues 
discussed here, see Ref. 24. 

APPENDIX D 

Q= 1 fi driNfi’ dplfi P,; dsi dP83[s:‘dNP-P’] 
f-1 i=l i=I i=l 

N-l 12 
P2 M Pi 

V(r)+x &--+z+x --f.+kTln(sl) 
i=l 2mi i=l 2Qi 

M 

+kTC 1 In(E 3 
i-2 1 

Q-f fi drtNi’ dp:: p,~~dP Pdel 
i=l i=l i=l 

(C3) 

N pi2 p2 M Pi. 
V(r)+2 -+-+C --!.. 

i=l 2mi 2~4 i=l 2Qi II , 

where a set of normal modes that separates the total linear 
momentum {p’,P} but diagonalizes the kinetic energy has 
been introduced.13 The integrals over the thermostat vari- 
ables (the s) range from zero to infinity. The canonical en- 
semble is therefore generated by the dynamics for the for- 
merly pathological P(O)#O (M>l). (The momentum 
distribution of the canonical ensemble, by definition, in- 
cludes the full fluctuations of the center of mass momentum.) 

It should be noted that only the magnitude of the total 
linear momentum P appears in the partition function 
(Pd-’ exp[-P2/2MkT]). This is consistent with the fact 
that only the magnitude of the total linear momentum P ap- 
pears in the equations of motion. Indeed, the total linear 
momentum can change neither sign nor direction under these 
conditions due to the structure of the dynamics. Therefore, 
the center of mass of the system will move off to infinity. 
This explains why simulations are generally performed with 
P=O. Nonetheless, the canonical distribution is clearly gen- 
erated provided Nod-Hoover chains are used as shown 
above. The directional pathology can be overcome (d > 1) by 
introducing a matrix of Nose-Hoover chains each coupled to 
one component of the kinetic energy tensor. (The off- 
diagonal terms are of course thermostatted to have average 
value zero not NkT.) Under these conditions, the full fluc- 
tuations of the P will be generated. 

For completeness, the zero linear momentum condition 
will be considered. Taking P’(O)=O,sr(O)#O gives P(t)=0 
for all time (the fixed point of the dynamics). This is equiva- 
lent changing the equation of motion for the particle veloci- 
ties presented in Eq. (Al) to 

(C4) 

which can be formally shown to generate canonical en- 

semble, with the zero linear momentum constraint, for all 

In this appendix, velocity Verlet integration of equations 
of motion that yield the microcanonical ensemble (NVE), 
the canonical ensemble (NVT) and the isothermal isobaric 
ensemble (NPT) are reviewed. h 

1. Constant energy (AWE) 

At constant energy, the velocity Verlet integrator can be 
applied in a straightforward manner: 

r~(At)=ri(O)+vi(O)At+Fi(O) g, 
i 

vi(At)=vi(O)+[F,(O)+Fi(At)] &. 
(DO 

i 

An arbitrary set of constraints can be handled by the Shake/ 
Rattle algorithm.‘z22.23 

2. Constant temperature (NW) 

The velocity Verlet integrator for the equations of mo- 
tion, Eqs. (2.37), is 

ri(Atj=r,(0)+vi(O)At+ 
F,(O) 
-------viva 
mi 1 

vi(At)=v,(0)+ 
Fi(O> 
--Vi(O>V&O) $ 

mi 1 
1 $, 

v~(At)=v~(O~+~G~(O~+G~~~~~l g, 

where GE=( l/Q)[Xf!=,m,v~--NfkT]. The velocities are in 
practice determined iteratively through 

1 

vk,(Atj=v&Oj+[GC(0)+G$Atj] $ 

(D3j 

with initial guess +!(Atj=v&-At)+2G*(O)At. Note, if 
constraints are present the iterative determination of the ve- 
locities is independent of Rattle. That is, Vi(O) 

+[(Fi(O)lmi)-v~(O)v&Oj+(F~(At)lmJ]Atl;! is Rat- 
tled and the iterative process is permitted to scale these val- 
ues. (Rattle enforces ZiVi *V riCj = 0 which is independent of 

a scaling factor on the v.) This is possible because all par- 
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titles involved in a common constraint must be coupled to 
the same thermostat within the present formalism. 

3. Constant pressure (NW): Isotropic 

In order to integrate Eqs. (2.9), it is convenient to derive 
velocity Verlet expressions for {q( At) =exp[ - E( At)] 
Xrj(At),ii(At)=exp[rE(Atj]vi(At)} and then convert 
them into desired quantities, {r,(At),v&Atj}. The result is 

slowly, to provide better temperature control in the simula- 
tion.) In addition, Rattle must now be applied as part of the 
iterative procedure. Alternatively, only the center of mass 
degrees of freedom of partially rigid or rigid subunits may be 
barostatted (i.e., scaled by the volume).’ Note that this sec- 
ond procedure produces a slightly different ensemble in par- 
tially flexible molecules. 

4. Constant pressure (NPT): Flexible 

The equations of motion, Eqs. (2.27); the hybrid method, 
can be integrated by deriving expressions for 

,:. 

~(Atj=~(O)+v&O)At+G~(O) q, L, 

si(Atj=exp[- e(At)]$‘(At)r,(Atj, 

ki(At)=exp[-E(Atj]$r(At)vi(At), (W 

e(At)=e(O)+v,(O)At+ W)v&O) 
I 

&(At)=?&(At)i;,(At) 

from velocity Verlet and then convert them into desired 
quantities {ri(At).vi(Atj,i;,(Atj]. The result is 

-vi(At)v5(At)- vi(At)v,(At) $, 1 
v~(At)=vg(0)+[G~(O)+GE(At)] $, - 

-I- 

[ 

Fi(O) 
~~vi(o)v~~o)~2~~o(O~v~(O! 

( 2+~)vi~oMo~] 3;. 

v,(O)v&O) ; 1 
1 At 

p-v,(Atjv&Atj T, 

where 

i 

N 

Gc=i T mi$+Wv”,-(Nf?l)kT , 
f-1 

I 

F,=dV(Pi,t- P& +Gf g mi$. 

i 1 

~(At)=~[O)+v&O)At+G&O) $; 

(D5) - 

iD7‘) 

The velocities can be determined iteratively as in Sec. D 2 vi(At) =e~~(At)-E(o)ll;o(At)~~ ‘(0) vi(O) + - 
,i [ 

F,(O) ’ ’ 

and au arbitrary set of constraints on the particle degrees of mi 

freedom can be handled using the Shake and Rattle algo- 
rithms. However, as the particle velocities are not the time 

-V~(0)V~(O)-2~go(O)Vi(O) 

derivatives of the particle positions, i=v+vg, all the de- 
grees of freedom involved in the constraints must be coupled 
to the same thermostat and this thermostat must, in turn, be 

-( 2+;)v,(0)v,(0)] $}+[F 

coupled to the volume. The volume is partof the surface of -vi(At)vg(At)-2?,,o(Atjvi(At). ‘. 

constraint and links all the constraints in the problem. (The 
Lagrange multipliers for all the constraints appear in the vol- 
ume equations of motion through the pressure tensor and 

- 
i i 

2+d Vi( 
Nf 

At)v,(At) g, 
I 

independent sets of constraints can no longer be said to exist 
as in the NVT case. The restriction on the number of ther- 
mostats can be relaxed in the limit that the volume evolves v@t)=v&N+[G&O 
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At 
-V,(At)v&At) Y, I- 

-T;,o(o)v,(o) ; i;“(O)i-$j ‘(At) 

-?&(At)u&&) 1 $ ; 

where 

1 

i 

N 

GE=; 2 iniV:+~~~-tW~o.Tr[~~o~~o]-(Nf+d”)kT , 
i=l ; I 

Ego= V(Fint-G’& - s Tr[ Fint-YFexJY. 
0 

038) 

The velocities can be determined iteratively a,s in the previ- 
ous two subsections. The constraint that det[ho]=l must be 
enforced with a Shake/Rattle routine (see Appendix E). The 
advantage of the hybrid method over a method involving 
only h is that the volume is integrated in exactly the same 
way as in the isotropic case: In addition, the constraint 
that yso remain symmetric is conserved exactly ,by the inte- 

grator (see Sec. II D) and -the angular momenta of the cell 
remains zero. 

APPENDIX E 

In this appendix, it is shown ho_w the Shake/Rattle algo- 
rithm can be used to constrain det[bJ=l, in the integration 
of the ~$ybrid method,--Eqs. (2.27). Briefly, if the term 
-h(det[holL I) is introduced to the conserved quantity-of the 
hybrid method, Eq. (2.28), then the additional term hI must 
be added to the force on the Fso in Eqs. (2.27). This results in 

the term LEO/ Wgo in the expression for zo. In the Shake/ 

Rattle algorithm’2*23 the following iterative procedure is used 
to determine the ceil positions at time At and the cell veloci- 
ties at time A t/2, 

.A"&? +b 

i&(At)“=i;O(Atjn-’ mtr h,(O), 
- gn 

.~ 

qQ(At/zjrz= ~so(At~2)n-1i;o(Atjn~1 
i 

(El) 

where n labels the iteration number. The value of the nth 
increment to the total multiplier X” is determined by a first- 
order Taylor series expansion: ~ 

- XnAt2* (det[i;o(Atj”-*]-=l j - 
- =- 

2WSO 
det[i;o(Atj~-l]Tr[~~l(At)n-~li;o(~Oj~~.':~~~. 

032) 

The iteration proceeds until ]det[&]- ll=O within a desired 
tolerance. This portion of the algorithm is generally called 
Shake. The velocity part of the algorithm, Rattle, is trivial 
since we simply choose the multiplier A so that 

t;,,(At)=?sO(Atjo+ (E3) 

is traceless: 

= -f Tr&JA;jO]. iw 

It is important to note that the second time derivatives of all 
the variables in the problem are velocity dependent. There- 
fore, the velocities must be generated by repeatedly, (a) iter- 
ating velocity Verlet itself to convergence and (b) applying 
Rattle, until all the velocities are determined within a desired 
tolerance. 

The outlined procedures, Shake and iteration plus Rattle, 
should converge rapidly because the “exact” value of the 
multiplier has already been substituted into the equations of 
motion (d Tr[?so]ldt = 0). Thus, only small corrections, on 

the order of At3, necessary for the finite time step integrator 
to satisfy the constraint within the.desired tolerance are gen- 
erated by Shake and Rattle. We therefore find the CPU time 
taken by this part of the program to be negligible. 
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