
DOI: 10.1007/s00145-015-9211-7
J Cryptol (2016) 29:833–878

Constant-Size Structure-Preserving Signatures: Generic
Constructions and Simple Assumptions1

Masayuki Abe · Ryo Nishimaki
NTT Secure Platform Laboratories, NTT Corporation, Tokyo, Japan

abe.masayuki@lab.ntt.co.jp; nishimaki.ryo@lab.ntt.co.jp

Melissa Chase
Microsoft Research, Redmond, WA, USA

melissac@microsoft.com

Bernardo David
Aarhus University, Aarhus, Denmark

bernardo@cs.au.dk

Markulf Kohlweiss
Microsoft Research, Cambridge, UK

markulf@microsoft.com

Miyako Ohkubo
Security Fundamentals Laboratory, NSRI, NICT, Tokyo, Japan

m.ohkubo@nict.go.jp

Communicated by Hugo Krawczyk.

Received 26 January 2014
Online publication 8 July 2015

Abstract. This paper presents efficient structure-preserving signature schemes based
on simple assumptions such as decisional linear. We first give two general frameworks
for constructing fully secure signature schemes from weaker building blocks such as
variations of one-time signatures and random message secure signatures. They can be
seen as refinements of the Even–Goldreich–Micali framework, and preservemany desir-
able properties of the underlying schemes such as constant signature size and structure
preservation. We then instantiate them based on simple (i.e., not q-type) assumptions
over symmetric and asymmetric bilinear groups. The resulting schemes are structure-
preserving and yield constant-size signatures consisting of 11–14 group elements, which
compares favorably to existing schemes whose security relies on q-type assumptions.

Keywords. Structure-preserving signatures,Taggedone-time signatures, Partially one-
time signatures, Extended random message attacks.

1 Full version of [2] incorporating a part of results in [3].

© International Association for Cryptologic Research 2015

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-015-9211-7&domain=pdf

834 M. Abe et al.

1. Introduction

A structure-preserving signature (SPS) scheme [4] is a digital signature scheme with
two structural properties: (1) the verification keys, messages, and signatures are all
elements of a bilinear group; and (2) the verification algorithm checks a conjunction of
pairing product equations over the key, the message, and the signature. This makes them
compatible with the efficient non-interactive proof system for pairing product equations
by Groth and Sahai (GS) [33]. Structure-preserving cryptographic primitives promise to
combine the advantages of optimizednumber theoretic non-black-box constructionswith
the modularity and insight into protocols that use only generic cryptographic building
blocks.
Indeed the instantiation of known generic constructions with an SPS scheme and the

GS proof system has led to many new and more efficient schemes: Groth [32] showed
how to construct an efficient simulation-sound zero-knowledge proof system (ss-NIZK)
building on generic constructions of [20,37,41]. Abe et al. [4,7] show how to obtain
efficient round-optimal blind signatures by instantiating a framework by Fischlin [23].
SPS are also important building blocks for a wide range of cryptographic functionalities
such as anonymous proxy signatures [25], delegatable anonymous credentials [9], trans-
ferable e-cash [26] and compact verifiable shuffles [18]. Most recently, Hofheinz and
Jager [34] show how to construct a structure- preserving tree-based signature scheme
with a tight security reduction following the approach of [21,29]. This signature scheme
is then used to build a ss-NIZK which in turn is used with the Naor and Yung [38] and
Sahai [40] paradigm to build the first CCA-secure public-key encryption scheme with
a tight security reduction. Examples for other schemes that benefit from efficient SPS
are [8,10,11,14,24,27,30,31,35,39].
Because properties (1) and (2) are the only dependencies on the SPS scheme made by

these constructions, any structure-preserving signature scheme can be used as a drop-in
replacement. Unfortunately, all known efficient instantiations of SPS [4,5,7] are based
on so-called q-type or interactive assumptions. An open question since Groth’s seminal
work [32] (only partially answered by Chase and Kohlweiss [17]) is to construct a SPS
scheme that is both efficient—in particular constant-size in the number of signed group
elements—and that is based on assumptions that are as weak as those required by the
GS proof system itself.

1.1. Our Contribution

We begin by presenting two new generic constructions of signature schemes that are se-
cure against chosen message attacks (CMA) from variations of one-time signatures and
signatures secure against randommessage attacks (RMA). Both constructions inherit the
structure-preserving and constant-size properties from the underlying components. We
then instantiate the building blockswith the desired properties over bilinear groups. They
yield constant-size structure-preserving signature schemes whose signatures consist of
only 11–14 group elements and whose security can be proven based on simple assump-
tions such as decisional linear (DLIN) for symmetric bilinear groups and analogues
of DDH and DLIN for asymmetric bilinear groups. These are the first constant-size
structure-preserving signature schemes that eliminate the use of interactive or q-type

Constant-Size Structure-Preserving Signatures 835

assumptions while achieving reasonable efficiency. We give more details on our generic
constructions and their instantiations:

• The first generic construction (SIG1, Sect. 4.1) combines a new variation of one-
time signatures which we call tagged one-time signatures (TOS) and signatures
secure against random message attacks (RMA). A TOS is a signature scheme that
attaches a fresh tag to each signature. It is unforgeable with respect to tags used
only once. In our construction, a message is signed with our TOS using a fresh
random tag, and then the tag is signed with the second signature scheme, denoted
by rSIG. Since rSIG only signs random tags, RMA security is sufficient.
In Sect. 5, we construct structure-preserving TOS and rSIG based on DLIN over
symmetric (Type-I) bilinear groups. Our TOS yields constant-size signatures and
optimally small tags that consist of only one group element. The resulting structure-
preserving signature scheme produces signatures consisting of 14 group elements,
and relies solely on the DLIN assumption.1

• The second generic construction (SIG2, Sect. 4.2) combines partial one-time signa-
tures and signatures secure against extended randommessage attacks (XRMA). The
latter is a new notion that we explain below. A partial one-time signature scheme,
denoted by POS, is a one-time signature scheme in which only a part of the key is
renewed for every signing operation. The notion was first introduced by Bellare and
Shoup [12] under the name of two-tier signatures. In our construction, a message
is signed with POS and then the one-time portion of the public-key is certified by
the second signature scheme, denoted by xSIG. The difference between a TOS and
POS is that a one-time public-key is associated with a one-time secret-key. Since
the one-time secret-key is needed for signing, it must be known to the reduction
in the security proof. XRMA security guarantees that xSIG is unforgeable even if
the adversary is given auxiliary information associated with the randomly chosen
messages (e.g. the random coins used for selecting the message). The auxiliary in-
formation allows the reduction algorithm of the security proof of the second scheme
to use the one-time secret-key to generate the POS component correctly.
In Sect. 6, we construct structure-preserving POS and xSIG signature schemes
based on assumptions that are analogues of DDH and DLIN in Type-III bilinear
groups. The resulting SIG2 is structure-preserving and produces signatures con-
sisting of 11 or 14 group elements depending on whether messages belong to either
or both source groups.

The role ofTOS andPOS is to compress amessage into a constant number of random
group elements. This observation is interesting in light of [6] that implies the impossi-
bility of constructing collision resistant and shrinking structure-preserving hash func-
tions, which could immediately yield constant-size signatures. Our (extended) RMA-
secure signature schemes are structure-preserving variants of Waters’ dual-signature
scheme [44]. In general, the difficulty of constructing CMA-secure SPS arises from the
fact that the exponents of the group elements chosen by the adversary as a message are

1 The optimal TOS proposed in this paper was first presented in [3]. We included it here as it saves one
group element in a tag compared to the original construction in [2], and reduces the resulting signature size
from 17 in [2] to 14.

836 M. Abe et al.

not known to the reduction in the security proof. On the other hand, for RMA security,
it is the challenger that chooses the message and therefore the exponents can be known
in reductions. This is the crucial advantage for constructing (extended) RMA-secure
structure-preserving signature schemes based on Waters’ dual-signature scheme.
As our SPSs can be drop-in replacements for existing SPS, we only briefly in-

troduce recent applications in Sect. 7. They include group signatures, tightly-secure
structure-preserving signatures and public-key encryption, and efficient adaptive obliv-
ious transfer.

1.2. Related Works

1.2.1. On Generic Constructions

Even et al. [22] proposed a generic framework (the EGM framework) that combines a
one-time signature scheme and a signature scheme that is secure against non-adaptive
chosen message attacks (NACMA) to construct a signature scheme that is secure against
adaptive chosen message attacks (CMA).
In fact, our generic constructions can be seen as refinements of the EGM framework.

There are two reasons why the original framework falls short for our purpose. The
first is that relaxing to NACMA does not seem to help much in constructing efficient
structure-preserving signatures since the messages are still under the control of the
adversary, and the exponents of the messages are not known to the reduction algorithm
in the security proof. As mentioned above, resorting to (extended) RMA is a great help
in this regard. In [22], they also showed that CMA-secure signatures exist iff RMA-
secure signatures exist. The proof, however, does not follow their framework and their
impractical construction is mainly a feasibility result. In fact, we argue that RMA-
security alone is not sufficient for the original EGM framework. As mentioned above,
the necessity of XRMA security arises in the reduction that uses RMA-security to argue
security of the ordinary signature scheme, as the reduction not only needs to know
the random one-time public-keys, but also their corresponding one-time secret-keys in
order to generate the one-time signature components of the signatures. The auxiliary
information in the XRMA definition facilitates access to these secret-keys. Similarly,
tagged one-time signatures avoid this problem as tags do not have associated secret
values. This observation applies also to a variation of the EGM framework in [42] that
combines a trapdoor hash function and a NACMA-secure signature scheme. The second
reason that the EGM approach is not quite suited to our task is that the EGM framework
produces signatures that are linear in the size of one-time public-keys of the one-time
signature scheme, and known structure-preserving one-time signature schemes have
one-time public-keys that scale linearly with the number of group elements to be signed.
Here, tagged or partial one-time signature schemes come in handy as they have one-
time public-keys separated from long-term public-keys. Thus, to obtain constant-size
signatures, we only require the one-time keys to be constant-size while allowing the
long-term part to scale in the size of the message.

1.2.2. On Efficient Instantiations

All previous constructions of structure-preserving signature schemes either are ineffi-
cient, or use strong assumptions, or do not yield constant-size signatures. In particular,

Constant-Size Structure-Preserving Signatures 837

there are few schemes that are based on simple assumptions. Hofheinz and Jager [34]
constructed an SPS scheme by following the EGM framework. The resulting scheme
allows a tight security reduction to DLIN, but the size of signatures depends logarithmi-
cally on the number of signing operations as their NACMA-secure scheme is tree-based
(like the Goldwasser–Micali–Rivest signature scheme [29]). Chase and Kohlweiss [17]
and Camenisch et al. [15] constructed SPS schemes with security based on DLIN that
improve the performance of Groth’s scheme [32] by several orders of magnitude. The
size of the resulting signatures, however, is still linear in the number of signed group
elements.

2. Preliminaries

2.1. Notation

By X := Y , we denote that object Y is referred to as X . For set X , notation a ← X
denotes a uniform sampling from X . Multiple independent samples from the same set
X are denoted by a1, a2, a3, . . . ← X . By Y ← A(X), we denote the process where
algorithm A is executed with X as input and its output is labeled as Y . When A is
an oracle algorithm that interacts with oracle O, it is denoted as Y ← AO(X). By
Pr[X | A1, A2, . . . , Ak] we denote the probability that event X happens after executing
the sequence of algorithms A1, . . . , Ak . The probability is taken over all coin flips
observed in A1, . . . , Ak unless otherwise noted. We say that a function ε is negligible in
security parameter λ if ε < λ−c holds for all constant c > 0 and all sufficiently large λ.
We refer to probabilistic polynomial- time algorithms as p.p.t. algorithms. Unless stated
otherwise, we assume that all algorithms are potentially probabilistic.

2.2. Bilinear Groups

Let G be a bilinear group generator that takes security parameter 1λ and outputs a
description of bilinear groups Λ := (p,G1,G2,GT , e), where G1, G2 and GT are
groups of primeorder p, and e is an efficient and non-degenerate bilinearmapG1×G2 →
GT . In this paper, generators for G1 and G2 are implicit in Λ, and default random
generators G and Ĝ are chosen explicitly and independently. Groups G1 and G2 are
called the source groups andGT is called the target group.We usemultiplicative notation
for G1, G2 and GT . By G

∗
1, we denote G1\{1}, which is the set of all elements in G1

except the identity. The same applies to G2 and GT as well. Following the terminology
in [28], we say that Λ is Type-III when there is no efficient mapping between G1 and
G2 in either direction.
In the Type-III setting, we denote elements in G2 by putting a tilde on a variable

like X̃ for visual aid. By using the same letter for elements in G2 and G1 with a hat
on the G2 element, e.g., X and X̂ , we denote a pair of elements in relation logG X =
logĜ X̂ . Should their relation be explicitly stated, we write X ∼ X̂ . Note that default

random generators G and Ĝ are independent of each other but notational consistency
retains.

838 M. Abe et al.

We count the number of group elements to measure the size of cryptographic objects
such as keys, messages, and signatures. For Type-III groups, we denote the size by (x, y)
when it consists of x and y elements fromG1 andG2, respectively.We refer to the setting
as Type-I when G1 = G2 (i.e., there are efficient mappings in both directions). This is
also called the symmetric setting. In this case, we define Λ := (p,G,GT , e). When
we need to be specific, the group description yielded by G will be written as Λasym or
Λsym.

2.3. Assumptions

Let G be a generator of bilinear groups. All hardness assumptions we deal with are
defined relative to G. We first define the computational and decisional Diffie–Hellman
assumptions (CDH1, DDH1) and decisional linear assumption (DLIN1) for Type-III bi-
linear groups. The corresponding more standard assumptions, CDH, DDH, and DLIN,
in Type-I groups are obtained by setting G1 = G2 and G = Ĝ in the respective defini-
tions.

Definition 1. (Computation co-Diffie–Hellmanassumption:CDH1)GivenΛ←G(1λ),

G ← G
∗
1, Ĝ ← G

∗
2, G

x , Gy, Ĝx , and Ĝ y for x, y ← Zp, any p.p.t. algorithm A out-
puts Gxy with negligible probability Advco-cdhG,A (λ) in λ.

Definition 2. (Decisional Diffie—Hellman assumption in G1: DDH1) Given Λ ←
G(1λ), G ← G

∗
1, and (Gx ,Gy, Zb) where Z1 = Gxy and Z0 = Gz for random

x, y, z ← Zp and random bit b, any p.p.t. algorithmA decides whether b = 1 or 0 with
negligible advantage Advddh1G,A (λ) in λ.

Definition 3. (Decisional linear assumption in G1: DLIN1) Given Λ ← G(1λ),

(G1,G2,G3) ← (G∗
1)

3 and (Gx
1,G

y
2, Zb) where Z1 = Gx+y

3 and Z0 = Gz
3 for random

x, y, z ← Zp and random bit b, any p.p.t. algorithmA decides whether b = 1 or 0 with
negligible advantage Advdlin1G,A (λ) in λ.

ForDDH1 andDLIN1,we define an analogous assumption inG2 (DDH2) by swapping
G1 and G2 in the respective definitions. In Type-III bilinear groups, it is assumed that
both DDH1 and DDH2 hold simultaneously. The assumption is called the symmetric
external Diffie–Hellman assumption (SXDH), and we define advantage AdvsxdhG,C by

AdvsxdhG,C (λ) := Advddh1G,A (λ) + Advddh2G,B (λ). We extend DLIN in a similar manner:

Definition 4. (External decision linear assumption in G1: XDLIN1) Given Λ ←
G(1λ), (G1,G2,G3) ← (G∗

1)
3 and (Gx

1,G
y
2, Ĝ1, Ĝ2, Ĝ3, Ĝx

1, Ĝ
y
2, Zb) where

(G1,G2,G3) ∼ (Ĝ1, Ĝ2, Ĝ3), Z1 = Gx+y
3 , and Z0 = Gz

3 for random x, y, z ← Zp

and random bit b, any p.p.t. algorithm A decides whether b = 1 or 0 with negligible
advantage Advxdlin1G,A (λ) in λ.

TheXDLIN1 assumption is equivalent to theDLIN1 assumption in the generic bilinear
group model [13,43] where one can simulate the extra elements, Ĝ1, Ĝ2, Ĝ3, Ĝx

1, Ĝ
y
2 ,

Constant-Size Structure-Preserving Signatures 839

in XDLIN1 from G1,G2,G3,Gx
1,G

y
2 in DLIN1. We define the XDLIN2 assumption

analogously by giving Ĝx+y
3 or Ĝz

3 as Zb, toA instead. Then we define the simultaneous
external DLIN assumption, SXDLIN, that assumes that both XDLIN1 andXDLIN2 hold
at the same time. By Advxdlin2G,A (AdvsxdlinG,A , resp.), we denote the advantage function for
XDLIN2 (and SXDLIN, resp.).

Definition 5. (Double pairing assumption in G1 [4]: DBP1) Given Λ ← G(1λ) and
(Gz,Gr) ← (G∗

1)
2, any p.p.t. algorithm A outputs (Z , R) ∈ (G∗

2)
2 that satisfies 1 =

e(Gz, Z) e(Gr , R) with negligible probability Advdbp1G,A (λ) in λ.

The double pairing assumption in G2 (DBP2) is defined in the same manner by
swappingG1 andG2. It is known that DBP1 (DBP2, resp.) is implied by DDH1 (DDH2,
resp.) and the reduction is tight [7]. Note that the double pairing assumption does not
hold in Type-I groups since Z = Gr , R = G−1

z is a trivial solution. Thus in Type-I
groups we will instead use the following extension:

Definition 6. (Simultaneous double pairing assumption [16]: SDP) GivenΛ ← G(1λ)

and (Gz,Gr , Hz, Hs) ← (G∗)4, any p.p.t. algorithm A outputs (Z , R, S) ∈ (G∗)3 that
satisfies 1 = e(Gz, Z) e(Gr , R) ∧ 1 = e(Hz, Z) e(Hs, S) with negligible probability
AdvsdpG,A(λ) in λ.

As shown in [16], for the Type-I setting the simultaneous double pairing assumption
holds relative to G if the decisional linear assumption holds for G.

3. Definitions

3.1. Common Setup

All building blocks make use of a common setup algorithmSetup that takes the security
parameter 1λ and outputs a global parameter gk that is given to all other algorithms.
Usually gk consists of a description Λ of a bilinear group setup and a default generator
for each group. In this paper, we include several additional generators in gk for technical
reasons. Note that when the resulting signature scheme is used in multi-user applications
different additional generators need to be assigned to individual users or one needs to
fall back on the common reference string model, whereas Λ and the default generators
can be shared. Thus we count the size of gk when we assess the efficiency of concrete
instantiations. For ease of notation, we make gk implicit except w.r.t. key generation
algorithms.

3.2. Signature Schemes

We use the following syntax for signature schemes suitable for the multi-user and multi-
algorithm setting. We follow standard syntax with the following modifications: the key
generation function takes as input global parameter gk generated by Setup (instead of
security parameter 1λ), and the message space M is determined solely by gk (instead
of being determined by the public-key).

840 M. Abe et al.

Definition 7. (Signature scheme) A signature scheme SIG is a triple of polynomial-
time algorithms (Key,Sign,Vrf):

• SIG.Key(gk) generates a public-key vk and a secret-key sk.
• SIG.Sign(sk,msg) takes sk and message msg and outputs a signature σ .
• SIG.Vrf(vk,msg, σ) outputs 1 for acceptance or 0 for rejection.

Correctness requires that 1 = SIG.Vrf(vk,msg, σ) holds for any gk generated by
Setup, any keys generated as (vk, sk) ← SIG.Key(gk), any message msg ∈ M, and
any signature σ ← SIG.Sign(sk,msg).

Definition 8. (Unforgeability against adaptive chosen message attacks) A signature
scheme is unforgeable against adaptive chosen message attacks (UF-CMA) if for any
probabilistic polynomial-time oracle algorithms A the following advantage function
Advuf-cma

SIG,A is bounded by a negligible function in λ.

Advuf-cma
SIG,A (λ) = Pr

⎡
⎣msg† �∈ Qm ∧
1 = SIG.Vrf(vk, σ †,msg†)

∣∣∣∣∣∣
gk ← Setup(1λ),

(vk, sk) ← SIG.Key(gk),
(σ †,msg†) ← AOs (vk)

⎤
⎦

Os is a signing oracle that, on receiving message msg j , performs σ j ← SIG.Sign
(sk,msg j), returns σ j to A, and records msg j to Qm , which is an initially empty list.

Definition 9. (Unforgeability against non-adaptive chosen message attacks) A signa-
ture scheme is unforgeable against non-adaptive chosen message attacks (UF-NACMA)
if for any probabilistic polynomial-time algorithms A and any polynomial n in λ, the
following advantage function Advuf-nacma

SIG,A (λ) is bounded by a negligible function in λ.

Advuf-nacma
SIG,A (λ, n)

:= Pr

⎡
⎢⎢⎢⎢⎣

∀ j ∈ [1, n], msg† �= msg j ∧
1 = SIG.Vrf(vk, σ †,msg†)

∣∣∣∣∣∣∣∣∣∣

gk ← Setup(1λ),

(msg1, . . . ,msgn) ← A(gk),
(vk, sk) ← SIG.Key(gk),
∀ j ∈ [1, n], σ j ← SIG.Sign(sk,msg j),

(σ †,msg†) ← A(vk, σ1, . . . , σn)

⎤
⎥⎥⎥⎥⎦

It is implicit that A in the first run hands over an internal state to that in the second run.

Definition 10. (Unforgeability against random message attacks (UF-RMA) [22]) A
signature scheme is unforgeable against random message attacks (UF-RMA) if for any
probabilistic polynomial-time algorithms A and any positive integer n bounded by a
polynomial in λ, the following advantage function Advuf-rma

SIG,A is negligible in λ.

Constant-Size Structure-Preserving Signatures 841

Advuf-rma
SIG,A(λ)

:= Pr

⎡
⎢⎢⎢⎢⎣

∀ j ∈ [1, n], msg† �= msg j ∧
1 = SIG.Vrf(vk, σ †,msg†)

∣∣∣∣∣∣∣∣∣∣

gk ← Setup(1λ),

(vk, sk) ← SIG.Key(gk),
(msg1, . . . ,msgn) ← Mn,

∀ j ∈ [1, n], σ j ← SIG.Sign(sk,msg j),

(σ †,msg†) ← A(vk, σ1,msg1, . . . , σn,msgn)

⎤
⎥⎥⎥⎥⎦

We consider a variation of random message attacks where the adversary is given, for
example, the random coin used to sample the random message. Our formal definition
covers more a general idea of auxiliary information about the message generator as
follows. Let MSGGen be a message generation algorithm that takes gk (and random
coins as well) as input and outputsmsg ∈ M. Furthermore,MSGGen outputs auxiliary
informationω, whichmay give some hint about the random coins used for selectingmsg.
The extended randommessage attack is defined relative to message generatorMSGGen
as follows.
The above syntax and security notions can be applied to one-time signature schemes

by restricting the oracle access only once or parameter n to 1.

Definition 11. [Unforgeability against extended randommessageattacks (UF-XRMA)]
A signature scheme is unforgeable against extended random message attacks (UF-
XRMA) with respect to message samplerMSGGen if for any probabilistic polynomial-
time algorithmsA and any positive integer n bounded by a polynomial inλ, the following
advantage function Advuf-xrma

SIG,A is bounded by a negligible function in λ.

Advuf-xrma
SIG,A (λ)

:= Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∀ j ∈ [1, n], msg† �= msg j ∧
1 = SIG.Vrf(vk, σ †,msg†)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gk ← Setup(1λ),

(vk, sk) ← SIG.Key(gk),
∀ j ∈ [1, n],

(msg j , ω j) ← MSGGen(gk),
σ j ← SIG.Sign(sk,msg j),

(σ †,msg†) ← A(vk, σ1,msg1, ω1,

. . . , σn,msgn, ωn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

For the above security notions,UF-CMA ⇒ UF-XRMA ⇒ UF-RMA holds. More
precisely, for any signature schemeSIG, for anyA′ there existsA such thatAdvuf-cma

SIG,A (λ)

≥Advuf-xrma
SIG,A′ (λ), and for anyA′′ there existsA′ such thatAdvuf-xrma

SIG,A′ (λ)≥Advuf-rma
SIG,A′′(λ).

3.3. Partial One-Time and Tagged One-Time Signatures

Partial one-time signatures, also known as two-tier signatures [12], are a variation of
one-time signatures where only part of the public-key and secret-key must be updated
for every signing, while the remaining part can be persistent.

Definition 12. (Partial one-timesignature scheme [12]) A partial one-time signature
scheme POS is a set of polynomial-time algorithms POS.{Key,Update,Sign,Vrf}.

842 M. Abe et al.

• POS.Key(gk) generates a long-term public-key pk and secret-key sk, and sets the
associated message space to be Mo as defined by gk (Recall that we require that
Mo be completely defined by gk).

• POS.Update(gk) takes gk as input, and outputs a one-time key pair (opk, osk).
We denote the space for opk by Kopk .

• POS.Sign(sk,msg, osk) outputs a signature σ on message msg based on sk and
osk.

• POS.Vrf(pk, opk,msg, σ) outputs 1 for acceptance, or 0 for rejection.

Correctness requires that 1 = POS.Vrf(pk, opk,msg, σ) holds except for negligible
probability for any gk, pk, opk, σ , andmsg ∈ Mo, such thatgk ← Setup(1λ), (pk, sk)
← POS.Key(gk), (opk, osk) ← POS.Update(gk), σ ← POS.Sign(sk,msg, osk).

A tagged one-time signature scheme is a signature scheme whose signing function in
addition to the long-term secret-key takes a tag as input. A tag is one-time, i.e., it must
be different for every signing.

Definition 13. (Tagged one-time signature scheme) A tagged one-time signature
scheme TOS is a set of polynomial-time algorithms TOS.{Key,Tag,Sign,Vrf}.

• TOS.Key(gk) generates a long-term public-key pk and secret-key sk, and sets the
associated message space to beMt as defined by gk.

• TOS.Tag(gk) takes gk as input and outputs tag. By T , we denote the space for tag.
• TOS.Sign(sk,msg, tag) outputs signature σ for message msg based on sk and tag.
• TOS.Vrf(pk, tag,msg, σ) outputs 1 for acceptance, or 0 for rejection.

Correctness requires that 1 = TOS.Vrf(pk, tag,msg, σ) holds except for negligible
probability for any gk, pk, tag, σ , andmsg ∈ Mt , such that gk ← Setup(1λ), (pk, sk)
← TOS.Key(gk), tag ← TOS.Tag(gk), σ ← TOS.Sign(sk,msg, tag).

A TOS scheme is a POS scheme for which tag = osk = opk. We can thus give a
security notion forPOS schemes that also applies toTOS schemes by readingUpdate =
Tag and tag = osk = opk.

Definition 14. (Unforgeability against one-time adaptive chosen message attacks) A
partial one-time signature scheme is unforgeable against one-time adaptive chosen mes-
sage attacks (OT-CMA) if for any probabilistic polynomial-time oracle algorithms A
the following advantage function Advot-cma

POS,A is negligible in λ.

Advot-cma
POS,A(λ)

:= Pr

⎡
⎣

∃(opk,msg, σ) ∈ Qm s.t.
opk† = opk ∧ msg† �= msg ∧
1 = POS.Vrf(pk, opk†, σ †,msg†)

∣∣∣∣∣∣
gk ← Setup(1λ),

(pk, sk) ← POS.Key(gk),
(opk†, σ †,msg†) ← AOt ,Os (pk)

⎤
⎦

Qm is initially an empty list. Ot is the one-time key generation oracle that on receiv-
ing a request invokes a fresh session j , performs (opk j , osk j) ← POS.Update(gk),
and returns opk j .Os is the signing oracle that, on receiving amessagemsg j for session j ,

Constant-Size Structure-Preserving Signatures 843

performsσ j←POS.Sign(sk,msg j , osk j), returnsσ j toA, and records (opk j ,msg j , σ j)

to the list Qm .Os works only once for each session. Strong unforgeability is defined by
replacing condition msg† �= msg with (msg†, σ †) �= (msg, σ).

We define a non-adaptive variant (OT-NACMA) of the above notion by integrating Ot

intoOs so that opk j and σ j are returned toA at the same time. Namely,A must submit
msg j before seeing opk j . If a scheme is secure in the sense of OT-CMA, the scheme
is also secure in the sense of OT-NACMA. By Advot-nacma

POS,A (λ) we denote the advan-
tage of A in this non-adaptive case. For TOS, we use the same notation, OT-CMA
and OT-NACMA, and define advantage functions Advot-cma

TOS,A and Advot-nacma
TOS,A accord-

ingly. We will also consider strong unforgeability, for which we use labels sot-cma and
sot-nacma. Recall that if a scheme is strongly unforgeable, it is unforgeable as well.
We define a condition that is relevant for coupling random message secure signature

schemes with partial one-time and tagged one-time signature schemes in later sections.

Definition 15. (Tag/one-time public-key uniformity) A TOS is called uniform tag if
TOS.Tag outputs tag that is uniformly distributed over tag space T . Similarly, a POS
is called uniform-key if POS.Update outputs opk that is uniformly distributed over key
space Kopk .

3.4. Structure-Preserving Signatures

A signature scheme is structure-preserving over a bilinear group Λ, if public-keys,
signatures, and messages are all source group elements of Λ, and the verification only
evaluates pairing product equations. Similarly, POS and TOS schemes are structure-
preserving if their public-keys, signatures, messages, and tags or one-time public-keys
consist of source group elements and the verification only evaluates pairing product
equations.

4. Generic Constructions

4.1. SIG1: Combining Tagged One-Time and RMA-Secure Signatures

Let rSIG be a signature scheme with message spaceMr, and TOS be a tagged one-time
signature scheme with tag space T such that Mr = T and both schemes use the same
Setup. We construct a signature schemeSIG1 from rSIG andTOS. Let gk be the global
parameter generated by Setup(1λ). It is assumed that a secret-key of rSIG includes gk.
[Generic Construction 1: SIG1]

SIG1.Key(gk): Run (pkt , skt) ← TOS.Key(gk), (vkr , skr) ← rSIG.Key(gk).
Output vk := (pkt , vkr) and sk := (skt , skr).
SIG1.Sign(sk,msg): Parse sk into (skt , skr) and take gk from skr . Run tag ←
TOS.Tag(gk), σt ← TOS.Sign(skt ,msg, tag), σr ← rSIG.Sign(skr , tag). Out-
put σ := (tag, σt , σr).
SIG1.Vrf(vk,msg, σ): Parse vk and σ accordingly. Output 1 if 1 = TOS.Vrf
(pkt , tag,msg, σt) and 1 = rSIG.Vrf(vkr , tag, σr). Output 0 otherwise.

844 M. Abe et al.

We prove that SIG1 is secure by showing a reduction to the security of each com-
ponent. As our reductions are efficient in their running time, we only relate success
probabilities.

Theorem 1. SIG1 is UF-CMA if TOS is uniform tag and OT-NACMA, and rSIG is
UF-RMA. In particular, for any p.p.t. algorithm A there exist p.p.t. algorithms B and C
such that Advuf-cma

SIG1,A(λ) ≤ Advot-nacma
TOS,B (λ) + Advuf-rma

rSIG,C(λ).

Security against random message attacks is sufficient for rSIG as it is used only to
sign uniformly chosen tags. To formally prove it, however, we use the important fact
that the signing function of TOS does not require any secret behind the tags. Departing
from the UF-CMA game for SIG1, the security proof is done by evaluating two game
transitions. The first transition is based on the OT-NACMA security of TOS. This part is
rather simple as we can construct a simulator in a straightforward manner by following
the key generation and signing of rSIG. The second transition is based on UF-RMA
of rSIG. We construct a simulator that, given signatures of rSIG on uniformly chosen
tags as messages, simulates signatures of SIG1 for messages provided by the adversary.
For this to be done, the simulator needs to compute one-time signatures of TOS for the
given uniform tags. This, however, can be done without any problem since the simulator
has legitimate signing keys that are sufficient to run the signing function of TOS with
uniform tags.

Proof. Any signature that is accepted as a successful forgery must either reuse an exist-
ing tag, or sign a new tag.We show that the former case reduces to attackingTOS and the
latter case reduces to attacking rSIG. Thus the success probability Advuf-cma

SIG1,A(λ) of an

attacker onSIG1will be bounded by the sumof the success probabilitiesAdvot-nacma
TOS,B (λ)

of an attacker on TOS and the success probability Advuf-rma
rSIG,C(λ) of an attacker on rSIG.

Game 0: The actual unforgeability game. Pr[Game0] = Advuf-cma
SIG1,A(λ).

Game 1: The real security game except that the winning condition is changed to no
longer accept repetition of tags.

Lemma 1. |Pr[Game 0] − Pr[Game 1]| ≤ Advot-nacma
TOS,B (λ)

Proof. Attacker A wins in Game 0, but loses in Game 1, iff it produces a forgery that
reuses a tag from a signing query. We describe a reduction B that uses such an attacker
to break the OT-NACMA-security of TOS. The reduction B receives gk and pkt from
the challenger of TOS, sets up vkr and skr honestly by running rSIG.Key(gk), and
provides gk and vk = (vkr , pkt) to A.
To answer a signing query, B uses the signing oracle of TOS to get tag and σt ,

signs tag using skr to produce σr , and returns (tag, σt , σr). WhenA produces a forgery
(tag†, σ †

t , σ
†
r) on message msg†, B outputs (msg†, tag†, σ †

t) as a forgery for TOS.

Game 2: The fully idealized game. The winning condition is changed to reject all
signatures.

Constant-Size Structure-Preserving Signatures 845

Lemma 2. |Pr[Game 1] − Pr [Game 2]| ≤ Advuf-rma
rSIG,C(λ)

Proof. Attacker A wins in Game 1, iff it produces a forgery with a fresh tag. We
describe a reduction algorithm C that uses A to break the UF-RMA security of rSIG.
Algorithm C receives gk and vkr , runs (pkt , skt) ← TOS.Key(gk), and provides gk
and vk = (vkr , pkt) to A.
To answer signing query on messagemsg, algorithm C consultsOs and receives random
message msgr ← T and signature σr . Algorithm C then uses msgr as a tag, i.e., tag =
msgr , and creates signature σt on msg by running TOS.Sign(skt ,msg, tag). It then
returns (tag, σt , σr). Note that for a uniform tag TOS scheme TOS.Tag(gk) would
generate tags distributed uniformly over the tag space T . Thus the reduction simulation
is perfect. When A produces a forgery (tag†, σ †

t , σ
†
r) on msg†, algorithm C outputs

(tag†, σ †
r) as a forgery.

Thus Advuf-cma
SIG1,A(λ) = Pr[Game 0] ≤ Advot-nacma

TOS,B (λ) + Advuf-rma
rSIG,C(λ) as claimed.

The following theorem is immediately obtained from the construction.

Theorem 2. IfTOS.Tag produces constant-size tags and signatures in the size of input
messages, the resulting SIG1 produces constant-size signatures as well. Furthermore,
if TOS and rSIG are structure-preserving, so is SIG1.

4.2. SIG2: Combining Partial One-Time and XRMA-Secure Signatures

Let xSIG be a signature scheme with message space Mx, and POS be a partial one-
time signature scheme with one-time public-key space Kopk such that Mx = Kopk and
both schemes use the same Setup. We construct a signature scheme SIG2 from xSIG
and POS. Let gk be a global parameter generated by Setup(1λ). It is assumed that a
secret-key for xSIG contains gk.
[Generic Construction 2: SIG2]

SIG2.Key(gk): Run (pk p, sk p) ← POS.Key(gk), (vkx , skx) ← xSIG.Key(gk).
Output vk := (pk p, vkx) and sk := (sk p, skx).
SIG2.Sign(sk,msg): Parse sk into (sk p, skx) and take gk from skx . Run (opk, osk) ←
POS.Update(gk), σp ← POS.Sign(sk p,msg, osk), σx ← xSIG.Sign(skx , opk).
Output σ := (opk, σp, σx).
SIG2.Vrf(vk,msg, σ): Parsevk andσ accordingly.Output 1 if 1 = POS.Vrf(pk p, opk,
msg, σp), and 1 = xSIG.Vrf(vkx , opk, σx). Output 0 otherwise.

Theorem 3. SIG2 is UF-CMA if POS is uniform-key and OT-NACMA, and xSIG
is UF-XRMA relative to POS.Update as a message generator. In particular, for any
p.p.t. algorithm A, there exist p.p.t. algorithms B and C such that Advuf-cma

SIG2,A(λ) ≤
Advot-nacma

POS,B (λ) + Advuf-xrma
xSIG,C (λ).

Proof. The proof is almost the same as that for Theorem 1. The only difference appears
in constructing C in the second step. SincePOS.Update is used as the extended random

846 M. Abe et al.

message generator, the pair (msg, ω) is in fact (opk, osk). Given (opk, osk), adversary
C can run POS.Sign(sk,msg, osk) to yield legitimate signatures.

As for our first generic construction, the following theorem holds from the construction.

Theorem 4. IfPOS produces constant-size one-time public-keys and signatures in the
size of input messages, the resulting SIG2 produces constant-size signatures as well.
Furthermore, if POS and xSIG are structure-preserving, so is SIG2.

5. Instantiating SIG1

We instantiate the building blocks TOS and rSIG of our first generic construction to
obtain our first SPS scheme. We do so in the Type-I bilinear group setting. The resulting
SIG1 scheme is an efficient structure-preserving signature scheme based only on the
DLIN assumption.

5.1. Setup for Type-I Groups

The following setup procedure is common for all instantiations in this section. The global
parameter gk is given to all functions implicitly.

• Setup(1λ): Run Λ = (p,G,GT , e) ← G(1λ) and pick random generators (G,C,

F,U) ← (G∗)4. Output gk := (Λ,G,C, F,U).

The parameter gk fixes the message space Mr := {(Cm, Fm,Um) ∈ G
3 | m ∈ Zp}

for the RMA-secure signature scheme presented in Sect. 5.3. For our generic framework
to work, the tagged one-time signature schemes should have the same tag space.

5.2. Tagged One-Time Signature Scheme

Our scheme generates tags consisting of only one group element,Ct , which is optimally
efficient in its size. However, as mentioned above, we need to adjust the tag space
to match the message space of rSIG. We thus describe the scheme with a tag in the
extended form of (Ct , Ft ,Ut). The extended elements Ft andUt can be dropped when
unnecessary.
Our concrete construction ofTOS can be seen as an adaptation of a one-time signature

scheme in [7] so that it enjoys optimally short one-time public-key (i.e., a tag) with no
corresponding one-time secret-key. We note that, given a TOS, one can construct a
one-time signature scheme. But the reverse is not known in general.
[Scheme TOS]

TOS.Key(gk): Parse gk = (Λ,G,C, F,U). Choose wz, wr , μz, μs, τ uniformly
from Z

∗
p and compute Gz := Gwz , Gr := Gwr , Hz := Gμz , Hs := Gμs , Gt :=

Gτ and For i = 1, . . . , k, uniformly choose χi , γi , δi from Zp and compute

Gi := Gχi
z Gγi

r , and Hi := Hχi
z H δi

s . (1)

Constant-Size Structure-Preserving Signatures 847

Output pk := (Gz, Gr , Hz, Hs,Gt , G1, . . . ,Gk, H1, . . . , Hk) ∈ G
2k+5 and sk :=

(wr , μs, τ, χ1, γ1, δ1, . . . , χk, γk, δk,) ∈ Z
3k+5
p .

TOS.Tag(gk): Choose t ← Z
∗
p, compute T := Ct . Output tag := (T, T ′, T ′′) =

(Ct , Ft ,Ut) ∈ G
3.

TOS.Sign(sk,msg, tag): Parse msg as (M̃1, . . . , M̃k) and tag as (T, T ′, T ′′). Parse
sk accordingly. Choose ζ ← Zp and output σ := (Z̃ , R̃, S) ∈ G

3 where

Z̃ := Gζ
k∏

i=1
M̃−χi

i , R̃ :=
(
T τG−ζ

z

) 1
wr

k∏
i=1

M̃−γi
i , and S :=

(
H−ζ
z

) 1
μs

k∏
i=1

M̃−δi
i .

TOS.Vrf(pk, tag,msg, σ): Parse σ as (Z̃ , R̃, S) ∈ G
3, msg as (M̃1, . . . , M̃k) ∈ G

k ,
and tag as (T, T ′, T ′′). Return 1 if the following equations hold. Return 0, otherwise.

e(T,Gt) = e
(
Gz, Z̃

)
e
(
Gr , R̃

) k∏
i=1

e(Gi , M̃i) (2)

1 = e
(
Hz, Z̃

)
e (Hs, S)

k∏
i=1

e
(
Hi , M̃i

)
(3)

Correctness is verified by inspecting the following relations.

For (2): e

(
Gz,G

ζ
k∏

i=1

M̃−χi
i

)
e

(
Gr ,

(
T τG−ζ

z

) 1
wr

k∏
i=1

M̃−γi
i

)
k∏

i=1

e
(
Gχi

z Gγi
r , M̃i

)

= e
(
Gz,G

ζ
)
e
(
G, T τ

)
e
(
G,G−ζ

z

) = e
(
G, T τ

) = e (T,Gt)

For (3): e

(
Hz,G

ζ
k∏

i=1

M̃−χi
i

)
e

(
Hs,

(
H−ζ
z

) 1
μs

k∏
i=1

M̃−δi
i

)
k∏

i=1

e
(
Hχi
z H δi

s , M̃i

)

= e
(
Hz,G

ζ
)
e
(
G, H−ζ

z

) = 1

We state the following theorems, of which the first one is immediate from the construc-
tion.

Theorem 5. The above TOS is structure-preserving, and yields uniform tags and
constant-size signatures.

Theorem 6. The above TOS is strongly unforgeable against one-time tag adaptive
chosen message attacks (SOT-CMA) if the SDP assumption holds. In particular, for
all p.p.t. algorithms A, there exists p.p.t. algorithm B such that Advsot-cma

TOS,A (λ) ≤
AdvsdpG,B(λ) + 1/p(λ), where p(λ) is the size of the groups produced by G. Moreover,
the run-time overhead of the reduction B is a small number of multi-exponentiations per
signing or tag query.

848 M. Abe et al.

Proof. Given successful forger A against TOS as a black-box, we construct B that
breaks SDP as follows. Let Isdp = (Λ,Gz,Gr , Hz, Hs) be an instance of SDP. Al-
gorithm B simulates the attack game against TOS as follows. It first builds gk :=
(Λ,G,C, F,U) by choosing G randomly from G

∗, choosing c, f, u ← Zp, and com-
puting C = Gc, F = G f , and U = Gu . This yields a gk in the same distribution as
produced by Setup. Next B simulates TOS.Key by taking (Gz,Gr , Hz, Hs) from Isdp
and computing Gt := H τ

s for random τ in Z
∗
p. It then generates Gi and Hi according

to (1). This perfectly simulates TOS.Key.
On receiving the j th query to Ot , algorithm B computes

T := (
Gζ

z G
ρ
r

) 1
τ (4)

for ζ, ρ ← Z
∗
p. If T = 1, B sets Z := Hs, S := H−1

z , and R := (Z)ρ/ζ , outputs
(Z, R, S) and stops. Otherwise, B stores (ζ, ρ) and returns tag j := (T, T f/c, T u/c)

to A.
On receiving signing querymsg j = (M̃1, . . . , M̃k), algorithmB takes ζ andρ used for

computing tag j (if tag j is not yet defined, execute the above procedure for generating
tag j and take new ζ and ρ) and computes

Z̃ := H ζ
s

k∏
i=1

M̃−χi
i , R̃ := Hρ

s

k∏
i=1

M̃−γi
i , and S := H−ζ

z

k∏
i=1

M̃−δi
i . (5)

Then B returns σ j := (Z , R, S) to A and records (tag j , σ j ,msg j).
When A outputs a forgery (tag†, σ †,msg†), algorithm B searches the records for

(tag, σ,msg) such that tag† = tag and (msg†, σ †) �= (msg, σ). If no such entry exists,
B aborts. Otherwise, B computes

Z̃ := Z̃†

Z̃

k∏
i=1

(
M̃†

i

M̃i

)χi

, R̃ := R̃†

R̃

k∏
i=1

(
M̃†

i

M̃i

)γi

, and S := S†

S

k∏
i=1

(
M̃†

i

M̃i

)δi

where (Z̃ , R̃, S), (M̃1, . . . , M̃k) and their dagger counterparts are taken from (σ,msg)
and (σ †,msg†), respectively. B finally outputs (Z̃, R̃, S) and stops. This completes
the description of B.

We claim that B solves the problem by itself or the view of A is perfectly simu-
lated. The correctness of key generation has been already inspected. In the simulation
of Ot , there is a case of T = 1 that happens with probability 1/p. If it happens, B
outputs a correct answer to Isdp, which is clear by observing Gz = G−ρ/ζ

r , Z = Hs �=
1, e(Gz, Z)e(Gr , R) = e(G−ρ/ζ

r , Z)e(Gr , (Z)ρ/ζ) = 1and e(Hz, Z)e(Hs, S) =
e(Hz, Hs)e(Hs, H−1

z) = 1. Otherwise, tag T is uniformly distributed over G∗ and the
simulation is perfect.
Oracle Os is simulated perfectly as well. Correctness of simulated σ j = (Z̃ , R̃, S)

can be verified by inspecting the following relations.

Constant-Size Structure-Preserving Signatures 849

(Right-hand of (2)) = e

(
Gz, H

ζ
s

k∏
i=1

M̃−χi
i

)
e

(
Gr , H

ρ
s

k∏
i=1

M̃−γi
i

)

×
k∏

i=1

e
(
Gχi

z Gγi
r , M̃i

)

= e
(
Gζ

z G
ρ
r , Hs

) = e

((
Gζ

z G
ρ
r

) 1
τ , H τ

s

)
= e(T1,Gt)

(Right-hand of (3)) = e

(
Hz, H

ζ
s

k∏
i=1

M̃−χi
i

)
e

(
Hs, H

−ζ
z

k∏
i=1

M̃−δi
i

)
k∏

i=1

e(Hχi
z H δi

s , M̃i)

= e
(
Hz, H

ζ
s

)
e
(
Hs, H

−ζ
z

) = 1

Every Z̃ is uniformly distributed over G due to the uniform choice of ζ . Then R̃ and S
are uniquely determined by following the distribution of Z̃ .

Accordingly, A outputs a successful forgery with non-negligible probability and B
finds a corresponding record (tag, σ,msg). We show that output (Z̃, R̃, S) from B is
a valid solution to Isdp. First, Eq. (2) is satisfied because

1 = e

(
Gz,

Z̃†

Z̃

)
e

(
Gr ,

R̃†

R̃

)
k∏

i=1

e

(
Gχi

z Gγi
r ,

M̃†
i

M̃i

)

= e

(
Gz,

Z̃†

Z̃

k∏
i=1

(
M̃†

i

Mi

)χi
)

e

(
Gr ,

R̃†

R̃

k∏
i=1

(
M̃†

i

Mi

)γi
)

= e
(
Gz, Z̃

)
e
(
Gr , R̃

)

,

holds. Equation (3) can be verified similarly.
It remains to prove that Z̃ �= 1. Note that, if msg = msg† but this is still a valid

forgery then it must be the case that (Z̃ , R̃) �= (Z̃†, R̃†). Since R̃ (resp. R̃†) is uniquely
determined by Z̃ andmsg (resp. Z̃†,msg†), that would mean that Z̃ �= 1. Alternatively,
if msg† �= msg, then there exists � ∈ {1, . . . , k} such that M̃†

� /M� �= 1. We claim
that parameters χ1, . . . , χk are independent of the view of A. We prove it by showing
that, for every possible assignment to χ1, . . . , χk , there exists an assignment to other
coins, i.e., (γ1, . . . , γk, δ1, . . . , δk) and (ζ (1), ρ(1), . . . , ζ (qs), ρ(qs)) for qs queries, that
is consistent with the view ofA (By ζ (j), we denote ζ with respect to the j th query. We
follow this convention hereafter. Without loss of generality, we assume that A makes
qs tag queries and the same number of signing queries). Observe that the view of A
consists of independent group elements (G,Gz,Gr , Hz, Hs,Gt ,G1, H1, . . . ,Gk, Hk)

and (T (j)
1 , Z̃ (j), M̃ (j)

1 , . . . , M̃ (j)
k) for j = 1, . . . , qs (Note that we omit R̃(j) and S(j)

from the view since they are uniquely determined by the other components). We rep-
resent the view by the discrete logarithms of these group elements with respect to base
G. Namely, the view is represented by (1, wz, wr , μz, μs, τ, w1, μ1, . . . , wk, μk) and
(t (j), z(j),m(j)

1 , . . . ,m(j)
k) for j = 1, . . . , qs . The view and the random coins follow

850 M. Abe et al.

relations from (1), (4), and (5), which translate to

wi = wzχi + wrγi , μi = μzχi + μsδi for i = 1, . . . , k, (6)

τ t (j) = wzζ
(j) + wrρ

(j), and (7)

z(j) = μs ζ (j) −
k∑

i=1

m(j)
i χi for j = 1, . . . , qs . (8)

For any � ∈ {1, . . . , k}, fixχ1, . . . , χ�−1, χ�+1, . . . , χk , and considerχ�. For every value
of χ� in Zp, the linear equations in (6) determine γ� and δ�. Then, if m

(j)
� �= 0, equation

(8) determines ζ (j), and ρ(j) follows from equation (7). If m(j)
� = 0, then ζ (j), ρ(j) can

be assigned independently from χ�. The above holds for every � in {1, . . . , k}. Thus, if
(χ1, . . . , χk) is distributed uniformly overZk

p, then other coins are distributed uniformly
as well and the view of A is still consistent.
Now we see that given A’s view,

(
M†

� /M�

)χ�

is distributed uniformly over G and

independent of the other {χi }i �=�. Therefore Z = 1 happens only with probability 1/p.

Thus, B outputs a valid (Z, R, S) with probability AdvsdpG,B = 1/p + (1 − 1/p)(1 −
1/p)Advsot-cma

TOS,A , which leads to Advsot-cma
TOS,A ≤ AdvsdpG,B + 1/p as claimed. �

Remark 1. The above TOS does not trivially work in the Type-III setting since comput-
ing R from T in signing, simulating T using Gr in the reduction, and computing pairing
e(Gr , R) in the verification cannot be consistent. In a very recent paper [AGOT14], it
is claimed that it can work if some extra group elements are given in public-keys and
the underlying assumption, though the resulting scheme would be slightly less efficient
than our dedicated construction in the Type-III setting.

Remark 2. The TOS can be used to sign messages of unbounded length by chaining
the signatures. Every message block except for the last one is followed by a tag used to
sign the next block. The signature consists of all internal signatures and tags. The initial
tag is considered as the tag for the entire signature. For a message consisting ofm group
elements, it repeats τ := 1 + max(0, �m−k

k−1 �) times and the resulting signature consists
of 4τ − 1 elements.

5.3. RMA-Secure Signature Scheme

To sign random group elements, we will use a construction based on the dual system
signature scheme of Waters [44]. For readers unfamiliar with Waters’ scheme we recall
it in “Appendix.” Our intuition for making the original scheme structure-preserving is
as follows. While the original scheme is CMA-secure under the DLIN assumption, the
security proof makes use of a trapdoor commitment to elements in Zp and consequently
messages are elements in Zp rather than G. Our construction below resorts to RMA-
security and removes this commitment to allow messages to be a sequence of random
group elements satisfying a particular relation. Concretely, the message space Mx :=
{(Cm, Fm,Um) ∈ G

3 | m ∈ Zp} is defined by generators (C, F,U) in gk. Moreover,

Constant-Size Structure-Preserving Signatures 851

the tag elements of Waters’ scheme are removed in our RMA-secure scheme as they
were primarily required for (adaptive) CMA-security.
Other minor modifications are needed for the structure-preserving property. We mod-

ify the verification algorithm. Our verification algorithm is deterministic and uses five
verification equations. Two equations are for signature elements that are not related to
the message part—this is a consequence of deterministic verification. Three equations
are for the (extended) message part. We also slightly modify the verification key. One el-
ement inGT is divided into two elements ofG via randomization due to the requirement
of SPS.
[Scheme rSIG]

rSIG.Key(gk): Given gk := (Λ,G,C, F,U) as input, uniformly select V, V1, V2,
H from G

∗ and a1, a2, b, α, and ρ from Z
∗
p. Then compute and output vk :=

(B, A1, A2, B1, B2, R1, R2,W1,W2, H, X1, X2) and sk :=(vk, K1, K2, V, V1, V2)
where

B := Gb, A1 := Ga1 , A2 := Ga2 , B1 := Gb·a1, B2 := Gb·a2

R1 := VV a1
1 , R2 := VV a2

2 , W1 := Rb
1 , W2 := Rb

2 ,

X1 := Gρ, X2 := Gα·a1·b/ρ, K1 := Gα, K2 := Gα·a1 .

rSIG.Sign(sk,msg): Parse msg into (M1, M2, M3). Pick random r1, r2, z1, z2 ∈
Zp. Let r = r1 + r2. Compute and output signature σ := (S0, S1, . . . S7) where

S0 := (M3H)r1 , S1 := K2V
r , S2 := K−1

1 Vr
1 G

z1 , S3 := B−z1 ,

S4 := Vr
2 G

z2 , S5 := B−z2 , S6 := Br2 , S7 := Gr1 .

rSIG.Vrf(vk, σ,msg): Parse msg into (M1, M2, M3) and σ into (S0, S1, . . . , S7).
Also parse vk accordingly. Verify the following pairing product equations:

e(S1, B) e(S2, B1) e(S3, A1) = e(S6, R1) e(S7,W1), (9)

e(S1, B) e(S4, B2) e(S5, A2) = e(S6, R2) e(S7,W2) e(X1, X2), (10)

e(S7, M3H) = e(G, S0), (11)

e(F, M1) = e(C, M2), (12)

e(U, M1) = e(C, M3). (13)

The scheme is structure-preserving by construction, and the correctness is easily verified
as follows.

(Left-hand of (9)) = e
(
Gαa1V r ,Gb

)
e
(
G−αVr

1 G
z1 ,Gba1

)
e
(
G−bz1 ,Ga1

)

= e (G, V)br e (G, V1)
ba1r

= e (G, V)b(r1+r2) e (G, V1)
ba1(r1+r2)

= e
(
Gbr2 , VV a1

1

)
e
(
Gr1 , V bV ba1

1

)

852 M. Abe et al.

= (Right-hand of (9))

(Left-hand of (10)) = e
(
Gαa1V r ,Gb

)
e
(
Vr
2 G

z2 ,Gba2
)
e
(
G−bz2 ,Ga2

)

= e (G,G)αba1 e (G, V)br e (G, V2)
ba2r

= e (G, V)b(r1+r2) e (G, V2)
ba2(r1+r2) e (G,G)αba1

= e
(
Gbr2 , VV a2

2

)
e
(
Gr1 , V bV ba2

2

)
e
(
Gρ,Gαba1/ρ

)

= (Right-hand of (10))

Equations (9) and (10) hold since r = r1 + r2. The followings also hold.

(Left-hand of (11)) = e(Gr1 ,UmH) = e(G,UmH)r1 = e(G, (UmH)r1)

= (Right-hand of (11)),

(Left-hand of (12)) = e(F,Cm) = e(F,C)m = e(C, Fm) = (Right-hand of (12)),

(Left-hand of (13)) = e(U,Cm) = e(U,C)m = e(C,Um) = (Right-hand of (13)).

Theorem 7. The above rSIG scheme is UF-RMA under the DLIN assumption. In
particular, for any p.p.t. algorithm A against rSIG that makes at most qs(λ) signing
queries, there exists p.p.t. algorithm B for DLIN such that Advuf-rma

rSIG,A(λ) ≤ (qs(λ) +
2) · AdvdlinG,B(λ).

Proof. We refer to the signatures output by the signing algorithm as normal signatures.
In the proof we will consider an additional type of signatures which we refer to as
simulation-type signatures; these will be computationally indistinguishable but easier
to simulate. For γ ∈ Zp, simulation-type signatures are of the form σ = (S0, S′

1 =
S1 · G−a1a2γ , S′

2 = S2 · Ga2γ , S3, S′
4 = S4 · Ga1γ , S5, . . . , S7) where (S0, . . . , S7) is a

normal signature. We give the outline of the proof using some lemmas. Proofs for the
lemmas are given after the outline.

Lemma 3. Any signature that is accepted by the verification algorithm must be either
a normal-type signature or a simulation-type signature.

To prove this lemma, we introduced two verification equations for signature elements
that are not related to a message. We consider a sequence of games. Let pi be the
probability that the adversary succeeds in Game i, and pnormi (λ) and psimi (λ) that he
succeedswith a normal-type, or simulation-type forgery, respectively. Then byLemma3,
pi (λ) = pnormi (λ) + psimi (λ) for all i .

Game 0: The actual unforgeability under random message attacks game.

Lemma 4. There exists an adversary B1 such that psim0 (λ) ≤ AdvdlinG,B1
(λ).

Game i: The real security game except that the first i signatures that are given by the
oracle are simulation-type signatures.

Constant-Size Structure-Preserving Signatures 853

Lemma 5. There exists anadversaryB2 such that |pnormi−1 (λ)−pnormi (λ)| ≤ AdvdlinG,B2
(λ).

Game q: All signatures given by the oracle are simulation-type signatures.

Lemma 6. There exists an adversary B3 such that pnormq (λ) ≤ AdvcdhG,B3
(λ).

We have shown that in Game q, A can output a normal-type forgery with at most
negligible probability. Thus, by Lemma 5 we can conclude that the same is true in
Game 0 and it holds that

Advuf-rma
rSIG,A(λ) = p0(λ) = psim0 (λ) + pnorm0 (λ) ≤ psim0 (λ) +

q∑
i=1

|pnormi−1 (λ) − pnormi (λ)|

+ pnormq (λ)

≤ AdvdlinG,B1
(λ) + qAdvdlinG,B2

(λ) + AdvcdhG,B3
(λ) ≤ (q + 2) · AdvdlinG,B(λ).

Proof of Lemma 3. We have to show that only normal and simulation-type signatures
can fulfil these equations. We ignore verification equations (12) and (13) that estab-
lish that msg is well formed. A signature has four random exponents, r1, r2, z1, z2. A
simulation-type signature has additional exponent γ .
We interpret S7 as Gr1 , and it follows from verification equation (11) that S0 is

(M3H)r1 . We interpret S3 as G−bz1, S5 as G−bz2 , and S6 as Gr2b. Nowwe have fixed all
exponents of a normal signature. The remaining two verification equations tell us that

e
(
Gb, S1

)
· e

(
Gba1, S2

)
= e

(
VV a1

1 ,Gr2b
)

· e
((
VV a1

1

)b
,Gr1

)
· e

(
Ga1 ,Gbz1

)
,

e
(
Gb, S1

)
· e

(
Gba2 , S4

)
= e

(
VV a2

2 ,Gr2b
)

· e
((
VV a2

2

)b
,Gr1

)
· e

(
Ga2 ,Gbz2

)

· e (G,G)αa1b .

We interpret S1 as Gα·a1VrG−a1a2γ . Now we have two equations and two unknowns
that fix S2 to G−αV r

1 G
z1Ga2γ and S4 to Vr

2 G
z2Ga1γ , respectively. If γ = 0 we have a

normal signature, otherwise we have a simulation-type signature.

Proof of Lemma 4. Suppose for contradiction that there is an adversaryA, which,when
playing Game 0 (and thus receiving only normal signatures), produces forgeries which
are formed like simulation-type signatures. Then we can construct an adversary B1 for
DLIN as follows.
Let Idlin=(Λ,G1,G2,G3, X,Y, Z) be an instance ofDLINwhereΛ=(p,G,GT , e)

is a Type-I bilinear group setting andG1, G2, G3 are randomly taken fromG
∗ and there

exist random x, y, z ∈ Zp such that X = Gx
1, Y = Gy

2 and Z = Gz
3 orG

x+y
3 .Given Idlin,

adversary B1 works as follows. It first sets G := G3 and chooses C, F,U at random
from G

∗, and then sets them into gk. Next, it chooses v, v1, v2 ∈ Z
∗
p and computes

V := Gv
3, V1 := Gv1

3 , and V2 := Gv2
3 (This way we know the discrete log of these

values w.r.t. G3). Then it chooses random H ∈ G
∗, b, α, ρ ∈ Z

∗
p and compute:

854 M. Abe et al.

B := Gb
3,

A1 := G1, A2 := G2, B1 := Gb
1, B2 := Gb

2
R1 := VV a1

1 =Gv
3G

v1
1 , R2 := VV a2

2 =Gv
3G

v2
2 , W1 := Rb

1 = (Gv
3G

v1
1)b, W2 := Rb

2 = (Gv
3G

v2
2)b,

X1 := Gρ
3 , X2 := Gα·a1·b/ρ =Gαb/ρ

1 , K1 := Gα
3 , K2 := Gα·a1 = Gα

1 .

and sets them into vk and sk, accordingly. Note that both the distribution of the public-
and secret-keys are statistically close to that in the real DLIN game. Moreover, to sign
random messages, B1 can follow the real signing algorithm by using sk.

Suppose that A produces a valid forgery σ † and msg†. Then B1 proceeds as follows.
It parses σ † as (S0, . . . , S7). By Lemma 3, it is shown that if the verification equa-
tions hold, then it must hold that S1 = Gαa1V rG−a1a2γ , S2 = G−αVr

1 G
z1Ga2γ , and

S4 = Vr
2 G

z2Ga1γ . If this is a simulation-type signature, it holds that γ �= 0. According

to our choice of public-key, we can rewrite S1 = Gα
1V

rG− f γ
2 , S2 = G−α

3 V r
1 G

z1
3 Gγ

2 ,
and S4 = V r

2 G
z2
3 Gγ

1 , where f is the discrete log of G1 w.r.t. G3. Thus, if B1 can ex-

tract G− f γ
2 ,Gγ

2 ,Gγ
1 , it can easily break the DLIN instance by testing whether 1 =

e(Z ,G− f γ
2) · e(Gγ

2 , X)e(Gγ
1 ,Y). B1 can extract such values because the signature in-

cludes S3 = G−bz1
3 , S5 = G−bz2

3 , S6 = Gbr2
3 , and S7 = Gr1

3 , and it has b, α and the
discrete logarithms of V, V1, V2 w.r.t. G3. Thus, it will be straightforward to extract the
above values.

Proof of Lemma 5. Suppose for contradiction that there exists an adversary A such
that the probabilities that A outputs a normal-type forgery in Game i and Game i + 1
differ by a non-negligible amount. Then we will useA to construct an algorithm B2 that
breaks the DLIN assumption.
B2 is given an instance of DLIN; Idlin = (Λ,G1,G2,G3, X,Y, Z). Note that deter-

mining whether a signature is of normal type or simulation type naturally corresponds
to a DLIN problem: each signature contains S7 = Gr1 , S6 = (Gb)r2 , and S1 which will
include Vr1+r2 or V r1+r2G−a1a2γ depending on whether this is a normal- or simulation-
type signature (Recall that we define r = r1 + r2). If B2 sets G = G2, Gb = G1, and
V = G3, then it seems fairly straightforward to argue based on the DLIN assumption
that it will be impossible for the adversary to distinguish normal and simulation-type
signatures. However, B2 cannot tell whether A’s forgery is normal type or simulation
type in this simulation. Thus, there will be no way for B2 to take advantage of a change
in A’s success probability to solve the DLIN challenge.

The solution is to set things up so that, with high probability B2 can take S0 from the
adversary’s forgery and extract something that looks like Gr1

3 (which will allow B2 to
distinguish DLIN tuples and consequently detect simulation-type signatures), but at the
same time it is guaranteed that for the i th message, the G3 component of S0 will cancel
out, leaving only an Gr1

2 component which will not allow the challenger itself to know
whether a simulated signature is normal type or simulation type.
More specifically, the idea will be to choose some secret values ξ, β, χ, η and embed

them in theparameters so that formessage (Cw, Fw,Uw)wegetUwH =Gχw+η
2 Gξw+β

3 .

Then S0 = (UwH)r1 = G(χw+η)r1
2 G(ξw+β)r1

3 . If ξw+β �= 0, this gives useful informa-
tion on Gr1

3 (in particular it will allow B2 to test candidate values), while if ξw +β = 0,
this has no G3 component and thus doesn’t help at all with finding Gr1

3 . B2 chooses

Constant-Size Structure-Preserving Signatures 855

ξ, β so that ξw + β = 0 for the w used to generate the i th message. Furthermore, it
will be guaranteed that ξ, β are information theoretically hidden even given w, so the
adversary has only negligible chance of producing another message withUw∗

such that
ξw∗ + β = 0 as well.
Now we show details of the algorithm for B2. First of all, B2 sets up the message

space and generates the public-key in the following manner. B2 sets (C, F), used to
define message spaceM, to (Gϕ

1 ,G3) by choosing random ϕ ← Z
∗
p. It chooses random

ξ, β, χ, η ← Z
∗
p, and computes U := Gχ

2G
ξ
3, and H := Gη

2G
β
3 . These values will be

uniformly distributed, and independent of ξ, β. B2 then sets

gk = (Λ,G,C, F,U) :=
(
Λ,G2,G

ϕ
1 ,G3,G

χ
2G

ξ
3

)

B2 also sets B := G1, and chooses V, V1, V2. It must choose these values carefully
so that it can compute both Wi and Wb

i , and at the same time so that the compo-
nent Vr of a signature value S1 gives B2 some useful information (in particular it
will allow B2 to derive Gr

3). It does this by choosing v1, v2, δ ← Z
∗
p, and comput-

ing V := G−a1a2δ
3 , V1 := Gv1

2 Ga2δ
3 , and V2 := Gv2

2 Ga1δ
3 .

Next, B2 chooses a1, a2, α, ρ ← Z
∗
p and computes

B := G1,

A1 := Ga1
2 , A2 := Ga2

2 , B1 := Ga1
1 , B2 := Ga2

1
R1 := VVa1

1 = Ga1v1
2 , R2 := VVa2

2 = Ga2v2
2 , W1 := Rb

1 = Ga1v1
1 , W2 := Rb

2 = Ga2v2
1 ,

X1 := Gρ
2 , X2 := Gαa1/ρ

1 , K1 := Gα
2 , K2 := Gαa1

2 ,

and sets them into vk and sk, accordingly. Note that both of these tuples are distributed
statistically close to those produced by Setup and rSIG.Key.
Next B2 simulates signatures for the j th random message as follows.

Case j < i : It chooses w j at random and computes (M1, M2, M3) = (Cw j , Fw j ,

Uw j). It can compute a simulation-type signatures for this message since it has sk
and Ga1a2 = Ga1a2

2 .
Case j = i : It chooses w such that ξw + β = 0 and computes (M1, M2, M3) =
(Cw, Fw,Uw). Note that since no information about ξ, β is revealed this message
will look appropriately random to the adversary. It will implicitly hold that r1 = y
and r2 = x . B2 computes S6 = Gbr2 = Gx

1 = X and S7 = Gr1 = Gy
2 = Y .

Recall that it chose U, H such that UwH = Gχw+η
2 . Thus, B2 can compute S0 =

(M3H)r1 = Y χw+η.
What remains is to compute S1, S2, S4. Note that this involves computing Vr , Vr

1 ,
and Vr

2 , respectively. This is where B2 will embed its challenge. Recall that V =
G−a1a2δ

3 . Thus, it will compute V r = (Gr1+r2
3)−a1a2δ as Z−a1a2δ . If Z = Gx+y

3
this will be correct; if Z = Gz

3 for random z, then there will be an extra factor of

G−a1a2δ(z−(x+y))
3 . If B2 lets Gγ = Gδ(z−(x+y))

3 (which is uniformly random from
the adversary’s point of view), then this is distributed exactly as it should be in a
simulation-type signature. Thus, B2 computes S1 which should be either Gαa1V r

or Gαa1V rG−a1a2γ as Gαa1
2 Z−a1a2δ .

856 M. Abe et al.

B2 can try to apply the same approach to compute Vr
1 to get S2. However, recall

that B2 sets V1 = Gv1
2 Ga2δ

3 . Thus, computing Vr
1 involves computing Gr

2, which
B2 cannot do (If it could it could use that to break the DLIN assumption). To get
around this, B2 uses z1, z2. It chooses random s1, s2 and implicitly sets Gz1 =
G−v1r2+s1

2 and Gz2 = G−v2r2+s2
2 . While it cannot compute these values, it can

compute G−z1b = Gv1r2−s1
1 = Xv1G−s1

1 and G−z2b = Xv2G−s2
1 . Then to generate

S2, B2 can compute

G−α
2 Y v1 Za2δGs1

2 = G−αGr1v1
2 Za2δGs1

2 G
r2v1
2 G−r2v1

2

= G−αG(r1+r2)v1
2 Za2δGs1−r2v1

2

= G−αGrv1
2 Za2δGz1 .

If Z = Gx+y
3 = Gr

3, then this will be

G−αGrv1
2 Gra2δ

3 Gz1 = G−α
(
Gv1

2 Ga2δ
3

)r
Gz1

= G−αV r
1 G

z1 .

If Z = Gz �=x+y
3 , then this will be

G−αGrv1
2 Gza2δ

3 Gz1 = G−αGrv1
2 Gra2δ

3 Ga2δ(z−(x+y))
3 Gz1

= G−αGrv1
2 Gra2δ

3 Ga2γ Gz1

= G−αV r
1 G

a2γ Gz1

where the second to last equality follows from our choice of γ above. By a sim-
ilar argument, B2 computes S4 as Y v2 Za1δGs2

2 and this will be either Vr
2 G

z2 or
Vr
2 G

z2Ga1γ as desired. B2 sets S := (S0, S1, S2, S3, S4, S5, S6, S7) where

S0 = Y χwi+η S1 = Gαa1
2 Z−a1a2δ S2 = G−α

2 Y v1 Za2δGs1
2

S3 = Xv1G−s1
1 S4 = Y v2 Za1δGs2

2 S5 = Xv2G−s2
1

S6 = X S7 = Y.

Case j > i : It chooses w and computes m j = (M1, M2, M3) = (Cw, Fw,Uw)

and a signature σ according to rSIG.Sign(sk,m j). It outputs σ,m j .

On receiving forgery S = (S0, S1, . . . , S7) and (M1, M2, M3) = (Cw, Fw,Uw) for
some message w, B2 outputs 1 if and only if

Constant-Size Structure-Preserving Signatures 857

e (S0,G1) · e
(
Mξ

2G
β
3 , S6

)

= e

((
S1G

−αa1
2

)1/(−a1a2δ)
,
(
M1/ϕ

1

)ξ

Gβ
1

)
· e

(
S7,

(
M1/ϕ

1

)χ

Gη
1

)
.

By Lemma 3, we are guaranteed that if the signature S verifies, then there must
exist w, r1, r2, γ such that S0 = (UwH)r1 , S1 = Gαa1VrG−a1a2γ , S6 = Gbr2 , and
S7 = Gr1 where r = r1 + r2. We are also guaranteed that M1 = (Gϕ

1)w and M2 = Gw
3 .

Rephrased in terms of our parameters, this means

S0 = (Gχw+η
2 Gξw+β

3)r1 S1 = Gαa1
2 G−a1a2δr

3 G−a1a2γ
2

S6 = Gr2
1 S7 = Gr1

2 .

Plugging this into the above computation we get that B2 will output 1 if and only if

e
((

Gχw+η
2 Gξw+β

3

)r1
,G1

)
· e

((
Gw

3

)ξ
Gβ

3 ,Gr2
1

)

= e

((
Gαa1

2 G−a1a2δr
3 G−a1a2γ

2 G−αa1
2

)1/(−a1a2δ)
,
(
Gw

1

)ξ
Gβ

1

)
· e (

Gr1
2 , (Gw

1)χGη
1

)
.

Simplifying the left side to

e
((

Gχw+η
2 Gξw+β

3

)r1
,G1

)
· e

(
Gξw+β

3 ,Gr2
1

)

= e (G2,G1)
(χw+η)r1 · e(G3,G1)

(ξw+β)r1 · e(G3,G1)
(ξw+β)r2

= e(G2,G1)
(χw+η)r1 · e(G3,G1)

(ξw+β)r

and the right side to

e

((
G−a1a2δr

3 G−a1a2γ
2

)1/(−a1a2δ)
,Gξw+β

1

)
· e

(
Gr1

2 ,Gχw+η
1

)

= e
(
Gr

3G
γ /δ
2 ,Gξw+β

1

)
· e

(
Gr1

2 ,Gχw+η
1

)

= e(G2,G1)
(χw+η)r1 · e(G3,G1)

(ξw+β)r · e(G2,G1)
(γ /δ)(ξw+β)

and by dividing out all the pairings of the left side we obtain the simplified equation

1 = e(G2,G1)
(γ /δ)(ξw+β)

which is true if and only if either ξw + β = 0 or γ = 0. Since ξwi + β is a pairwise-
independent function, we are guaranteed that ξw + β = 0 happens with negligible
probability. Thus, we conclude that B2 outputs 1 iff γ = 0, and this was a normal-type
signature, and B2 outputs 0 iff γ �= 0 and this was a simulation-type signature.

858 M. Abe et al.

Proof of Lemma 6. Suppose that there exists an adversary A that outputs normal-type
forgeries with non-negligible probability in Game q. Then we construct an adversary
B3 for the CDH problem as follows.
B3 is given X = Gx , Y = Gy and must compute Gxy . B3 will proceed as follows.

Message space setup and key generation: B3 will implicitly set α := xy and
a2 := y. It chooses b, a1 at random from Z

∗
p. B3 needs to be able to compute

Va2
2 , so it chooses random v2 ∈ Z

∗
p and sets V2 := Gv2 . It also wants to have the

discrete logarithm of V1, so it will choose random v1 ∈ Z
∗
p and set V1 := Gv1 . B3

chooses U,C, F ∈ G and H, V ∈ G
∗ at random, sets Ga2 := Y , and computes

VV a2
2 = VY v2 . It chooses random ρ′ ∈ Z

∗
p and sets X1 := Xρ′

and X2 := Ya1b/ρ′
.

The rest of the parameters can be constructed honestly.
Signature queries: On a signature query, B3 chooses w at random, computes
(M1, M2, M3) = (Cw, Fw,Uw), and generates a simulation-type signature as
follows. It chooses random r1, r2, z1, z2 ∈ Zp, and random s ∈ Zp and implicitly
sets γ := (x − s). B3 computes

S1 := Y sa1V r = Gysa1Vr = Gysa1+xya1−xya1V r = Gxya1V rG(s−x)ya1

= Gαa1VrG−γ a2a1,

S2 := Y−sV r
1 G

z1 = G−ysV r
1 G

z1 = G−ys+xy−xyV r
1 G

z1 = G−xyV r
1 G

z1G(x−s)y

= G−αVr
1 G

z1Gγ a2 ,

S4 := Vr
2 G

z2Xa1G−sa1 = V r
2 G

z2Gxa1G−sa1 = V r
2 G

z2G(x−s)a1 = Vr
2 G

z2Ga1γ .

The rest of the signature can be computed honestly.
Adversary’s forgery: When the adversary outputs a normal-type forgery, there
exists r1, r2, z1 such that S2 = G−αVr1+r2

1 Gz1 , S3 = (Gb)−z1 , S6 = Gr2b, and
S7 = Gr1 . Thus, B3 can compute

S−1
2 · Sv1

7 Sv1/b
6 S−1/b

3 = GαV−(r1+r2)
1 G−z1 · (Gr1)v1(Gr2b)v1/b((Gb)−z1)−1/b

= GαV−r1−r2
1 G−z1 · (Gv1)r1(Gv1)r2Gz1

= GαV−r1−r2
1 G−z1 · V r1

1 V r2
1 Gz1

= Gα.

B3 will output this value. By our choice of parameters, recall that α = xy, so it
holds that Gα = Gxy as desired.

That is, B3 can solve the CDH problem.

Let MSGGen be an extended random message generator that first chooses ω = m
randomly from Zp and then computes msg = (Cm, Fm,Um). Note that this is what
the reduction algorithm does in the proof of Theorem 7. Therefore, the same reduction
algorithmworks for the case of extended randommessage attackswith respect tomessage
generator MSGGen. We thus have the following.

Constant-Size Structure-Preserving Signatures 859

Table 1. Efficiency comparison of constant-size SPS over symmetric bilinear groups.

Scheme |msg| |gk| + |vk| |σ | #(PPE) Assumption

[4] k 2k + 13 7 2 q-SFP
SIG1 k 2k + 21 14 7 DLIN

Corollary 1. Under the DLIN assumption, rSIG scheme is UF-XRMA w.r.t. the mes-
sage generator that provides ω = m for every message msg = (Cm, Fm,Um). In par-
ticular, for any p.p.t. algorithm A against rSIG that is given at most qs(λ) signatures,
there exists p.p.t. algorithm B such that Advuf-xrma

rSIG,A (λ) ≤ (qs(λ) + 2) · AdvdlinG,B(λ).

5.4. Security and Efficiency of Resulting SIG1

Let SIG1 be the signature scheme obtained from TOS and rSIG by following the first
generic construction in Sect. 4. FromTheorems 1, 2, 6 and 7, the following is immediate.

Theorem 8. SIG1 is a structure-preserving signature scheme that yields constant-size
signatures, and is UF-CMA under the DLIN assumption. In particular, for any p.p.t. al-
gorithm A for SIG1 making at most qs(λ) signing queries, there exists p.p.t. algorithm
B such that Advuf-cma

SIG1,A(λ) ≤ (qs(λ) + 3) ·AdvdlinG,B(λ) + 1/p(λ), where p(λ) is the size
of the groups produced by G.

The efficiency is summarized in Table 1. It is compared to an existing efficient
structure-preserving scheme in [4, Section5.2] (The original scheme is presented over
asymmetric bilinear groups. It is translated to the symmetric setting for our purpose).
We measure the efficiency by counting the number of group elements and the number
of pairing product equations for verifying a signature.
In Table 2, we also assess the cost of proving possession of valid signatures and

messages by using Groth–Sahai NIWI and NIZK proof system. Columns “σ” indicate
the case where a witness is a valid signature (regarding the signature scheme from [4],
we optimize by putting randomizable parts of a signature in the clear). The message is
put in the clear. Similarly, columns “(σ,msg)” show the case where a witness consists
of a valid signature and a message. Details of each assessment are as follows.
For NIWI, the cost of proving valid σ is counted by

|NIWI(σ)| = |com| × |σwit| + |σrnd| + |πNL | × #(NLPPE) + |πL | × #(LPPE) (14)

and the cost of proving valid (σ,msg) is counted by

|NIWI(σ,msg)| = |com| × (|σwit| + |msg|) + |σrnd|
+ |πNL | × #(NLPPE) + |πL | × #(LPPE) (15)

where |πL/NL |, |σrnd|, |σwit|, |com| are the size of a proof for a linear/nonlinear relation,
randomizable parts of a signature, rest of the parts in the signature, and commitment per

860 M. Abe et al.

witness, respectively. Also, LPPE and NLPPE denotes the linear and nonlinear PPEs in
the verification predicate of the signature scheme.
To achieve zero-knowledge, extra procedure is needed. For every pairing of constants

in the target PPEs, either of the input constants is turned into a witness, and correctness
of its commitment is proven using a multiscalar multiplication equation. Let #(CONST)
denote the minimum number of constants that covers all constant pairings. For instance,
if there are three pairings e(A, B), e(A,C), and e(A, D) with constants A, B,C, D,
only A need to be turned into a witness and hence #(CONST) = 1 in this example. Let
|πMS| denote the size of the proof for correct commitment to A. Let σvar denote elements
in σrnd that are included in CONST. Using these parameters, the cost for proving ones
possession of a correct signature in zero-knowledge is estimated as

|NIZK(σ)| =|com| × (|σwit| + #(CONST)) + (|σrnd| − |σvar|) + |πNL | × #(NLPPE)

+ |πL | × #(LPPE) + |πMS| × #(CONST) (16)

and the cost of proving valid (σ,msg) is counted by

|NIZK(σ,msg)| =|com| × (|σwit| + |msg| + #(CONST)) + (|σrnd| − |σvar|)
+ |πNL | × #(NLPPE) + |πL | × #(LPPE) + |πMS| × #(CONST).

(17)

According to [33], we have (|com|, |πL |, |πNL |) = (3, 3, 9) in G, and |πMS| = 3
in Zp. Proof πMS can consist of elements in G by describing the relation of correct
commitment of public value with a pairing product equation. It turns entire proof to be
structure-preserving with increased proof size.
For [4], we have |σwit| = 3, |σrnd| = 4. Since the verification consists of two nonlinear

equations, we have #(NLPPE) = 0 and #(LPPE) = 2. This results in |NIWI(σ)| =
3·3+4+9·0+3·2 = 19 and |NIWI(σ,msg)| = 3·(3+k)+4+9·0+3·2 = 3k+19. For
NIZK(σ), turning #(CONST) = k + 4+ 2 constants into witnesses eliminates constant
pairings in the signature verification. In detail, k comes from the pairings that involve the
message, 4 is from the parings that only involves the public-key, and 2 = |σvar| is from
the pairings that involves the randomizable part of the signature. Thus 3·(6+k)−2 group
elements and 3 · (6+ k) Zp elements are needed on top of NIWI(σ). For NIZK(σ,msg),
on the other hand, the message is a part of the witness. Thus we can set #(CONST) = 6
and the additional cost on NIWI(σ,msg) is 3·6−2 group elements and 3·6Zp elements.
This results in (3k + 35, 3k + 18) and (3k + 35, 18) elements as shown in Table 2.
Regarding toSIG1, whole signature is considered as a witness. Thus we have |σwit| =

14 and |σrnd| = 0. And the verification consists of 6 linear equations and 1 nonlinear
equation; #(NLPPE) = 1 and #(LPPE) = 6. We thus have |NIWI(σ)| = 3 · 14+ 0+ 9 ·
1 + 3 · 6 = 69 and |NIWI(σ,msg)| = 3 · (14 + k) + 0 + 9 · 1 + 3 · 6 = 3k + 69. For
NIZK(σ), we have #(CONST) = 1 + k constant pairings in the signature verification,
which results in adding 3 + 3k elements in both G and Zp to NIWI(σ). Finally, for
NIZK(σ,msg), we have #(CONST) = 1, which adds three elements in G and Zp to
NIWI(σ,msg).

Constant-Size Structure-Preserving Signatures 861

Table 2. Size of GS proofs and commitments for proving possession of a valid signature and message in WI
or ZK.

Scheme NIWI(σ) NIWI(σ,msg) NIZK(σ) NIZK(σ,msg)

[4] 19 3k + 19 (3k + 35, 3k + 18) (3k + 35, 18)
SIG1 69 3k + 69 (3k + 72, 3k + 3) (3k + 72, 3)

Numbers count elements in G. For ZK, (x, y) denotes x elements in G and y elements in Zp

6. Instantiating SIG2

We instantiate the POS and xSIG building blocks of our second generic construction
to obtain our second SPS scheme. Here we choose the Type-III bilinear group setting.
The resulting SIG2 scheme is an efficient structure-preserving signature scheme based
on SXDH and XDLIN.

6.1. Setup for Type-III Groups

The following setup procedure is common for all building blocks in this section. The
global parameter gk is given to all functions implicitly.

• Setup(1λ): Run Λ = (p,G1,G2,GT , e) ← G(1λ) and choose generators G ∈
G

∗
1 and Ĝ ∈ G

∗
2. Also choose u, f1, f2 randomly from Z

∗
p, compute F1 :=

G f1 , F̂1 := Ĝ f1 , F2 := G f2 , F̂2 := Ĝ f2 , U := Gu, Û := Ĝu , and output
gk := (Λ,G, Ĝ, F1, F̂1, F2, F̂2,U, Û).

A gk defines a message space Mx = {(F̂m
1 , F̂m

2 , Ûm) ∈ (G∗
2)

3 | m ∈ Zp} for the
XRMA-secure signature scheme in this section. For our generic construction to work,
the partial one-time signature scheme must have the same key space.

6.2. Partial One-Time Signatures for Unilateral Messages

We first construct a partial one-time signature scheme, POSu2, for messages in Gk
2 for

k > 0. The suffix “u2” indicates that the scheme is unilateral and messages are taken
fromG2. Correspondingly, POSu1 refers to the scheme whose messages belong toG1,
which is obtained by swappingG2 andG1 in the following description. In the following
section we will show how to combine POSu2 and POSu1 to obtain signatures on
bilateral messages consisting of elements from both G1 and G2.

Our POSu2 scheme is a minor refinement of the one-time signature scheme in-
troduced in [7]. It comes, however, with a security proof for the new security model.
Basically, a one-time public-key in our scheme consists of one element in the source
group G1, the opposite group from the one to which the messages belong. This prop-
erty is very useful when we move on to construct a POS scheme for signing bilateral
messages.
Like the tags in the TOS of Sect. 5.2, the one-time public-keys of POSu2 will have

to be in an extended form, (Fa
1 , Fa

2 ,Ua), to meet the constraint from xSIG presented in
the sequel. The extended part (Fa

1 , Fa
2) can be dropped if unnecessary.

862 M. Abe et al.

[Scheme POSu2]

POSu2.Key(gk): Take generators U and Û from gk. Choose wr uniformly from
Z

∗
p and compute Gr := Uwr . For i = 1, . . . , k, uniformly choose χi and γi from

Zp and compute Gi := Uχi Gγi
r . Output pk := (Gr ,G1, . . . ,Gk) ∈ G

k+1
1 and

sk :=(χ1, γ1, . . . , χk, γk, wr).
POSu2.Update(gk): Take F1, F2,U from gk. Choose a ← Zp and output opk :=
(Fa

1 , Fa
2 ,Ua) ∈ G

3
1 and osk := a.

POSu2.Sign(sk,msg, osk): Parse msg into (M̃1, . . . , M̃k) ∈ G
k
2. Take a and wr

from osk and sk, respectively. Choose ρ randomly from Zp and compute ζ :=
a − ρ wr mod p. Then compute and output σ := (Z̃ , R̃) ∈ G

2
2 as the signature,

where

Z̃ := Û ζ
k∏

i=1

M̃−χi
i and R̃ := Ûρ

k∏
i=1

M̃−γi
i . (18)

POSu2.Vrf(pk, opk,msg, σ): Parse σ as (Z̃ , R̃) ∈ G
2
2, msg as (M̃1, . . . , M̃k) ∈

G
k
2, and opk as (A1, A2, A). Return 1, if

e(A, Û) = e(U, Z̃) e(Gr , R̃)

k∏
i=1

e(Gi , M̃i) (19)

holds. Return 0, otherwise.

Scheme POSu2 is structure-preserving and has uniform one-time public-keys by
construction. It is correct as the following relation holds for the verification equation
and the computed signatures:

e(U, Z̃) e(Gr , R̃)

k∏
i=1

e(Gi , M̃i)

= e

(
U, Û ζ

k∏
i=1

M̃−χi
i

)
e

(
Gr , Û

ρ
k∏

i=1

M̃−γi
i

)
k∏

i=1

e(Uχi Gγi
r , M̃i)

= e
(
U, Û ζ

)
e
(
Uwr , Ûρ

)
= e

(
U ζ+wrρ, Û

)
= e(A, Û).

Theorem 9. POSu2 is strongly unforgeable againstOT-CMA ifDBP1 holds. In partic-
ular, for all p.p.t. algorithmsA there exists a p.p.t. algorithmB such thatAdvsot-cma

POSu2,A(λ)

≤ Advdbp1G,B (λ)+ 1/p(λ), where p(λ) is the size of the groups produced by G. Moreover,
the run-time overhead of the reduction B is a small number of multi-exponentiations per
signing or key query.

Proof. Using a successful forger A against POSu2 as a black-box, we construct B
that is successful in breaking DBP1. Given instance Idbp1 = (Λ,Gz,Gr) of DBP1,
algorithm B simulates the attack game against POSu2 as follows.

Constant-Size Structure-Preserving Signatures 863

Key Generation: Set U := Gz, Û ← G
∗
2, and gk := (Λ,Ug, Û g,U f ′

1 , Û f ′
1 ,U f ′

2 ,

Û f ′
2 ,U, Û) for g, f ′

1, f ′
2 ← Z

∗
p. Then generate pk by following POSu2.Key(gk)

except that Gr is taken from Idbp1.
One-time key query toOt : On receiving a one-time key query, generate ζ, ρ ← Zp,
compute A := U ζGρ

r , A1 := A f ′
1 , A2 := A f ′

2 with f ′
1 and f ′

2 generated in Setup,
and return opk := (A1, A2, A).
Signature query to Os : On receiving a signing query, msg(j), compute Z̃ and R̃ as
described in (18) taking χi and γi from those used in key generation and ζ and
ρ from those used in simulating Ot . Then output σ := (Z̃ , R̃). For each signing,
transcript (opk, σ,msg) is recorded.

When A outputs a forgery (opk†, σ †,msg†), algorithm B searches the records for
(opk, σ,msg) such that opk† = opk and (msg†, σ †) �= (msg, σ). If no such entry
exists, B aborts. Otherwise, B computes

Z̃ := Z̃†

Z̃

k∏
i=1

(
M̃†

i

M̃i

)χi

, and R̃ := R̃†

R̃

k∏
i=1

(
M̃†

i

M̃i

)γi

, (20)

where (Z̃ , R̃, M̃1, . . . , M̃k) and its dagger counterpart are taken from (σ,msg) and
(σ †,msg†), respectively. B finally outputs (Z̃, R̃). This completes the description
of B.

We first claim that the simulation by B is perfect; keys distribute uniformly due to the
randomness of Gz and Gr in the given instance, and signatures are computed following
the legitimate procedure. It is noted that f ′

1g and f ′
2g corresponds to f1 and f2 in the

real execution. Accordingly, A outputs a successful forgery with noticeable probability
and B finds a corresponding record (opk, σ,msg).

We next claim that eachχi is independent of the viewofA. Concretely,we show that, if
coinsχ1, . . . , χk are distributed uniformly over (Zp)

k , other coins γ1, . . . , γk, ζ
(1), ρ(1),

. . . , ζ (qs), ρ(qs) are distributed uniformly and A’s view is consistent. Observe that the
view of A making q signing queries consists of independent group elements (U, Û),

(G, F1, F2), (Gr ,G1, . . . ,Gk) and (A(j), Z̃ (j), M̃ (j)
1 , . . . , M̃ (j)

k) for j = 1, . . . , qs
(Note that Ĝ, F̂1, F̂2, and A(j)

1 , A(j)
2 , and R̃(j) for all j are uniquely determined by

the other group elements). We represent the view by the discrete logarithms of these
group elements with respect to basesU and Û in each group. Namely, the view is repre-
sented by (g, f ′

1, f ′
2, wr , w1, . . . , wk) and (a(j), z(j),m(j)

1 , . . . ,m(j)
k) for j = 1, . . . , qs .

To be consistent, the view and the coins must satisfy the following relations:

wi = χi + wrγi for i = 1, . . . , k, and (21)

a(j) = ζ (j) + wrρ
(j), and z(j) = ζ (j) −

k∑
i=1

m(j)
i χi for j = 1, . . . , qs . (22)

From relation (21), (γ1, . . . , γk) is distributed uniformly according to the uniform
choice of (χ1, . . . , χk). From the second relation in (22) for every j , if (m1, . . . ,mk) �=
(0, . . . , 0) then ζ (j) is distributed uniformly according to the uniform distribution of

864 M. Abe et al.

(χ1, . . . , χk). Then, from the first relation of (22), ρ(j) is distributed uniformly, too. If
(m1, . . . ,mk) = (0, . . . , 0), then ζ (j) and ρ(j) are independent of (χ1, . . . , χk) and can
be uniformly assigned by following the first relation in (22).
Finally, we claim that (Z̃, R̃) is a valid solution to the given instance of DBP1.

Since both forged and recorded signatures fulfill the verification equation, dividing the
equations results in

1 = e

(
U,

Z̃†

Z̃

)
e

(
Gr ,

R̃†

R̃

)
k∏

i=1

e

(
Uχi Gγi

r ,
M̃†

i

M̃i

)

= e

(
U,

Z̃†

Z̃

k∏
i=1

(
M̃†

i

Mi

)χi
)

e

(
Gr ,

R̃†

R̃

k∏
i=1

(
M̃†

i

Mi

)γi
)

= e
(
U, Z̃

)
e
(
Gr , R̃

)

.

What remains is to prove that Z̃ �= 1. Ifmsg† �= msg(j), there exists � ∈ {1, . . . , k} such
that

M̃†
�

M�
�= 1. As already proven, χ� is independent of the view ofA and of the other χi

values. Thus

(
M†

�

M�

)χ�

is distributed uniformly overG2 and so is Z̃. Accordingly, Z = 1

holds only if Z† = Z̃
∏

(M†
i /Mi)

−χi , which happens only with probability 1/p over
the choice of χ�. Otherwise, if msg† = msg(j) and (Z†, R†) �= (Z , R), then, we have
Z† = Z to fulfil Z = 1. However, if Z† = Z , then R† = R holds since the verification
equation uniquely determines such R† and R. Thus msg† = msg(j) and (Z†, R†) �=
(Z , R) can never happen. We thus have Advsot-cma

POSu2,A(λ) ≤ Advdbp1G,B (λ)+1/p as stated.

6.3. Partial One-Time Signatures for Bilateral Messages

Using POSu1 for msg ∈ G
k1+1
1 and POSu2 for msg ∈ G

k2
2 , we construct a POSb

scheme for signing bilateral messages (msg1,msg2) ∈ G
k1
1 × G

k2
2 . The scheme is a

simple two-story construction where msg2 is signed by POSu2 with one-time secret-
key osk2 ∈ G1 and then the one-time public-key opk2 is attached to msg1 and signed by
POSu1. Public-key opk2 is included in the signature, and opk1 is output as a one-time
public-key for POSb.
[Scheme POSb]

POSb.Key(gk): Run (pk1, sk1) ← POSu1.Key(gk) for message size k1 + 1 and
(pk2, sk2) ← POSu2.Key(gk) for message size k2. Set pk := (pk1, pk2) and
sk := (sk1, sk2), and output (pk, sk).
POSb.Update(gk):Run (opk, osk)←POSu1.Update(gk) andoutput (opk, osk).
POSb.Sign(sk,msg, osk): Parse msg into (msg1,msg2) ∈ G

k1
1 × G

k2
2 , and sk

into (sk1, sk2). Run (opk2, osk2) ← POSu2.Update(gk), and compute σ2 ←
POSu2.Sign(sk2,msg2, osk2) and σ1 ← POSu1.Sign(sk1, (msg1, opk2), osk).
Output σ := (σ1, σ2, opk2).

Constant-Size Structure-Preserving Signatures 865

POSb.Vrf(pk, opk,msg, σ): Parse msg into (msg1,msg2) ∈ G
k1
1 × G

k2
2 , and σ

into (σ1, σ2, opk2). If 1 = POSu1.Vrf(pk1, opk, (msg1, opk2), σ1) = POSu2.Vrf
(pk2, opk2,msg2, σ2), output 1. Otherwise, output 0.

We consider dropping unnecessary extended part from opk2 so that it consists of only
one group element. Then, for a message inGk1

1 ×G
k2
2 , the abovePOSb uses a public-key

of size (k2+1, k1+2), yields a one-time public-key of size (0, 3), and a signature of size
(3, 2). Verification requires 2 pairing product equations. A one-time public-key, which
is treated as a message to xSIG in this section, is of the form opk = (F̂a

1 , F̂a
2 , Û a) ∈

G
3
2. The structure preservation and uniform public-key properties carry over from the

underlying POSu1 and POSu2.

Theorem 10. Scheme POSb is strongly unforgeable against OT-CMA if SXDH holds.
In particular, for all p.p.t. algorithms A there exists a p.p.t. algorithm B such that
Advsot-cma

POSb,A(λ) ≤ AdvsxdhG,B (λ) + 2/p(λ), where p(λ) is the size of the groups produced
by G. Moreover, the run-time overhead of the reduction B is a small number of multi-
exponentiations per signing or key query.

Proof. Suppose an adversary A outputs a forgery (opk†, σ †,msg†). Then there ex-
ists a triple (σ, opk,msg) observed by the signing oracle such that opk† = opk and
(msg†, σ †) �= (msg, σ). Let msg† = (msg†1,msg

†
2) and σ † = (σ

†
1 , σ

†
2 , opk†2). Sim-

ilarly, let msg = (msg1,msg2) and σ = (σ1, σ2, opk2). Then there are two cases;
either ((msg1, opk2), σ1) �= ((msg†1, opk

†
2), σ

†
1), or opk2 = opk†2 and (msg2, σ2) �=

(msg†2, σ
†
2). In the first case we break the strong unforgeability of POSu1 and contra-

dict the DBP2 assumption; in the second case we break the strong unforgeability of
POSu2 and contradict the DBP1 assumption.
Accordingly, we have Advot-cma

POSb,A(λ) ≤ Advdbp1G,A (λ) + 1/p + Advdbp2G,B (λ) + 1/p ≤
AdvsxdhG,B (λ) + 2/p.

6.4. XRMA-Secure Signature Scheme

An intuition behind our XRMA-secure scheme is the same as that of RMA-secure
scheme in the previous section. Recall that gk = (Λ,G, Ĝ, F1, F̂1, F2, F̂2,U, Û) with
Λ = (p,G1,G2,GT , e) is generated by Setup(1λ) in advance (see Sect. 6.1).
[Scheme xSIG]

xSIG.Gen(gk):Given gk as input, uniformly select generatorsV, V ′ ← G
∗
1, V̂ , V̂ ′

∈ G
∗
2 such that V ∼ V̂ , V ′ ∼ V̂ ′, H̃ ← G

∗
2, and exponents a, b, α, ρ ← Z

∗
p.

Then compute and output vk := (gk, B̃, Ã, B̃a, R̃, W̃ , H̃ , X1, X̃2) and sk :=
(vk, K1, K2, V, V ′) where

B̃ := Ĝb, Ã := Ĝa, B̃a := Ĝba, R̃ := V̂ (V̂ ′)a, W̃ := R̃b

X1 := Gρ, X̃2 := Ĝα·b/ρ, K1 := Gα, K2 := Gb.

866 M. Abe et al.

xSIG.Sign(sk,msg): Parse msg into (M̃1, M̃2, M̃3) = (F̂m
1 , F̂m

2 , Ûm) ∈ G
3
2 (m ∈

Zp). Pick random r1, r2, z ← Zp. Let r := r1 + r2. Compute and output signature
σ := (S̃0, S1, . . . , S5) where

S̃0 := (M̃3 H̃)r1 , S1 := K1V
r , S2 := (V ′)rG−z, S3 := K z

2, S4 := Kr2
2 ,

S5 := Gr1 .

xSIG.Vrfy(vk,msg, σ): Parsemsg into (M̃1, M̃2, M̃3) and σ into (S̃0, S1, . . . , S5).
Also parse vk accordingly. Verify the following pairing product equations:

e(S1, B̃)e(S2, B̃a)e(S3, Ã) = e(S4, R̃)e(S5, W̃)e(X1, X̃2), (23)

e(S5, M̃3 H̃) = e(G, S̃0), (24)

e(F1, M̃3) = e(U, M̃1), (25)

e(F2, M̃3) = e(U, M̃2). (26)

The scheme is structure-preserving by construction. We can easily verify the correct-
ness as follows.

(Left-hand of (23)) = e
(
GαV r , Ĝb

)
e
((
V ′)r G−z, Ĝba

)
e
(
Gbz, Ĝa

)

= e
(
G, Ĝ

)αb
e
(
V, Ĝ

)br
e
(
V ′, Ĝ

)abr

= e
(
G, V̂

)b(r1+r2)
e
(
G, V̂ ′

)ab(r1+r2)
e
(
G, Ĝ

)αb

= e
(
Gbr2 , V̂

(
V̂ ′)a) e

(
Gr1 , V̂ b

(
V̂ ′)ba

)
e
(
G, Ĝ

)αb

= (Right-hand of (23))

Equation (23) holds since r = r1 + r2, V ∼ V̂ , and V ′ ∼ V̂ ′. The followings also hold.

(Left-hand of (24)) = e(Gr1 , Ûm H̃) = e(G, Ûm H̃)r1 = e(G, (Ûm H̃)r1)

= (Right-hand of (24)),

(Left-hand of (25)) = e(F1, Û
m) = e(F1, Û)m = e(U, F̂m

1) = (Right-hand of (25)),

(Left-hand of (26)) = e(F2, Û
m) = e(F2, Û)m = e(U, F̂m

2) = (Right-hand of (26)).

Theorem 11. The above xSIG scheme is UF-XRMA with respect to the message gen-
erator that returns ω = m for every random message msg = (F̂m

1 , F̂m
2 , Ûm) under the

DDH2 and XDLIN1 assumptions. In particular for any p.p.t. algorithm A for xSIG
making at most q(λ) signing queries, there exist p.p.t. algorithms B1,B such that
Advuf-xrma

xSIG,A(λ) ≤ Advddh2G,B1
(λ) + (q(λ) + 1)Advxdlin1G,B (λ).

Proof. In this scheme, simulation-type signatures are of the form σ = (S̃0, S′
1 =

S1 ·G−aγ , S′
2 = S2 ·Gγ , S3, S4, S5) for γ ∈ Zp. The outline of the proof follows that of

Constant-Size Structure-Preserving Signatures 867

Water’s dual signature scheme and is quite similar to the proof of Theorem 7. We start
with the following lemma.

Lemma 7. Any signature that is accepted by the verification algorithm must be either
a normal-type signature or a simulation-type signature.

Proof of Lemma 7. We ignore the last row of verification equations that establish that
msg is well formed. A signature has three random exponents, r1, r2, z. A simulation-type
signature has an additional exponent γ . We interpret S5 as Gr1 , so the first verification
equation implies that S̃0 = (Ûm H̃)r1 . For fixed b ∈ Zp (Ĝb is included in vk), there
exists r2, z ∈ Zp such that S3 = Gbz, S4 = Gbr2 . If we fix S1 = GαV rG−aγ , then a
remaining unknown value is S2. The verification equation is

e
(
S1, Ĝ

b
)
e
(
S2, Ĝ

ba
)
e
(
S3, Ĝ

a
)

= e
(
S4, R̃

)
e
(
S5, R̃

b
)
e
(
G, Ĝ

)αb

so we can fix S2 = (V ′)rG−zGγ .

Based on the notion of simulation-type signatures, we consider a sequence of games.
Let pi be the probability that the adversary succeeds in Game i, and pnormi (λ) and
psimi (λ)be the probability that he succeedswith a normal-type or simulation-type forgery,
respectively. Then by Lemma 7, pi (λ) = pnormi (λ) + psimi (λ) for all i .

Game 0: The actual Unforgeability under Extended Random Message Attacks game.

Lemma 8. There exists an adversary B1 such that psim0 (λ) ≤ Advddh2G,B1
(λ).

Game i: The real security game except that the first i signatures that are given by the
oracle are simulation-type signatures.

Lemma 9. There exists anadversaryB2 such that |pnormi−1 (λ)−pnormi (λ)|≤Advxdlin1G,B2
(λ).

Game q: All signatures given by the oracle are simulation-type signatures.

Lemma 10. There exists an adversary B3 such that pnormq (λ) ≤ Advco-cdhG,B3
(λ).

We have shown that in Game q, A can output a normal-type forgery with at most
negligible probability. Thus, by Lemma 9we can conclude that the same is true inGame
0. Since we have already shown that inGame 0 the adversary can output simulation-type
forgeries only with negligible probability, and that any signature that is accepted by the
verification algorithm is either normal type or simulation type, we conclude that the
adversary can produce valid forgeries with only negligible probability

Advuf-xrma
xSIG,A(λ) = p0(λ) = psim0 (λ) + pnorm0 (λ)

≤ psim0 (λ) +
q∑

i=1

|pnormi−1 (λ) − pnormi (λ)| + pnormq (λ)

868 M. Abe et al.

≤ Advddh2G,B1
(λ) + qAdvxdlin1G,B2

(λ) + Advco-cdhG,B3
(λ)

≤ Advddh2G,B1
(λ) + (q + 1)Advxdlin1G,B (λ)

as stated. The last inequality holds since theCDH1 assumption is implied by theXDLIN1
assumption.

Proof of Lemma 8. We show that, if the adversary outputs a simulation-type forgery,
then we can construct algorithm B1 that solves the DDH2 problem. Algorithm B1 is
given instance (Λ, Ĝ, Ĝs, Ĝa, Z̃ ∈ G2) of DDH2, and simulates the verification key
and the signing oracle for the signature scheme (B1 does not have the values a, s).

B1 generates gk and vk as follows. It selectsG ← G1, and exponents u, f1, f2 ← Z
∗
p,

computes F1 := G f1 , F̂1 := Ĝ f1 , F2 := G f2 , F̂2 := Ĝ f2 , U := Gu, Û := Ĝu , and
sets them into gk. It also selects exponents v, v′ ← Z

∗
p, computes V := Gv, V ′ :=

Gv′
, V̂ := Ĝv, V̂ ′ := Ĝv′

. Next, it selects exponents b, α, h, ρ ← Z
∗
p, computes

H̃ := Ĝh , and

B̃ := Ĝb, Ã := Ĝa, B̃a := (Ĝa)b, R̃ := V̂ (V̂ ′)a = Ĝv(Ĝa)v,

W̃ := R̃b = Ĝbv(Ĝa)bv

X1 := Gρ, X̃2 := Ĝαb/ρ, K1 := Gα, K2 := Gb,

and sets them into vk and sk, accordingly.
B1 can generate normal-type signatures by using the (normal) signing algorithm since

B1 hasα, b andV, V ′. For i th signature,B1 randomly selectsmi ∈ Zp, generates normal-
type signature σi for message (F̂mi

1 , F̂mi
2 , Ûmi), and gives ((F̂mi

1 , F̂mi
2 , Ûmi), σi ,mi) to

A.
If adversary A outputs a simulation-type forgery S1 := (GαVr) · G−aγ , S2 :=

((V ′)rG−z) · Gγ , S3 := (Gb)−z, S4 := (Gb)r2 , S5 := Gr1 , and S0 := (M̃3 H̃)r1 , for
some r1, r2, z, γ ∈ Zp (r = r1 + r2) for message msg = (F̂m

1 , F̂m
2 , Ûm), then B1 can

compute (Gaγ ,Gγ) from S1, S2, respectively. The reason is as follows:
B1 has b, so it can compute Gz, Gr1 , Gr2 from S3 = Gbz, S5 = Gr1 , S4 = Gbr2 ,

respectively and obtain Gr = Gr1+r2 , Vr = Grv, (V ′)r = Grv′
(B1 has v, v′). Thus,

B1 can extract (Gaγ ,Gγ) from S1 and S2 since it has α.B1 can solve the DDH2 problem
by checking whether

e(Gγ , Z̃) = e
(
Gaγ , Ĝs

)

or not because e(Gaγ , Ĝs) = e(G, Ĝ)asγ = e(Gγ , Ĝas). If Ẑ = Ĝas (DDH tuple),
then the equation holds. Thus, B1 solves the DDH2 problem whenever the adversary
outputs a valid simulation-type forgery, i.e., psim0 (λ) ≤ Advddh2G,B1

(λ) as claimed.

Proof of Lemma 9. Given access to A playing pnormi−1 (λ) and pnormi (λ), we construct
algorithm B2 that solves the XDLIN1 problem with advantage |pnormi−1 (λ) − pnormi (λ)|.

Constant-Size Structure-Preserving Signatures 869

B2 is given instance (Λ,G1,G2,G3, Ĝ1, Ĝ2, Ĝ3, X,Y, X̂ , Ŷ , Z ∈ G1) of the
XDLIN1 problem. It implicitly holds that G1 = Gb

2, Ĝ1 = Ĝb
2, X = Gx

1,Y = Gy
2, X̂ =

Ĝx
1, Ŷ = Ĝ y

2 for some b, x, y ∈ Zp. B2 generates the group elements in gk and vk
as follows: It selects exponents ξ, β, χ1, χ2, ϕ ← Z

∗
p such that ξm + β = 0 where

m ∈ Zp is the exponent of the i th random message (If ξm + β = 0, then it holds that

(Ûm H̃) = Ĝmχ1+χ2
2 Ĝξm+β

3 = Ĝmχ1+χ2
2 . Note that ξ and β are information theoreti-

cally hidden even given m, so the adversary has only negligible chance of producing
another message Ûm∗

such that ξm∗ + β = 0). It then computes G := G2, Ĝ :=
Ĝ2, F1 := Gϕ

1 , F̂1 := Ĝϕ
1 , F2 := G3, F̂2 := Ĝ3, U := Gχ1

2 Gξ
3, Û := Ĝχ1

2 Ĝξ
3, sets

into gk, and then compute H̃ := Ĝχ2
2 Ĝβ

3 . It also chooses a, δ, v′ ← Z
∗
p and computes

V := G−aδ
3 , V ′ := Gδ

3G
v′
2 , V̂ := Ĝ−aδ

3 , V̂ ′ := Ĝδ
3Ĝ

v′
2 . Next it chooses α, ρ ← Z

∗
p,

computes

B̃ := Ĝ1, Ã := Ĝa
2, B̃a := Ĝa

1, R̃ := V̂ (V̂ ′)a = Ĝv′a
2 ,

W̃ := (V̂ (V̂ ′)a)b = Ĝv′a
1 ,

X1 := Gρ
2 , X̃2 := (Ĝ1)

α/ρ, K1 := Gα
2 , K2 := Gb

2 = G1,

and them sets them into vk and sk, accordingly.
Since B2 has a, it can compute Ga and further generate simulation-type signatures.

Now B2 simulates signatures for j th random message as follows.

Case j > i : B2 randomly selects m j ∈ Zp, generates normal-type signature
σ j for message (F̂

m j
1 , F̂

m j
2 , Ûm j) by using sk = (vk,Gα

2 ,Gb
2, V, V ′), and gives

((F̂
m j
1 , F̂

m j
2 , Ûm j), σ j ,m j) to A.

Case j = i : B2 embeds the instance as follows. For the i th randomly chosen mes-
sage msg = (F̂m

1 , F̂m
2 , Ûm) ∈ G

3
2, B2 implicitly sets r1 := y, r2 := x and com-

putes S4 := Gbr2 = Gx
1, S5 := Gr1 = Gy

2 . B2 can compute S̃0 := (Ĝ y
2)

mχ1+χ2 =
(Ûm H̃)r1 . Next, in order to compute Vr and (V ′)r , B2 computes (Gr1+r2

3)−aδ as

Z−aδ . If Z = Gx+y
3 , then this will be correct. If Z = Gζ

3 for ζ ← Zp, then we

let Gγ := Gδ(ζ−(x+y))
3 and this will be a simulation-type signature. B2 chooses

s ← Zp and implicitly sets G−z := G−v′r2+s
2 . These value are not computable

but B2 can compute Gzb = Gxv′−s
1 . S2 := (Gy

2)
v′
Z δGs

2 = Gr1v′+r2v′
2 Z δGs−r2v′

2 =
Grv′

2 Z δG−z . B2 generates a signature σ := (S̃0, . . . , S5) as follows:

S̃0 := (Ĝ y
2)

mχ1+χ2 S1 := Gα
2 Z

−aδ S2 := (Gy
2)

v′
Z δGs

2

S3 := (Gx
1)

v′
G−s

1 S4 := Gx
1 S5 := Gy

2 .

B2 cangenerate S0 correctly sinceB2 set ξm+β =0.B2 gives ((F̂m
1 , F̂m

2 , Ûm), σ,m)

to A.

• If Z = Gx+y
3 ∈ G1, the above signature is a normal-type signature with Z =

Gr
3, S1 = Gα

2G
−aδr
3 = Gα

2V
r , and S2 = (Gv′

2 G
δ
3)

rG−z = (V ′)rG−z .

870 M. Abe et al.

• If Z ← G1, the above signature is a simulation-type signature since Z = Gζ
3

for some ζ ← Zp, S1 = Gα
2G

−aδr
3 G−aδζ

3 Gaδr
3 = Gα

2V
rG−aδ(ζ−(x+y))

3 =
GαVrG−aγ since Gδ(ζ−(x+y))

3 = Gγ , and S2 = Grv′
2 Grδ

3 Gδ(ζ−(x+y))
3 G−z =

(V ′)rGγ G−z .

Case j < i : B2 randomly selects m j ∈ Zp, generates simulation-type signature σ j

formessage (F̂
m j
1 , F̂

m j
2 , Ûm j)byusing sk andGa

2, andgives ((F̂
m j
1 , F̂

m j
2 , Ûm j), σ j ,

m j) to A.

If Z = Gx+y
3 (linear), thenA is in pnormi−1 (λ), otherwiseA is in pnormi (λ). For allmessages,

B2 can return μ(Mi) = mi .
At somepoint,Aoutputs forgery (S̃∗

0 , S
∗
1 , . . . , S

∗
5) andmessagemsg∗ = (Q̃1, Q̃2, Q̃3)

= (F̂m∗
1 , F̂m∗

2 , Ûm∗
). B2 outputs 1 if and only if

e
(
G1, S̃0

)
· e

(
S4, Q̃

ξ
2Ĝ

β
3

)
= e

((
S1G

−αa1
2

)1/(−aδ)

,
(
Q̃1/ϕ

1

)ξ

Ĝβ
1

)

·e
(
S5,

(
Q̃1/ϕ

1

)χ1
Ĝχ2

1

)
.

ByLemma7, there existm∗, r∗
1 , r∗

2 , γ ∗, r∗ = r∗
1+r∗

2 such that S̃0 = (Ûm∗
H̃)r

∗
1 , S1 =

Gα
2V

r∗
G−aγ ∗

2 , S4 = G
r∗
2
1 , S5 = G

r∗
1
2 , Q̂1 = (Ĝϕ

1)m
∗
, Q̂2 = Ĝm∗

3 . Rephrased in terms
of our parameters, this means

S̃0 =
(
Ĝm∗χ1+χ2

2 Ĝξm∗+β
3

)r∗
1

S1 = Gα
2G3

−aδr∗
G−aγ ∗

2

S4 = G1
r∗
2 S5 = G

r∗
1
2 .

Plugging this into the above computation, we have the left-hand side is

e
(
G1, S̃0

)
· e

(
S4, Q̂

ξ
2Ĝ

β
3

)
= e

(
G1,

(
Ĝm∗χ1+χ2

2 Ĝξm∗+β
3

)r∗
1
)

· e
(
G

r∗
2
1 ,

(
Ĝm∗

3

)ξ

Ĝβ
3

)

= e
(
G1, Ĝ2

)(m∗χ1+χ2)r∗
1
e
(
G1, Ĝ3

)(ξm∗+β)r∗
1

× e
(
G1, Ĝ3

)(ξm∗+β)r∗
2

and the right-hand side is

e

((
S1G

−α
2

)1/(−aδ)
,
(
Q̂1/ϕ

1

)ξ

Ĝβ
1

)
· e

(
S5,

(
Q̂1/ϕ

1

)χ1
Ĝχ2

1

)

= e
(
Gr∗

3 Gγ ∗/δ
2 , Ĝξm∗+β

1

)
· e

(
G

r∗
1
2 , Ĝm∗χ1+χ2

1

)

= e
(
G3, Ĝ1

)(ξm∗+β)r∗
e
(
G2, Ĝ1

)γ ∗/δ(ξm∗+β)
e
(
G2, Ĝ1

)(m∗χ1+χ2)r∗
1
.

Constant-Size Structure-Preserving Signatures 871

A simplified equation is 1 = e(G2, Ĝ1)
γ ∗/δ(ξm∗+β).

Thus, the difference of A’s advantage in two games gives the advantage of B2 in
solving the XDLIN1 problem as stated.

Proof of Lemma 10. Observe that, in pnormq (λ), A is given simulation-type signatures
only. We show that ifA outputs a normal-type forgery in pnormq (λ) then we can construct
algorithm B3 that solves the co-CDH problem.
B3 is given instance (Λ,G, Ĝ,Gx ,Gy, Ĝx , Ĝ y) of the co-CDH problem. B3 gener-

ates the verification key as follows: B3 selects exponents u, h, f1, f2 ← Z
∗
p, computes

F1 := G f1 , F̂1 := Ĝ f1 , F2 := G f2 , F̂2 := Ĝ f2 , U := Gu, Û := Ĝu , and sets them
into gk. B3 also selects exponents v, v′ ← Z

∗
p, computes V := Gv, V ′ := Gv′

, V̂ :=
Ĝv, V̂ ′ := Ĝv′

. Next, it also selects exponents h, b, ρ′ ← Z
∗
p, computes H̃ := Ĝh and

B̃ := Ĝb, Ã := Ĝ y, B̃a := (Ĝ y)b, R̃ := V̂ (V̂ ′)a = V̂ (Ĝ y)v
′
,

W̃ := R̃b = (V̂ (Ĝ y)v
′
)b

X1 := (Gx)ρ
′
, X̃2 := (Ĝ y)b/ρ

′
, K2 := Gb,

and sets them into vk and sk, accordingly. Note that it means implicitly ρ = ρ′x and
α = xy though B3 does not have α, ρ. Therefore B3 does not have K1 = Gα =
Gxy , and cannot compute normal-type signatures. For i th message, B3 randomly select
mi ∈ Zp and outputs simulation-type signatures for each random message msgi =
(F̂mi

1 , F̂mi
2 , Ûmi) as follows:

B3 selects r1, r2, z, γ ′ ← Zp, sets r := r1 + r2 (we want to set γ := x + γ ′), and
computes:

S1 := (Gy)−γ ′ · V r = (GαVr) · G−aγ (a = y, xy = α)

S2 := Gγ ′
Gx (V ′)rG−z = ((V ′)rG−z) · Gγ

S3 := (Gb)z S4 := Gr2b S5 := Gr1 S̃0 := (Ûmi H̃)r1 .

B3 gives ((F̂mi
1 , F̂mi

2 , Ûmi), σi ,mi) where σi := (S̃0, S1, . . . , S5) to A.
At some point,A outputs a normal-type forgery, S∗

1 = GαVr∗
, S∗

2 = (V ′)r∗
G−z∗ , S∗

3

= (Gb)z
∗
, S∗

4 = Gr∗
2 b, S∗

5 = Gr∗
1 , and S̃∗

0 = (Ûm∗
H̃)r

∗
1 , for some r∗

1 , r∗
2 , z∗,∈ Zp for

message msg∗ = (F̂m∗
1 , F̂m∗

2 , Ûm∗
).

By using these values, B3 can compute Gr∗
2 = (S∗

4)
1/b, Gr∗

1 = S∗
5 , G

z∗ = (S∗
3)

1/b,

Vr∗ = (Gr∗
1 · Gr∗

2)v since V = Gv . Thus, B3 can compute S∗
1/V

r∗ = Gα = Gxy .
That is, B3 can solve the co-CDH problem and it holds that pnormq (λ) ≤ Advco-cdhG,B3

(λ)

as claimed.

Remark 3. It is difficult to modify xSIG so as to rely on the DDH1 and DDH2 assump-
tion, that is, only on the SXDH assumption because we are not given instances in group
G2 and cannot simulate verification keys in groupG2 under the DDH1 assumption when
we prove a similar statement to Lemma 9 by using DDH1. Constructing XRMA-secure

872 M. Abe et al.

SPS scheme only from the SXDH assumption is an important open problem since it will
save on the number of group elements in a signature and a verification key. Moreover, it
is non-trivial to modify xSIG so as to rely on the DDH1 and XDLIN1 because if we use
assumptions only over G1, then all elements in a signature must be in G1. It means that
a message must consist of elements in both G1 and G2, which we would like to avoid.

6.5. Security and Efficiency of Resulting SIG2

Let SIG2 be the scheme obtained from POSb and xSIG. SIG2 is structure-preserving
as vk, σ , and msg consist of group elements from G1 and G2, and SIG2.Vrf evaluates
pairingproduct equations. FromTheorems3, 10 and11,weobtain the following theorem.

Theorem 12. SIG2 is a structure-preserving signature scheme that is unforgeable
against adaptive chosen message attacks if SXDH and XDLIN1 hold for G. In partic-
ular, for any p.p.t. algorithm A for SIG2 making at most qs(λ) signing queries, there
exist p.p.t. algorithms B, C such that Advuf-cma

SIG2,A(λ) ≤ (qs(λ) + 1) · AdvdlinG,B(λ) + 2 ·
AdvsxdhG,C (λ) + 2/p(λ), where p(λ) is the size of the groups produced by G.

Table 3 summarizes the efficiency of SIG2 for both unilateral messages consisting
of k elements and bilateral messages consisting of k1 and k2 elements in G1 and G2,
respectively. We count the number of group elements in public components of SIG2.
Note that the default generators in gk is not included in the count. For comparison, we
also evaluate the efficiency of the schemes in [4, Section5.2] and [5, Section5.2]. For
bilateral messages, the scheme from [4] is combined with POSb from Sect. 6.3. Since
the scheme in [4] can sign a single group element, extended part of one-time verification
key from POSb.Update can be dropped and gk need to include only one generator for
each G1 and G2.
In Tables 4 and 5, we assess the size of proofs for showing ones possession of a valid

signature and message of SIG2 by using the GS proof system as NIWI or NIZK. The
general formulas are the same as those in (14)–(17) except that witnesses and linear
equations in G1 and G2 are considered separately (We say that an equation is linear in
G1 if all variables in the equation are in G1). By (x, y), we denote x and y elements in

Table 3. Efficiency of SIG2 and comparison to other schemes with constant-size signatures.

Scheme |msg| |gk| + |vk| |σ | #(PPE) Assumptions

[4] (k1, 0) (5, 2k1 + 9) (5, 2) 2 q-SFP
[5] (k1, 0) (1, k1 + 4) (3, 1) 2 q-type
SIG2 : POSu1 + xSIG (k1, 0) (5, k1 + 12) (7, 4) 5 SXDH, XDLIN1
POSb + [4] (k1, k2) (k2 + 12, k1 + 7) (8, 5) 4 q-SFP
[5] (k1, k2) (k2 + 3, k1 + 4) (3, 3) 2 q-type
SIG2 : POSb + xSIG (k1, k2) (k2 + 6, k1 + 13) (8, 6) 6 SXDH, XDLIN1

The upper half is for unilateral messages and the lower half is for bilateral messages. Notation (x, y) represents
x elements in G1 and y in G2

Constant-Size Structure-Preserving Signatures 873

Table 4. Costs of WI proofs with the GS proof system of valid signature of SIG2 for unilateral and bilateral
messages.

SIG2 |NIWI(σ)| |NIWI(σ,msg)|
Unilateral (26, 18, 0) (2k1 + 26, 18, 0)
Bilateral (32, 26, 0) (2k1 + 32, 2k2 + 26, 0)

Entry (x, y, z) denotes x, y, and z elements in G1, G2, and Zp , respectively

Table 5. Costs for proving valid signature of SIG2 for unilateral and bilateral messages in ZK with the GS
proof system.

SIG2 |NIZK(σ)| |NIZK(σ,msg)|
Unilateral (2k1 + 28, 18, 2k1 + 2) (2k1 + 28, 18, 2)
Bilateral (2k1 + 34, 2k2 + 26, 2k1 + 2k2 + 2) (2k1 + 34, 2k2 + 26, 2)

G1 andG2, respectively. Similarly, by (x, y, z), we denote additional element z inZp. In
this asymmetric setting, we have |com| = (2, 0, 0) for committing to G1 elements, and
|com| = (0, 2, 0) forG2. Proof size for linear equation inG1 andG2 is |πL | = (0, 2, 0)
and (2, 0, 0), respectively. We also have |πNL | = (4, 4, 0) and |πMS| = (0, 0, 2).
We first consider the cases of NIWI shown in Table 4. For unilateral messages, we

have |σwit| = (7, 4) group elements and |σrnd| = (0, 0). Verifying POSu1 consists
of one nonlinear relation (19), and verifying xSIG consists of one linear equation in
G1 (23), two linear equations in G2 (25, 26) and one nonlinear equation (24). Thus,
|NIWI(σ)| = ((2, 0, 0) × 7 + (0, 2, 0) × 4) + 0 + (4, 4, 0) × 2 + ((0, 2, 0) × 1 +
(2, 0, 0) × 2) = (26, 18, 0). For bilateral messages, we have |σwit| = (8, 6) group
elements and |σrnd| = (0, 0). Verifying POSb consists of verification for POSu1 and
POSu2, which are two nonlinear relations in total (They are nonlinear since one-time
public-key A is in G1 whereas signature Z̃ , R̃ are in G2). Equations for xSIG are the
same as above. Thus |NIWI(σ)| = ((2, 0, 0) × 8 + (0, 2, 0) × 6) + 0 + (4, 4, 0) ×
3 + ((0, 2, 0) × 1 + (2, 0, 0) × 2) = (32, 26, 0). For NIWI(σ,msg), we add (2k1, 0)
and (2k1, 2k2) elements for the commitment of the message in unilateral and bilateral
case, respectively. Hence |NIWI(σ,msg)| = (2k1 + 26, 18, 0) for unilateral case, and
|NIWI(σ,msg)| = (2k1 + 32, 2k2 + 26, 0) for bilateral case.
We next consider the cases ofNIZK.Additional elements comes frompublic constants

to commit to, and the proof of their correct commitment. For NIZK(σ), every element in
a message are regarded as public constants that are input to constant pairings. And xSIG
involves one constant pairing e(X1, X̃2) where we commit to X1 so that (23) remains
a linear equation. We thus have k1 + 1 constants to commit to in G1 for the unilateral
case, and k1+1 and k2 constants to commit to inG1 andG2, respectively in the bilateral
case. By wrapping up, we have |NIZK(σ)| = |NIWI(σ)| + (2, 0, 0) × (k1 + 1) +
(0, 0, 2) × (k1 + 1) = (2k1 + 28, 18, 2k1 + 2) for the unilateral case, and |NIZK(σ)| =
|NIWI(σ)|+(2, 0, 0)×(k1+1)+(0, 2, 0)×k2+(0, 0, 2)×(k1+k2+1) = (32, 26, 0)+
(2k1+2, 0, 0)+(0, 2k2, 0)+(0, 0, 2k1+2k2+2) = (2k1+34, 2k2+26, 2k1+2k2+2) for
the bilateral case. For NIZK(σ,msg) where messages are already committed, additional

874 M. Abe et al.

elements are fromcommitting to X1 compared to the case ofNIWI(σ,msg).We thus have
|NIZK(σ,msg)| = |NIWI(σ,msg)|+(2, 0, 0)×1+(0, 0, 2)×1 = (2k1+28, 18, 2) for
unilateral case, and |NIZK(σ,msg)| = |NIWI(σ,msg)|+ (2, 0, 0)×1+ (0, 0, 2)×1 =
(2k1 + 34, 2k2 + 26, 2) for bilateral case.

7. Applications

We list a few recent examples of applications of SPS that benefit from our results.

• Group Signatures with Efficient Revocation and Compact Verifiable Shuffles.Using
our SIG1 scheme from Sect. 5 both the construction of a group signature scheme
with efficient revocation by Libert et al. [36] and the construction of compact verifi-
able shuffles by Chase et al. [18] can be proven purely under the DLIN assumption.
All other building blocks already have efficient instantiations based on DLIN.

• Tightly-secure Structure-preserving Signatures. Hofheinz and Jager [34] construct
a tightly-secure one-time signature scheme and use it to construct s tightly-secure
tree-based SPS scheme, say tSIG. Instead, we propose to use our partial one-time
scheme to construct tSIG. As the resulting tSIG is secure against non-adaptive
chosen message attacks, it is secure against extended random message attacks as
well. We then combine the POSb scheme and the new tSIG scheme according
to our second generic construction. The resulting signature scheme is significantly
more efficient than [34] and is a SPS scheme with a tight security reduction to
SXDH. As shown in [3], the same is possible in Type-I groups by using the tagged
one-time signature scheme in Sect. 5.2 whose security tightly reduced to DLIN.

• Simulation-sound and Simulation-extractable NIZK. In [3], we also show how to
construct more efficient simulation-sound and simulation-extractable non-
interactive zero-knowledge (SS-NIZK & SE-NIZK) proof systems. While in [3]
we were primarily interested in tightly-secure NIZK and thus used the tree-based
tSIG scheme, RMA-security suffices for constructing unbounded SS-NIZK and
SE-NIZK schemes. Our rSIG and xSIG schemes can thus be used directly to con-
struct even more efficient unbounded SE-NIZK if one lifts the requirement of a
tight reduction.

• Tightly-secure Structure-preserving CCA-secure Public-key Encryption. Following
the approach of [34] and [3], tightly-secure SE-NIZK enables tightly-secure and
structure-preserving CCA-secure public-key encryption under standard decisional
assumptions.

• Efficient Adaptive Oblivious Transfer. Hohenberger and Green proposed a univer-
sally composable (UC) adaptive oblivious transfer (AOT) protocol by using an SPS
scheme based on a q-type assumption [30]. Thus their protocol relies on a q-type
assumptions and constructing an efficient UC AOT protocol from only standard
assumptions was an open problem. As a corollary of our result, we can obtain a UC
AOT protocol based on only standard assumptions by replacing their SPS scheme
with ours.
As an application of our schemes, Abe, Camenisch, Dubovitskaya, and Nishimaki
proposed aUCAOTwith hidden access control protocol from standard assumptions

Constant-Size Structure-Preserving Signatures 875

by using our schemes [1]. Moreover, they proposed an XRMA-secure SPS scheme
only from the SXDH assumption based on another (non-structure-preserving) sig-
nature scheme by Chen et al. [19]. However, their scheme is less efficient than ours
since their construction technique is different from ours and their message space is
large.

8. Conclusions and Open Questions

We showed generic framework for constructing SPS by refining the Even–Goldreich–
Micali framework with novel notions and primitives such as extended random message
attacks and tagged one-time signature schemes. By instantiating them, we presented
constant-size SPS consisting of only 11–14 group elements based on simple assumptions
such asDLIN for symmetric pairings and analogues of DDH andXDLIN for asymmetric
pairings. Our approach is modular and divides the problem into the need to construct
constant-size RMA/XRMA-secure SPS and constant-size structure-preserving one-time
signatures. This is in linewith the promise of [7] that SPSenablemodular protocol design.
Indeed this modularity facilitates applications in which one can cherry pick primitives
according to requirements.
A tight bound for the size of SPS under simple assumptions is an important open

question, andwould shed light on the overhead of such amodular approach. It is also still
an open question to construct efficient RMA/XRMA-secure SPS schemes from only the
SXDH assumption. Similarly, constructing (X)RMA-secure schemes with a message
space that is a simple Cartesian product of groups without sacrificing efficiency and
constructingmore efficient RMA-secure schemes,whichmaynot necessarily beXRMA-
secure are interesting open problems. All RMA-secure signature schemes developed in
this paper are in fact XRMA-secure.
Finally, it is also an interesting open problem to design a constant-size SPS scheme

with tight security under simple assumptions. For the hybrid argument in the security
proof, our concrete constructions suffer the security loss in the number of sining queries.

Appendix: Waters’ Dual System Signature Scheme

We review Waters’ dual system signature scheme [44] in this section.
[Scheme WdSIG]

WdSIG.Key(gk): Given gk := (Λ,G) as input, sample V, V1, V2, H, I,U uni-
formly from G

∗ and a1, a2, b, and α from Z
∗
p. Then compute

B := Gb, A1 := Ga1, A2 := Ga2 , B1 := Gb·a1, B2 :=Gb·a2
R1 := VV a1

1 , R2 := VV a2
2 , W1 := Rb

1 , W2 := Rb
2 ,

T := e(G,G)α·a1·b K1 := Gα, K2 := Gα·a1,

876 M. Abe et al.

and output vk := (B, A1, A2, B1, B2, R1, R2,W1,W2, H, I,U, T) and sk :=
(vk, K1, K2, V, V1, V2).
WdSIG.Sign(sk,msg): Parse sk into (vk, K1, K2, V, V1, V2). Also parse vk ac-
cordingly. For msg ∈ Zp, pick random r1, r2, z1, z2, tagk ∈ Zp. Let r = r1 + r2.
Compute and output signature σ := (S1, . . . S7, S0, tagk) where

S1 := K2Vr , S2 := K−1
1 V r

1 G
z1 , S3 := B−z1 , S4 := Vr

2 G
z2 ,

S5 := B−z2 , S6 := Br2 , S7 := Gr1 , S0 := (Umsg I tagk H)r1 .

WdSIG.Vrf(vk, σ,msg): Parse σ into (S1, . . . , S7, S0, tagk). Also parse vk accord-
ingly. Pick random s1, s2, t and tagc from Zp, compute

C1 := Bs1+s2 , C2 := Bs1
1 , C3 := As1

1 , C4 := Bs2
2 ,

C5 := As2
2 , C6 := Rs1

1 Rs2
2 , C7 := Ws1

1 Ws2
2 , E1 := (Umsg I tagc H)r1 ,

E2 := Gt ,

and if tagc − tagk �= 0, verify

e(C1, S1) · e(C2, S2) · e(C3, S3) · e(C4, S4) · e(C5, S5),

= e(C6, S6) · e(C7, S7) · (e(E1, S7)/e(E2, S0))
1/(tagc−tagk) · T s2 .

References

[1] M. Abe, J. Camenisch, M. Dubovitskaya, R. Nishimaki, Universally composable adaptive oblivious
transfer (with access control) from standard assumptions, in DIM’13, Proceedings of the 2013 ACM
Workshop on Digital Identity Management, Berlin, Germany (ACM, 2013), pp. 1–12

[2] M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, M. Ohkubo, Constant-size structure-
preserving signatures generic constructions and simple assumptions, in Advances in Cryptology—
ASIACRYPT 2012, volume 7658 of LNCS, ed. by X. Wang, K. Sako (Springer, Berlin, 2012), pp.
4–12,

[3] M. Abe, B. David, M. Kohlweiss, R. Nishimaki, M. Ohkubo, Tagged one-time signatures: tight security
and optimal tag size, inPublic-Key Cryptology—PKC 2013, volume 7778 of LNCS, ed. by K. Kurosawa,
G. Hanaoka (Springer, Berlin, 2013), pp. 312–331

[4] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, M. Ohkubo, Structure-preserving signatures and
commitments to group elements. J. Cryptol., (2015). doi:10.1007/s00145-014-9196-7

[5] M. Abe, J. Groth, K. Haralambiev, M. Ohkubo, Optimal structure-preserving signatures in asymmetric
bilinear groups, in Advances in Cryptology—CRYPTO ’11. LNCS (Springer, Berlin, 2011)

[6] M. Abe, J. Groth, M. Ohkubo, Separating short structure preserving signatures from non-interactive
assumptions, in Advances in Cryptology—ASIACRYPT 2011, volume 7073 of LNCS, ed. by D. H. Lee,
X. Wang (Springer, Berlin, 2011), pp. 628–646

[7] M. Abe, K. Haralambiev, M. Ohkubo, Signing on group elements for modular protocol designs. IACR
ePrint Archive, Report 2010/133, 2010. http://eprint.iacr.org

[8] M. Abe, M. Ohkubo, A framework for universally composable non-committing blind signatures. IJACT,
2(3), 229–249 (2012).

[9] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, H. Shacham, Randomizable
proofs and delegatable anonymous credentials, in Advances in Cryptology—CRYPTO 2009, volume
5677 of LNCS, ed. by S. Halevi (Springer, Berlin, 2009), pp. 108–125

http://dx.doi.org/10.1007/s00145-014-9196-7
http://eprint.iacr.org

Constant-Size Structure-Preserving Signatures 877

[10] M. Bellare, D. Micciancio, B. Warinschi, Foundations of group signatures: Formal definitions, sim-
plified requirements and a construction based on general assumptions, in Advances in Cryptology—
EUROCRYPT 2013, volume 2656 of LNCS, ed. by E. Biham (Springer, Berlin, 2003), pp. 614–629

[11] M. Bellare, H. Shi, C. Zhang, Foundations of group signatures: the case of dynamic groups, in Topics
in Cryptology—CT-RSA 2005, volume 3376 of LNCS, ed. by A. Menezes (Springer, Berlin, 2005), pp.
136–154. Full version available at IACR e-print 2004/077

[12] M. Bellare, S. Shoup, Two-tier signatures, strongly unforgeable signatures, and Fiat–Shamir without
random oracles, in Public-Key Cryptology—PKC 2007, volume 4450 of LNCS, ed. by T. Okamoto, X.
Wang (Springer, Berlin, 2007), pp. 201–216

[13] D. Boneh, X. Boyen, H. Shacham, Short group signatures, in Advances in Cryptology—CRYPTO 2004,
volume 3152 of LNCS, ed. by M. Franklin (Springer, Berlin, 2004), pp. 41–55

[14] D. Boneh, C. Gentry, B. Lynn, H. Shacham, Aggregate and verifiably encrypted signatures from bilin-
ear maps, in Advances in Cryptology—EUROCRYPT 2003, volume 2656 of LNCS, ed. by E. Biham
(Springer, Berlin, 2003), pp. 416–432

[15] J. Camenisch, M. Dubovitskaya, K. Haralambiev, Efficient structure-preserving signature scheme from
standard assumptions, in Security and Cryptography for Networks—SCN 2012, volume 7485 of LNCS,
ed. by I. Visconti, R. De Prisco (Springer, Berlin, 2012), pp. 76–94

[16] J. Cathalo, B. Libert, M. Yung, Group encryption: Non-interactive realization in the standard model,
in Advances in Cryptology—ASIACRYPT 2009, volume 5912 of LNCS, ed. by M. Matsui (2009), pp.
179–196

[17] M.Chase,M.Kohlweiss, A newhash-and-sign approach and structure-preserving signatures fromDLIN,
in Security and Cryptography for Networks-SCN 2012, volume 7485 of LNCS, ed. by I. Visconti, R. De
Prisco (Springer, Berlin, 2012), pp. 131–148

[18] M. Chase, M. Kohlweiss, A. Lysyanskaya, S. Meiklejohn, Malleable proof systems and applications,
in Advances in Cryptology—EUROCRYPT 2012, volume 7237 of LNCS, ed. by D. Pointcheval, T.
Johansson (Springer, Berlin, 2012), pp. 281–300

[19] J. Chen, H. W. Lim, S. Ling, H. Wang, H. Wee, Shorter identity-based encryption via asymmetric
pairings. Des. Codes Cryptogr., 73(3), 911–947 (2014)

[20] D. Dolev, C. Dwork, M. Naor, Nonmalleable cryptography. SIAM J. Comput., 30(2), 391–437 (2000).
[21] C. Dwork, M. Naor, An efficient existentially unforgeable signature scheme and its applications. J.

Cryptol., 11(3), 187–208 (1998)
[22] S. Even, O. Goldreich, S. Micali, On-line/off-line digital signatures. J. Cryptol., 9(1), 35–67 (1996)
[23] M. Fischlin, Round-optimal composable blind signatures in the common reference model, in Advances

in Cryptology—CRYPTO 2006, volume 4117 of LNCS, ed. by C. Dwork (Springer, Berlin, 2006), pp.
60–77

[24] G. Fuchsbauer, Commuting signatures and verifiable encryption, in Advances in Cryptology—
EUROCRYPT 2011, volume 6632 of LNCS, ed. by K. G. Paterson (Springer, Berlin, 2011), pp. 224–245

[25] G. Fuchsbauer, D. Pointcheval, Anonymous proxy signatures, in Security and Cryptography for
Networks—SCN 2008, volume 5229 of LNCS, ed. by R. Ostrovsky, R. De Prisco, I. Visconti (Springer,
Berlin, 2008), pp. 201–217

[26] G. Fuchsbauer, D. Pointcheval, D. Vergnaud, Transferable constant-size fair e-cash, in Cryptology and
NetworkSecurity—CANS2009, volume5888ofLNCS, ed. by J.A.Garay,A.Miyaji,A.Otsuka (Springer,
Berlin, 2009), pp. 226–247

[27] G. Fuchsbauer, D. Vergnaud, Fair blind signatures without random oracles, in Progress in Cryptology—
AFRICACRYPT 2010, volume 6055 of LNCS, ed.by D. J. Bernstein, T. Lange (Springer, Berlin, 2010),
pp. 16–33

[28] S.D. Galbraith, K.G. Peterson, N.P. Smart, Pairings for cryptographers. Discrete Appl. Math., 156(16),
3113–3121 (2008)

[29] S. Goldwasser, S. Micali, R. Rivest, A digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. Comput., 17(2), 281–308 (1988)

[30] M. Green, S. Hohenberger, Universally composable adaptive oblivious transfer, in Advances in
Cryptology—ASIACRYPT 2008, volume 5350 of LNCS, ed. by J. Pieprzyk (Springer, Berlin, 2008),
pp. 179–197

[31] M. Green, S. Hohenberger, Practical adaptive oblivious transfer from simple assumptions, in Theory of
Cryptography—TCC 2011, volume 6597 of LNCS, ed. by Y. Ishai (Springer, Berlin, 2011), pp. 347–363

878 M. Abe et al.

[32] J. Groth, Simulation-sound NIZK proofs for a practical language and constant size group signatures, in
Advances in Cryptology—ASIACRYPT 2006, volume 4284 of LNCS, ed. by X. Lai, K. Chen (Springer,
Berlin, 2006), pp. 444–459

[33] J. Groth, A. Sahai, Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput., 41(5),
1193–1232 (2012).

[34] D. Hofheinz, T. Jager, Tightly secure signatures and public-key encryption, in Advances in Cryptology—
CRYPTO 2012, volume 7417 of LNCS, ed. by R. Naini, R. Canetti (Springer, Berlin, 2012), pp. 590–607

[35] A. Kiayias, M. Yung, Group signatures with efficient concurrent join, in Advances in Cryptology—
EUROCRYPT 2005, volume 3494 of LNCS, ed. by R. Cramer (Springer, Berlin, 2005), pp. 198–214

[36] B. Libert, T. Peters, M. Yung, Scalable group signatures with revocation, in Advances in Cryptology—
EUROCRYPT 2012, volume 7237 of LNCS, ed. byD. Pointcheval, T. Johansson (Springer,Berlin, 2012),
pp. 609–627

[37] Y. Lindell, A simpler construction of CCA2-secure public-key encryption under general assumptions.
J. Cryptol., 19(3), 359–377 (2006)

[38] M. Naor, M. Yung, Public-key cryptosystems provably secure against chosen ciphertext attacks, in
Symposium on Theory of Computing(STOC) 1990, ed. by H. Ortiz (ACM, NY, 1990), pp. 427–437

[39] M. Rückert, D. Schröder, Security of verifiably encrypted signatures and a construction without random
oracles, in Pairing-Based Cryptography—Pairing 2009, volume 5671 of LNCS, ed. by H. Shacham, B.
Waters (Springer, Berlin, 2009), pp. 17–34

[40] A. Sahai, Non-malleable non-interactive zero-knowledge and chosen-ciphertext security, inFoundations
of Computer Science(FOCS) 1999 (IEEE Computer Society, Washington, DC, 1999) pp. 543–553

[41] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, A. Sahai. Robust non-interactive zero knowl-
edge. in Advances in Cryptology—CRYPTO 2001, volume 2139 of LNCS, ed. by J. Kilian (Springer,
Berlin, 2001), pp. 566–598

[42] A. Shamir, Y. Tauman, Improved online/offline signature schemes, inAdvances inCryptology—CRYPTO
2001, volume 2139 of LNCS, ed. by J. Kilian (Springer, Berlin, 2001), pp. 355–367

[43] V. Shoup, Lower bounds for discrete logarithms and related problems, in Advances in Cryptology—
EUROCRYPT 1997, volume 1233 of LNCS, ed. by W. Fumy (Springer, Berlin, 1997), pp. 256–266

[44] B. Waters, Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions, in
Advances in Cryptology—CRYPTO 2009, volume 5677 of LNCS, ed. by S. Halevi (Springer, Berlin,
2009), pp. 619–636

	Constant-Size Structure-Preserving Signatures: Generic Constructions and Simple Assumptions1
	1. Introduction
	1.1. Our Contribution
	1.2. Related Works
	1.2.1. On Generic Constructions
	1.2.2. On Efficient Instantiations

	2. Preliminaries
	2.1. Notation
	2.2. Bilinear Groups
	2.3. Assumptions

	3. Definitions
	3.1. Common Setup
	3.2. Signature Schemes
	3.3. Partial One-Time and Tagged One-Time Signatures
	3.4. Structure-Preserving Signatures

	4. Generic Constructions
	4.1. SIG1: Combining Tagged One-Time and RMA-Secure Signatures
	4.2. SIG2: Combining Partial One-Time and XRMA-Secure Signatures

	5. Instantiating SIG1
	5.1. Setup for Type-I Groups
	5.2. Tagged One-Time Signature Scheme
	5.3. RMA-Secure Signature Scheme
	5.4. Security and Efficiency of Resulting SIG1

	6. Instantiating SIG2
	6.1. Setup for Type-III Groups
	6.2. Partial One-Time Signatures for Unilateral Messages
	6.3. Partial One-Time Signatures for Bilateral Messages
	6.4. XRMA-Secure Signature Scheme
	6.5. Security and Efficiency of Resulting SIG2

	7. Applications
	8. Conclusions and Open Questions
	References

