
Constant Propagation with Conditional Branches

Mark N. Wegman
Frank Kcnncth Zadeck

IBM T. J. Watson Research Center
Yorktown Heighls.. New York 1059X

1 .O Introduction
Constant propagation is a well known global flow analysis problem.
The goal of constant propagation is to discover values that are constant
on all possible executions of a program and to propagate these constant
values as far forward through the program as possible. Expressions that
have all constant operands can be evaluated at compile time and the
results further propagated. The use of the algorithms presented here
can result in smaller and faster compiled programs.

While the constant propagation problem is easily shown to be
undecidable in general (for example see Kam and Ullman [KaUl76]),
there are many reasonable subsets of the problem that are decidable
and have computationally efficient algorithms. We presents four such
algorithms In this paper. Each algorithm presented here is conrervariw
in the sense that all constants may not be found, but each cons nt
found will be constant over all possible executions of the program. % e
algorithms are presented in order of increasing power; each algorithm
finds at least the constants found by the previous algorithm. These al-
gorithms are among the simplest, fastest, and most powerful global
constant propagation algorithms known.

The first algorithm is by Kildall [Kild73]. His work was among the first
to describe the constant propagation problem and give an algorithmic
solution.

The second algorithm is an easily understood reformulation of the Reif
and Lewis [ReLe77] algorithm. It is unfortunate that this algorithm is
not better known, since it works in time linear to the size of the
DefUseChains yet computes all the constant values of the algorithm by
Kildall.

In the third algorithm, ConditionaiDef, a new propagation strategy is
presented. This algorithm uses the same input data structures as the
algorithm by Reif and Lewis. The new idea presented in
ConditionalDef is a technique for propagating the values so that if any
conditional branches are found to have a constant conditional ex-
pression, the search for constants can ignore parts of the program that
are never executed. The algorithm does a form of dead code elimination
in combination with constant propagation. The first benefit of this ap-
proach is that the algorithm runs faster than the Reif and Lewis algo-
rithm since it does not have to evaluate the sections of the program that
are never executed. A second benefit is that values created in the dead
areas cannot possibly kill potential constants. More constants can
therefore be found by ConditionalDef ‘than the Reif and Lewis algo-
rithm.

Permission to copy without fee ail or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

O1984 ACM 0-89791-147-4/85/001/0291 $00.75

The fourth algorithm. ConditionalConstant. uses a new data structure
and the propagation technique presented in the ConditionalDef to find
a class of constants equivalent to those of Wegbreit fWegb75j.
Wcgbreit’s algorithm discovers all constants that can be discovered by
evaluating all conditional branches with all constant operand%.
ConditionalConstant finds more constants than either ConditionalDef
or Kiidall’s algorithm. The worst case speedup over Wegbreit’s ap-
proach is proportional to the number of variables in the program. The
expected speedup is proportional to the number of variables in the pro-
gram times the number of edges in the program flow graph.

1.1 Uses for Constant Propagation Algorithms
Constant propagation techniques serve several purposes in optimizing
compilers.

Expressions that can be evaluated at compile time do not have to
be evaluated at execution time. If such expressions are inside
loops. a single evaluation at compile time can save many evalu-
ations at execution time.

Code that is never executed can be deleted. This code, commonly
called Dead Code, is discovered by determining conditional
branches that always take one of the possible branch paths. Since
many of the parameters to procedures are constants, constant
propagation used with procedure integration can avoid the swell-
ing of code size that often results from naive implementations of
procedure integration.

The detection of paths that are never taken simplifies the control
flow of a program. The simplified control structure can aid the
transformation of the program into a form suitable for vector
processing. (See Furtney and Pratt [FuPr82] and Pratt [Prat78].)

Constant propagation can be done over a variety of domains. For
example one can look at the type fields of values, and do constant
propagation over that. The basis of many register allocation algo-
rithms is a technique called Value Numbering. Constant propa-
gation can be an integral part of value numbering algorithms.
Value Numbering assigns all uninitialized variables symbolic val-
ues, and propagates these. This may enable detection of equal
values which allows better register allocation since variables with
the same value can share a register.

2.0 F’reliminary Definitions

2.1 Graph Definitions
Since the performance of an algorithm is usually specified in terms of
the size of its input, it is necessary to define some common measures
of program size:

N is the number of statements in the program. For notational
convenience, each node in the program flow graph contains one
expression. This number also closely approximates the number

of definition sites in the program since most statements assign
a value.

E is the number of edges in the program flow graph. A good up-
per bound for E is twice N since conditional statements typi-
cally have only two successors1

V is the number of variables in the program.
c is the size of the DefUseChaim. See sections 4.0 and 8.1 .

Let a program consist of three types of nodes: condilional no&s, label
nodes. and assignment nodes. There is one distinguished node, the srar(
node. Conditional and label nodes represent potential deviations in
control flow through a program. An expression is evaluated at a con-
ditional node and control is subsequently transferred to a label node;
for simplicity, assume that such expressions have no side-effects and
that control is transferred by binary branches.2 Assignment nodes rep-
resent sites at which variables are defined in terms of other variables
and constants; for simplicity, assume that only scalar (i.e. non-
subscripted) variables participate in assignment nodes.’

2.2 The Lattice for Constant Propagation
The output of a constant propagation algorithm is an ourpur arsignmcnr
of lattice values to variables at each node in the program. Not all vari-
ables need be given values at each node. These values will be correct
whenever execution enters a node.

Let all variables defined or used within a given assignment or condi-
tional node be characterized by two attributes, LcvclCell and
ValueCeIl, that represent compile time knowledge about the value of
such variables at the exits of such nodes. As depicted in Figure 1.
LevelCell can assume values from a lattice with three types of elements:
the highest element is lop, the lowest is br##mr, and all elements in the
middle are ummut. In the lattice theoretic sense, no constant is higher
or lower than any other. At the end of constant propagation, a OMIltat
LevelCell at a node means that on all possible executions of the pro-
gram, the associated variable always has the same value when that node
is exited; ValueCell contains the actual value of the constant. AWam
means that a constant value cannot be guaranteed. Tap means that the
variable may bc some (as yet) undetermined constant. Upon termi-
nation of a constant propagation algorithm. all LevelCelIs are either
commt orba(nanr.4

bottom

Fiaure I. The Three Level Lattice

The algorithms start with the optimistic assumption of assigning rcrp to
the LevelCell of all variables at all nodes except the start node. All
LevelCells at the start node are assigned bo#toa~.~ The algorithms pro-
ceed by lowering (in the lattice theoretic sense) the LevelCells of the
variables at each node, as more information is discovered. This pro-
ceeds until a fixed point is achieved. The additional information is
added by applying the meet rules (defined in a later section). Each of

the values for variables at a node corresponds to the conditions prior to
the execution of the statement. If the node is an assignment, the value
of the variable assigned is stored.

2.2.1 Meet Rules
The rules for lowering lattice values are as follows:

a nmp aa
a nti*bommt
eemWnanmmat~catmad (if the values are equal)
amrtaarneamm~t~~ (if the values are not equal)

Figure 2. Rules for Meet

2.2.2 Expression Rules
Variables have values at the begiatting of nodes and at the exita of
nodes. If a variable is not assigned a value, then its value is unchanged
by the node. If the node is an assignment, and any of the variables used
in the expression portion of it has a value of bompm, the value exiting
the statement for that variable is boMoln, If all values used in the cx-
pression portion are constant, the value. of the assigned variable is the
value exhing the expression, when evaluated with those constant values.
Otherwise the value assigned is nip

3.0 Kudau
In KildaIl’s algorithm [Kild73], the program flow graph is used for
propagation of values. The process of visiting a node involves exam-
ination of every variable in the program. Initially a worklist is made up
consisting of all nodes immediately folIowing the start node. A node is
chosen from the worklist, removed from the workliat, and exam&d.
The lattice values stored at the examined node become the lowest values
exiting any preceding node. This may cause the value of an assignment
node to differ from the value stored. In that case all nodes following the
examined node must bc examined, and they are added to the worklist.
If no values change, then no nodes are added to the worklist. The
process repeats until the workliat is empty.

Used naively. the Kildall’s algorithm will fiid those constanta that
Kildall calls Simple Coastunu. Simple conatanta are alI values that can
be proved to be constant subject to two constraints: no infotmation is
assumed about which direction branches will take, and only one value
for each variable is maintained along each path in the program.

Since each variable can only have its lattice value loweted twice, each
node may be visited at most 2 x V times. The time required for
Klldall’s algorithm is E x V node vi&s, and V operations during each
node visit. Thii results in a runrdng time of E x Yz in the worst case.
ThcspacerequiredisNx V.

When Kildall’s algorithm visits a node, it applies a function that maps
each variable in the program to each variable in the program. In the
following sections we reformulate that notion in order to more closely
model what Reif and Lewis did and what we will do. This reformulation
of Kikiall’s algorithm allows Relf and Lewis’s algorithm to run faster
than Kildall’s algorithm. Yet it produces the same information that can
be found by applying KiIdalI’s algorithm.

4.0 DefUseCbaias
Many constant propagation algorithms work on a graph of
DefCJseChains. This data structure is common to optimizing compilers
and is described in many textbooks on compilers such aa Aho and
Ullman [AhUl77]. DefUseChains can be built by many common
dataflow analysis techniques such as those by Allen [AlIe70]. Graham

’ This has been cxpcrimentally verified by Allen [ACFFXOI and Pratl IPrat7Hl. Graphs have up to iV edges for programs containing computed pto statements with all other

2
sratements as targets; these arc very mre.
This i% not an unreasonable assumption. Mosl structured programming constructs give rise to programs with binuy branches: two common cxeepdolls arc the ar stwmenl

3
in Pascal and the computed goto statcmcnt in Fonran. Such stalements arc easily represented by nested sets of binary bmncbca
See the seciion on “Areas for Future Research”.

4 This will be later restricted to be all LevelCells that arc shown to be executable.
J It is possible to interpret the semantics of a programming languap in such a way that it is legitimate to assign w to the variables at the start node. In SOIW cases. such as when

a block of initialization is controlled by a first-lime flag, this will yield superior rewd~s.

202

and Wegman [GrWe76], Kam and Ullman [KaUl76], Tarjan [Tarj75],
Wegman [Wegm83], and &deck [Zade84].

A DefUseChain is a connection from a definifion sire for a variable to
a use sire for that variable. Thii connection must bc reachable along
the Pmgrutn Flow Gruph without passing through another definition
site for that variable. Use sites are normally operands of expressions.
If as a side effect of computing such an expression a new value is stored,
then there is a link between the operands of the expression and the new
definition site. This definition can possibly lead to further uses of the
variable. Thus, the DefUseChains can be viewed as a graph.

In orddr to simplify the presentation of the algorithms, we modify the
definition of DeNseChains. We add new nodes called join n&s to the
DefUseChain graph: One node is added for each use site. We divide
the DefUscChains into two parts: the first part, the DefJoinEdge, starts
at the definition site and terminates at a join node. The second part, the
JoinVseEdge, starts at the join node and terminates at the use site.
There can be several DefJoinEdges but only one JoinUseEdge con-
nected to each joii node. This division allows us to separate the place
where several values for a single variable are joined together from the
place where values for several variables come together as the operands
of expressions. We will associate with each join node and each ex-
pression node a lattice element, i.e. a LevelCell and a ValueCell.

Figure 3 shows a Program Flow Graph and Figure 4 shows the re-
sultant DefUseChain Graph for a simple program. The join nodes are
shown as boxes.

4
X+

A
Yf

c
Y +z

x+

,A/
+x+y+z

Figure 3. Program Flow Graph

Figure 4. DefUseChains

Variables can be assigned expressions that do not depend on any other
variables. Read statements or assignments of constants are examples

of these. These distinguished definition sites are called the RootEdges
because they form the roots of the DefUseChain Graph. Each of these
statements also has a LevelCell and a ValueCell that supplies the initial
value to replace the non-existent expression.

5.0 Reif and Lewis
The algorithm by Reif and Lewis [ReLe77][ReLe82] finds all Simple
Constants. The significance of this algorithm is that it uses a sparse
representation to propagate the values through the program. The use
of this sparse representation improves the time and space complexity
of Kildall’s algorithm but still finds all Simple Constants.
Reif and Lewis’s algorithm works as follows:6

A worklist is initialized to contain aU RootEdges from the
DefUseChain graph. The definition site LevelCells are assigned
&rent if the value of the expression cannot be evaluated, other-
wise they are assigned meas and the ValueCell is initialized to
the value of the constant. All other LevelCells are assigned the
value rap.

DefJoinEdges are taken off the worklist. The values at the source
of the DefJoinEdge are compared to the values at the destination
join node. These comparisons are performed under the rules given
in “Meet Rules”.

If this causes the value in the LevelCell to be lowered, the new
values are propagated along the JoinUseEdge to the use site. The
expression is recomputed and perhaps lowered by the rules in
“Expression Rules”. If the new vahte is lower than the value stored
for the expression then all DefJoinEdges with their source at this
node are added to the worklist.

5.1 Asymptotic Complexity
The time complexity of this algorithm is proportional to the size of the
DefUseChain Graph. The Reif and Lewis algorithm requires that each
DefUseChain be visited at least once and at most twice. The visits oc-
cur when the value of its definition site is lowered to either oons~ or
bollbm.
One lattice element is required for each join node and expression node
in the DefUseChain Graph. The number of join nodes is smaller, but
linearly related to the size of the DefUseChain Graph. The size of the
DefUseChain Graph is discussed in the section that describes the
Global Value Graph.

5.2 Advantages of Reif and Lewis
The algorithm by Reif and Lewis was not the first algorithm to use a
sparse representation for propagation, It was the first to use such a
representation and find all Simple Constants. There are many global
constant propagation algorithms that are in common use and resemble
Reif and Lewis but do not achieve the same results. The constant
propagation algorithm described by Ferrante and Ottenstein (FeOt82]
is inherently weaker than that done by Reif and Lewis.* Variants of the
weaker algorithm are used by Horowitz in the Cornell Program
Synthesizer Generator9 and by Fabri in the Experimental Compiler
System project at IBM.tO

In these weaker algorithms, propagation is deferred at join nodes until
all edges that reach that node have been visited. If they all have the
same value, the join node is given that value. These algorithms start
with the assumption that aft expressions have &r&m and attempt to
raise the lattice value to menr when it can prove that ah values that
reach that location are constant. Each DefUseChain is only visited
once. The weaker algorithms are less optimistic in their propagation.

The Rcif and Lewis algorithm as originally presented used s Global Value Graph as its spsme representation. The following presentation uses the DefUseChain graph. These

7
two representations produce equivalent results when used with thii algorithm. The Global Value Graph data structure is presented later.
This implies that the expression may be evaluated twice for every term of the expression. If the expression is large. this can be expensive. Rcif and Lewis store the expression
as a Wee and evaluate tha leaves and intamal nodes of the tree as their value changes. Another possible method is to have a punter associated with each expression. This counter
is initialized 10 the number of terms in the expression and is decremented each time another term is lowered to value constant. The expression is only computed when the counter

*
reaches zero and no input term has heen assigned kaba.
Many other algorithms commonly found in the lileralurc are cvcn weaker than this. The algorithm in Aho and Ullman IAhUl781 tdvcs UD if any use has more than one definition
that reaches it.

9
10

This work has not been published as of lhe date of this paper. The knowledge of this work is by private communication.
The source of this reference is the interns1 documentation of the Experimental Compiler System at IBM. The paper was never published due to the untimely death of the author.

293

They never propagate any value unless they are certain that the value to a worklist if evaluation of conditional expression indicates control
will never invalidated. may pass along those exit edges.

The major drawback of this approach is that propagation cannot pro-
ceed around cycles in the DefUseChain Graph. These cycles are typi-
cally the result of simple loops in the program. The Reif and Lewis
algorithm finds more constants than the weaker algorithms since Reif
and Lewis can propagate through loops. In Figure 5, the variable i
always has the value 1 at the bottom of the loop. The weaker algo-
rithms get stuck on the loop and fail to discover this constant.

This algorithm is able to ignore any DefJoinEdge whose definition oc-
curs on a program flow graph edge that is never executed. Thus, this
algorithm accomplishes a form of Deud Code Eliminurion.”

This algorithm uses two worklists. The fit, FlowWorkLisr, is a worklist
of Program Flow Graph edges and the second, DefWorkLisr, is a
worklist of DefJoinEdges.

ConditionalDef works as follows:

i- 1
do (...I

J. - i
i - ft...)
(no stores are done intoj here j

The FlowWorkList is initialized to have the edge entering the Start
Node of the program. The LevelCells and ValueCells for the
DeNseChain Graph are Initialized as in Reif and Lewis. The
DefWorkList is initially empty.

Each node also has associated with it a flag, the

i--j
end

Figure 5. Simple Program Loop

6.0 ConditionalDef
Kildall’s and Reif and Lewis’s algorithm find all constants that can be
found without taking conditional branches into consideration. Consider
the example shown in Figure 6. Neither algorithm is capable of finding
this constant since they make no assumptions about the possible di-
rections that branches can take. Since i is atways I, the conditional
always takes the true branch and j is always equal to I. Such code may
be the result of procedure integration or abstract data type compilation.

i-- I
. . .
lfi- 1

tbenj- I
elsej+Z

Figure 6. Conditional Constant Definition

The goal of ConditionalDef is to find more constants than the Simple
Constants found by Kildall or Reif and Lewis. This is accomplished by
intelligently looking at the results of conditional branches. Whenever
we can assume that a conditional expression is always constant, we as-
sume that the branch that it guards will only go in one direction.
To exploit this knowledge we use a different ordering of the
DefJoinEdges. In this new ordering we may not ever include some
DefUseChains. Reif and Lewis are able to propagate any DefJoinEdge
that did not have the value IV. In ConditionalDef. we will defer the
evaluation of any DefJoinEdge until the Program Flow graph node that
is the source of that DefJoinEdge is marked executable.
Edges are marked executable by symbolically executing the program,
beginning with the Start Node. Whenever a node is executed, the nodes
in the program flow graph immediately following that node are added

ExecutableFlog that allows the expression to be evaluated. This
flag is initially false for all nodes.

Execution is halted when both worklists become empty. Execution
may proceed by processing items from either worklist.

If the item is a Program Flow Graph edge from the FlowWorkList
the action is to mark the ExecutableFlag true. If the
ExecutableFlag had been false, then evaluate the expression ac-
cording to the rules in “Expression Rules”. If the result is not nsp
do VisitExpression.

If the item is a DefJoinEdge from the DefWorkList, the source
value is combined with the value at the join node according to the
rules in “Meet Rules”. If this causes the lattice value to be low-
ered, the new value is then propagated to the expression. If the
ExecutableFlag is true for that expression, the expression is eval-
uated. If evaluation causes the LevelCell of that expression to be
lowered, do VisitExpression.

VisitExpression is defined as follows:

1. If the expression is part of an assignment node, add all
DefJoinEdges starting at the definition for that node to the
DefWorkLiit.

2. If the expression controL a conditional branch, some flow graph
edges will have to bc added to the FlowWorlcList. If the LevelCell
has value bonorn, both exit edges must be added to the
FlowWorkList. If the value is cvrunmr only the flow graph edge
that is executed as the result of the branch is added to the
FlowWorkList.

6.1 Asymptotic Complexity
Each DefUseChain can only be examined twice, as in Kildall and in Reif
and Lewis. Nodes in the program flow graph are visited once for each
in-edge that they have. Because nodes may have at most two out-edges,
the number of edges in the graph is lilted to twice the number of
nodes. This makes the asymptotic running complexity of thii algorithm
equal to twice the number of nodes in the flow graph plus twice the
number of DefUseChains or 2 x N + 2 x C.

II rhcre arc IWO cla&xl technique, both 4led Dud C’odr Elimination. The goal ol one technique is loeliminate code lhal can never be executed. This is what is accomplished
hcrc. The goal OI the other tuchniquc is 10 dclctr rction\ of code wh~sc rchul~s are newr used. (See Allen and Cockc [AICo721.) We do no1 do this. Each ol these lechniqueh
rinth a diflerrnt claw of dud code. Ncilhcr whwmcr the other.

294

6.2 Significance of Algorithm

The asymptotic complexhy of this algorithm is the same as the Rcif and
Lewis’s algorithm. The actual execution time should be better in most
casts. This algorithm can skip sections of the program that arc inac-
cessible at execution time. In the compilers for languages such as Ada
and PL.8 where procedure integration is performed, or for LISP com-
pilers where macro expansion is performed, this may provide a signif-
icant improvement in both compile time and execution time
performance. In Figure 7, the plus routine is a macro that is expanded
by the compiler. At compile time, the conditional expression for the
execution time type check can be totally eliminated.

(setq i I)

IMP
(cond ((greaterp i IO) (go our)))
. . .
(setq i (plus i I))

(go loopl
out

Iplus is a macro which expands in line]
[to the following.]
(It replaces x with the first argument]
1 to the macro and y with the second. 1

konll
((and (integer x) (integer y))

(iiteger_crdd x y))
{The result of integer-add is an integer.]

.
1

Figure 7. Removal of Conditional Type Check

This algorithm is also useful for propagating constants that are the result
of constant parameters in Algol like languages. Allen et.al. [ACFFgO]
claims that over 24 percent of all parameters to subroutines in PL/I are
constants. Scheifler [&he771 and Bail [Ball791 have considered the
effects of procedure integration on optimization. Ball does a form of
ad hoc dataflow analysis to estimate the effects of a constant parameter
being passed to a procedure. He reports positive results on the size and
execution time of the complied code even though his constant propa-
gation technique only discovers the Simple Constants found by Kildall.
In many cases, procedure integration followed by conditional constant
propagation could substantially improve the quality of code generated.

7.0 Procedure Integration

Even if the parameters are only potentially constant, procedure inte-
gration can be combined with constant propagation. A prepass can
create the DefUseChains for all proceduresra Then it is possible to in-
tegrate only those statements which are executable based on constant
propagation through the DefUseChains of the procedure. Consider
Figure 8. The value of the string s always has value ‘abc’ at the begin-
ning of the loop. Unless the concal and rrtrnc routines are integrated
these constants can never be discovered. Furthermore, even if it is not
desirable to teave the integrated forms expanded inline (because of
space constraints), the invariant value of the string s can still be safely
guaranteed.

s + ‘abc’
do .

s .- concu~(s. ‘de’)
s a- ind?lc(s. 2)

end

procedure concar(u. b)
return (a I I b)

end concat

procedure truncla, i)
if flength(a) < i)

then do
long involved error recowry

end
else return (a/l : lengrhla) - i])

end rrunc

Figure X. Procedure Jntegration to Find Constants

The advantages of combining procedure integration with constant
propagation, as opposed to the more naive approach of integrating and
then doing constant propagation, are in the domain time and space
saving. If one integrates first, one must expend both time and space to
copy parts of the code that are not relevant for that execution. Then
these irrelevant parts must be thrown away. in many compilers that
perform procedure integration, the construction of the DefUseChains
is not done until after the integration. Since this construction process
requires time and space proportional to the number of variables times
the number of statements, there is a considerable potential gain to be
made by breaking the process into small distinct parts.

8.0 ConditionalConstant
The ConditionalDef algorithm is able to find all constants that Reif and
Lewis can plus those extra constants that are the result of not applying
definitions defined along paths not executable. While this is correct, it
is not the best that can be done by taking all branches into account.
ConditionalDef fails because even though both a definition site and a
use site can be executable, there may be no executable, definition free,
path in the flow graph that connects the two sites. When this happens,
ConditionalDef unnecessarily propagates the definition site to the use
site causing information to be lost. ConditionalConstant works because
its DefUseChains do not span paths which are potentially executable
at both end points but not in their middle.

Consider the program shown in Figure 9. Statement fb) provides the
only possible value for statement tc). this is true since the path through
(b) is the only path to (c) (we know this because the condition must
atways be true). ConditionalDef will not find this because it will apply
all DefUseChains that start from (a) and the algorithm has no infor-
mation that those values are really killed by (b).

i-- 1
J’ .- 2 (a)

ifi= I
then j + 3 (h)

k+j (c)

Figure 9. Constant Not Found by ConditionalDef.

In order to discover more constant values, the DefUseChains structure
must be enhanced. To do this we will adopt a new representation which
maybe less sparse than DefUseChains. In this new representation all
DefUseChains are iuterrupted at critical sections of the program. By
interrupted, we mean that there is a chain from the definition to the
critical section and then another one away from the critical section. The

one away from the critical section may be to either another critical sec-
tion or to the use site. i+l i+2 i+3

The birthpoints of Reif and Tarjan (defined in the next section) turn
out to identify the critical sections. In ConditionalConstant we modify
the Global Value Graph of Reif and Tarjan so that it can be used with
ConditionalDer and compute all possible Conditional Constants.

8.1 The Global Value Graph
Reif and Tarjan [ReTalll] have developed a more sophisticated variant
of DefUseChains called a Global Value Graph. In the Global Value
Graph, chains are built from each birrhpoinr of the variable to each
reachable use site for that variable.

Definition: Birthpoints for a variable, v, are defined as follows:

04-i bci c+i

Figure II. DefUseChains for Previous Program
. Each definition site for Y is a birthpoint.

. Let n be a node with two or more in-edges. If there is a node m
which is a birthpoint for Y and there is a birthpoint free path from
m to n along one in-edge to n but not along the other in-edges
to n. then n is a birthpoint for Y. A path from m ton is a bitihpoinl
free parh if the path traverses no nodes that are birthpoints for v.

In DefUseChains, there are many definitions that can reach a use. In
the Global Value Graph, only one birthpoint can reach a use. This ob-
servation is critical to the Value Numbering problem and this was the
reason Reif and Lewis introduced birthpoints.

The Global Value Graph has an advantage that the worst case size
grows with E x V rather than E’ x V for the DefUseChains Graph.

It is possible to construct a program where the size of the DefUseChains
graph is F x V. An example of a program giving rise to this behavior
is shown in Figure 10 through Figure 12. In this example, each of se-
veral definition sites for each variable reaches each use site for each for
each variable. This behavior does not happen for the Global Value
Graph since the join node is a birthpoint.

i+l i+2 i+3

aei bei cci

Figure 12. Global Value Graph for Previous Program

aekctj
whenado

i-l
end
wkubdo

i-2
end
WhtOCdO

i+3
end

end

8.2 ConditionalConstant Algorithm
The Global Value Graph itself is not enough to solve the problems of
the ConditionalDef algorithm. In the Global Value Graph, birthpoints
are placed at each node in the Program Flow Graph where different
information for a variable enters that node from different in-edges.
We must augment this representation so that we can identify which of
those in-edges through which execution can actually pass. This iden-
tification is accomplished by adding an identity assignment to each node
that is an immediate predecessor to a biipoint node, when that
biipoint is not a definition site. An i&r@ assignmenr for the vari-
able i is an assignment statement of the form i-i. Thus all the chains
that enter the node along an edge can only be propagated to the
biihpoint if that in-edge is executable.

Conditional Constant works as follows:

select k
whenodo

a-i
end
whenbdu

b-i
end
wheacda

c-i
end

end

1. Find the biihpoints for the program using the algorithm given by
Reif and Tarjan.

2. At every node that is a birthpo&t that is not also a definition site,
insert an identity assignment along each edge into that node. An
identity assignment should also be added at the birthpoint. This
will cause a new node to be added to the graph for each identity
assignment added.

3. Build a DefUseChain Graph over the resulting program.

4. Use the propagation technique presented in the ConditionalDef
algorithm to propagate the constants over this graph.

Figure 10. Worst Case Behavior of DefUseChains 8.3 Asymptotic Complexity
ConditionalConstant has the same asymptotic time and space corn-
plexity as the ConditionalDef algorithm. The average case may be
somewhat larger because the average size of the Global Value Graph
may be somewhat larger than that of DefUseChains.

This algorithm is equivalent in power to an algorithm by Wegbreit
[Wegb’lS]. Wegbreit’s algorithm is a variation of the algorithm by
Kildall that accounts for conditional branches. Wegbreit’s algorithm
requires ,!? x V operations since the entire set of variables must be
examined to assign M&m to a single variable.

290

9.0 Theorems and Propositions
in this section we will first show that the algorithm is conservative. By
this we mean that the algorithm does not label variables, which are not
constant, as constant. We then show that the algorithm is at least as
powerful as Wegbreit’s, and finds all the constants that his algorithm
does.

The first observation in showing that the algorithm is conservative is to
note that ConditionalConstant is derived from ConditionaiDef by in-
serting some identity assignments, and then running ConditionaiDef.
Therefore, since adding identity assignments cannot change the se-
mantics of a program we need only prove that ConditionaiDef is con-
servative.

Before we define conservative more formally, we need the concept of
an executable sequence.

Defhdtion: An executable sequence is a sequence of tupies, where each
tuple consists of a node in the flow graph and a lattice element for each
variable. The first tuple contains the start node, and each subsequent
tuple is derived by evaluating the expression at the node and changing
values as appropriate. By deriving values of expressions, the next tuple
may be determined.

Definitinn: An output assignment is conservative if the values of vari-
ables at each node are no higher in the lattice theoretic sense than the
values when that node is reached on any possible executable
sequence.‘)

Theorem: The output assignment derived from ConditionalDef is con-
servative and an execution sequence visits only those nodes
ConditionalDef labels as executable.

Prooft Suppose to the contrary. Then there must be a shortest exe-
cution sequence which either visits a node not labelied executable or
which has a value lower than the output assignment to a variable at that
node. if a node not labelled executable, is on the path, it must be the
first such node or else there is a shorter such path. The preceding node
on the path must be a conditional, and the values of the variables used
in the condition must be different in the sequence than those in the
output assignment, otherwise the node would.have been labelled exe-
cutable. But then there is a shorter path.

Thus, there must be a value which is larger in the output assignment
than on the sequence. That value is used at the last node in the shortest
sequent. Therefore there must be a preceding assignment node to the
variable, and at the assignment node the values agree with the output
of ConditionalDef. There must be a DefUseChain from that assign-
ment node to the last node in the sequence, since there are no inter-
vening assignments nodes. Thus, the value at the last node must be
correct. QED.

Now that we have shown that we do not find more constants than is
correct, we wish to show that we claim as many constants as other al-
gorithms. We compare our algorithm to Wegbreit’s which finds more
constants than Kildall’s. Wegbreit’s algorithm is identical to Kiidall’s
except that Wegbreit’s algorithm does not propagate values along
branches from conditions, until it shows that the branch may be taken.

Theorem: The output assignment derived by ConditionalConstant gives
each variable at each node a value which in the lattice theoretic sense
is at least as large Wegbreit’s algorithm’s output assignment.

Roof: Without loss oi generality we may assume that Wegbreit’s aigo-
rithm is working on the same, modified graph that ConditionalConstant
works on. Clearly, throwing in additional nodes with identity assign-
ments does not change the values used by Wegbreit’s algorithm.

Suppose to the contrary. Then there is a point in the execution of
Conditionalconstant where it assigns the first value which is lower than
Wegbreit’s value.

Clahm That point cannot be at a node which Wegbreit’s algorithm de-
tects as unexecutable.

if it is at an unexccutahlc node then Weghrcit’s algorithm must also
detect that a branch can only go in one direction, and
ConditionalConstant does not detect this. That implies that Wegbreit’s
algorithm detects a constant at an expression and that
ConditionalConstant doesn’t. Moreover, ConditionalConstant must
lower the value of the expression before it gets to the unexecutable
node, and hence there is an earlier point.

The variable whose value is lowered has a DefUseChain into it, along
which the lower value comes. To arrive at a contradiction, all we must
show is that there is a path of executable nodes from the definition site
to this use site and there are no intervening assignment nodes on this
path. We leave it as an exercise to the reader to show that Wegbreit’s
algorithm will always propagate values along such a path.

Because of the way that identity assignments have been added to the
graph, the definition site is either (1) one of the identity assignments
preceding a join node or (2) on all paths from the root to the use site the
definition site is the last assignment node for that variable.

in case (2) all paths from the start node to the use site must pass
through the definition site. Thus, if the use site is executable, then there
must be a path from the root to the use site of executable nodes, and the
definition site must be on ail such paths. Moreover, the definition site
must be the last assignment node for that variable on that path. Thus,
in case (2) there is an executable path and there is a contradiction.

in case (I) the value at the join node becomes lower in
ConditionalConstant than in Wegbreit’s algorithms, but the values of
the variable at the identity assignments preceding the join node are no
lower. The identity assignments are executable in ConditionalConstant
only if they are executable in Wegbreit’s algorithm (by case 2).
ConditionalConstant uses the same meet rules as Wegbreit’s algorithm
to compute the value at the join. and must be using the same or higher
values. The meet rules for lattices assure that the meet of one set of
values cannot be lower than the meet of a second set of values unless
the first set contains a lower value to begin with. Thus, the result at the
join may not be lower under ConditionalConstant. QED

10.0 optimizations
There are two improvements that apply to all the algorithms given in
this paper.

1. it is normally beneficial to propagate anything that is known to be
kottem before propagating anything else. Since nothing is ever
examined after it goes to botfom, getting something in one step
versus two will improve the performance. This improvement will
not effect the asymptotic complexity of any algorithm.

2. Some constants can be inferred from conditional expressions. If
the conditional expression test whether i is equal to 3. it can be
assumed that i will have the value 3 if the true branch is taken.
Thus, we can determine that i is a constant on some branches,
even if we cannot determine that i is a constant at its birthpoint.
There are many other optimizations similar in nature to this that
have been compiled by Allen and Cocke in [AiCo72].

11.0 Areas for Future Research

a Value Numbering is a problem that is related to constant propa-
gation. An example of value numbering is:

Consider a subroutine which is passed the argument i
and which immediately contains the assignment j-i.
After the assignment we know that i and j have the
same value, however we don’t know what that value is.

More generally, we can give a symbolic value to i and the other
arguments (say k) at the beginning of the routine and compute
symbolic values, thus we can later determine that i + k is equal to
j + k because we fetch the symbolic value stored in j when we
create the symbolic value corresponding to the sum.

I.9 This notion is wry similar to Ihe noliun of a safe usrignmrnl by Ciraham and Wcgman [GrWe761. In Graham and Wcgman. an sxccutablr scqurncc could be any path. even if
Ihe branch condilions could be proven con61anl. They did no1 idlow the branch taken by the path. Thus. a safe assignmen is wrnerva~ivc but a conservative assignment is not
necrswrily safe.

.

This can all be done in a straight forward manner, However, to
do a complete job involves a number of complications: if you can
show that certain values must be equal. then you can determine
that certain branches must be taken. Moreover, suppose there is
a pIace in the program where two edges join and the value of a
variable, say i cannot be determined. Then we can assign i at that
location a new symbolic value and conclude that if in a later as-
signment j-i that the two values are identical. If we merely re-
cord that we know nothing about the value of i we will also know
nothing about the value of j. Reif solved the problem of creating
new symbolic values and propagating those values while only
slowing the algorithm down by a factor of Ackerman’s inverse.
However, he did not take any conditional branches into account.
We have reason to believe that by slowing the base algorithm
down by a log factor that this can also be accounted for.

In Figure 7, a very simple form of type propagation was per-
formed. In LISP, it is thought to be sufficient to propagate the
type of any assignment node forward. The information is killed
according to rules that are the same in the constant propagation
problem. To get good information in SETL, the problem is some-
what harder. The goal is to infer the type of the object from the
way it is used. This problem was originally defined by Tenenbaum
[Tene74]. SETL has only one primitive data type to program with,
the set. Since sets are rather inefficient to implement, the SETL
compiler attempts to pick a more efficient representation of an
object based on the way the object is used.

The problem is bidirectional. The information about the way that
a variable is used must be propagated backward as well as forward.
Tenenbaum’s algorithm for doing this requires alternating forward
and backward passes. He does each pass in a method similar to
Kildall. It may be possible to use a variation of DefUseChains to
represent the propagation space. The chains must be bidirectional.
That is. an edge from the use to the definition in addition to an
edge from the definition to the use. There are many other details
that must be worked out, but it does appear that this is a fairly
straightforward extension to the ideas presented here.

. In the Range Propagation Problem described by Harrison [Harr77],
the goal is to propagate ranges of values in an attempt to fix the
upper and lower bounds of variables. This is useful to remove
subscript range checking from areas of programs that can be
proven safe. This problem differs from simple constant propa-
gation in that the lattice may have an infinite number of levels.
rather than just three. There are subsets of this problem in which
the number of lattice levels is small. Consider the problem of de-
termining the possible values of a label variable in Fortran. The
number of labels in a program is small and fixed, This type of
problem should be easily solved by modifications to the algorithms
presented here.

l Arrays are difficult for almost any data flow analysis problem. The
simple solution that is used in almost all implementations of opti-
mizing compilers is to treat any assignment to an array as an as-
signment of bottom unless that array is always indexed by
constants. To do anything more sophisticated, may require a much
more expensive symbolic evaluator such as the one given in the
previous example.

l It is almost always desirable to integrate a function if all of the
parameters are constant and the function references no global or
free variables. In the cases where only some parameters are con-
stant, the decision is not so clear. Some benefit can be gained by

unrolling loops and recursion if the space and time can be con-
trolled by good heuristics. This problem has been investigated by
Wegbreit [Wegb75], Ershov [Ersh77], and Wegrnan [Wegmll).

l Each algorithm given in this paper has the restriction that only one
value for each variable is kept at each join node. If Figure 13, the
value of c cannot be determined because separate values are not
maintained along each flow graph edge that reaches the ex-
pression. It is possible that the modified Global Value graph,
combined with a carefully constructed node splitting could solve a
large subset of this without the combinatorial explosion of both
time and space normaliy associated with node spitting algorithms.

If . . .
then do

a*2
b-3

end
elsedo

a+3
b+2

end
c+a+b

Figure 13. Node Splitting Example

. In this paper we have managed to combine constant propagation
with a form of dead code elimination and procedure integration.
One of the open questions in compiler optfmization is the proper
order to apply the various optimizations. Some optimizations ex-
pose opportunities for other optimization techniques. We have
eliinated the need to be concerned about the order of the opti-
mizatiorts we have combined and in the process created a more
powerful algoritbn~. It would be interesting to see if other tech-
niques could be integrated in a similar manner.

12.0 Conclusions
The work presented here is based on three fundamental results con-
cerning the constant propagation problem, The first is KiJdalI’s defi-
nition of the problem involving the three layered lattice. The second is
Reif and Lewis’s algorithm involving a sparse representation of propa-
gation space. The fast is Wegbreit’s algorithm that used the result of
conditional operations to improve the class of constants found.

We have added two relevant results of our own. The first result is that
a careful ordering of propagation in concert with symbolically executing
the conditional expressions can increase the number of constants found
with no penalty in time or space. The second result is a new and dif-
ferent way of representing the propagation space that captures the
notion of values flowing along program flow graph edges but still re-
mains sparse.

We have used these five results to craft an algorithm that is efficient in
both time and space, and yet finds a very broad class of constants.

13.0 Acknowledgements l

We would like to thank our colleagues at Yorktown who originally in-
vestigated many of the problems which we addressed. As welf, we
would like to thank our colleagues who have made many suggestions
on the paper itself. We would also Tie to thank John Reif who made a
special trip to Yorktown to help us understand his work.

288

Bibliography

[ACFFXO]

[AhU177]

[AICo72]

Alien, F. E., Carter, J. L., Fabri, J.. Ferrante, J.. Harrison,
W. H., Loewner, P. G., Trevillyan, L. H., The Exper-
imental Compiling System. IBM Journal of Research and
Development, Nov. 1980, vol. 24. no. 6, page 695-7 15
Aho, A. V., Ullman, J. D., Principles of Compiler Design,
Addison-Wesley Publishing Company, 1977.
Alien, F. E., Cocke. J., A catalogue of optimizing transf-
ormations. Design and Optimization of Compilers, Rustin,
R. (Ed.). Printice-Hall, Englewood Cliffs, N. J., July 1972.
This was also published as IBM Research Report No.
RC3548.

[AlIe

[Ball791

[Ersh77]

[FeOt82]

Allen. F. E., Control Flow Analysis. SIGPLAN Notices,
July 1970.
Ball, J. E., Predicting the effects of optimization on a pro-
cedure body. Proceedings of the SIGPLAN Symposium on
Compiler Construction, Aug 1979, page 214-220.
Ershov. A. P., On the essence of compilation. IFIP
Working Conference on Formal Description of Progmm-
ming Concepts, Aug. 1977.
Ferrante, I.. Ottenstein, K. J., A program form based on
data dependency in predicate regions., Nov 1982. no.
RC-9685.

[FuPr82]

[GrWe76]

[Harr77]

[KaU176]

Furtney, hf., Pratt, T. W., Kemal-control tailoring of se-
quential programs for parallel execution. Proceedings of
the 1982 International Confemtce on Pamllel Processing,
Aug. 1982, page 245-247.
Graham, S. L.. Wegman, M., A fast and usually linear al-
gorithm for global flow analysis. Journal of the Association
for Computing Machinery January 1976, vol. 23, no. 1.
page 172-202.
Harrison, W. H., Compiler analysis of the value ranges for
variables. IEEE Transactions on Software Engineertng,
May 1977, vol. SE-3, no. 3, page 243-250.
Kant, J. B., Ullrnan, J. D., Global data flow analysis and
iterative algorithms. Journal of the Association for Com-
puting Machinery, January 1976, vol. 23, no. 1, page __^ _-_
158-171.

[KiId73]

[Prat78]

[ReLe77]

[ReLe82]

[ReTa

[Sche77]

[Tene74]

[We8b75]

(WegmBlJ

lWegm831

[Zade84]

Kildall. G. A., A unified approach to global program opti-
mization. Confbence Record of the First ACM Symposnan
on Principles of Pragramming Languages, October 1973,
page 194-206.
Pratt, T. W., Program analysis and optimization through
kemal-control decomposition. Acta Informatica
Processing, 1978, vol. 9, page 195-216.
Reif. J. H.,Lewis, H. R., Symbolic evaluation and the
global value graph. Conference Record of the Fourth ACM
Symposium on Principles of Programming Lunguages, Jan
1977, page 104-I 18.
Reif, J. H., Lewis, H. R., Symbolic evaluation and the
global value graph. published by Harvard University,
Aiken Computation Laboratory, 1982, no. TR-37-82.
Reif, J. H., Tarjan. R. E., Symbolic program analysis in
almost linear time. SIAM Journal of Computing, Feb.
1981, vol. II. no. I, page 81-93.
Scheifler, R. W., An analysis of inline substitution for a
structured programming language. Communications of the
ACM. Sept. 1977. vol. 20, no. 9, page 647-654.
Tenebaum, A. M.. Type determination for very high level
languages. PhD thesis, published by Courant Institute of
Mathematical Sciences, Oct. 1974.
Wegbreit, B., Property extraction in well-founded property
sets. IEEE Transactions on Softnwre Engineering, Sept.
1975, volume se-l, number 3, page 270-285.
Wegman, M., General and Efficent Methods for Global
Code Improvement. PhD thesis of the University of
California at Berkeley, 198 1.
Wegrnan. M.. Summarizing graphs by regular expressions.
Conference Record of the Tenth ACM Symposium on Prtn-
ciples of Programming Languages, January 1983, page
203-216.
Zadeck, F. K., Incremental dataflow analysis in a structure
program editor. Proceedings of Ike SIGPLAN 81 Sympo-
sium on Compiler Construction, June 1984, vol. 19, no. 6,
page 132-143.

299

