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1 .O Introduction 
Constant propagation is a well known global flow analysis problem. 
The goal of constant propagation is to discover values that are constant 
on all possible executions of a program and to propagate these constant 
values as far forward through the program as possible. Expressions that 
have all constant operands can be evaluated at compile time and the 
results further propagated. The use of the algorithms presented here 
can result in smaller and faster compiled programs. 

While the constant propagation problem is easily shown to be 
undecidable in general (for example see Kam and Ullman [KaUl76]), 
there are many reasonable subsets of the problem that are decidable 
and have computationally efficient algorithms. We presents four such 
algorithms In this paper. Each algorithm presented here is conrervariw 
in the sense that all constants may not be found, but each cons nt 
found will be constant over all possible executions of the program. % e 
algorithms are presented in order of increasing power; each algorithm 
finds at least the constants found by the previous algorithm. These al- 
gorithms are among the simplest, fastest, and most powerful global 
constant propagation algorithms known. 

The first algorithm is by Kildall [Kild73]. His work was among the first 
to describe the constant propagation problem and give an algorithmic 
solution. 

The second algorithm is an easily understood reformulation of the Reif 
and Lewis [ReLe77] algorithm. It is unfortunate that this algorithm is 
not better known, since it works in time linear to the size of the 
DefUseChains yet computes all the constant values of the algorithm by 
Kildall. 

In the third algorithm, ConditionaiDef, a new propagation strategy is 
presented. This algorithm uses the same input data structures as the 
algorithm by Reif and Lewis. The new idea presented in 
ConditionalDef is a technique for propagating the values so that if any 
conditional branches are found to have a constant conditional ex- 
pression, the search for constants can ignore parts of the program that 
are never executed. The algorithm does a form of dead code elimination 
in combination with constant propagation. The first benefit of this ap- 
proach is that the algorithm runs faster than the Reif and Lewis algo- 
rithm since it does not have to evaluate the sections of the program that 
are never executed. A second benefit is that values created in the dead 
areas cannot possibly kill potential constants. More constants can 
therefore be found by ConditionalDef ‘than the Reif and Lewis algo- 
rithm. 
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The fourth algorithm. ConditionalConstant. uses a new data structure 
and the propagation technique presented in the ConditionalDef to find 
a class of constants equivalent to those of Wegbreit fWegb75j. 
Wcgbreit’s algorithm discovers all constants that can be discovered by 
evaluating all conditional branches with all constant operand%. 
ConditionalConstant finds more constants than either ConditionalDef 
or Kiidall’s algorithm. The worst case speedup over Wegbreit’s ap- 
proach is proportional to the number of variables in the program. The 
expected speedup is proportional to the number of variables in the pro- 
gram times the number of edges in the program flow graph. 

1.1 Uses for Constant Propagation Algorithms 
Constant propagation techniques serve several purposes in optimizing 
compilers. 

Expressions that can be evaluated at compile time do not have to 
be evaluated at execution time. If such expressions are inside 
loops. a single evaluation at compile time can save many evalu- 
ations at execution time. 

Code that is never executed can be deleted. This code, commonly 
called Dead Code, is discovered by determining conditional 
branches that always take one of the possible branch paths. Since 
many of the parameters to procedures are constants, constant 
propagation used with procedure integration can avoid the swell- 
ing of code size that often results from naive implementations of 
procedure integration. 

The detection of paths that are never taken simplifies the control 
flow of a program. The simplified control structure can aid the 
transformation of the program into a form suitable for vector 
processing. (See Furtney and Pratt [FuPr82] and Pratt [Prat78].) 

Constant propagation can be done over a variety of domains. For 
example one can look at the type fields of values, and do constant 
propagation over that. The basis of many register allocation algo- 
rithms is a technique called Value Numbering. Constant propa- 
gation can be an integral part of value numbering algorithms. 
Value Numbering assigns all uninitialized variables symbolic val- 
ues, and propagates these. This may enable detection of equal 
values which allows better register allocation since variables with 
the same value can share a register. 

2.0 F’reliminary Definitions 

2.1 Graph Definitions 
Since the performance of an algorithm is usually specified in terms of 
the size of its input, it is necessary to define some common measures 
of program size: 

N is the number of statements in the program. For notational 
convenience, each node in the program flow graph contains one 
expression. This number also closely approximates the number 



of definition sites in the program since most statements assign 
a value. 

E is the number of edges in the program flow graph. A good up- 
per bound for E is twice N since conditional statements typi- 
cally have only two successors1 

V is the number of variables in the program. 
c is the size of the DefUseChaim. See sections 4.0 and 8.1 . 

Let a program consist of three types of nodes: condilional no&s, label 
nodes. and assignment nodes. There is one distinguished node, the srar( 
node. Conditional and label nodes represent potential deviations in 
control flow through a program. An expression is evaluated at a con- 
ditional node and control is subsequently transferred to a label node; 
for simplicity, assume that such expressions have no side-effects and 
that control is transferred by binary branches.2 Assignment nodes rep- 
resent sites at which variables are defined in terms of other variables 
and constants; for simplicity, assume that only scalar (i.e. non- 
subscripted) variables participate in assignment nodes.’ 

2.2 The Lattice for Constant Propagation 
The output of a constant propagation algorithm is an ourpur arsignmcnr 
of lattice values to variables at each node in the program. Not all vari- 
ables need be given values at each node. These values will be correct 
whenever execution enters a node. 

Let all variables defined or used within a given assignment or condi- 
tional node be characterized by two attributes, LcvclCell and 
ValueCeIl, that represent compile time knowledge about the value of 
such variables at the exits of such nodes. As depicted in Figure 1. 
LevelCell can assume values from a lattice with three types of elements: 
the highest element is lop, the lowest is br##mr, and all elements in the 
middle are ummut. In the lattice theoretic sense, no constant is higher 
or lower than any other. At the end of constant propagation, a OMIltat 
LevelCell at a node means that on all possible executions of the pro- 
gram, the associated variable always has the same value when that node 
is exited; ValueCell contains the actual value of the constant. AWam 
means that a constant value cannot be guaranteed. Tap means that the 
variable may bc some (as yet) undetermined constant. Upon termi- 
nation of a constant propagation algorithm. all LevelCelIs are either 
commt orba(nanr.4 

bottom 

Fiaure I. The Three Level Lattice 

The algorithms start with the optimistic assumption of assigning rcrp to 
the LevelCell of all variables at all nodes except the start node. All 
LevelCells at the start node are assigned bo#toa~.~ The algorithms pro- 
ceed by lowering (in the lattice theoretic sense) the LevelCells of the 
variables at each node, as more information is discovered. This pro- 
ceeds until a fixed point is achieved. The additional information is 
added by applying the meet rules (defined in a later section). Each of 

the values for variables at a node corresponds to the conditions prior to 
the execution of the statement. If the node is an assignment, the value 
of the variable assigned is stored. 

2.2.1 Meet Rules 
The rules for lowering lattice values are as follows: 

a nmp aa 
a nti*bommt 
eemWnanmmat~catmad (if the values are equal) 
amrtaarneamm~t~~ (if the values are not equal) 

Figure 2. Rules for Meet 

2.2.2 Expression Rules 
Variables have values at the begiatting of nodes and at the exita of 
nodes. If a variable is not assigned a value, then its value is unchanged 
by the node. If the node is an assignment, and any of the variables used 
in the expression portion of it has a value of bompm, the value exiting 
the statement for that variable is boMoln, If all values used in the cx- 
pression portion are constant, the value. of the assigned variable is the 
value exhing the expression, when evaluated with those constant values. 
Otherwise the value assigned is nip 

3.0 Kudau 
In KildaIl’s algorithm [Kild73], the program flow graph is used for 
propagation of values. The process of visiting a node involves exam- 
ination of every variable in the program. Initially a worklist is made up 
consisting of all nodes immediately folIowing the start node. A node is 
chosen from the worklist, removed from the workliat, and exam&d. 
The lattice values stored at the examined node become the lowest values 
exiting any preceding node. This may cause the value of an assignment 
node to differ from the value stored. In that case all nodes following the 
examined node must bc examined, and they are added to the worklist. 
If no values change, then no nodes are added to the worklist. The 
process repeats until the workliat is empty. 

Used naively. the Kildall’s algorithm will fiid those constanta that 
Kildall calls Simple Coastunu. Simple conatanta are alI values that can 
be proved to be constant subject to two constraints: no infotmation is 
assumed about which direction branches will take, and only one value 
for each variable is maintained along each path in the program. 

Since each variable can only have its lattice value loweted twice, each 
node may be visited at most 2 x V times. The time required for 
Klldall’s algorithm is E x V node vi&s, and V operations during each 
node visit. Thii results in a runrdng time of E x Yz in the worst case. 
ThcspacerequiredisNx V. 

When Kildall’s algorithm visits a node, it applies a function that maps 
each variable in the program to each variable in the program. In the 
following sections we reformulate that notion in order to more closely 
model what Reif and Lewis did and what we will do. This reformulation 
of Kikiall’s algorithm allows Relf and Lewis’s algorithm to run faster 
than Kildall’s algorithm. Yet it produces the same information that can 
be found by applying KiIdalI’s algorithm. 

4.0 DefUseCbaias 
Many constant propagation algorithms work on a graph of 
DefCJseChains. This data structure is common to optimizing compilers 
and is described in many textbooks on compilers such aa Aho and 
Ullman [AhUl77]. DefUseChains can be built by many common 
dataflow analysis techniques such as those by Allen [AlIe70]. Graham 

’ This has been cxpcrimentally verified by Allen [ACFFXOI and Pratl IPrat7Hl. Graphs have up to iV edges for programs containing computed pto statements with all other 

2 
sratements as targets; these arc very mre. 
This i% not an unreasonable assumption. Mosl structured programming constructs give rise to programs with binuy branches: two common cxeepdolls arc the ar stwmenl 

3 
in Pascal and the computed goto statcmcnt in Fonran. Such stalements arc easily represented by nested sets of binary bmncbca 
See the seciion on “Areas for Future Research”. 

4 This will be later restricted to be all LevelCells that arc shown to be executable. 
J It is possible to interpret the semantics of a programming languap in such a way that it is legitimate to assign w to the variables at the start node. In SOIW cases. such as when 

a block of initialization is controlled by a first-lime flag, this will yield superior rewd~s. 
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and Wegman [GrWe76], Kam and Ullman [KaUl76], Tarjan [Tarj75], 
Wegman [Wegm83], and &deck [Zade84]. 

A DefUseChain is a connection from a definifion sire for a variable to 
a use sire for that variable. Thii connection must bc reachable along 
the Pmgrutn Flow Gruph without passing through another definition 
site for that variable. Use sites are normally operands of expressions. 
If as a side effect of computing such an expression a new value is stored, 
then there is a link between the operands of the expression and the new 
definition site. This definition can possibly lead to further uses of the 
variable. Thus, the DefUseChains can be viewed as a graph. 

In orddr to simplify the presentation of the algorithms, we modify the 
definition of DeNseChains. We add new nodes called join n&s to the 
DefUseChain graph: One node is added for each use site. We divide 
the DefUscChains into two parts: the first part, the DefJoinEdge, starts 
at the definition site and terminates at a join node. The second part, the 
JoinVseEdge, starts at the join node and terminates at the use site. 
There can be several DefJoinEdges but only one JoinUseEdge con- 
nected to each joii node. This division allows us to separate the place 
where several values for a single variable are joined together from the 
place where values for several variables come together as the operands 
of expressions. We will associate with each join node and each ex- 
pression node a lattice element, i.e. a LevelCell and a ValueCell. 

Figure 3 shows a Program Flow Graph and Figure 4 shows the re- 
sultant DefUseChain Graph for a simple program. The join nodes are 
shown as boxes. 

4 
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Figure 3. Program Flow Graph 

Figure 4. DefUseChains 

Variables can be assigned expressions that do not depend on any other 
variables. Read statements or assignments of constants are examples 

of these. These distinguished definition sites are called the RootEdges 
because they form the roots of the DefUseChain Graph. Each of these 
statements also has a LevelCell and a ValueCell that supplies the initial 
value to replace the non-existent expression. 

5.0 Reif and Lewis 
The algorithm by Reif and Lewis [ReLe77][ReLe82] finds all Simple 
Constants. The significance of this algorithm is that it uses a sparse 
representation to propagate the values through the program. The use 
of this sparse representation improves the time and space complexity 
of Kildall’s algorithm but still finds all Simple Constants. 
Reif and Lewis’s algorithm works as follows:6 

A worklist is initialized to contain aU RootEdges from the 
DefUseChain graph. The definition site LevelCells are assigned 
&rent if the value of the expression cannot be evaluated, other- 
wise they are assigned meas and the ValueCell is initialized to 
the value of the constant. All other LevelCells are assigned the 
value rap. 

DefJoinEdges are taken off the worklist. The values at the source 
of the DefJoinEdge are compared to the values at the destination 
join node. These comparisons are performed under the rules given 
in “Meet Rules”. 

If this causes the value in the LevelCell to be lowered, the new 
values are propagated along the JoinUseEdge to the use site. The 
expression is recomputed and perhaps lowered by the rules in 
“Expression Rules”. If the new vahte is lower than the value stored 
for the expression then all DefJoinEdges with their source at this 
node are added to the worklist. 

5.1 Asymptotic Complexity 
The time complexity of this algorithm is proportional to the size of the 
DefUseChain Graph. The Reif and Lewis algorithm requires that each 
DefUseChain be visited at least once and at most twice. The visits oc- 
cur when the value of its definition site is lowered to either oons~ or 
bollbm. 
One lattice element is required for each join node and expression node 
in the DefUseChain Graph. The number of join nodes is smaller, but 
linearly related to the size of the DefUseChain Graph. The size of the 
DefUseChain Graph is discussed in the section that describes the 
Global Value Graph. 

5.2 Advantages of Reif and Lewis 
The algorithm by Reif and Lewis was not the first algorithm to use a 
sparse representation for propagation, It was the first to use such a 
representation and find all Simple Constants. There are many global 
constant propagation algorithms that are in common use and resemble 
Reif and Lewis but do not achieve the same results. The constant 
propagation algorithm described by Ferrante and Ottenstein (FeOt82] 
is inherently weaker than that done by Reif and Lewis.* Variants of the 
weaker algorithm are used by Horowitz in the Cornell Program 
Synthesizer Generator9 and by Fabri in the Experimental Compiler 
System project at IBM.tO 

In these weaker algorithms, propagation is deferred at join nodes until 
all edges that reach that node have been visited. If they all have the 
same value, the join node is given that value. These algorithms start 
with the assumption that aft expressions have &r&m and attempt to 
raise the lattice value to menr when it can prove that ah values that 
reach that location are constant. Each DefUseChain is only visited 
once. The weaker algorithms are less optimistic in their propagation. 

The Rcif and Lewis algorithm as originally presented used s Global Value Graph as its spsme representation. The following presentation uses the DefUseChain graph. These 

7 
two representations produce equivalent results when used with thii algorithm. The Global Value Graph data structure is presented later. 
This implies that the expression may be evaluated twice for every term of the expression. If the expression is large. this can be expensive. Rcif and Lewis store the expression 
as a Wee and evaluate tha leaves and intamal nodes of the tree as their value changes. Another possible method is to have a punter associated with each expression. This counter 
is initialized 10 the number of terms in the expression and is decremented each time another term is lowered to value constant. The expression is only computed when the counter 

* 
reaches zero and no input term has heen assigned kaba. 
Many other algorithms commonly found in the lileralurc are cvcn weaker than this. The algorithm in Aho and Ullman IAhUl781 tdvcs UD if any use has more than one definition 
that reaches it. 

9 
10 

This work has not been published as of lhe date of this paper. The knowledge of this work is by private communication. 
The source of this reference is the interns1 documentation of the Experimental Compiler System at IBM. The paper was never published due to the untimely death of the author. 
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They never propagate any value unless they are certain that the value to a worklist if evaluation of conditional expression indicates control 
will never invalidated. may pass along those exit edges. 

The major drawback of this approach is that propagation cannot pro- 
ceed around cycles in the DefUseChain Graph. These cycles are typi- 
cally the result of simple loops in the program. The Reif and Lewis 
algorithm finds more constants than the weaker algorithms since Reif 
and Lewis can propagate through loops. In Figure 5, the variable i 
always has the value 1 at the bottom of the loop. The weaker algo- 
rithms get stuck on the loop and fail to discover this constant. 

This algorithm is able to ignore any DefJoinEdge whose definition oc- 
curs on a program flow graph edge that is never executed. Thus, this 
algorithm accomplishes a form of Deud Code Eliminurion.” 

This algorithm uses two worklists. The fit, FlowWorkLisr, is a worklist 
of Program Flow Graph edges and the second, DefWorkLisr, is a 
worklist of DefJoinEdges. 

ConditionalDef works as follows: 

i- 1 
do (...I 

J. - i 
i - ft...) 
( no stores are done intoj here j 

The FlowWorkList is initialized to have the edge entering the Start 
Node of the program. The LevelCells and ValueCells for the 
DeNseChain Graph are Initialized as in Reif and Lewis. The 
DefWorkList is initially empty. 

Each node also has associated with it a flag, the 

i--j 
end 

Figure 5. Simple Program Loop 

6.0 ConditionalDef 
Kildall’s and Reif and Lewis’s algorithm find all constants that can be 
found without taking conditional branches into consideration. Consider 
the example shown in Figure 6. Neither algorithm is capable of finding 
this constant since they make no assumptions about the possible di- 
rections that branches can take. Since i is atways I, the conditional 
always takes the true branch and j is always equal to I. Such code may 
be the result of procedure integration or abstract data type compilation. 

i-- I 
. . . 
lfi- 1 

tbenj- I 
elsej+Z 

Figure 6. Conditional Constant Definition 

The goal of ConditionalDef is to find more constants than the Simple 
Constants found by Kildall or Reif and Lewis. This is accomplished by 
intelligently looking at the results of conditional branches. Whenever 
we can assume that a conditional expression is always constant, we as- 
sume that the branch that it guards will only go in one direction. 
To exploit this knowledge we use a different ordering of the 
DefJoinEdges. In this new ordering we may not ever include some 
DefUseChains. Reif and Lewis are able to propagate any DefJoinEdge 
that did not have the value IV. In ConditionalDef. we will defer the 
evaluation of any DefJoinEdge until the Program Flow graph node that 
is the source of that DefJoinEdge is marked executable. 
Edges are marked executable by symbolically executing the program, 
beginning with the Start Node. Whenever a node is executed, the nodes 
in the program flow graph immediately following that node are added 

ExecutableFlog that allows the expression to be evaluated. This 
flag is initially false for all nodes. 

Execution is halted when both worklists become empty. Execution 
may proceed by processing items from either worklist. 

If the item is a Program Flow Graph edge from the FlowWorkList 
the action is to mark the ExecutableFlag true. If the 
ExecutableFlag had been false, then evaluate the expression ac- 
cording to the rules in “Expression Rules”. If the result is not nsp 
do VisitExpression. 

If the item is a DefJoinEdge from the DefWorkList, the source 
value is combined with the value at the join node according to the 
rules in “Meet Rules”. If this causes the lattice value to be low- 
ered, the new value is then propagated to the expression. If the 
ExecutableFlag is true for that expression, the expression is eval- 
uated. If evaluation causes the LevelCell of that expression to be 
lowered, do VisitExpression. 

VisitExpression is defined as follows: 

1. If the expression is part of an assignment node, add all 
DefJoinEdges starting at the definition for that node to the 
DefWorkLiit. 

2. If the expression controL a conditional branch, some flow graph 
edges will have to bc added to the FlowWorlcList. If the LevelCell 
has value bonorn, both exit edges must be added to the 
FlowWorkList. If the value is cvrunmr only the flow graph edge 
that is executed as the result of the branch is added to the 
FlowWorkList. 

6.1 Asymptotic Complexity 
Each DefUseChain can only be examined twice, as in Kildall and in Reif 
and Lewis. Nodes in the program flow graph are visited once for each 
in-edge that they have. Because nodes may have at most two out-edges, 
the number of edges in the graph is lilted to twice the number of 
nodes. This makes the asymptotic running complexity of thii algorithm 
equal to twice the number of nodes in the flow graph plus twice the 
number of DefUseChains or 2 x N + 2 x C. 

II rhcre arc IWO cla&xl technique, both 4led Dud C’odr Elimination. The goal ol one technique is loeliminate code lhal can never be executed. This is what is accomplished 
hcrc. The goal OI the other tuchniquc is 10 dclctr rction\ of code wh~sc rchul~s are newr used. (See Allen and Cockc [AICo721.) We do no1 do this. Each ol these lechniqueh 
rinth a diflerrnt claw of dud code. Ncilhcr whwmcr the other. 
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6.2 Significance of Algorithm 

The asymptotic complexhy of this algorithm is the same as the Rcif and 
Lewis’s algorithm. The actual execution time should be better in most 
casts. This algorithm can skip sections of the program that arc inac- 
cessible at execution time. In the compilers for languages such as Ada 
and PL.8 where procedure integration is performed, or for LISP com- 
pilers where macro expansion is performed, this may provide a signif- 
icant improvement in both compile time and execution time 
performance. In Figure 7, the plus routine is a macro that is expanded 
by the compiler. At compile time, the conditional expression for the 
execution time type check can be totally eliminated. 

(setq i I) 

IMP 
(cond ((greaterp i IO) (go our))) 
. . . 
(setq i (plus i I)) 

(go loopl 
out 

Iplus is a macro which expands in line] 
[to the following.] 
(It replaces x with the first argument] 
1 to the macro and y with the second. 1 

konll 
((and (integer x) (integer y)) 

(iiteger_crdd x y)) 
{The result of integer-add is an integer. ] 

. 
1 

Figure 7. Removal of Conditional Type Check 

This algorithm is also useful for propagating constants that are the result 
of constant parameters in Algol like languages. Allen et.al. [ACFFgO] 
claims that over 24 percent of all parameters to subroutines in PL/I are 
constants. Scheifler [&he771 and Bail [Ball791 have considered the 
effects of procedure integration on optimization. Ball does a form of 
ad hoc dataflow analysis to estimate the effects of a constant parameter 
being passed to a procedure. He reports positive results on the size and 
execution time of the complied code even though his constant propa- 
gation technique only discovers the Simple Constants found by Kildall. 
In many cases, procedure integration followed by conditional constant 
propagation could substantially improve the quality of code generated. 

7.0 Procedure Integration 

Even if the parameters are only potentially constant, procedure inte- 
gration can be combined with constant propagation. A prepass can 
create the DefUseChains for all proceduresra Then it is possible to in- 
tegrate only those statements which are executable based on constant 
propagation through the DefUseChains of the procedure. Consider 
Figure 8. The value of the string s always has value ‘abc’ at the begin- 
ning of the loop. Unless the concal and rrtrnc routines are integrated 
these constants can never be discovered. Furthermore, even if it is not 
desirable to teave the integrated forms expanded inline (because of 
space constraints), the invariant value of the string s can still be safely 
guaranteed. 

s + ‘abc’ 
do . 

s .- concu~(s. ‘de’) 
s a- ind?lc(s. 2) 

end 

procedure concar(u. b) 
return (a I I b) 

end concat 

procedure truncla, i) 
if flength(a) < i) 

then do 
long involved error recowry 

end 
else return (a/l : lengrhla) - i]) 

end rrunc 

Figure X. Procedure Jntegration to Find Constants 

The advantages of combining procedure integration with constant 
propagation, as opposed to the more naive approach of integrating and 
then doing constant propagation, are in the domain time and space 
saving. If one integrates first, one must expend both time and space to 
copy parts of the code that are not relevant for that execution. Then 
these irrelevant parts must be thrown away. in many compilers that 
perform procedure integration, the construction of the DefUseChains 
is not done until after the integration. Since this construction process 
requires time and space proportional to the number of variables times 
the number of statements, there is a considerable potential gain to be 
made by breaking the process into small distinct parts. 

8.0 ConditionalConstant 
The ConditionalDef algorithm is able to find all constants that Reif and 
Lewis can plus those extra constants that are the result of not applying 
definitions defined along paths not executable. While this is correct, it 
is not the best that can be done by taking all branches into account. 
ConditionalDef fails because even though both a definition site and a 
use site can be executable, there may be no executable, definition free, 
path in the flow graph that connects the two sites. When this happens, 
ConditionalDef unnecessarily propagates the definition site to the use 
site causing information to be lost. ConditionalConstant works because 
its DefUseChains do not span paths which are potentially executable 
at both end points but not in their middle. 

Consider the program shown in Figure 9. Statement fb) provides the 
only possible value for statement tc). this is true since the path through 
(b) is the only path to (c) (we know this because the condition must 
atways be true). ConditionalDef will not find this because it will apply 
all DefUseChains that start from (a) and the algorithm has no infor- 
mation that those values are really killed by (b). 

i-- 1 
J’ .- 2 (a) 

ifi= I 
then j + 3 (h) 

k+j (c) 

Figure 9. Constant Not Found by ConditionalDef. 

In order to discover more constant values, the DefUseChains structure 
must be enhanced. To do this we will adopt a new representation which 
maybe less sparse than DefUseChains. In this new representation all 
DefUseChains are iuterrupted at critical sections of the program. By 
interrupted, we mean that there is a chain from the definition to the 
critical section and then another one away from the critical section. The 



one away from the critical section may be to either another critical sec- 
tion or to the use site. i+l i+2 i+3 

The birthpoints of Reif and Tarjan (defined in the next section) turn 
out to identify the critical sections. In ConditionalConstant we modify 
the Global Value Graph of Reif and Tarjan so that it can be used with 
ConditionalDer and compute all possible Conditional Constants. 

8.1 The Global Value Graph 
Reif and Tarjan [ReTalll] have developed a more sophisticated variant 
of DefUseChains called a Global Value Graph. In the Global Value 
Graph, chains are built from each birrhpoinr of the variable to each 
reachable use site for that variable. 

Definition: Birthpoints for a variable, v, are defined as follows: 

04-i bci c+i 

Figure II. DefUseChains for Previous Program 
. Each definition site for Y is a birthpoint. 

. Let n be a node with two or more in-edges. If there is a node m 
which is a birthpoint for Y and there is a birthpoint free path from 
m to n along one in-edge to n but not along the other in-edges 
to n. then n is a birthpoint for Y. A path from m ton is a bitihpoinl 
free parh if the path traverses no nodes that are birthpoints for v. 

In DefUseChains, there are many definitions that can reach a use. In 
the Global Value Graph, only one birthpoint can reach a use. This ob- 
servation is critical to the Value Numbering problem and this was the 
reason Reif and Lewis introduced birthpoints. 

The Global Value Graph has an advantage that the worst case size 
grows with E x V rather than E’ x V for the DefUseChains Graph. 

It is possible to construct a program where the size of the DefUseChains 
graph is F x V. An example of a program giving rise to this behavior 
is shown in Figure 10 through Figure 12. In this example, each of se- 
veral definition sites for each variable reaches each use site for each for 
each variable. This behavior does not happen for the Global Value 
Graph since the join node is a birthpoint. 

i+l i+2 i+3 

aei bei cci 

Figure 12. Global Value Graph for Previous Program 
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8.2 ConditionalConstant Algorithm 
The Global Value Graph itself is not enough to solve the problems of 
the ConditionalDef algorithm. In the Global Value Graph, birthpoints 
are placed at each node in the Program Flow Graph where different 
information for a variable enters that node from different in-edges. 
We must augment this representation so that we can identify which of 
those in-edges through which execution can actually pass. This iden- 
tification is accomplished by adding an identity assignment to each node 
that is an immediate predecessor to a biipoint node, when that 
biipoint is not a definition site. An i&r@ assignmenr for the vari- 
able i is an assignment statement of the form i-i. Thus all the chains 
that enter the node along an edge can only be propagated to the 
biihpoint if that in-edge is executable. 

Conditional Constant works as follows: 

select k 
whenodo 

a-i 
end 
whenbdu 

b-i 
end 
wheacda 

c-i 
end 

end 

1. Find the biihpoints for the program using the algorithm given by 
Reif and Tarjan. 

2. At every node that is a birthpo&t that is not also a definition site, 
insert an identity assignment along each edge into that node. An 
identity assignment should also be added at the birthpoint. This 
will cause a new node to be added to the graph for each identity 
assignment added. 

3. Build a DefUseChain Graph over the resulting program. 

4. Use the propagation technique presented in the ConditionalDef 
algorithm to propagate the constants over this graph. 

Figure 10. Worst Case Behavior of DefUseChains 8.3 Asymptotic Complexity 
ConditionalConstant has the same asymptotic time and space corn- 
plexity as the ConditionalDef algorithm. The average case may be 
somewhat larger because the average size of the Global Value Graph 
may be somewhat larger than that of DefUseChains. 

This algorithm is equivalent in power to an algorithm by Wegbreit 
[Wegb’lS]. Wegbreit’s algorithm is a variation of the algorithm by 
Kildall that accounts for conditional branches. Wegbreit’s algorithm 
requires ,!? x V operations since the entire set of variables must be 
examined to assign M&m to a single variable. 
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9.0 Theorems and Propositions 
in this section we will first show that the algorithm is conservative. By 
this we mean that the algorithm does not label variables, which are not 
constant, as constant. We then show that the algorithm is at least as 
powerful as Wegbreit’s, and finds all the constants that his algorithm 
does. 

The first observation in showing that the algorithm is conservative is to 
note that ConditionalConstant is derived from ConditionaiDef by in- 
serting some identity assignments, and then running ConditionaiDef. 
Therefore, since adding identity assignments cannot change the se- 
mantics of a program we need only prove that ConditionaiDef is con- 
servative. 

Before we define conservative more formally, we need the concept of 
an executable sequence. 

Defhdtion: An executable sequence is a sequence of tupies, where each 
tuple consists of a node in the flow graph and a lattice element for each 
variable. The first tuple contains the start node, and each subsequent 
tuple is derived by evaluating the expression at the node and changing 
values as appropriate. By deriving values of expressions, the next tuple 
may be determined. 

Definitinn: An output assignment is conservative if the values of vari- 
ables at each node are no higher in the lattice theoretic sense than the 
values when that node is reached on any possible executable 
sequence.‘) 

Theorem: The output assignment derived from ConditionalDef is con- 
servative and an execution sequence visits only those nodes 
ConditionalDef labels as executable. 

Prooft Suppose to the contrary. Then there must be a shortest exe- 
cution sequence which either visits a node not labelied executable or 
which has a value lower than the output assignment to a variable at that 
node. if a node not labelled executable, is on the path, it must be the 
first such node or else there is a shorter such path. The preceding node 
on the path must be a conditional, and the values of the variables used 
in the condition must be different in the sequence than those in the 
output assignment, otherwise the node would.have been labelled exe- 
cutable. But then there is a shorter path. 

Thus, there must be a value which is larger in the output assignment 
than on the sequence. That value is used at the last node in the shortest 
sequent. Therefore there must be a preceding assignment node to the 
variable, and at the assignment node the values agree with the output 
of ConditionalDef. There must be a DefUseChain from that assign- 
ment node to the last node in the sequence, since there are no inter- 
vening assignments nodes. Thus, the value at the last node must be 
correct. QED. 

Now that we have shown that we do not find more constants than is 
correct, we wish to show that we claim as many constants as other al- 
gorithms. We compare our algorithm to Wegbreit’s which finds more 
constants than Kildall’s. Wegbreit’s algorithm is identical to Kiidall’s 
except that Wegbreit’s algorithm does not propagate values along 
branches from conditions, until it shows that the branch may be taken. 

Theorem: The output assignment derived by ConditionalConstant gives 
each variable at each node a value which in the lattice theoretic sense 
is at least as large Wegbreit’s algorithm’s output assignment. 

Roof: Without loss oi generality we may assume that Wegbreit’s aigo- 
rithm is working on the same, modified graph that ConditionalConstant 
works on. Clearly, throwing in additional nodes with identity assign- 
ments does not change the values used by Wegbreit’s algorithm. 

Suppose to the contrary. Then there is a point in the execution of 
Conditionalconstant where it assigns the first value which is lower than 
Wegbreit’s value. 

Clahm That point cannot be at a node which Wegbreit’s algorithm de- 
tects as unexecutable. 

if it is at an unexccutahlc node then Weghrcit’s algorithm must also 
detect that a branch can only go in one direction, and 
ConditionalConstant does not detect this. That implies that Wegbreit’s 
algorithm detects a constant at an expression and that 
ConditionalConstant doesn’t. Moreover, ConditionalConstant must 
lower the value of the expression before it gets to the unexecutable 
node, and hence there is an earlier point. 

The variable whose value is lowered has a DefUseChain into it, along 
which the lower value comes. To arrive at a contradiction, all we must 
show is that there is a path of executable nodes from the definition site 
to this use site and there are no intervening assignment nodes on this 
path. We leave it as an exercise to the reader to show that Wegbreit’s 
algorithm will always propagate values along such a path. 

Because of the way that identity assignments have been added to the 
graph, the definition site is either ( 1) one of the identity assignments 
preceding a join node or (2) on all paths from the root to the use site the 
definition site is the last assignment node for that variable. 

in case (2) all paths from the start node to the use site must pass 
through the definition site. Thus, if the use site is executable, then there 
must be a path from the root to the use site of executable nodes, and the 
definition site must be on ail such paths. Moreover, the definition site 
must be the last assignment node for that variable on that path. Thus, 
in case (2) there is an executable path and there is a contradiction. 

in case (I) the value at the join node becomes lower in 
ConditionalConstant than in Wegbreit’s algorithms, but the values of 
the variable at the identity assignments preceding the join node are no 
lower. The identity assignments are executable in ConditionalConstant 
only if they are executable in Wegbreit’s algorithm (by case 2). 
ConditionalConstant uses the same meet rules as Wegbreit’s algorithm 
to compute the value at the join. and must be using the same or higher 
values. The meet rules for lattices assure that the meet of one set of 
values cannot be lower than the meet of a second set of values unless 
the first set contains a lower value to begin with. Thus, the result at the 
join may not be lower under ConditionalConstant. QED 

10.0 optimizations 
There are two improvements that apply to all the algorithms given in 
this paper. 

1. it is normally beneficial to propagate anything that is known to be 
kottem before propagating anything else. Since nothing is ever 
examined after it goes to botfom, getting something in one step 
versus two will improve the performance. This improvement will 
not effect the asymptotic complexity of any algorithm. 

2. Some constants can be inferred from conditional expressions. If 
the conditional expression test whether i is equal to 3. it can be 
assumed that i will have the value 3 if the true branch is taken. 
Thus, we can determine that i is a constant on some branches, 
even if we cannot determine that i is a constant at its birthpoint. 
There are many other optimizations similar in nature to this that 
have been compiled by Allen and Cocke in [AiCo72]. 

11.0 Areas for Future Research 

a Value Numbering is a problem that is related to constant propa- 
gation. An example of value numbering is: 

Consider a subroutine which is passed the argument i 
and which immediately contains the assignment j-i. 
After the assignment we know that i and j have the 
same value, however we don’t know what that value is. 

More generally, we can give a symbolic value to i and the other 
arguments (say k) at the beginning of the routine and compute 
symbolic values, thus we can later determine that i + k is equal to 
j + k because we fetch the symbolic value stored in j when we 
create the symbolic value corresponding to the sum. 

I.9 This notion is wry similar to Ihe noliun of a safe usrignmrnl by Ciraham and Wcgman [GrWe761. In Graham and Wcgman. an sxccutablr scqurncc could be any path. even if 
Ihe branch condilions could be proven con61anl. They did no1 idlow the branch taken by the path. Thus. a safe assignmen is wrnerva~ivc but a conservative assignment is not 
necrswrily safe. 
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This can all be done in a straight forward manner, However, to 
do a complete job involves a number of complications: if you can 
show that certain values must be equal. then you can determine 
that certain branches must be taken. Moreover, suppose there is 
a pIace in the program where two edges join and the value of a 
variable, say i cannot be determined. Then we can assign i at that 
location a new symbolic value and conclude that if in a later as- 
signment j-i that the two values are identical. If we merely re- 
cord that we know nothing about the value of i we will also know 
nothing about the value of j. Reif solved the problem of creating 
new symbolic values and propagating those values while only 
slowing the algorithm down by a factor of Ackerman’s inverse. 
However, he did not take any conditional branches into account. 
We have reason to believe that by slowing the base algorithm 
down by a log factor that this can also be accounted for. 

In Figure 7, a very simple form of type propagation was per- 
formed. In LISP, it is thought to be sufficient to propagate the 
type of any assignment node forward. The information is killed 
according to rules that are the same in the constant propagation 
problem. To get good information in SETL, the problem is some- 
what harder. The goal is to infer the type of the object from the 
way it is used. This problem was originally defined by Tenenbaum 
[Tene74]. SETL has only one primitive data type to program with, 
the set. Since sets are rather inefficient to implement, the SETL 
compiler attempts to pick a more efficient representation of an 
object based on the way the object is used. 

The problem is bidirectional. The information about the way that 
a variable is used must be propagated backward as well as forward. 
Tenenbaum’s algorithm for doing this requires alternating forward 
and backward passes. He does each pass in a method similar to 
Kildall. It may be possible to use a variation of DefUseChains to 
represent the propagation space. The chains must be bidirectional. 
That is. an edge from the use to the definition in addition to an 
edge from the definition to the use. There are many other details 
that must be worked out, but it does appear that this is a fairly 
straightforward extension to the ideas presented here. 

. In the Range Propagation Problem described by Harrison [Harr77], 
the goal is to propagate ranges of values in an attempt to fix the 
upper and lower bounds of variables. This is useful to remove 
subscript range checking from areas of programs that can be 
proven safe. This problem differs from simple constant propa- 
gation in that the lattice may have an infinite number of levels. 
rather than just three. There are subsets of this problem in which 
the number of lattice levels is small. Consider the problem of de- 
termining the possible values of a label variable in Fortran. The 
number of labels in a program is small and fixed, This type of 
problem should be easily solved by modifications to the algorithms 
presented here. 

l Arrays are difficult for almost any data flow analysis problem. The 
simple solution that is used in almost all implementations of opti- 
mizing compilers is to treat any assignment to an array as an as- 
signment of bottom unless that array is always indexed by 
constants. To do anything more sophisticated, may require a much 
more expensive symbolic evaluator such as the one given in the 
previous example. 

l It is almost always desirable to integrate a function if all of the 
parameters are constant and the function references no global or 
free variables. In the cases where only some parameters are con- 
stant, the decision is not so clear. Some benefit can be gained by 

unrolling loops and recursion if the space and time can be con- 
trolled by good heuristics. This problem has been investigated by 
Wegbreit [Wegb75], Ershov [Ersh77], and Wegrnan [Wegmll). 

l Each algorithm given in this paper has the restriction that only one 
value for each variable is kept at each join node. If Figure 13, the 
value of c cannot be determined because separate values are not 
maintained along each flow graph edge that reaches the ex- 
pression. It is possible that the modified Global Value graph, 
combined with a carefully constructed node splitting could solve a 
large subset of this without the combinatorial explosion of both 
time and space normaliy associated with node spitting algorithms. 

If . . . 
then do 

a*2 
b-3 

end 
elsedo 

a+3 
b+2 

end 
c+a+b 

Figure 13. Node Splitting Example 

. In this paper we have managed to combine constant propagation 
with a form of dead code elimination and procedure integration. 
One of the open questions in compiler optfmization is the proper 
order to apply the various optimizations. Some optimizations ex- 
pose opportunities for other optimization techniques. We have 
eliinated the need to be concerned about the order of the opti- 
mizatiorts we have combined and in the process created a more 
powerful algoritbn~. It would be interesting to see if other tech- 
niques could be integrated in a similar manner. 

12.0 Conclusions 
The work presented here is based on three fundamental results con- 
cerning the constant propagation problem, The first is KiJdalI’s defi- 
nition of the problem involving the three layered lattice. The second is 
Reif and Lewis’s algorithm involving a sparse representation of propa- 
gation space. The fast is Wegbreit’s algorithm that used the result of 
conditional operations to improve the class of constants found. 

We have added two relevant results of our own. The first result is that 
a careful ordering of propagation in concert with symbolically executing 
the conditional expressions can increase the number of constants found 
with no penalty in time or space. The second result is a new and dif- 
ferent way of representing the propagation space that captures the 
notion of values flowing along program flow graph edges but still re- 
mains sparse. 

We have used these five results to craft an algorithm that is efficient in 
both time and space, and yet finds a very broad class of constants. 
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