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Constant Q-Wave Propagation and Attenuation 

EINAR KJARTANSSON 

Rock Physics Project, Department of Geophysics, Stanford University, Stanford, California 94305 

A linear model for attenuation of waves is presented, with Q, or the portion of energy lost during each 
cycle or wavelength, exactly independent of frequency. The wave propagation is completely specified by 
two parameters, e.g., Q and Co, a phase velocity at an arbitrary reference frequency w0. A simple exact 
derivation leads to an expression for the phase velocity c as a function of frequency: C/Co = (w/w0)*, where 
7 = (l/•r) tan -x (l/Q). Scaling relationships for pulse propagation are derived and it is shown that for a 
material with a given value of Q, the risetime or the width of the pulse is exactly proportional to travel 
time. The travel time for a pulse resulting from a delta function source at x = 0 is proportional to x •, 
where • = l/(1 - 7). On the basis of this relation it is suggested that the velocity dispersion associated 
with anelasticity may be less ambiguously observed in the time domain than in the frequency domain. A 
steepest descent approximation derived by Strick gives a good time domain representation for the impulse 
response. The scaling relations are applied to field observations from the Pierre shale formation in 
Colorado, published by Ricker, who interpreted his data in terms of a Voigt solid with Q inversely 
proportional to frequency, and McDonal et al., who interpreted their data in terms of nonlinear friction. 
The constant Q theory fits both sets of data. 

INTRODUCTION 

A fundamental feature associated with the propagation of 
stress waves in all real materials is the absorption of energy 
and the resulting change in the shape of transient waveforms. 
Although a large number of papers have been written on the 
absorption of seismic waves in rocks, little, if any, general 

agreement exists about even the most fundamental properties 
of the processes involved. Table 1 shows a summary of the 
basic features of some of the different attenuation theories. 

Early laboratory work on the absorption in rocks showed 

the loss per cycle or wavelength to be essentially independent 
of frequency. Since at that time no known linear theory could 

fit this observation, Born [ 1941] proposed that the loss was due 
to rate independent friction of the same kind as observed when 

two surfaces slide against each other. Kolsky [ 1956] and Lorn- 

nitz [1957] gave linear descriptions of the absorption that 

could account for the observed frequency independence and 

were also consistent with other independent observations of 

the transient creep in rocks and the change in shape of pulses 

propagating through thin rods. Despite this, and the fact that a 
satisfactory nonlinear friction model for attenuation has never 

been developed to the point where meaningful predictions 
could be made about the propagation of waves, nonlinear 

friction is commonly assumed to be the dominant attenuation 

mechanism, especially in crustal rocks [McDonal et al., 1958; 

Knopoff, 1964; White, 1966; Gordon and Daois, 1968; Lockner 

et al., 1977; Johnston and Toksoz, 1977]. 

A different type of theory for attenuation has been advo- 
cated by Ricker [1953, 1977]. In his model the absorption is 
described by adding a single term to the wave equation. Be- 
cause of this simplicity, the theory of the propagation of 
transient waves has been further developed than for the other 

theories. For this reason, wavelets based on the Ricker theo•ry 
have been commonly used in the computation of synthetic 
seismograms [Boore et al., 1971; Munasinghe and Farnell, 

1973], although the frequency dependence of Q that is implied 

by the model contradicts practically all experimental observa- 
tions. In this paper, we will discuss some of the data Ricker 

interpreted as in support of his theory. 
Recently, there has been renewed interest in the effects of 

anelasticity on the wave propagation in rocks. Liu et al. [ 1976] 
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found that the change in the elastic moduli implied by the 
attenuation over the frequency range covered by the seismic 

body waves and free oscillations, was about an order of magni- 
tude greater than the uncertainty in the measurements. The 
models used by Liu et al. [1976], as well as all of the other 
nearly constant Q (NCQ) models, have included at least one 

parameter that is in some way related to the range of frequen- 
cies over which the model gives Q nearly independent of 
frequency. How this cutoff is chosen appears to be quite arbi- 

trary and the physical implications of the cutoff parameters are 
different between the models of Lornnitz [1957], Futterrnan 

[ 1962], Strick [ 1967], and Liu et al. [ 1976]. 

In this paper a linear description of attenuation is given that 

features Q exactly independent of frequency, without any cut- 
offs. The constant Q (CQ) model is mathematically much 

simpler than any of the NCQ models; it is completely specified 
by two parameters, i.e., phase velocity at an arbitrary reference 
frequency, and Q. 

Most of the NCQ papers have described the wave phenom- 
ena in the frequency domain and have restricted their analysis 
to cases where Q is large (Q > 30). In contrast, the simplicity 

of the CQ description allows the derivation of exact analytical 
expressions for the various frequency domain properties such 
as the complex modulus, phase velocity, and the attenuation 

coefficient, that are valid over any range of frequencies and for 
any positive value of Q. In this paper more emphasis will be 

placed on the time domain description of transient phenom- 
ena, and exact expressions for the creep and relaxation func- 
tions and scaling relations for the transient wave pulse will be 

given. In addition, approximate expressions will be given for 
the impulse response, as a function of time, that results from a 
delta function excitation. 

We will also show that when the frequency range is re- 
stricted and the losses are small, the results obtained from the 

various NCQ theories approach the same limit as those ob- 
tained from the CQ theory. 

DEFINITIONS AND BACKGROUND 

Seismic attenuation is commonly characterized by the qual- 
ity parameter Q. It is most often defined in terms of the 

maximum energy stored during a cycle, divided by the energy 
lost during the cycle. When the loss is large this definition 
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TABLE 1. Comparison of Attenuation Theories 

Theory 

Property Friction Voigt-Ricker 

NCQ 
Band-Limited 

Near-Constant Q 

CQ 
Linear 

Constant Q 

Linearity 

Frequency dependence 
of Q 

Frequency dependence 
of phase velocity 

Transient creep 

Pulse broadening 
References 

Nonlinear, velocity and Q 
depend on amplitude 

Independent 

Independent 

None 

Distorted or acausal 

Born [1941] 
Knopoff [1964 ] 
White [1966] 
Walsh [1966] 
Lockher et al. [1977] 
Johnston and Toks& [1977] 
Gordon and Davis [ 1968] 

Linear 

1/Q o: co 

Independent at low 
frequencies 

•(t) o: e -at 

r o: T' 1/2 

Voigt [ 18921 
Ricker [1953, 1977] 
Collins [1960] 
Clark and Rupert [1960] 
Jaramillo and Colvin [ 1970] 
Balch and Smolka [1970] 

Linear Linear 

Nearly independent in a Independent 
frequency band 

C/Co • 1 + (1/•rQ)In (co/coo) C/Co = (W/Wo) 
1/Q = tan 

xp(t) • (1/Mo)[1 + (2/•rQ)In •(t) or tvr 
(1 + at)] 

r• T root 

Kolsky [1956] Bland [ 1960] 
Lornnitz [1957] Strick [1967] 
Futterman [1962] This paper 
Azirni et al. [1968] 
$trick [1967, 1970] 
Liu et al. [1976] 
Kanarnori and Anderson 

[1977] 
Minster [ 1978a] 

becomes impractical; O'Connell and Budiansky [ 1978] sug- 
gested a definition in terms of the mean stored energy W and 
the energy loss A W, during a single cycle of sinusoidal defor- 
mation: 

4•r W 

ß Q = "•x'W' (1) 

When this definition is used, Q is related to the phase angle 
between str•s and strain,/•, according to 

1 

• = tan b (2) 
The fact that amplitude dependence of the propagation 

velocity and Q at strains less than 10 -8 has not been observed, 
strongly suggests that at these amplitudes the material re- 
sponse is dominated by linear effects, or in other words, the 
strain that results from a superposition of two stress functions 
is equal to the sum of the strains that result from the appli- 
cation of each stress function separately. When two effects are 
linearly related, the relationship may be expressed through a 
convolution. Thus the relationship between stress and strain in 
a linear material may be expressed as 

a(t) = re(t) * e(t) (3) 

e(t) = s(t) * a(t) (4) 

where a(t) is the stress as a function of time, e(t) is the strain, 
and re(t) and s(t) are real functions that vanish for negative 
time. The convolution operator * is defined by 

f(t)* g(t)=f_•f(t- t')g(t')dg (5) 
The relationship between stress and strain given in (3) and (4) 
was first given by Boltzmann [ 1876]. Our notation differs from 

Boltzmann's original notation only in that the functions re(t) 
and •t) may include generalized functions such as the Dirac 

delta function or its derivatives. Combination of (3) and (4) 
implies that re(t) and •t) must satisfy the condition 

b(t) = re(t) * s(t) (6) 

where b(t) is the Dirac delta function. 

Manipulations involving convolutions are usually facilitated 
by the use of the Fourier transform. We will use lower case 

letters to designate functions of time and capital letters for 
their Fourier transforms according to the definition 

F(co) = f_•f(t)e-t•tdt (7) 
The inverse Fourier transform is then given by • 

I F(w )e aøt dw (8) f(t) =• 

Bracewell [1965] gives a discussion of the formalism required 
for the extension to generalized functions. 

Using the convolution theorem [Bracewell, 1965, p. 108], 
(3), (4), and (6) may be rewritten: 

Z(co ) = M(co )E(co ) (9) 

E(w ) = S(w )Z(w ) (10) 

I = M(w)S(w ) ( 11 ) 

where Z(co) is the Fourier transform of the stress, E(co) is the 
Fourier transform of the strain, and M(co) and S(co) are the 
Fourier transforms of re(t) and s(t). Thus the stress and the 

strain are in the frequency domain related through a multipli- 
cation by a modulus M(co) or compliance S(co) just as in the 
purely elastic case, the only difference being that the modulus 
may be complex and frequency dependent. This relationship is 
commonly referred to as the correspondence principle. By a 
substitution of a unit step function into (3) and (4), it is easily 
shown that m(t) and s(t) are the first time derivatives of the 

relaxation and creep functions, where the relaxation function, 
{(t), is the stress that results from a unit step in strain, and the 
creep function, •(t), is the strain that results from a unit step 
in stress. 

When the stress-strain relations are combined with the equi- 
librium equation, the resulting one-dimensional wave equation 
has a solution that may be written in a form analogous to the 
classical case: 

U(t, x) = e "'øt-n•" (12) 

where 
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k = •o M(•o) (13) 
and p is the density of the material. 

THE CONSTANT Q MODEL 

The development so far has been completely general; no 
assumptions other than linearity and causality have been made 
about the properties of the material. We will now examine a 
particular form for the stress-strain relationships and show 
that it leads to a Q that is independent of frequency. Fre- 
quency independent Q implies that the loss per cycle is inde- 
pendent of the time scale of oscillation; therefore it might seem 
reasonable to try a material that has a creep function that plots 
as a straight line on a log-log plot, or 

xP(t) *: t o 

For the sake of convenience in subsequent manipulations, we 

will use a creep function of the form 

1 (t'• ø* />0 ß (t) = Mor(• + 2,) to/ (14) 
,I,(t) = 0 t < 0 

F is the gamma function which in all cases of interest to us 
has a value close to unity and to is an arbitrary reference time 
introduced so that when t has the dimension of time, Mo will 

have the dimension of modulus. Some of the properties of a 

material that has this creep function are discussed by Bland 

[1960, p. 54]. Response functions of this form have also been 
used to model dielectric losses in solids [Jonscher, 1977]. Dif- 
ferentiation of the expression in (14) yields 

2T (• 1 -- t>0 

s(t) = Mor(• + 2,) to/ t (•5) 
s(t) = 0 t < 0 

Taking the Fourier transform we get 

= 7oo (16) 

where 

1 
Wo = -- (17) 

to 

Using (11) we get 

• = Mo • e tm'agn ('") (18) 
t. Oo 

where 

sgn(w) = 1 w> 0 

sgn (•o) = - 1 •o < 0 (19) 
Taking the inverse Fourier transform of M(•o) and integrating, 
we get the relaxation function 

CIt(t) = F(1 - 2•) t > 0 (20) 
= 0 t < 0 

Figure 1 shows a plot of the constant Q creep function (14), 
and Figure 2, of the relaxation function (20), for several values 
of Q. Equation (18) shows that the argument of the modulus 
and thus the phase angle between the stress and the strain, is 
independent of frequency; therefore, it follows from the defini- 
tion of Q (2) that Q is independent of frequency: 

1 
= tan (•r3•) (21 ) 

Q 

or 

Since both the creep and relaxation functions vanish for 
negative time, no strain can precede applied stress, nor can any 
stress precede applied strain; the material is causal. 

To investigate the propagation of waves in the constant Q 
material, the modulus given by (!8) may be substituted into 
the solution to the one dimensional wave equation, given by 

(12) and (13); the result may be written as 

U(t, x) = e-"Xe "ø (t-x/,) (23) 

where 

3- 

O= 1 

1.2 

1,1 

O= 10 

i I .0 I I I I , 
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Fig. 1. The constant Q creep function as given by (14), in units of l/Mo, plotted versus time in units of to. 
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Fig. 2. The constant Q relaxation function as given by (20), in units of Mo, plotted versus time in units of to. 

ß c = Co (24) 

Co = Mo/•/a cos 

Since c is slightly dependent on frequency, constant Q is not 

exactly equivalent to assuming that a is proportional to fre- 
quency, as is often assumed in the literature. It is clear from 
(24), that Co is simply the phase velocity at the arbitrary refer- 

ence frequency •o. In the final section of the paper, we discuss 
the low and high frequency limits for the phase velocity and 

the modulus, and the short and long term behavior of the 
creep function. 

An alternative to (23) is to write the solution to the wave 

equation as 

U(x, t) = exp • t c,(i•)* 

where c, is a constant related to Mo by 

c,= (28) 
Use of the complex velocity notation, as in (27), often sim- 

plifies the algebra, e.g., in the derivation of reflection coe•- 
cients or when modeling wave propagation in two or three 
dimensions. 

As most wave phenomena encountered in seismology are 
transient in nature, a time domain description of wave propa- 

gation is often more useful for modeling or comparison with 
data than a frequency domain description. The waveform that 
results from a delta function source, the impulse response, is 

particularly useful since the waveform that results from an 
arbitrary source is obtained by simply convolving the source 
with the impulse response. The Fourier transform of the im- 

pulse response, b(t) is obtained by omitting the iwt term in (12) 
or (23): 

B(w ) = e -"•' e -t (29) 

By substitution of (24) and (25) into (29), we get 

= - • an + i sgn (co) B(w) exp Co COo (30) 

The impulse response may be obtained by taking the inverse 
Fourier transform of B(•o) given by (30). Although we do not 
have an analytical expression for b(t), we will present a useful 
approximate relation and some exact scaling relations. We will 
rewrite (30) as 

where 

and 

B(co ) = B•(co• ) (31 ) 

co• = t•co (32) 

XCOo I t• (33 ) tx = tøx Co/ 

1 1 
f/= • 1 q- (34) 

1 - 'y •rQ 

(35) 

It now follows from the similarity theorem [Bracewell, 1965; p. 

101] that for any homogeneous material, the impulse response 
at any distance x from the source will be given by 

b(t, x) = t-•b• • (36) 
Equations (36) and (33) imply that in a given material, the 
tra•vel time T, the pulse width r and the pulse amplitude A are 
related according to 

(37) 

where any consistent operational definitions for the travel time 
and pulse width may be used. The proportionality between 
travel time and pulse width may be expressed as 
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Fig. 3. The waveform b(t), resulting from a unit impulse plane wave source at x = Qco, is plotted versus time in units of 
to. The waveform in computed using a numerical FFT algorithm. 

T (38) r = C(Q)• 
where C(Q) is a function that depends only on Q. We will 
show that C(Q) is nearly constant for Q > 20. Figure 3 shows a 
plot of the function b(t), for several values of Q. 

In order to illustrate the scaling relations, seismograms due 

to impulsive sources at several distances are plotted on a 
common set of axes in Figure 4. Figure 5 shows the same 
information but scaled according to distance, by dividing the 

time by the distance and multiplying the displacement by the 
distance. Velocity dispersion has the effect of delaying the 
pulses from the more distant sources more than would be 
expected for a constant propagation velocity. To further illus- 
trate the dispersion, Figure 6 shows the results of the same 
kind of a numerical experiment as Figure 5, for a Q of 1000 
and covering a larger range of distances. It may be concluded 
from Figures 5 and 6 that the dispersion due to the anelasticity 
is directly observable in the time domain when the travel time, 
in a homogeneous material, can be measured to within half a 
pulse width over a ratio of 10 in distance. This applies to high 
Q as well as low Q materials. To measure this effect in the 
earth would, however, require a careful control over the spa- 
tial variation' in velocity. 

The required control may be obtained when the wave travels 
the same path more than once. Waves reflected off the core- 
mantle interface may satisfy this condition for stations near 
the source. Assuming an average Q - 160 and a travel time of 
936 s for one pass of ScS [Jordan and Sipkin, 1977], we obtain 
by a substitution into (34) a value for •/ = 1.0020. Equation 
(37) implies then that doubling the distance will result in a 
total traveltime of 1874.6 seconds for ScS2, which is 2.6 s 

longer than would be expected if the dispersion were not 
present. 

APPROXIMATIONS FOR TIME DOMAIN WAVELETS 

So far we have made no assumptions about the value of Q 

(other than Q > 0), or the ranges of frequencies and travel 
times involved. Although we have been able to derive exact 
expressions for all frequency domain properties of the wave 
propagation, we do not have exact analytical expressions for 

time domain wavelets or impulse responses. While modern 
computer techniques (e.g., the fast Fourier transform al- 
gorithm) make it relatively easy to transform data to the 
frequency domain and back, it is still useful to study the time 
domain wave form, especially since many earthquake data are 
still recorded in analog form. The need for a convenient time 
domain representation is demonstrated by the fact that wave- 
lets based on the Voigt-Ricker model are often used by 
workers who do not accept the frequency dependence of Q 
implied by that model [e.g., Boore et. al., 1971; Munasinghe 
and Farnell, 1973]. 

Strick [ 1967] applied the causality requirement to the propa- 
gation of a wave pulse and found a form for the propagation 
function that satisfies this requirement. The constant Q trans- 
fer function (23), is a special case of Strick's function. Later 
Strick [1970] used the method of steepest descent to approxi- 
mate the time domain impulse response. His expression has, in 
the notation used in this paper, the form 

bs(t,x) = {2•r3•tI (1- 3•)xl-•/'rl-•/2 Cst 

I- - 'xl exp (1 - 'y) ' Cst 

where bs(t, x) denotes Strick's approximation to the impulse 

8o I I 

'- 60- 

o 40 

._ 

0 

0 E 4 

Time 

Figure 4. Seismograms resulting from sources at distances of 0.25, 
0.5, 1, 2, and 4 times Co. Q is 30. 
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Fig. 5. Same seismograms as in Figure 4, but plotted as dis- 
placement times distance versus time divided by distance. The seismo- 
grams do not overlap due to velocity dispersion. 

response, and cs is defined by (28). By rearranging this ex- 
pression, it may be written as 

= 2•r•(1 - 'y)- :/•]- 

exp [-'y(1 - 'y)(:-'•l/'• ts •-•/'•] 

where 

By differentiation we get the approximation for the differenti- 
ated impulse response, &o(t, x): 

(39) 

(40) 

It is evident from inspection of these expressions, that they do 
obey the correct scaling relations given by (37). Figures 7 and 8 
show a comparison between the wave shapes computed by the 
fast Fourier transform method and those computed using the 
steepest descent approximation. They show an excellent agree- 
ment for the early part of the pulse, which includes most of the 

higher frequency information, while the steepest descent ap- 
proximation underestimates the low frequency amplitudes in 
the later part of the pulse. This is not surprising since the 
assumptions involved in the steepest descent approximation 
break down at very low frequencies. This agreement contrasts 

with the result of Minster [1978a], who in his Figure 3 shows 
significant differences between arrivals computed using FFT 
methods and those computed using analytical expansions. 

So far we have only considered the pulse propagation in 
homogeneous materials and given scaling relations applicable 
to materials with the same value of Q. As the wave shapes 
plotted in Figure 3 show a great deal of similarity for different 
values of Q, it should be possible to give scaling relations for 
different values of Q as well as for different distances. 

When Q_O. << l, the tangents in (22) and (25) may be 
replaced by their arguments. Thus (29) and (25) may be writ- 
ten as 

where 

2Qc ioo (41) 

c • Co (42) 

By use of the M aclaurin series expansion of the exponential 

function, (42) may be written as 

Co •-• In + •-• In + ... (43) 
When all the frequencies of interest satisfy the condition 

•rQ In << 1 (44) 

sufficient precision may be maintained by including only the 

first two terms of the expansion given in (43). The result is the 

dispersion relation given by many of the NCQ papers [e.g., 
Kanarnori and Anderson, 1977]. U sing the approximation in- 
dicated in (43), and dropping all terms involving the second or 
higher powers of l/Q, (41) becomes 

B'(oo)=exp{ X•o• I sgn (cø) i - 2----• + i- •-• In , (45) 
The similarity and shift theorems [Bracewell, 1965, p. 101] may 

now be used to relate the approximate impulse response b'(t) 
that has B'(oo) as its Fourier transform, as indicated by the 

following relations. 

b'(t) = rb•'(t') (46) 

where 

t' = rt - Q + --1 lnr (47) 
• •o 

r= coQ (48) 
x 

and b:'(t) is the inverse Fourier transform of 

B•'(•o') = exp -•o' sgn (•o') - 7 

As long as the condition given by (44) holds, it is possible to 
obtain wave shapes for materials with different Q as well as 

different travel times by a combination of scaling and shifting 
of a single pulse shape. In particular, it follows from (46) and 

(48) that the amplitude of the pulse will be approximately 
proportional to Q. This result, combined with the exact scaling 
relations (37), implies that the function C(Q), defined by (38) 

approaches a constant value as Q becomes large. In order to 

test the usefulness of (38) we have evaluated numerically the 

value of C(Q). The results are plotted in Figure 9 for two pulse 
width definitions and three different travel time definitions. 

These curves show that the value of C(Q) is practically inde- 

6OO 

._ 

400 

._ 

• 2.00 

._ 

r• 0 

I I I 

.995 1.005 

Traveltime divided by distance 

I o01 

Fig. 6. Seismograms resulting form sources at distances of 0.01, 
0.1, l, 10, 100, and 1000 times Co plotted in the same manner as in 
Figure 5, for Q = 1000. This shows that the dispersion effect, relative 
to the pulse width, is independent of Q when Q >> I. 
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Comparison of waveforms computed using (39) (solid line), to the waveforms from Figure 3 (dashed line). 

pendent of Q, for Q greater than about 20. The similarity of 
the pulse shape for different values of Q implies that the pulse 
broadening along the wave path may be summed and (38) 
written as 

r • C(Q)-•-• C (50) 
This relation may provide the basis for a practical method for 
inverting models for the anelastic properties of rocks in situ 
when the wave sources are sufficiently impulsive and the waves 
are recorded on broadband instruments. The ambiguities in- 

volved in using the pulse breadth in this manner are far less 
than those involved in the use of amplitudes in a narrow 

frequency band, since a number of purely elastic effects, such 
as focusing from curved interfaces, can have large effects on 
the amplitudes of seismic signals. It has the advantage over 
spectral methods that the measurement may be done on a 

clearly defined phase of the wave form [Gladwin and Stacey, 
1974]. It should be noted that (38) and (50) apply for other 
pulsewidth measures than risetime, but the value of C(Q) will 
of course be different. 

FIELD MEASUREMENTS OF ATTENUATION 

There have been relatively few field studies of the propaga- 
tion of transient wave pulses in rocks. Gladwin and Stacey 
[1974] found that the rise time r, which they defined as the 
maximum amplitude divided by the maximum slope on the 
seismogram, could be fitted by an expression of the form 

T (51) r = r0 + C• 
where r0 indicates the rise time of the source and C was a 
constant with a value of 0.53 + 0.04. This value is in reason- 
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Comparison of waveforms computed using (40) (solid line), to waveforms computed Using numerical FFT 
algorithms (dashed line). 
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Fig. 9. Plot of the function C(Q) defined by (39). Each pair of 
curves was computed using as a pulse width measure, the rise time 
definition of Gladwin and Stacey [1974], i.e., maximum amplitude 
divided by maximum slope. The top pair of curves applies to the 
impulse response b(t), and the lower curve applies to its derivative. 
The lower curve in each pair was computed using as travel time T the 
arrival time of the peak of the pulse, and the upper was computed 
using the arrival time of maximum slope. The asymptotic values are 
0.485 and 0.298. 

ably good agreement with the value predicted on the basis of 

the CQ theory of 0.485 for large Q (Figure 9). 

McDonal et al. [1958] performed experiments in wells 
drilled into the Pierre shale formation near Limon, Colorado. 

Fourier analysis of their data indicated that individual Fourier 

components of the wave forms decayed exponentially in am-. 

plitude with distance and that this decay was proportional to 
frequency. The attenuation per 1000 feet (305 m) was given in 
decibels as 0.12 times frequency. Substitution of this value 
into (41) and using a velocity of 7000 feet/s (2130 m/s) gives 

Q equal to 32. This result was obtained at depths of several 

hundred feet. Deep reflections indicated that the attenuation 
decreased with depth with the average attenuation down to a 

depth of 4000 feet (1220 m) corresponding to a Q of approxi- 
mately 100. Their wave forms did not show a large amount of' 
broadening over a ratio of 5 in travel times; this indicates that 

the sources were long compared to the impulse response of the 

wavepath so the assumption of a delta function source is not 
appropriate. However, if the rise times of the wave forms 
shown in Figures 3 and 6 of McDonal et al. [1958], are fitted 
to the expression (51), a reasonable fit may be obtained using 

C = 0.5 and Q = 30. This is consistent with the first part of 

the source being approximately a delta function in velocity or 
a step function in displacement. 

Ricker [1953, 1977] described experiments done in 1948 in 
the same formation. Wave forms were recorded by three geo- 

phones at depths of 422, 622, and 822 feet (129, 190, and 251 
m), for shots at depths less than 300 feet (92 m) in adjacent 
wells. Figure 10 shows a plot of pulse width versus travel time 
[Ricker, 1977, Figure 15.23]. Ricker fitted these data by a 
function of the form 

r = at •/: (52) 

This relation is in direct conflict with (37), as well as the 
experimental result of Gladwin and Stacey [1974]. According 
to Ricker [1977, p. 198], this observation is the strongest, if not 

the only evidence supporting the applicability of his theory to 

seismic waves. By inspection of Figure 10 it appears that the 

data could just as well be fitted by a function of the form (51) 
used by Gladwin and Stacey [1974]. McDonal et al. [1958] 
criticized Ricker's experiment on the basis that each shot was 

recorded by no more than three geophones, and that wave 

forms from different shots were not comparable because 'One 
can not shoot a second time in the same hole because the same 

hole is not there any more.' This is probably the reason for 
some of the scatter in Ricker's data, particularly from the 300 

foot shots. This error can be reduced, however by adjusting the 
parameter •0 in (51 ) for each shot, provided that it is recorded 

by at least two geophones. Thus we have fitted the wavelet 

breadth data to a model given by 

= + C f (53) 
In order to facilitate the integration, the travel time data were 
fitted to the form 

T = a(xg - Xs) + b(xg •- Xs •) (54) 

where xs is the depth to the geophone and Xs is the depth to 
shot. This expression implies that the velocity as function of 
depth will be given by 

1 
F = (55) 

a + 2bx 

As Ricker did not specify which of the data points were 
obtained from the same shot, it was only possible to determine 

the source widths for each shot depth. For the pulse width 
measure used by Ricker, the value of the parameter C in (53) is 
approximately unity. Figure 11 shows a plot of the data from 

Figure 10, with the source width subtracted, compared to a 

straight line with a slope of 1/Q = 1/32. The data points for 

the geophone at 622 feet tend to be above the curve; this can be 

explained by attenuation decreasing with depth. This result 
implies that both Ricker's data and the data of McDonal et. al. 

are consistent with the linear constant Q model, and both give 

the same value for Q. This is particularly significant in light of 

the fact that they interpreted their data very differently, and 
that neither of them considered a constant or near constant 

linear attenuation in the interpretation of their data. The ap- 
parent conflict between the observations of Ricker [1953] and 

McDonal et. al. [1958] has been noted by many authors includ- 

ing Gladwin and Stacey [1974], Reiter and Monfort [1977], and 
Bless and Ahrens [1977]. 

COMPARISON WITH NEARLY CONSTANT Q 
THEORIES 

Lomnitz [1956] investigated the transient creep in rocks at 

low stress levels. He found that the shear strain resulting from 

6 i 

I I 

20 40 

I I 

œ 
7 

I I I 

80 80 lOO 120 

Tpaveltime (ms) 

Fig. 10. Pulse width as a function of travel time in Pierre shale. 
Data from Figure 15.23 in Ricker [ 1977]. Geophones are at depths of 
422, 622, and 822 feet (129, 190, and 251 m). Sources are at 25 foot 
(7.6 m) intervals at depths from 100 to 300 feet (30.5 to 91.5 m). Num- 
bers indicate sources, I for 100 feet (30.5 m), to 9 for 300 feet (91.5 m). 
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Fig. 11. The data in Figure 10, after subtraction of the initial pulse 
widths, compared with predicted pulse widths for Q = 32. Both Q and 
the source widths were determined by simultaneous least-square in- 
version. 

a step in applied stress could be described to within the experi- 
mental error with a creep function of the form 

1 

•P(t) = •00 [1 + q In (1 + at)] (56) 
where a is a frequency much greater than the sample rate or 
the time resolution of the experiment. He found that the fit to 
the data was insensitive to the value of a, as long as it was 

large. For Q greater than about 20, (56) is approximately equal 
to the CQ creep function (14). By using the first two terms 
from the MacLaurin series expansion of the exponential func- 

tion, (14) may be rewritten 

I 1 I 2 (,t)l ß (t) = •00 e2*ln(t/tø)••00 1 + •-•ln • 
when to << t, this is approximately equal to 

l I ,- ( •(t) =•00 l+7•ln 1+• 
Later, Lomnitz [1957, 1962] used his creep law and the super- 

position principle to derive a model for wave attenuation with 
Q approximately independent of frequency for large Q. Pandit 
and Savage [ 1973] measured Q for several rock samples with Q 
ranging from 30 to 300 and found good agreement between 
values determined at sonic frequencies and those derived from 

transient creep measurements over several tens of seconds. 
Kolsky [1956] did experiments on the propagation of ultra- 

sonic pulses in polymers and found the pulse width to be 
proportional to travel time. To model his data, he used a 
viscoelastic model with Q approximately independent of fre- 
quency and with a phase velocity that varied according to 

c:,+l Co •-•ln (58) 
Equation (58) follows from (43) when the condition given in 
(44) is satisfied. Futterman [1962] arrived at the same formula 

by imposing causality on the wave pulse and assuming the 

parameter a in (29) to be exactly proportional to frequency 
over a restricted range of frequencies. 

There are two difficulties inherent in Futterman's approach, 
which necessitate limits on the range where Q is nearly con- 
stant, at both low and high frequencies. Collins and Lee [1956] 
showed that the assumption of a nonzero limit for the phase 

velocity as frequency approaches zero, implies that Q must 
approach infinity at zero frequency. Futterman's formulation 
was based on a finite value of the refractive index at zero 

frequency and is thus incompatible with constant Q, where the 

phase velocity has no nonzero limit as frequency approaches 
zero. It can also been shown [e.g., Azimi et. al., 1968], that a 

proportional to frequency at high frequencies leads to a viola- 
tion of causality. 

It appears that these limitations, which are peculiar to Fut- 
terman's approach, have led many workers to assume that a 

physically realizable formulation with Q exactly independent 
of frequency was not possible. Liu et. al. [1976] and Kanamori 
and Anderson [1977] have used viscoelastic distributions to 

derive dispersion relations of the form shown in (58). Vis- 
coelastic density functions are discussed in the appendix, and it 
is shown how the constant Q model can be derived from 
distributions of dashpots and springs. 

DISCUSSION 

Of the two assumptions that provide the basis for the con- 

stant Q model, linearity is the more fundamental, and it has 
also been more frequently questioned in the literature than the 
frequency independence of Q. Nonlinear, rate independent 
friction was originally proposed [e.g., Born, 1941] to explain 
the frequency independence of Q, since at that time no simple 
linear models were available that could account for this obser- 

vation. As summarized in Table 1, all of the nonlinear friction 

mechanisms that have been proposed have several features in 
common. These include the dependence of the effective elastic 

moduli on strain amplitude, proportionality of 1/Q to strain at 
low amplitudes, frequency independence of both Q and the 
moduli, distortion of waveforms and cusped stress-strain 
loops, and the absence of any transient creep or relaxation. 

Mindlin and Deresiewicz [1953] analyzed the losses due to 
friction between spheres in contact, and found the attenua- 
tion to be proportional to amplitude at low amplitudes. 

White [1966] claimed that the introduction of static friction 
into this model had the effect of making Q independent of 

amplitude. This claim cannot be correct since it may be shown 

[Mavko, 1979], that static friction cannot increase the loss. 

Walsh [1966] considered the sliding across barely closed ellip- 
tical cracks and found the loss for closed cracks with zero 

normal force to be independent of amplitude. However this 

model cannot, as shown by Savage [1969], explain loss inde- 
pendent of amplitude for the whole rock. The required distri- 
butions of elliptical cracks would imply that the effective elas- 
tic moduli of the rock, as functions of confining pressure, are 
discontinuous at all values of confining pressure. Mavko 

[1979] has considered a more general case of nonelliptical 

cracks and found the attenuation to depend on amplitude in 
much the same manner as in the contact sphere model of 
Mindlin and Deresiewicz. All of the above models feature a 

decrease in the effective moduli with strain amplitude due to 
the increase in area of the sliding surfaces. Decrease of both 

velocity and Q, similar to what would be expected on the basis 
of the above models, has been observed in laboratory studies 
of rocks, [Gordon and Davis, 1968; Winkler et al., 1979], but 

only at strains greater than about 10 -6 to 10 -5 . At lower strains 

both Q and wave velocities are found to be independent of 
amplitude. 

The dependence of the wave velocity on frequency is such 

that it is difficult to separate it from the effects of spatial 
heterogeneities. There is however an increasing amount of 

evidence in support of the frequency dependence of the elastic 
moduli. Seismic models for the whole earth show much im- 

proved agreement with the free oscillation data when the fre- 

quency dependence of the elastic moduli is taken into account 

[Anderson et. al., 1977]. It is also well established that for many 
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rocks the elastic moduli derived from ultrasonic pulse mea- 

surements are significantly greater than the moduli derived 
from low frequency deformation experiments [Simmons and 
Brace, 1965]. This difference is generally larger for 1ossy mate- 

rials. Gretener [1961] analyzed well logging data from several 
oil wells in Canada and found statistically significant differ- 
ences between observed travel times from surface sources to 

geophones in wells and travel times predicted on the basis of 
high frequency continuous velocity logs. Strick [1971] showed 
that these differences could be explained by the dispersion 
associated with linear attenuation with Q nearly independent 

of frequency. 

Brennan and Stacey [!977] measured both Q and elastic 

modu!i in low frequency deformation experiments, at strains 
of 10 -6, and found the moduli to vary with frequency as 

predicted by linearity. The stress-strain loops were elliptical 
although earlier experiments at larger amplitudes showed cus- 

ped stress-strain loops [McKavanagh and Stacey, 1974]. 
Because the principle of superposition does not apply to the 

nonlinear solid friction models, it is difficult to predit their 

effects on the propagation of transient stress pulses. Walsh 
[1966] pointed out that the losses due to friction cannot be 
described through the use of complex moduli although this is 
frequently attempted [e.g., Johnston and Toksoz, 1977]. It is 

easily shown [e,g., Gladwin and Stacey, 1974], that the use of 
complex frequency independent moduli leads to acausal wave- 
forms that arrive before they are excited. Savage and Hase- 

gawa [1967] used the stress-strain hysteresis loops implied by 
several different friction models, to model wave propagation. 

The results showed significant amounts of distrotion which has 

never been observed experimentally. 

From these observations it may be concluded that at strain 

amplitudes of interest in seisinology, the propagation and 
attenuation of waves are dominated by linear effects, with 

some nonlinear effects showing up at strains of 10 -5 or greater. 
This amplitude corresponds to a stress amplitude of 5 bars, 
since the ambient seismic noise level is on the order of 10 -n in 

strain, and studies of earthquake source mechanisms indicate 
stress changes of 1-100 bars [Hanks, 1977]; it is evident that 
nonlinear effects can only be significant very near the source. 

While a good case can be made for the linearity of the 

absorption of seismic energy at low amplitudes, no such simple 
answer can be given to the question of the frequency depen- 

dence of the attenuation. Theoretical models of specific attenu- 
ation mechanisms are often formulated in terms of relaxation 

times, each of which implies a creep function that is a decaying 

exponential. A model that has a single relaxation time is often 
referred to as the standard linear solid and has Q proportional 

and inversely proportional to frequency at high and low fre- 
quencies, respectively. Cases where inertial effects may play a 
role, such as in the flow of low viscosity fluids [Mavko and 

Nur, 1979], feature even stronger variation o[ attenuation with 
frequency. It .may be shown [Kjartansson, 1978] that, in mate- 
rials with sharply defined heterogeneities (e.g., grain bounda- 
ries or pores), absorption due to processes controlled by diffu- 
sion, such as phase transformations or thermal relaxation, 

leads to Q proportional to w m and w -m at high and low 
frequencies, even for uniform distributions of identical pores 
or crystals. 

For these types of mechanisms, the approximate frequency 

independence of Q that is observed indicates distributions of 

time constants associated with the individual absorbing ele- 
ments. It may be shown, for example, that the frequency at 

which maximum absorption occurs for mechanisms involving 

the diffusion of heat, is inversely proportional to the square of 
the minimum dimension of the inhomogenieties involved. The 

empirical observation that Q, in solids, varies much slower 
than even the square root of frequency, is thus an expression of 
the statistical nature of the inhomogeneities. It is interesting 
that dielectric losses in solids show the same type of frequency 

dependence as do the energy losses in stress waves [Jonscher, 
1977]. 

While Q is probably not strictly independent of frequency, 
there is no reason to believe that any of the band-limited near- 

constant Q theories better approximate the wave propagation 
in real materials than the constant Q model. Therefore nothing 
is gained in return for the mathematical complexity and poten- 
tial inconsistency in using, for example, the absorption band 
model of Liu et al. [1976]. 

Strick [ 1967] obtained a transfer function for wave propaga- 
tion of which the constant Q is a special case. He rejected the 
CQ case, however, on the basis that the lack of an upper 
bound for the phase velocity was in violation of causality. 
Strick's three-parameter model is equivalent to the CQ model, 
with an additional time delay applied to the waveform. Strick 
[1970] computed waveforms for his models, and found that the 
detectable onset of the signal always arrived significantly later 
than the applied time shift. He termed this delay 'pedestal' and 
attributed to it significance that has been subject to some 
controversy. For the CQ case, the pedestal arrives when the 
source is excited. Minster [1978b] argued that the presence of 

the pedestal was an indication of the need for a high frequency 
cutoff of the type built into the model of Liu et al. This 
pedestal controversy points to a limitation shared by all of 
continuum mechanics; no continuum model, including the CQ 

model, can have any significance at wavelenghts shorter than 
the molecular separation nor at periods longer than the age of 
the universe. This covers approximately 32 orders of magni- 
tude in frequency, which for a Q of 100 implies a change in 
velocity of about 26%. The possibility that some 'calculable' 
energy might arrive 26% earlier than any detectable energy, is 
hardly a sufficient reason to introduce a high frequency cutoff. 
Calculable values of physical parameters outside the observ- 
able range are common in other fields, such as in solutions to 
the diffusion equation and in statistics. Minster [1978b] and 
Lundquist [1977] suggest that the cutoff should be at periods 
between 0.1 and 1 s for the mantle. Such cutoffs have never 

been observed for any of the rocks that have been studied in 
the laboratory, where the range of frequencies extends up to 
about I MHz. 

Lomnitz's [1957] attenuation model has often been criticized 
[Kogan, 1966; Liu et al., 1976; Kanamori and Anderson, 1977] 
on the basis that the lack of an upper bound for the transient 

creep would not permit mountains or large scale gravity anom- 
alies to last through geologic time. Since the Lomnitz creep 
function is practically equivalent to the constant Q creep func- 
tion for large values of time and Q, this criticism applies 

equally to the constant Q model. However, it does not pass the 
test of substituting numbers into the expressions (56) or (14). 
For example, for a material with a Q of 100, the strain that 
results from the application of a unit stress is only about 33% 
larger over a period of one billion years, than for the first 
millisecond of applied stress. Thus neither the constant Q 

theory, nor any of the NCQ theories can explain the large 
strains required by plate tectonics. The fact that brittle defor- 
mation only takes place in the uppermost part of the crust, 
with exception of localized areas of unusually rapid tectonic 
activity, may indicate that over geologic time most of the earth 
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deforms as a viscous fluid with Q for shear near zero. The 

assumption, implicit in the band-limited NCQ model of Liu et 
al. [1976], that Q approaches infinity outside the range of 
observations, is thus particularly inappropriate for low fre- 

quency shear deformations in the mantle. 

the constant Q relaxation function (20), is readily obtained. 

Since the constant Q model is mathematically a special case of 
the power law models of Strick [ 1967] and Azimi et al. [1968], 
it follows that those models do also have spring-dashpot repre- 
sentations. 

CONCLUSIONS 

Contrary to what has often been assumed in the past, it is 
possible to formulate a description of wave propagation and 
attenuation with Q exactly independent of frequency, that is 
both linear and causal. The wave propagation properties of 

materials can be completely specified by only two parameters, 

for example, Q and phase velocity at an arbitrary reference 
frequency. This simplicity makes it practical to derive exact 
expressions describing, in the frequency domain, the wave 

propagation for any positive value of Q. The dispersion that 
accompanies any linear energy absorption leads to a propaga- 
tion velocity of any transient disturbance that is not only a 
function of the material, but also of the past history of the 
wave. Review of available data indicates that the assumption 

of linearity is well justified for seismic waves, but it is likely 
that Q is weakly dependent on frequency. There is, however, 
no indication that any of the NCQ theories that we have 

discussed provide a better description of the attenuation in 
actual rocks than the constant Q theory does. 

APPENDIX: VISCOELASTIC MODELS 

In the literature on viscoelasticity, it is common to describe 

the behavior of materials through networks of springs and 

dashpots, often characterized by either relaxation or retarda- 

tion spectra. It has been claimed that only attenuation models 
given in terms of such networks are physically realizable, and 

models derived by other means have been termed 'ad hoc' 

[e.g., Minster, 1978a]. 

While it is possible to give physical models for attenuation 

that can not be modeled by spring-dashpot networks, [e.g., 
Mavko and Nur, 1979], the formulation of viscoelastic models 

in terms of relaxation spectra is often useful. Gross [1953] has 

summarized the relationships between the various functions 
that have been used to characterize viscoelastic materials. In 

his notation the retardation frequency density function N(s), is 

related to the creep function according to 

xlt(t) = - N(s)e -t* ds (A l) 

and the relaxation frequency density function ]•(s), is related 
to the relaxation function according to 

ß (t) = l•(s)e -t* ds (A2) 

Kanamori and Anderson [1977] used a relaxation function of 
the form 

N(s) = As -• s• < s < so. 
(A3) 

37(s) = 0 elsewhere 

to derive an absorption band NCQ model. The constant Q 
model may be specified by 

N(s) = Mo sin (2,r'y) (Sto)O..rs_• (A4) 

Using the definition of the gamma function and the identity 

P(z)P(l - z) = sin (,rz) (A5) 
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