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Abstract. We present a constant round protocol for Oblivious Transfer
in Maurer’s bounded storage model. In this model, a long random stringR
is initially transmitted and each of the parties interacts based on a small
portion of R. Even though the portions stored by the honest parties are
small, security is guaranteed against any malicious party that remembers
almost all of the string R.
Previous constructions for Oblivious Transfer in the bounded storage
model required polynomially many rounds of interaction. Our protocol
has only 5 messages. We also improve other parameters, such as the
number of bits transferred and the probability of immaturely aborting
the protocol due to failure.
Our techniques utilize explicit constructions from the theory of derando-
mization. In particular, we use constructions of almost t-wise indepen-
dent permutations, randomness extractors and averaging samplers.

1 Introduction

Oblivious transfer (OT) is one of the fundamental building blocks of modern
cryptography. First introduced by Rabin [Rab81], oblivious transfer can serve
as a basis to a wide range of cryptographic tasks. Most notably, any multi-party
secure computation can be based on the security of OT. This was shown for
various models in several works (cf. [Yao86,GMW87,Kil88]).

Oblivious transfer has been studied in several variants, all of which were
eventually shown to be equivalent. In this paper we consider the one-out-of-two
variant of OT by Even, Goldreich ad Lempel [EGL85], which was shown to be
equivalent to Rabin’s variant by Crépeau [Cre87].
† Part of this work done while at the Weizmann Institute of Science, Israel.
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One-out-of-two OT is a protocol between two players, Alice holding two
secrets s0 and s1, and Bob holding a choice bit c. At the end of the protocol Bob
should learn the secret of his choice (i.e., sc) but learn nothing about the other
secret. Alice, on the other hand, should learn nothing about Bob’s choice c.

Traditionally, constructions for OT have been based on strong computatio-
nal assumptions. Either specific assumptions such as factoring or Diffie Hellman
(cf. [Rab81,BM89,NP01]) or generic assumption such as the existence of en-
hanced trapdoor permutations (cf. [EGL85,Gol03,GKM+00]). In contrast, OT
cannot be reduced in a black box manner to presumably weaker primitives such
as one-way functions [IR89].

This state of affairs motivates the construction of OT in other types of setups.
Indeed, protocols for OT were suggested in different models such as under the
existence of noisy channels [CK88] or quantum channels [BBCS92]. In this work
we follow a direction initiated by Cachin, Crépeau and Marcil [CCM98] and
construct OT in the Bounded Storage model.

1.1 The Bounded Storage Model

In contrast to the usual approach in modern Cryptography, Maurer’s bounded
storage model [Mau92,Mau93] bounds the space (memory size) of dishonest play-
ers rather than their running time.

In a typical protocol in the bounded storage model a long random string R
of length N is initially broadcast and the interaction between the polynomial-
time participants is conducted based on a short portion of R.1 What makes such
protocols interesting is that, even though the honest players store only a small
fraction k << N of the string R, security is guaranteed even against dishonest
players with space K where k << K < N . Moreover, dishonest players are
not restricted to be computationally bounded (This is formalized by allowing
dishonest players to choose an arbitrary memory function g∗ : {0, 1}N→{0, 1}K ,
and store g∗(R). From that moment on, they are not bounded in any way).
Naturally, we’d like to maximize K and minimize k. In this paper we have
K = νN for an arbitrary constant ν < 1 and k will be about K1/2.

The bounded storage model has two appealing properties: (1) The security
obtained is information theoretic and thus everlasting in the sense that secu-
rity is guaranteed even if adversaries acquire infinite space after the protocol
is executed. (2) Protocols in the bounded storage model need not rely on any
assumption except the limitation on the storage capabilities of the adversary.

The latter property should be contrasted with traditional works in Crypto-
graphy in which, besides bounding the adversary’s computational capabilities, it
is also required to rely on unproven hardness assumptions (such as the existence
of enhanced trapdoor permutations, or the hardness of factoring large integers).
1 One possible implementation is that R is broadcast at a very high rate by a trusted

party. Another possibility is to have R transmitted from a satellite. We remark that
in our protocol (as in many previous ones) one of the parties can transmit these bits.
Furthermore, the assumption that R is uniformly distributed can be relaxed and it
is sufficient that R has high min-entropy.
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We mention that most of the previous work on the bounded storage mo-
del concentrated on private key encryption [Mau92,CM97,AR99,ADR02,DR02,
DM02,Lu02,Vad03] and key agreement [Mau93,CM97].

1.2 Oblivious Transfer in the Bounded Storage Model

A protocol for OT in the bounded storage model was given in [CCM98]. This
protocol requires k ≈ K2/3 and allows K = νN for an arbitrary constant ν < 1.
The error ε in this protocol is rather large ε = k−O(1). (Loosely speaking the
error ε measures the probability that a dishonest receiver with storage bound K
learns both secrets.)

A modified protocol with smaller error ε and smaller space k was given in
[Din01]. For every constant c > 0, it achieves k = K1/2+c and ε = 2−kc′

where
c′ > 0 is a constant that depends on c. We mention that the security of [Din01]
is proven in a slightly different (and weaker) model, where it is assumed that two
random strings R1,R2 of length 6K are transmitted one after the other and the
bounded receiver chooses what to remember about R2 as a function of what he
remembers about R1. The work of [Din01] was subsequently extended to deal
with one-out-of-k OT for any small constant k ≥ 2 in [HCR02].2

All protocols mentioned above require a lot of interaction. Specifically, for
ε = 2−kO(1)

, they require the exchange of kΩ(1) messages between the two players.

1.3 Our Results

We give a constant round OT protocol in the bounded storage model. Our pro-
tocol uses 5 messages following the transmission of the random string R. We
achieve parameters k and ε similar to that of [Din01] (that is, for every c > 0
there exist c′ > 0 such that our protocol has k = K1/2+c and ε = 2−kc′

) while
working in the stronger model of [CCM98]. Similar to [CCM98] we can achieve
K = νN for an arbitrary constant ν < 1.

In addition to being constant round our protocol also achieves the following
improvements over [CCM98,Din01]:

– The previous protocols are designed to transfer secrets in {0, 1}. Thus, trans-
ferring long secrets requires many messages. Our protocol can handle secrets
of length kΩ(1) in one execution.

– The previous protocols abort unsuccessfully with probability 1/2 even if both
players are honest. Our protocol aborts only with probability 2−kΩ(1)

.
– For error ε = 2−kΩ(1)

, the number of bits communicated in the two pre-
vious protocols is at least K1/2. In contrast, for error ε = 2−kc

our protocol
communicates only O(kc) bits.

We also give a precise definition for the security of oblivious transfer in the
bounded storage model, and point out difficulties arising when trying to consider
the more standard notion of a “simulation based” definition.
2 We note that a similar extension can be easily applied to our work.
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1.4 Interactive Hashing

An important building block in the OT protocol is a construction of a constant
round 2-to-1 interactive hashing protocol for unbounded parties. Loosely spea-
king, in such a protocol Bob holds an input W ∈ {0, 1}m, and Alice and Bob
want to agree on a pair W0, W1 such that Wd = W for some d ∈ {0, 1}, yet Alice
does not know d. It is also required that a dishonest Bob cannot “control” both
W0 and W1. (See Section 5 for a precise definition.)

As observed in [CCM98], the protocol of Naor, Ostrovsky, Venkatesan and
Yung [NOVY98] (originally used in the context of perfectly-hiding commitments)
achieves 2-to-1 interactive hashing. One major drawback of the NOVY protocol,
however, is that it requires m rounds of interaction. In this paper we give a new
4-message protocol for 2-to-1 interactive hashing that can be used to replace
the NOVY protocol in the context of oblivious transfer in the bounded-storage
model. Our protocol relies on a construction of almost t-wise independent per-
mutations, such as the construction presented by Gowers in [Gow96].

Organization. Due to space limitation, some of the details and proofs have been
omitted from this version. In Section 2 we present an overview of the techniques
that were utilized to achieve our results. Some preliminary definitions are given
in Section 3. Section 4 provides a definition of OT in the bounded storage model.
In Section 5 we define and state our theorem regarding interactive hashing. The
OT protocol is presented in Section 6. Sections 7, 8 and 9 give a high level
analysis of the protocol. Conclusions and open problems are in Section 10.

2 Overview of the Technique

As motivation for our protocol, we begin by suggesting a simple protocol for OT
in the bounded storage model which is bad in the sense that it requires large
storage from the honest parties: Alice is required to store all of the string R
and Bob is required to store half this string. We partition the N bit long string
R into two equally long parts R0,R1 of length N/2. Recall that Alice has two
secrets s0, s1 and Bob has a “choice bit” c and wants to obtain sc. Bob will
choose which of the two parts R0,R1 to store depending on his “choice bit” c.

Input of Alice: Secrets s0, s1.
Input of Bob: Choice bit: c ∈ {0, 1}.
A random string R = (R0,R1) is transmitted.
Alice: Store all of R.
Bob: Store Rc.
Alice: For i ∈ {0, 1}, send a uniformly chosen seed Yi, compute Vi = Ext(Ri, Yi)

and Zi = Vi ⊕ si. Send Yi, Zi.
Bob: Compute Vc = Ext(Rc, Yc) and obtain sc = Vc ⊕ Zc.

Fig. 1. A näıve protocol for OT
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Intuitively, even if Bob is dishonest and has storage bound νN then there is
an I ∈ {0, 1} such that Bob “does not remember” (1−ν)N/2 bits of information
about RI . This can be formalized by saying that the conditional entropy of RI

given the memory content of Bob is roughly (1−ν)N/2. (Actually, in this paper,
as in [CCM98,Din01], we work with a variant of entropy called min-entropy).

Let Ext(X, Y ) (Ext for extractor) denote a function such that whenever X
has sufficiently high min-entropy and Y is uniformly distributed then Ext(X, Y )
is close to being uniformly distributed. (The reader is referred to [Nis96,Sha02]
for surveys on extractors). To complete the protocol, Alice sends Zi = si ⊕
Ext(Ri, Yi) for both i = 0 and i = 1.

Note that an honest Bob can compute Ext(Rc, Yc)⊕Zc and obtain sc. Howe-
ver, if Bob is dishonest then ZI is close to uniform from Bob’s point of view and
reveals no information about sI .3 It is easy to prove that even an unbounded
dishonest Alice does not learn c.

Using a setup stage before the näıve protocol. The näıve protocol above
requires very large storage bounds from the honest parties. In order to instantiate
it in a more efficient manner we will first apply a carefully designed setup stage.
Our goal is that at the end of the setup stage the two players will agree on two
small subsets C0, C1 ⊆ [N ] of size � << N , such that Alice stores R0 = RC0 and
R1 = RC1 . (We use RC to denote the |C| bit long string obtained by restricting
R to the indices in C.) Bob remembers only one of R0,R1 and cannot remember
too much information about the other string. Furthermore, Alice does not know
which of the two strings is not known to Bob. Following the setup stage, the two
parties can perform OT by using the näıve protocol. We call this second stage
the transfer stage. As the sets C0, C1 are of size � << N the storage required by
the honest parties at the transfer stage is much smaller than before, and honest
players can follow the näıve protocol with space O(�) << N .

A long random string R of length N is transmitted.
Alice: Choose random A ⊆ [N ] of size n and store RA.
Bob: Choose random B ⊆ [N ] of size n and store RB .
Alice: Send A to Bob.
Bob: Verify that C = A ∩B is of size at least � = n2/2N .
Alice and Bob: Play an interactive hashing protocol where Bob’s input is C. Both

Alice and Bob obtain C0, C1 ⊆ A such that C ∈ {C0, C1}.
At this point, Alice and Bob use the näıve protocol with R0 = RC0 and R1 = RC1 .

Fig. 2. The protocol for the setup stage
3 We mention that the argument above is imprecise. Given the memory content of

Bob, the strings Z0, Z1 are no longer independent. Thus, to prove security it is not
sufficient to prove that ZI is uniformly distributed given the memory content of Bob.
In the technical proof we prove that ZI is uniformly distributed given the memory
content of Bob, Z1−I and Y0, Y1.
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Implementing the setup stage. An implementation for such a setup stage
was suggested in [CCM98]: Alice and Bob each choose a random subset of [N ]
of size n =

√
2N�. We denote them by A and B respectively. When the string

R is transmitted Alice and Bob store RA and RB respectively. Alice then sends
A to Bob. By the birthday paradox, with high probability C = A ∩B is of size
roughly �. Note that Bob remembers RC , and Alice does not know C.

To complete the setup stage, Alice and Bob play an interactive hashing pro-
tocol with W = C. They obtain sets C0, C1 ⊆ A such that C = Cd for some
d ∈ {0, 1} and such that Alice does not know d. The security requirement of the
interactive hashing can be then used to guarantee that Bob “does not remem-
ber a lot of information” about one of the strings RC0 ,RC1 . Thus, the two sets
C0, C1 satisfy the properties required above and the parties can complete the
OT protocol by using the näıve protocol.4 Note that the setup stage requires the
honest parties to store only k = n =

√
N� bits. In this presentation, we did not

discuss the security of Bob, however it is easy to show that even an unbounded
Alice, which remembers all of R, cannot learn any information about c.

Previous protocols. The protocols of [CCM98,Din01] both use the setup stage
described above. They implement interactive hashing using the NOVY-protocol
from [NOVY98] which takes � = kΩ(1)-rounds. Following the setup stage they
perform what can be seen in retrospect as variants of our näıve protocol. (Both
papers do not use extractors explicitly, however their strategies can be viewed
as some (weak) implementations of extractors.)

Our improvements. Our main improvement comes from replacing the NOVY-
protocol for interactive hashing by a new 4-message protocol. This protocol is
based on explicit constructions of almost t-wise independent permutations. Some
of the additional improvements are given by using competitive explicit construc-
tions of extractors for the näıve protocol above. Another source of improvement
comes from allowing Alice to choose the set A using an averaging sampler (The
reader is referred to [Gol97] for a survey on samplers). Choosing the set A using
a competitive averaging sampler reduces the memory requirements of Alice and
Bob, as well as the overall communication.5 We remark that the usefulness of
extractors in the bounded storage model was demonstrated in [Lu02], and that
of averaging samplers was demonstrated in [Vad03].6 Our paper can be seen as
another example of the usefulness of ideas from the theory of derandomization
when designing protocols for the bounded storage model.

4 A subtlety is that Bob has no control whether C = C0 or C = C1. In the actual
protocol we allow Bob to ask Alice to “switch” between the roles of C0, C1 in order
to receive the desired secret.

5 Note that using a samplers to choose the set B as well, we can further improves the
total communication and memory requirements.

6 It should be noted that the seminal paper of Nisan and Zuckerman [NZ96] which
defined extractors, already used them in a very related context to construct pseu-
dorandom generators against bounded space machines.



452 Y.Z. Ding et al.

2.1 The Improved Interactive Hashing Protocol

In an interactive hashing protocol Bob holds an input W ∈ {0, 1}m and at the
end of the protocol both parties should agree on W0, W1. It is required that there
is a d ∈ {0, 1} such that W = Wd and that a dishonest Alice cannot learn d. The
main requirement is that a dishonest Bob cannot “control” both W0, W1. This is
captured by the following condition: For every strategy of Bob and every set S
of size 2s (where s is a parameter), If Alice is honest then with high probability
Bob cannot force that both W0 and W1 are in S.

A näıve solution. A näıve solution to this problem is that Alice sends a random
2-to-1 “hash function” h : {0, 1}m → {0, 1}m−1 and Bob replies with z = h(W ).
Then the two parties compute the two preimages W0, W1 of z under h. Note that
for s > m/2 this protocol fails even if Alice sends a completely random function
h : {0, 1}m → {0, 1}m−1 (By the birthday paradox, for every S of size 2s > 2m/2

with high probability over h there are W0, W1 ∈ S such that h(W1) = h(W2)).

The NOVY-protocol. The NOVY-protocol [NOVY98] for interactive hashing
can be thought of as a variant of the näıve solution described above in which Alice
does not send “all” of the hash function at once. Alice chooses a random m×m
matrix A with entries in {0, 1} subject to the restriction that A is invertible.
Every such A can be seen as defining a function hA(x) = A · x. It is easy to
see that the function hA is a pairwise independent permutation. In particular,
the function h′A(x) = (A · x)1,...,m−1 is 2-to-1. The protocol consists of m − 1
rounds. In round i, Alice sends Ai (the i’th row of A), and Bob replies with
the zi = 〈Ai, W 〉 = hA(W )i. Intuitively, revealing hA slowly in return to bits
zi restricts Bob in the sense that he has to “choose at least part of his input”
before seeing all of hA.

The new protocol. Viewing the NOVY-protocol this way suggests the follo-
wing improvement: We replace the family {hA}A by a family of permutations
with stronger independence properties. Namely, we will let π be randomly chosen
from a family of m-wise independent permutations. In the new protocol, Alice
sends π to Bob and in exchange Bob sends at once z1, · · · , zv where zi = π(W )i

for v close to m. We can show that the independence properties of π “protect
Alice” and allow the parties to engage in a new interactive hashing protocol for
sending the remaining few m − v bits. By choosing the parameters appropria-
tely, the two parties can use the näıve solution (with a pairwise independent
hash function g : {0, 1}m−v → {0, 1}m−v−1) after the first round. As a result of
that we obtain a 2-round (4-messages) protocol (see Section 5.4).

Unfortunately, we are not aware of any explicit construction of a small sample
space of t-wise independent permutations for t > 3. Nevertheless, in [Gow96] (see
also [NR99] and the references therein) it was shown how to construct a sample
space of permutations in which every t elements are close to being independent,
and we can carry out the argument with this weaker property.
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3 Preliminaries

We use [N ] to denote the set {1, . . . , N}. We use X
r← S to denote uniformly

choosing X from S. For a set A ⊆ [N ] and a string R ∈ {0, 1}N we let RA

denote the substring of R consisting of the bits indexed by A. For a set S and
� ≤ |S|, we use

(
S
�

)
to denote the set of all subsets T ⊆ S with |T | = �.

Encoding subsets. We use a method of encoding sets in
([n]

�

)
into binary

strings. The following method was used in [CCM98]:

Theorem 3.1 ([Cov73]) For every integers � ≤ n there is a one to one map-
ping F :

([n]
�

) → [
(
n
�

)
] such that both F and F−1 can be computed in time

polynomial in n and space O(log
(
n
�

)
).

Using Theorem 3.1 we can encode
([n]

�

)
by binary strings of length 
log

(
n
�

)�.
However, it could be the case that images of subsets constitute only slightly
more than half of the strings above. This is exactly what causes the protocols of
[CCM98,Din01] to unsuccessfully abort with probability 1/2 (and is solved by
repeating the protocol until the execution succeeds). Since in this work we are
aiming for low round complexity, it would be beneficial to have the probability
of unsuccessful abort to be significantly smaller than 1/2. To achieve this, we
will use a more redundant encoding. This encoding is more ”dense” than the
original one and thus guarantees that most strings can be decoded.

Definition 3.2 (Dense encoding of subsets) For every integers � ≤ n let
F be the mapping from Theorem 3.1. Given an integer m ≥ 
log

(
n
�

)� we set
tm = �2m/

(
n
�

)�. Define the mapping Fm :
([n]

�

) × [tm] → {0, 1}m as Fm(S, i) =
(i− 1)

(
n
�

)
+ F (S) (every subset S is mapped to tm different m bit strings).

We now have the following Lemma (proof omitted).

Lemma 3.3 For every � ≤ n and m ≥ 
log
(
n
�

)�, the encoding Fm is a
one-to-one mapping. Furthermore: (1) Fm and F−1

m are computable in time
poly(n, log m) and space O(log

(
n
�

)
)+log m. (2) Let D be the image of Fm (D con-

tains all m bit strings that are legal encodings of subsets), then |D|2m > 1−(n�
)
/2m.

Min-entropy and Extractors. Min-entropy is a variant of Shannon’s entropy
that measures information on the worst case.

Definition 3.4 (Min-entropy) For a distribution X over a probability space
Ω the min-entropy of X is defined by: H∞(X) = minx∈Ω log(1/ Pr[X = x]). We
say that X is a k-source if H∞(X) ≥ k.

Definition 3.5 (Statistical distance) Two distributions P and Q over Ω are
ε-close (also denoted P

ε≡ Q) if for every A ⊆ Ω, |Prx←P (A)− Prx←Q(A)| ≤ ε.
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An extractor is a function that “extracts” randomness from arbitrary distribu-
tions which “contain” sufficient (min)-entropy[NZ96].

Definition 3.6 (Strong extractor) A function Ext : {0, 1}nE × {0, 1}dE →
{0, 1}mE is a (kE , εE)-strong extractor if for every kE-source X over {0, 1}nE

the distribution (Ext(X, Y ), Y ) where Y is uniform over {0, 1}dE is εE-close to
(UmE

, Y ) where UmE
is uniform over {0, 1}mE .

We remark that a regular (non-strong) extractor is defined in a similar way,
replacing the random variable (Ext(X, Y ), Y ) by Ext(X, Y ).

Averaging Samplers and Min-Entropy Samplers. A fundamental lemma
by Nisan and Zuckerman [NZ96] asserts that given a δv-source X on {0, 1}v,
with high probability over choosing T ⊆ [v] of size t, XT is roughly a δt-source.

In [CCM98] this lemma is used to assert that if a bounded storage adversary
has memory bound νv for ν ≈ 1 − δ then for a random T he “remembers at
most νt bits about XT ”. This approach is also used in [Vad03] which constructs
private key encryption in the bounded storage model. As shown in [RSW00,
Vad03] the lemma does not require a uniformly chosen subset. It is sufficient
that T is chosen using a “good averaging sampler”7(such samplers have been a
subject of a line of studies starting with [BR94], see survey of [Gol97]).

Definition 3.7 (Averaging sampler) A function Samp : [L] → [v]t is a
(µ, θ, γ)-averaging sampler if for every function f : [v] → [0, 1] with average
value 1

v

∑
i f(i) ≥ µ,

Pr
p∈[L]



1
t

∑

1≤i≤t

f(Samp(p)i) < µ− θ



 ≤ γ

The function Samp is said to have distinct samples if for every p ∈ [L], the t
outputs of Samp(p) are distinct.

A min-entropy sampler has the property that for most choices of p, the varia-
ble XSamp(p) is close to having high min-entropy. As shown in [Vad03], every
averaging sampler yields a min-entropy sampler.

Definition 3.8 (Min-entropy sampler) A function Samp : [L] → [v]t with
distinct samples is an (δ, δ′, φ, ε)-min-entropy sampler if for every δv-source X
over {0, 1}v there is a set G ⊆ [L] of density 1−φ such that for every p ∈ G the
distribution XSamp(p) is ε-close to a δ′t-source.

Lemma 3.9 ([Vad03] restated) Let Samp : [L]→ [v]t be a (µ, θ, γ)-averaging
sampler with distinct samples for µ = (δ − 2τ)/ log(1/τ) and θ = τ/ log(1/τ).
Then there is a constant c > 0 such that for every 0 < α < 1, Samp is a
(δ, δ − 3τ, (γ + 2−cτv)1−α, (γ + 2−cτv)α)-min-entropy sampler.
7 We remark that most constructions of averaging samplers do not depend on µ and

work for every 0 ≤ µ ≤ 1.
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4 Oblivious Transfer in the Bounded Storage Model

We now turn to formally define oblivious transfer in the bounded storage model.
The following definitions characterize malicious strategies for Alice and Bob.
Note that in the definitions below the malicious strategies are asymmetric. We
restrict malicious strategies for Bob to have bounded storage while no bounds
are placed on malicious strategies for Alice. Clearly, if a protocol is secure against
unbounded strategies for Alice, it is also secure against bounded strategies. Thus,
the security defined here is even stronger than that explained in the introduction.

Definition 4.1 (Malicious Strategy for Alice) A (malicious) strategy A∗

for Alice is an unbounded interactive machine with inputs R ∈ {0, 1}N and
s0, s1 ∈ {0, 1}u. That is, A∗ receives R and s0, s1 and interacts with B, in each
stage, it may compute the next message as any function of its inputs, its ran-
domness and the messages it received thus far. The view of A∗ when interacting
with B that holds input c (denoted view〈A

∗,B〉
A∗ (s0, s1; c)) consists of its local out-

put. 8

The following definition captures a bounded storage strategy with storage
bound K. Loosely speaking, the only restriction made on a bounded storage
strategy B∗ is that it has some memory function g∗ : {0, 1}N → {0, 1}K and
its actions depend on R only through g∗(R). This formally captures that B∗

remembers only K bits about R.

Definition 4.2 (Bounded storage strategy for Bob) A bounded storage
strategy B∗ for Bob with memory bound K is a pair (g∗, B̂∗) where:

– g∗ : {0, 1} × {0, 1}N → {0, 1}K is an arbitrary (not necessarily efficiently
computable) function with input c and R.

– B̂∗ is an unbounded interactive machine with inputs c∈{0, 1} and b∗∈{0, 1}K.
The behavior described by a strategy B∗ with input c is the following: When given
the string R ∈ {0, 1}N , B∗ computes b∗ = g∗(c, R). B∗ then interacts with A

using the interactive machine B̂∗ receiving inputs c and b∗. The view of B∗ with
input c when interacting with A with inputs s0, s1 (denoted view〈A,B∗〉

B∗ (s0, s1; c))
is defined as the view of B̂∗ when interacting with A.

We now turn to the definition of oblivious transfer in the bounded storage
model. The security of Bob asks that for any malicious strategy for Alice, its
view is identically distributed whether Bob inputs c = 0 or c = 1. The definition
of Alice’s security is a bit more complex because one of her secrets is passed to
Bob. For this definition, we partition every protocol that implements OT into
two stages. The first stage called the Setup Stage and includes the transmission
of the long string R and all additional messages sent by Alice and Bob until the
point where Alice first makes use of her input s0, s1. The remaining steps in the
protocol are called the Transfer Stage. Next define consistent pairs of secrets.
8 The view of A may be thought of as also containing the party’s randomness, inputs

and outputs, as well as the messages received from B. This more intuitive “view” is
possible since w.l.o.g. the malicious party may copy this view to his output.
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Definition 4.3 Two pairs s̄=(s0, s1) and s̄′=(s′0, s
′
1) are c-consistent if sc =s′c.

The security of Alice asks that following the setup stage (which does not
depend on the secrets), there is an index C (possibly a random variable which
depends on R and the messages sent by the two parties in the setup stage) such
that Bob’s view is (close to) identically distributed for every two C-consistent
pairs. In other words, Bob’s view is (almost) independent of one of the secrets
(defined by 1− C). We next present the actual definition.

Definition 4.4 (Oblivious Transfer) A protocol 〈A, B〉 is said to implement
(1−ε)-oblivious transfer (OT) if it is a protocol in which Alice inputs two (secrets)
s0, s1 ∈ {0, 1}u, Bob inputs a choice bit c ∈ {0, 1}, and that satisfies:

Functionality : If Alice and Bob follow the protocol then for any s0, s1 and c,
1. The protocol does not abort with probability 1− ε.
2. If the protocol ends then Bob outputs sc, whereas Alice outputs nothing.

Security for Bob: The view of any strategy A∗ is independent of c. Namely,
for every s0, s1:

{
view〈A

∗,B〉
A∗ (s0, s1; c) | c = 0

}
≡

{
view〈A

∗,B〉
A∗ (s0, s1; c) | c = 1

}

(K, ε)-Security for Alice: for every bounded storage strategy B∗ for Bob with
memory bound K and input c there is a random variable C defined by the end
of the setup stage such that for every two pairs s̄ and s̄′ that are C-consistent:

{
view〈A,B∗〉

B∗ (s̄; c)
}

ε≡
{

view〈A,B∗〉
B∗ (s̄′; c)

}

If Bob is semi-honest then C = c,9 however, a dishonest receiver can always
choose to ignore c and play with an input c′ which depends on R and the
messages in the setup stage. Thus, letting C depend onR and the messages in the
setup stage is unavoidable. We remark that the definition would be meaningless
if C was allowed to depend on the secrets s0, s1, and this is the reason we require
a partitioning of a protocol into a setup stage and transfer stage. We stress that
the security achieved in this definition is information theoretic.

Remark 4.1. We mention that it does not immediately follow that all the “stan-
dard” applications of OT can be performed in the bounded storage model (this
is also the case for the previous protocols in this model [CCM98,Din01]). Ne-
vertheless, we now explain how this protocol can be used as a sub-protocol to
perform other cryptographic tasks. For this we note that the above definition
implies security by a simulation argument (although the simulator is not neces-
sarily efficient).10 Thus, for example, our OT protocol can be used as in the
9 A semi-honest receiver is one that follows the protocol but remembers more than

required about R and attempts to use this information to learn both secrets.
10 Loosely speaking, the simulation paradigm requires that any attack of a malicious

party can be simulated in an ideal setting where the parties interact only through
a trusted party. This insures that the protocol is as secure as an interaction in the
ideal setting.
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construction of Kilian [Kil88], to give a protocol for secure two-party computa-
tion in the bounded storage model. The security achieved guarantees that an
unbounded party learns nothing about the input of the other party. We stress
that typically one requires that the simulators should run with essentially the
same efficiency as the attack being simulated, and that this provides a stronger
notion of security.

We now give a sketch of the simulator for the receiver’s strategy B∗. The
simulator plays the roles of both B∗ and A in the protocol up to the transfer
stage. At this point the simulator computes the random variable C and calls the
trusted party asking for secret C. It continues by simulating A with inputs sC as
received from the trusted party and a random s1−C . By the definition this turns
out to be a valid simulation, however, computing C is not necessarily efficient
and therefore the simulation is unbounded.

5 Interactive Hashing

One of the main tools we use in this paper is the interactive hashing proto-
col. While useful in the bounded storage model, it is important to note that
interactive hashing is not necessarily related to this model. As a matter of fact,
the definitions and protocols given here achieve security against all powerful
adversaries with no storage bounds at all.

5.1 Preliminaries: Permutations and Hash Functions

Definition 5.1 (2k-to-1 Hash Functions) A hash function h : {0, 1}m →
{0, 1}m−k is 2k-to-1 if for every output of h there are exactly 2k pre-images.
That is, |h−1(z)}| = 2k for every z ∈ {0, 1}m−k.

One simple method of constructing a 2k-to-1 hash function is to take a per-
mutation on m-bit strings and omit the last k bits of its output. Clearly every
output of the resulting function can be extended to 2k different strings and
therefore has 2k pre-images. Examples of useful permutations follow.

Almost t-wise Independent Permutations. In our discussion we would like
to use a random permutation on m bit strings. However, a description of such a
permutation would be exponentially long since there are (2m)! such permutati-
ons. The solution is to use a permutation that falls short of being truly random
but still has enough randomness to it. Specifically we want to efficiently sample
a permutation π out of a small space of permutations such that when looking
at π applied on any t points in {0, 1}m then π behaves like a truly random
permutation. Such a space is called a t-wise independent permutation space.

Unlike in the case of functions, where there are extremely randomness ef-
ficient constructions of t-wise independent functions, we are unaware of such
constructions for permutations. Instead we further relax our demands and ask
the construction to be almost t-wise independent, that is, the distribution indu-
ced by the permutation π on any t points is statistically close to the distribution
induced on these points by a truly random permutation. Formally:
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Definition 5.2 An η-almost t-wise independent permutation space is a proce-
dure that takes as input a seed of l bits and outputs a description of an efficiently
computable permutation in S2m .11 A uniformly chosen seed induces a distribu-
tion Πt,η on permutations such that for any t strings x1, . . . xt ∈ {0, 1}m:

{π(x1), . . . π(xt)}π r←Πt,η

η≡ {π(x1), . . . π(xt)}π r←S2m

We use the construction presented by Gowers in [?].

Theorem 5.3 ([Gow96]) There exists an η-almost t-wise independent permu-
tation space Πt,η with t = m, η =

( 1
2m

)t and seed length l = mC for some con-
stant C. Furthermore, Πt,η runs in time and space polynomial in the seed length.

We note that the main Theorem of Gowers requires some special properties from
the value of m. However, this is only needed to improve parameters, and the
weaker results presented in the middle of the paper (Lemma 3) are satisfactory
and put no limitation on the value of m. The constant in the exponent of the
above Theorem is around C = 10, which is high but acceptable.

Other constructions of almost t-wise independent permutations were discus-
sed in [NR99] and other references therein.

Pairwise Independent Permutations. A widely used tool is a pairwise in-
dependent permutation of strings of m bits. This is simply a 2-wise independent
permutation as defined above (i.e., a 0-almost 2-wise independent permutation).

The construction that we use identifies {0, 1}m with the field GF (2m). A per-
mutation is sampled by randomly choosing two elements a, b ∈ GF (2m) with the
restriction that a �= 0. The permutation is then defined by ga,b(x) = ax+b (where
all operations are in the field). Generating a pairwise independent permutation
therefore requires 2m random bits.

Note: To construct a pairwise independent 2-to-1 hash function simply take a
pairwise independent permutation and omit the last bit of its output.

5.2 Definition: Interactive Hashing

Interactive hashing is a protocol between Alice with no input and Bob with an
input string. At the end of the protocol Alice and Bob should agree on two
strings: One should be Bob’s input and intuitively the other should be random.
Moreover, Alice should not be able to distinguish which of the two is Bob’s input
and which is the random string.

Definition 5.4 (Interactive Hashing) A protocol 〈A, B〉 is called an inter-
active hashing protocol if it is an efficient protocol between Alice with no input
and Bob with input string W ∈ {0, 1}m. At the end of the protocol both Alice
and Bob output a (succinct representation of a) 2-to-1 function h : {0, 1}m →
11 S2m denotes the family of all permutations on m bit strings
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{0, 1}m−1 and two values W0, W1 ∈ {0, 1}m (in lexicographic order) so that
h(W0) = h(W1) = h(W ).

Let d ∈ {0, 1} be such that Wd = W . Furthermore, if the distribution of
the string W1−d over the randomness of the two parties is η-close to uniform,
then the protocol is called η-uniform interactive hashing (or simply uniform
interactive hashing if η = 0).

Definition 5.5 (Security of Interactive Hashing) An interactive hashing
protocol is secure for B if for every unbounded deterministic strategy A∗, and
every W , if h, W0, W1 are the outputs of the protocol between an honest Bob with
input W and A∗. Then

{
view〈A

∗,B〉
A∗ (W) |W = W0

}
≡
{

view〈A
∗,B〉

A∗ (W) |W = W1

}

An interactive hashing protocol is (s, ρ)-secure for A if for every S ⊆ {0, 1}m
of size at most 2s and every unbounded strategy B∗, if W0, W1 are the outputs
of the protocol, then:

Pr[W0, W1 ∈ S] < ρ

where the probability is taken over the coin tosses of A and B∗.
An interactive hashing protocol is (s, ρ)-secure if it is secure for B and

(s, ρ)-secure for A.

Remark 5.1. The definition above does not deal with the case that dishonest
players abort before the end of the execution. Intuitively, such a definition is
sufficient for our purposes since in our OT protocol, the interactive hashing is
used before the players send any message that depends on their secrets, and thus
their secrets are not compromised.

5.3 Partial Result: A Two Message Interactive Hashing

We start by showing that when the bad set S is small enough then the following
näıve protocol is sufficiently good. In this 2 message protocol called 2M-IH, Alice
sends a random 2-to-1 hash function h : {0, 1}m → {0, 1}m−1 and Bob replies
with z = h(W ).

Claim 5.6 For all u, the 2M-IH protocol is a (s, 2−(m−2s+1))-secure uniform
interactive hashing.

Proof: The 2M-IH is clearly an interactive hashing protocol, and since h is
pairwise independent, then it is also uniform (W1−d is uniformly distributed).
The 2M-IH is also secure for B since all that Bob sends to Alice is h(W ), which
is the exact same view whether Bob has input W = W1 or W = W0. On the
other hand, since h is a pairwise independent hash function, then the probability
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over the choice of h for any two strings W0, W1 to be mapped to a certain cell
z ∈ {0, 1}m−1 is perfectly random, that is:

Prh[h(W0) = h(W1) = z] = 2 · 1
2m
· 1
2m − 1

Denote Xz = 1 if both strings mapped to cell z are from the set S and Xz = 0
otherwise. Then:

Prh[Xz = 1] ≤
(

2s

2

)
Prh[h(W0) = h(W1) = z] ≤ 2s

2m
· 2s − 1
2m − 1

≤ 22s

22m

Denote by X the number of cells z such that both values mapped into z are
from the set S, then:

E(X) = E
(∑

z

Xz

)
=
∑

z

E (Xz) ≤ 2m−1 · 22s

22m
≤ 2−(m−2s+1)

The protocol is insecure only if Bob finds a cell z with two bad values, that is
only if X ≥ 1. But using Markov’s inequality we have that Pr[X ≥ 1] ≤ E(x) ≤
2−(m−2s+1). Thus this protocol is (s, 2−(m−2s+1))-secure for Alice.

5.4 A Four Message Protocol for Interactive Hashing

The two message protocol is useful when the bad set S is very small. However, if
S is large (for example, if |S| = 2s and s = γm for any constant γ) then this pro-
tocol does not suffice. While the interactive hashing protocol of [NOVY98] takes
m round of communication to overcome this, the following protocol achieves this
using an interaction of just four messages.

Theorem 5.7 For all s, the 4M-IH protocol is an (s, 2−(m−s+O(log m)))-secure
η-uniform interactive hashing protocol for η =

( 1
2s−log m

)m
< 2−m.

Proof: We start by noting that the protocol is efficient for both parties due to
the efficiency of the permutations used. Furthermore, they can run in small space.
This is an η-uniform interactive hashing protocol since h is η close to pairwise
independent and therefore the distribution of W1−d is η close to uniform.

The 4M-IH protocol is secure for B since no matter what strategy A∗ Alice
uses, the messages that Bob sends are identical whether his input is W = W0 or
W = W1 (recall that h(W0) = h(W1)).

This protocol has two stages of question and answer (4 messages), and in
order to prove the security for A we view each of these two parts separately. In
the first part, all strings W ∈ {0, 1}m are divided by π′ into 2v cells (according
to the value of π′(W )). Our goal is to show that no cell z′ ∈ {0, 1}v has too
many strings from the bad set S mapped to it. The second part of the protocol
can then be viewed as implementing the 2M-IH protocol on strings in the cell
z′, yielding the security of the combined protocol (the portion of bad strings in
the cell z′ is reduced to less than a square root of the strings in the cell). We
start by bounding the probability that a specific set of t strings are mapped by
π′ to the same cell z.
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4M-IH (4 Message Interactive Hashing)

Common Input: Parameters m and s.
Let v = s− log m.
A family Π of η-almost t-wise independent permutations π : {0, 1}m → {0, 1}m

Take t = m and η =
(

1
2v

)t
.

A family G of 2-wise independent 2-1 hash functions g : {0, 1}m−v→{0, 1}m−v−1

A family H (induced by Π, G) of 2-1 hash functions h : {0, 1}m → {0, 1}m−1

defined as:

h(x) def= π(x)1, . . . , π(x)v, g (π(x)v+1 . . . , π(x)m)

where π(x)i denotes the ith bit of π(x).
Input of Alice: ⊥.
Input of Bob: W ∈ {0, 1}m.

– Alice: Choose π
r← Π. Send π to Bob.

– Bob: Compute z1, . . . zm = π(W ). Send π′(W ) = z1, . . . , zv to Alice (let π′

denote π when truncated to its first v bits).
– Alice: Choose g

r← G. Send g to Bob.
– Bob: Send g(zv+1, . . . , zm) to Alice.
– Alice and Bob: Output W0, W1 s.t. h(W0) = h(W1) = h(W ).

Fig. 3. The four message protocol for interactive hashing.

Claim 5.8 For every z ∈ {0, 1}v and all x1, . . . , xt ∈ {0, 1}m we have that:

ρ = Prπ∈Π [π′(x1) = π′(x2) = . . . = π′(xt) = z] ≤
(

1
2v

)t

+ η

Proof: Suppose that π was a t-wise independent function (and not permuta-
tion), then for every xi ∈ {0, 1}m we have that the probability that π′(xi) = z
is exactly 1

2v and the probability that this is the case for t different values is
exactly

( 1
2v

)t. But since π is a permutation, this probability is smaller since for
every i we have Pr[π′(xi) = z|π′(x1) = π′(x2) = . . . π′(xi−1) = z] ≤ 1

2v . But
π is actually an almost t-wise independent permutation, the probability on t
elements may deviate by be up to η from the truly random permutation and
therefore ρ ≤ ( 1

2v

)t + η

Let us focus on a specific cell z ∈ {0, 1}v. For every set of t elements
x1, . . . , xt ∈ S denote the Y π

z (x1, . . . , xt) the indicator if all xi is mapped to
z or not. That is:

Y π
z (x1, . . . , xt) =

{
1 π′(x1) = π′(x2) = . . . = π′(xt) = z
0 otherwise

Let Y π
z denote the number of strings from S mapped to cell z by π′. Let E = 2s

2v ,
which is the expected number of strings from S in each cell, if they were divided
uniformly at random. We claim that with high probability, Y π

z does not deviate
much from E.
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Lemma 5.9 For all z ∈ {0, 1}v,

Prπ∈Π [Y π
z ≥ 4E] ≤ 2−(t−1)

Proof: Consider the table of all possible Y π
z (x1, . . . , xt), where each row stands

for a specific set x1, . . . , xt and each column stands for a choice of π. By Claim 5.8,
the fraction of ones in each row and hence the fraction of ones in the whole table
is at most

( 1
2v

)t + η. On the other hand, for each π such that Y π
z ≥ 4E there

are at least
(4E

t

)
sets of t elements for which Y π

z (x1, . . . , xt) = 1, therefore the
fraction of ones is at least Prπ∈Π [Y π

z ≥ 4E] · (4E
t

)
/
(2s

t

)
. Therefore we get that:

Prπ∈Π [Y π
z ≥ 4E] ≤

(2s

t

)

(4E
t

)

((
1
2v

)t

+ η

)

Recall that η =
( 1

2v

)t and using the fact that
(
a
c

)
/
(
b
c

) ≤
(

a
b−c+1

)c

we get:

Prπ∈Π [Y π
z ≥ 4E] ≤

(
2s

4E − t + 1

)t

· 2 ·
(

1
2v

)t

We take t + 1 ≤ 2E and recall that E = 2s

2v :

Prπ∈Π [Y π
z ≥ 4E] ≤ 2 ·

(
2s

2E2v

)t

≤ 2 ·
(

2s

2 2s

2v 2v

)t

= 2 · 2−t

This completes the proof of Lemma 5.9.

As a corollary of Lemma 5.9 we get that with high probability there is no cell
that contains a large number of bad elements. Applying a union bound gives:

Prπ∈Π [∃z s.t. Y π
z ≥ 4E] ≤ 2−(t−1−v)

Recall that t = m and v = s − log m so the probability of error here is
2−(m−s)+log m−1.

Assuming that indeed for all cells z we have Y π
z < 4E then the second

part of the protocol is actually running the 2M-IH on the strings in a specific
cell z′. This cell contains all the possible extensions of z′ into an m bit string.
Therefore, the 2M-IH is run on strings of length m′ = m − v. There are no
more than 2s′

= 4 · 2s−v strings that belong to the bad set S. According to
Claim 5.6 the second part of the protocol is an (s′, 2−(m′−2s′+1))-interactive
hashing protocol. The probability that Bob can choose a cell with two string from
the bad set is therefore 2−(m′−2s′+1) = 2−(m−v−2(s−v+2)+1) = 2−(m−s)+log m+3.
Combined with the probability that there exist a z with Y π

z ≥ 4E we get that
the probability that any strategy B∗ that Bob plays succeeds in choosing both
W0 and W1 in the set S is at most 2−(m−s+O(log m)).
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6 The Oblivious Transfer Protocol
Our BS-OT protocol is presented in figure 4. The protocol relies on three ingre-
dients: An extractor, a min-entropy sampler, and an interactive hashing protocol.
The precise requirements from the ingredients are presented in figure 5.

Input of Alice: Secret bits s0, s1 ∈ {0, 1}u.
Input of Bob: Choice bit c ∈ {0, 1}.
Setup Stage:

Subsets Stage: Alice and Bob store subsets of the string R ∈ {0, 1}N .
– Alice: Choose P

r← LA. Compute A ⊂ [N ] of size n by A = SampA(P )
and store the bits RA.

– Bob: Choose random B ⊂ [N ] of size n and store the bits RB .
– Alice: Send A to Bob by sending P .
– Bob: Determine C = A ∩ B. If |C| < � abort. If |C| > �, randomly

truncate it to be of size �.
– Bob: Compute hm as in Definition 3.2. Choose Q

r← [hm] and compute
W = Fm(C, Q).�

Interactive Hashing Stage: Interactively hash W .
– Bob: Input W into the interactive hashing protocol.
– Alice and Bob: Interactively obtain h and W0, W1 s.t. h(W0) =

h(W1) = h(W ). Compute the subsets C0, C1 encoded by W0, W1. If W0

or W1 isn’t a valid encoding then abort.
Choice Stage:

– Bob: Let d ∈ {0, 1} be such that Wd = W . Send e = c⊕ d.
– Alice: For i ∈ {0, 1} send Yi

r← {0, 1}dE .
Transfer Stage:

– Alice: Set X0 = RC0 and X1 = RC1 .
– Alice: Send “encrypted” values of s0 and s1: For i ∈ {0, 1}, Send Zi =

si⊕e ⊕ E(Xi, Yi).
– Bob: Compute X = RC . Bob’s output is given by Ext(X, Yc⊕e)⊕ Zc⊕e

� The range of Fm is [n] and not A = SampA(P ). For simplicity, we treat C as a subset of A.

Fig. 4. Protocol BS-OT for 1-2 OT in the bounded storage model.

In our suggested implementation of BS-OT we choose SampA to be the samp-
ler from [Vad03], Ext to be an extractor from [RRV99] and use the 4M − IH
interactive hashing protocol from the previous section. The precise choices of
parameters for these ingredients appear in Section 8. These choices meet the
requirements of figure 5 with ε = 2−Ω(�). The main theorem of this paper asserts
that this implementation of BS-OT is a constant round protocol for oblivious
transfer in the bounded storage model.

At first reading, the reader may safely ignore the sampler and assume that
the set A is chosen uniformly at random. That is assume that SampA is the
identity mapping on

([N ]
n

)
.12

12 Using different samplers allows choosing a “random” set A which has a shorter
description. Specifically, using the sampler from Section 8 reduces the description
size of A from log

(
N
n

)
= Θ(n log n) to O(�).
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Parameters:
– N - the length of the long random string R.
– n - the number of bits honest players remember about R.
– u - the length of the secrets.
– � = n2/2N - the size of the intersection set.
– ν - the dishonest receiver remembers at most νN bits about R.
– ε - the error of the protocol. We can only achieve ε ≥ 2−cδ′

A�/ log(1/δ′
A) where

δ′
A is defined below and c > 0 is some constant which may depend on the

constant cIH defined below. We therefore require that ε satisfy this condition.

Ingredients:
– A (δA, δ′

A, φA, εA)-min-entropy sampler SampA : [LA]→ [N ]n with:
• δA ≤ (1− ν)/2.
• δ′

A = δA/8.
• φA ≤ ε/20.
• εA ≤ ε/20.
• LA determines the length of the first message sent by Alice.

– A (kE , εE)-strong extractor Ext : {0, 1}nE × {0, 1}dE → {0, 1}mE with:
• nE = �
• dE ≤ δ′

A�/12
• mE = u ≤ δ′

A�/12.
• kE ≥ δ′

A�/6.
• εE ≤ (ε/20)2.

– An (s, ρ)-secure (2−m)-uniform interactive hashing protocol for strings of
length m = 10� log n with:
• s ≤ m− cIHδ′

A�/ log δ′
A + 1 (cIH > 0 is a constant chosen in the proof).

• ρ ≤ ε/20.�

� Note that ρ depends on cIH and this is why we allow the constant c in the requirement on ε to
depend on cIH . The order of quantifiers is as follows: There is some constant cIH > 0 chosen in
the proof. The constant c depends on this constant.

Fig. 5. Ingredients and requirements for Protocol BS-OT.

Theorem 6.1 There is a constant α > 0 such that if N, n and � satisfy log n ≤
� ≤ nα then for every constant ν < 1 let protocol BS-OT use the ingredients
described in Section 8. Protocol BS-OT is a (1 − ε)-oblivious transfer protocol
for ε = 2−Ω(�). Furthermore:

– The protocol has 5 messages.
– The strategies for Alice and Bob runs in time poly(n) and space k =

O(n log n).
– The protocol passes secrets of length u = Ω(�).
– The overall number of bits exchanged is TC = O(�O(1)).

The constants hidden in ε, s, u and TC above depend on ν.13

13 Tracing this dependency gives that for δ = (1 − ν): ε = 2−Ω(δ�/ log(1/δ)), s = m −
O(δ�/ log(1/δ)), and u = Ω(δ�). This holds even when ν isn’t a constant as long as
n ≥ �/δ4. That is, the Theorem holds even for ν ≈ 1− (�/n)4.
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The results mentioned in the introduction can be obtained by choosing
n = N1/2+a/ log N for some small constant a > 0. Note that if a is sufficiently
small then the space of honest players satisfies k = O(n log n) = O(N1/2+a) ≤
O(K1/2+a), where the last inequality follows assuming ν > 1/2 which we can
assume w.l.o.g. As � = n2/2N we have that � = n2a/2 log N ≥ ka for large
enough n, and we have that ε = 2−Ω(�) = 2−Ω(ka).

7 The Functionality and Security of the OT Protocol

The proof of Theorem 6.1 follows from the combination of several lemmas sta-
ted below. The first Lemma asserts that protocol BS-OT indeed implements
oblivious transfer.

Lemma 7.1 For every choice of ingredients for BS-OT and every s0, s1, c, If
Alice and Bob follow protocol BS-OT then

– With probability 1− 2−Ω(�) the protocol does not abort.
– If the protocol does not abort then Bob’s output is indeed sc.

Proof: We first show that with high probability |A ∩ B| ≥ �. This is because
for every fixed A, as B is a random set the expected size of A∩B is n2/N ≥ 2�.
A standard Lemma (see for example Corollary 3 in [Din01]) can be used to show
that there exists a constant 0 < d < 1 such that probability that |A ∩B| < � is
at most 2e−d�.

We now show that the probability that one of W0, W1 is not a valid encoding
of a subset is small. Wd was chosen by Bob and is certainly a valid encoding.
By the definition of Interactive Hashing, the other string W1−d is η-close to
uniformly distributed in {0, 1}m, for η < 2−m. By Lemma 3.3 the probability
that a random string W ∈ {0, 1}m is not a valid encoding is at most

(
n
�

)
2−m ≤

2� log n−m ≤ 2−�−1 as m = 10� log n. It follows that the probability of abort is
bounded by 2−m + 2−�−1 ≤ 2−�.

To see that whenever the protocol does not abort Bob indeed outputs sc, we
observe that X = RC is known to Bob (since C = A ∩ B ⊆ B and Bob has
stored all the bits RB). In particular, Bob is always able to compute E(X, Yc⊕e)
and subsequently use it in order to “decrypt” the value Zc⊕e. By the definition
of the protocol we then have:

E(X, Yc⊕e)⊕ Zc⊕e = E(X, Yd)⊕ (sc ⊕ E(Xd, Yd))
= E(X, Yd)⊕ (sc ⊕ E(X, Yd)) (1)
= sc

where Eq. (1) follows from the fact that Xd equals RC (= X), which in turns
follows from the fact that Cd = C (since Wd = W and the encoding Fm is
one-to-one). The lemma follows.

Theorem 7.2 For every choice of ingredients of BS-OT, the protocol is secure
for Bob.
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Proof: We show that for any strategy A∗, the view of A∗ is independent of
the bit c. This is shown by the following argument: Fix the randomness of A∗

and R. We show a perfect bijection between possible pairs of B’s randomness
rB and input c. That is, for each pair (rB , c) that is consistent with the view V
of A∗, there exists a unique pair (r′B , 1− c) such that r′B and 1− c are consistent
with the same view V . There are two possible options for a V = view〈A

∗,B〉
A∗ :

– The protocol aborts before the choice stage where Bob sends Alice the value
e = c⊕ d. In such a case, the view V is totaly independent of c and we map
every consistent rB to itself (r′B = rB). Clearly rB is consistent with both
c = 0 and c = 1.

– V includes the message e = c ⊕ d sent by Bob. In such a case, suppose
that (rB , c) is consistent V . That is, rB is the randomness that chooses the
random set B so that C = A∩B is encoded by the string Wd. By the fact that
the protocol did not abort, we are assured that also W1−d encodes a legal set
C ′. Then we choose r′B to be the randomness that chooses B′ = B \ C ∪ C ′

and encodes C ′ by W1−d. This perfectly defines (r′B , 1− c) that is consistent
with the view V . Furthermore, (r′B , 1 − c) is mapped by the same process
back to (rB , c), hence we get a perfect bijection.

Theorem 7.2 follows.

The following theorem (which is technically the most challenging theorem of
this paper) guarantees Alice’s security against bounded storage receivers. This
theorem refers to a list of requirements on the parameters of the ingredients
which appears in figure 5.

Theorem 7.3 For every ν < 1 (not necessarily constant), if all the requirements
in figure 5 are met then protocol BS-OT is (νN, ε)-secure for Alice.

The proof of this theorem is long and technical and appears in the full version
of this paper. Section 9 is dedicated to giving an outline of this proof.
As we show in section 8, Ext and SampA and 4M−IH satisfy all the requirements
in figure 5 for ε = 2−Ω(�). Theorem 7.3 thus implies the following corollary.

Corollary 7.4 Let Ext, SampA and IH be chosen as in Theorem 6.1. Protocol
BS-OT is (νN, ε)-secure for Alice, for ε = 2−a� where a > 0 is a constant that
depends on ν.

Lemma 7.5 Let Ext, SampA and IH be chosen as in Theorem 6.1. The state-
ments in the itemized list in Theorem 6.1 hold.

Proof: It is easy to verify that the protocol has 5 messages (not including
the transmission of R). By section 8 the extractor and sampler run in time
polynomial in n and space �O(1) +O(n). Protocol 4M-IH runs in time and space
polynomial in m = 10� log n. Thus, both parties run in time polynomial in n.
Both parties require space n to store RA and RB and space mO(1) to play 4M-
IH. Alice’s set A is chosen by a sampler with log LA = O(�), thus it can be stored
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in space O(�). Overall, Alice’s space is bounded by O(n) + poly(�). Bob’s set B
is a random set, and thus takes O(n log n) bits to store. We conclude that both
players can run their strategies in space O(n log n) + poly(�) which is bounded
by O(n) for sufficiently small α as required. The protocol passes secrets of length
mE where mE = Ω(�). Finally, the longest message sent in the protocol is the
description of the permutation π in the interactive which is of length at most
�O(1).

8 Choosing the Ingredients

We now turn to choose the ingredients for BS-OT to get the parameters gua-
ranteed in Theorem 6.1. Given n, N, u, ν, we shoot for ε = 2−Ω(�). We need to
show an extractor and sampler that satisfy the conditions specified in figure 5.

The extractor. In [RRV99] it was shown how to construct a (kE , εE)-strong
extractor, Ext :{0, 1}�×{0, 1}dE → {0, 1}u, for every kE , u = kE−2 log(1/εE)−
O(1) and dE = c log(1/εE) for some constant c as long as log(1/ε) > log4 �.

Setting kE = δ′A�/6, we can get u = δ′A�/12 for dE ≤ δ′A�/6 and εE =
2−c′δ′

A� for some constant c′ > 0 (which depends on c). This choice satisfies the
requirements in figure 5. We note that the above extractor can be computed in
time and space polynomial in �.

The sampler. In [Vad03] it was shown how to construct a (µ, θ, γ)-averaging
sampler Samp : [L] → [v]t with distinct samples for every µ > θ > 0 and
γ > 0 as long as t ≥ Ω(log(1/γ)/θ2). This sampler has log L ≤ log(v/t) +
log(1/γ)(1/θ)O(1). By Lemma 3.9, for every δ, γ such that log(1/γ)/δ4 ≤ n this
sampler yields a (δ, δ/2, (γ +2−Ω(δn))1/2, (γ +2−Ω(δn))1/2)-min-entropy sampler
SampA : [LA] → [N ]n. Setting γ = 2−� we have that as long as n ≥ �/δ4 this
sampler has φ = ε = 2−Ω(δ�)), and log LA ≤ log n + �(1/δ)O(1).

Note that the condition n ≥ �/δ4 is satisfied when ν is a constant (as in this
case δ = δA is also a constant).14 We also note that the above sampler can be
computed in time polynomial in n and space O(n).

The interactive hashing protocol. We need to show that protocol 4M-
IH satisfies the requirements of figure 5. It is required there that 4M-IH is
(s, 2−Ω(δ′

A�/ log δ′
A))-secure for s ≤ m − cIHδ′A�/ log δ′A + 1 where cIH > 0 is

some constant and δ′A = α(1−ν) for some α > 0. By Theorem 5.7, we have that

ρ ≤ 2−(m−s+log m) ≤ 2−cIHδ′
A�/ log δ′

A+O(log m) ≤ 2−Ω(δ′
A�/ log δ′

A)

as m = 10� log n and � ≥ log n. When ν is a constant, δ′A is also a constant
and we have that ρ = 2−Ω(�) as required. We note that Protocol 4M-IH requires
requires time and space polynomial in �.

14 We remark that we don’t have to require that ν is a constant. Our protocol also
works for ν = 1− o(1) as long as the condition above (n ≥ �/δ4) is satisfied.
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9 Overview of Proof of Security for Alice

Theorem 7.3 regarding Alice’s security is somewhat technical and involves many
parameters. Due to lack of space, we will only give a sketch of the proof while
ignoring the precise parameters.

Fix some bounded storage strategy B∗ with storage bound νN for some
ν < 1, and an input c. We need to show that there exists a random variable C
determined in the setup stage such that for every two pairs of secrets s, s′ which
are C-consistent the view of B∗ is distributed roughly the same way no matter
whether Alice’s input is s or s′.

Recall that in the protocol, the secrets s0, s1 are only involved in the transfer
stage where zi = Ext(Xi, Yi) ⊕ si for i ∈ {0, 1}. Our goal is to show that there
exists a random variable I determined in the setup stage such that for every
choice of secrets s0, s1, the string ZI is close to uniformly distributed from B∗’s
point of view. More precisely, for every i ∈ {0, 1} we split Alice’s messages into
Zi and all the rest of the messages which we denote by MSGi. For every fixing
of r of R and msgi of MSGi, B∗’s point of view on Zi is captured by considering
the distribution Z ′i = (Zi|g∗(R) = g∗(r), MSGi = msgi). We show that for most
fixings r and msgI , the random variable Z ′I is close to uniformly distributed.

We now explain how we achieve this goal. It is instructive to first consider
a simplified scenario in which B∗ chooses to remember the content of R at νN
indices. We call these indices “bad” indices, and the remaining (1− ν)N indices
“good” indices. Let δ = (1− ν). The proof proceeds as follows:

1. We note that B∗ does not remember the δN good indices.
2. When Alice uses a sampler to choose A, with high probability she hits a

large fraction (say δn/2) of the good indices.
3. We have that the set A contains many good indices. If we were to choose

a random subset of A with � indices, then with high probability we will hit
many (say δ�/4) good indices. Let S be the set of all such subsets which hit
less indices. By the above argument S is a small set.

4. It follows that when Alice and Bob use interactive hashing to determine the
subsets C0 and C1, at least one of the subsets is not in S. We define the
random variable I to point to this subset. It follows that CI contains many
good indices.

5. We now consider XI = RCI
given MSGI . As it contains many good indices,

it has high min-entropy. It follows that with high probability over the choice
of YI , E(XI , YI) is close to uniformly distributed even given MSGI . Thus,
ZI is close to uniformly distributed as required.

We now sketch how to make this argument work when B∗ is allowed to
remember an arbitrary function g∗ : {0, 1}N → {0, 1}νN of R. Intuitively, the
notion of “min-entropy” replaces that of “good bits” in this case.

1. It is easy to see that for most fixings r of R, the random variable (R|g∗(R) =
g∗(r)) has high min-entropy (say Ω(δN)).

2. When Alice uses a min-entropy sampler for most fixings p of P she obtains
a set A such that (RA|g∗(R) = g∗(r), P = p) has high min-entropy.
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3. Choosing a random subset is a min-entropy sampler, and thus for most
choices of a subset of C of size �, (RC |g∗(R) = g∗(r), P = p) has high
min-entropy.

4. As before it follows that following the interactive hashing with high pro-
bability there exists an I such that (RCI

|g∗(R) = g∗(r), P = p) has high
min-entropy.

5. Here we have to be a little more careful than before. It is no longer the case
that RC0 and RC1 are independent given the conditioning. Thus, it may
be the case that Z1−I gives information about RCI

. However, we set the
parameters so that RCI

has min-entropy much larger than the length of the
pair (Z1−I , Y1−I). As a consequence we can argue that for most fixings z1−I

and y1−I , (RCI
|g∗(R) = g∗(r), P = p, Z1−I = z1−I , Y1−I = y1−I) has high

min-entropy. Thus, running an extractor, with high probability over YI we
obtain a distribution which is close to uniform given MSGI just as before.

10 Conclusions and Open Problems

We have shown a 5-message protocol for oblivious transfer in the bounded sto-
rage model. As mentioned before, this protocol has some additional concrete
improvements over previous work [CCM98,Din01].

Our protocol achieves k very close to
√

K ≈ √N . In words, the space of
the honest parties is about a square root of the space allowed for the malicious
parties. It is not clear whether there exist protocols that allow k = N δ for every
constant δ > 0. We remark that to achieve δ < 2 it is required to break the
“birthday paradox barrier”. A typical first step of a bounded storage protocol
instructs both parties to store random subsets of the R. When k <<

√
N these

sets are not likely to overlap. It seems that breaking this barrier requires in-
troducing some new ideas. We mention that to the best of our knowledge, this
barrier is also present in protocols for Key-Agreement in the bounded storage
model [Mau93,CM97].

We give a new constant round protocol for interactive hashing. This protocol
can replace the NOVY-protocol of [NOVY98] in our setting. A similar pheno-
mena was observed also in the context of Zero-Knowledge. Damg̊ard [Dam93]
used the NOVY-protocol to give certain transformations of “honest verifier”
Zero-Knowledge protocols into general Zero-Knowledge protocols. Later works
[DGOW95, GSV98] replaced the NOVY-protocol with a constant round proto-
col. This raises the question whether the NOVY-protocol can be replaced by a
constant round protocol for the application in [NOVY98]. That is, for construc-
ting perfectly hiding bit commitment schemes from arbitrary one-way permuta-
tions. We remark that constant round perfectly hiding bit commitment schemes
are known only using seemingly stronger assumptions [NY89,DPP93,GK96].

The NOVY-protocol achieves a stronger security for interactive hashing than
the one defined here. This stronger security allows its use in the application of
[NOVY98]. Loosely speaking, it is shown in [NOVY98] that their protocol is
secure in the following sense: For every polynomial time malicious strategy B∗

for Bob there is a polynomial time “simulator” AB∗(W ′) such that for most
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W ′ ∈ {0, 1}m, the simulator can run B∗ playing Alice’s role and generate random
transcripts in which one of the outputs is W ′. (Intuitively, this is a stronger
and computational form of the intuition that Bob does not “control” the two
outputs.) Obtaining this property with fewer rounds seems hard. A very related
open problem was raised in [DGW95] in the context of Zero-Knowledge.
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[Cre87] C. Crépeau. Equivalence between two avours of oblivious transfers. In Ad-
vances in Cryptology - CRYPTO ’87, Lecture Notes in Computer Science,
volume 293, pages 350–354. Springer-Verlag, 1987.

[Dam93] I. Damg̊ard. Interactive hashing can simplify zero-knowledge protocol de-
sign without computational assumptions. In Advances in Cryptology -
CRYPTO ’93, Lecture Notes in Computer Science, volume 773, pages 100–
109. Springer, 1993.



Constant-Round Oblivious Transfer in the Bounded Storage Model 471

[DGOW95] I. Damg̊ard, O. Goldreich, T. Okamoto, and A. Wigderson. Honest veri-
fier vs dishonest verifier in public cain zero-knowledge proofs. In Advances
in Cryptology - CRYPTO ’95, Lecture Notes in Computer Science, volume
963, pages 325–338. Springer, 1995.

[DGW95] I. Damg̊ard, O. Goldreich, and A. Wigderson. Information theory versus
complexity theory: Another test case, 1995.

[Din01] Y.Z. Ding. Oblivious transfer in the bounded storage model. In Advances
in Cryptology - CRYPTO ’01, Lecture Notes in Computer Science, volume
2139, pages 155–170, Springer, 2001.

[DM02] S. Dziembowski and U. Maurer. Tight security proofs for the boundedsto-
rage model. In 34th ACM Symposium on the Theory of Computing, pages
341–350, 2002.

[DPP93] I. Damg̊ard, T. Pedersen, and B. Pfitzmann. On the existence of statisti-
cally hiding bit commitment schemes and fail-stop signatures. In Advances
in Cryptology - CRYPTO ’93, Lecture Notes in Computer Science, volume
773, pages 250–265. Springer, 1993.

[DR02] Y.Z. Ding and M.O. Rabin. Hyper-encryption and everlasting security. In
Annual Symposium on Theoretical Aspects of Computer Science (STACS),
pages 1–26, 2002.

[EGL85] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing
contracts. Communications of the ACM, 28(6):637–647, 1985.

[GK96] O. Goldreich and A. Kahan. How to construct constant-round zeroknow-
ledge proof systems for np. Journal of Cryptology, 9(2):167–189, 1996.

[GKM+00] Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The
relationship between public key encryption and oblivious transfer. In 41st
IEEE Symposium on Foundations of Computer Science, pages 325–335,
2000.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
- a completeness theorem for protocols with honest majority. In 19th ACM
Symposium on the Theory of Computing, pages 218–229, 1987.

[Gol97] O. Goldreich. A sample of samplers - a computational perspective on
sampling (survey). In Electronic Colloquium on Computational Comple-
xity (ECCC)(20), volume 4, 1997.

[Gol03] O. Goldreich. Foundations of cryptography - volume 2. Working Draft,
available at www.wisdom.weizmann.ac.il/oded/foc-vol2.html, 2003.

[Gow96] W.T. Gowers. An almost m-wise independent random permutation of the
cube. Combinatorics, Probability and Computing, 5:119–130, 1996.

[GSV98] O. Goldreich, A. Sahai, and S. Vadhan. Honest-verifier statistical zerokno-
wledge equals general statistical zero-knowledge. In 30th ACM Symposium
on the Theory of Computing, pages 399–408, 1998.

[HCR02] Dowon Hong, Ku-Young Chang, and Heuisu Ryu. Efficient oblivious trans-
fer in the bounded-storage model. In Advances in Cryptology. ASIACRYPT
’02, Lecture Notes in Computer Science, pages 143–159. Springer-Verlag,
December 2002.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-
way permutations. In 21st ACM Symposium on the Theory of Computing,
pages 44–61, 1989.

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In 20th ACM Sym-
posium on the Theory of Computing, pages 20–31, 1988.



472 Y.Z. Ding et al.

[Lu02] C. Lu. Hyper-encryption against space-bounded adversaries from on-line
strong extractors. In Advances in Cryptology - CRYPTO ’02, volume 2442,
pages 257–271. Springer, 2002.

[Mau92] U. Maurer. Conditionally-perfect secrecy and a provably-secure randomi-
zed cipher. Journal of Cryptology, 5(1):53–66, 1992.

[Mau93] U. Maurer. Secret key agreement by public discussion. IEEE Transaction
on Information Theory, 39(3):733–742, 1993.

[Nis96] N. Nisan. Extracting randomness: How and why, a survey. IEEE Confe-
rence on Computational Complexity, pages 44–58, 1996.

[NOVY98] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-
knowledge arguments for np using any one-way permutation. Journal of
Cryptology, 11(2):87–108, 1998. preliminary version in CRYPTO 92.

[NP01] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SIAM
Symposium on Discrete Algorithms (SODA 2001), pages 448–457, 2001.

[NR99] M. Naor and O. Reingold. On the construction of pseudorandom permu-
tations: Luby-rackoff revisited. Journal of Cryptology, 12(1):29–66, 1999.

[NY89] M. Naor and M. Yung. Universal one-way hash functions and their cryp-
tographic applications. In 21st ACM Symposium on the Theory of Com-
puting, pages 33–43, 1989.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. JCSS,
52(1):43–52, 1996.

[Rab81] M.O. Rabin. How to exchange secrets by oblivious transfer. TR-81, Har-
vard, 1981.

[RRV99] R. Raz, O. Reingold, and S. Vadhan. Error reduction for extractor. In 40th
IEEE Symposium on Foundations of Computer Science, pages 191–201,
1999.

[RSW00] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness via re-
peated condensing. In 41st IEEE Symposium on Foundations of Computer
Science, pages 22–31, 2000.

[Sha02] R. Shaltiel. Recent developments in explicit constructions of extractors.
Bulletin of the EATCS, 77:67–95, 2002.

[Vad03] S.P. Vadhan. On constructing locally computable extractors and cryptosy-
stems in the bounded storage model. In Advances in Cryptology - CRYPTO
’03. Springer, 2003.

[Yao86] A.C. Yao. How to generate and exchange secrets. In 27th IEEE Symposium
on Foundations of Computer Science, pages 162–167, 1986.


	Introduction
	The Bounded Storage Model
	Oblivious Transfer in the Bounded Storage Model
	Our Results
	Interactive Hashing

	Overview of the Technique
	The Improved Interactive Hashing Protocol

	Preliminaries
	Oblivious Transfer in the Bounded Storage Model
	Interactive Hashing
	Preliminaries: Permutations and Hash Functions
	Definition: Interactive Hashing
	Partial Result: A Two Message Interactive Hashing
	A Four Message Protocol for Interactive Hashing

	The Oblivious Transfer Protocol
	The Functionality and Security of the OT Protocol
	Choosing the Ingredients
	Overview of Proof of Security for Alice
	Conclusions and Open Problems

