
HAL Id: hal-00619976
https://hal-upec-upem.archives-ouvertes.fr/hal-00619976

Submitted on 26 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constant-space string matching in sublinear average
time

Maxime Crochemore, Leszek Gąsieniec, Wojciech Rytter

To cite this version:
Maxime Crochemore, Leszek Gąsieniec, Wojciech Rytter. Constant-space string matching in sublinear
average time. Compression and Complexity of Sequences (Positano, 1997), Jun 1997, Salerno, Italy.
pp.230-239, �10.1109/SEQUEN.1997.666918�. �hal-00619976�

https://hal-upec-upem.archives-ouvertes.fr/hal-00619976
https://hal.archives-ouvertes.fr

Constant-Space String-Matchingin Sublinear Average Time(Extended Abstract)Maxime Crochemore�Universit�e de Marne-la-Vall�ee Leszek Ga�sieniecyMax-Planck Institut f�ur InformatikWojciech RytterzWarsaw UniversityandUniversity of LiverpoolAbstractGiven two strings: pattern P of lengthm and text T of length n. The string-matching problem is to �nd all occurrences of the pattern P in the text T . Wepresent a simple string-matching algorithms which works in average o(n) timewith constant additional space for one-dimensional texts and two-dimensionalarrays. This is the �rst attempt to the small-space string-matching problem inwhich sublinear time algorithms are delivered. More precisely we show that alloccurrences of one- or two-dimensional patterns can be found in O(nr) averagetime with constant memory, where r is the repetition size (size of the longestrepeated subword) of P .�Institut Gaspard Monge, Universit�e de Marne-la-Vall�ee, France (mac@univ-mlv.fr).yMax-Planck Institut f�ur Informatik, Im Stadtwald, D{66123 Saarbr�ucken, Germany(leszek@mpi-sb.mpg.de).zInstitute of Informatics, Warsaw University, Poland and Department of Computer Science, Uni-versity of Liverpool, U.K. Supported by the grant KBN 8T11C01208 (rytter@mimuw.edu.pl).

1 IntroductionThe string-matching problem is de�ned as follows. Assume we are given two strings:pattern P of length m and text T of length n. The pattern occurs at position i intext T i� P = T [i::i+m�1]. We consider algorithms that determine all occurrencesof the pattern P in the text T . The complexity of the string matching algorithm ismeasured by the number of symbol comparisons of pattern and text symbols. Thealgorithms solving string-matching problem in linear time and constant space areperhaps the most interesting ones among all designed for the entire problem. The �rstalgorithm which uses a constant amount of additional memory was proposed by Galiland Seiferas in [8]. Later Crochemore and Perrin in [4] have presented an algorithmthat achieves a smaller (at most 2n) number of comparisons while preserving the smallamount of memory. Then, another improvement (32) on the number of comparisonswas presented by Breslauer in [2]. In the meantime, alternative algorithms wereintroduced by G�asieniec, Plandowski and Rytter in [9] (2 + ") and [10] (1 + ").Besides there are known algorithms which make a sublinear number of comparisonson the average. The �rst such method was proposed in [11] for strings. An attemptto 2d-dimensional pattern matching fast on the average is due to Baeza-Yates andR�egnier in [1]. However all known sublinear average time algorithms use a linear-sizeadditional memory to keep a table of shifts as in the Boyer-Moore algorithm, (seee.g. [11], [7]), or for the representation of a directed subword graph or equivalentdata structures (see e.g. [3] and [6]). The latter algorithms have the best possibleO(n logmm) average time complexity due to lower bound of Yao [12].One can try to �nd a trade-o� between small space and good average time applyingtechniques from [3] to the subwords of the pattern P . This might lead to an algorithmwhich uses O(s) space (size of the preprocessed subwords) and has O(n log ss) averagetime. Until now there was no algorithm both performing an average sublinear numberof comparisons and using only constant memory space.In this paper we present the novel idea of such an algorithm for one-dimensionalstrings as well as for two-dimensional arrays. The idea of the algorithms is based onthe use of subword repetitions.For the simplicity of the presentation we assume that all strings considered in thepaper are built over a binary alphabet � = fa, bg.We say that the word w 2 �� has a period q (0 < q � jwj) if w[i] = w[i+ q] for

all positions 1 � i � jwj � q.The shortest period of w is called the period of w. If it satis�es q � jwj=2, thenthe word w is called periodic; otherwise, w is called nonperiodic.2 Nonperiodic one-dimensional patternsIn this section we assume that the pattern P is nonperiodic.Let us denote by rep size(P) the size of the length of a largest subword of P .Example 1.The repeated subword in an example text given below is indicated here in bold.rep size(ababbaababaaababbaababba) = 9.The number of logarithmic-size subwords of a text is large enough to guarantee thatat least one of them repeats. This implies easily the following fact.Lemma 1For each pattern P of size m rep size(P) =
(logm).Denote r = rep size(P), and let w be a longest repeated subword. AssumeP [p� r::p� 1] = P [q � r::q� 1]; p � q � r and P [p] 6= P [q]:In Example 1 we have (w; r; p; q) = (babbaabab;9; 11; 23).The positions p; q are mismatches w.r.t. the repetition of the word w. In generalif there are no mismatch positions based on repetition w to the right of two copies ofw then we try to �nd them to the left reversing the string-matching process.In case no mismatch is found neither to the right nor to the left it means that therepetition occurs at the borders of the pattern. This case is handled similarly to theperiodic case discussed in the next section.We say that a position i in T is a mismatch position i� T [i+ p� 1] 6= T [i+ q� 1].We call a window any interval of positions [i::i+r�1] on the T , for 1 � i � n�r+1.Assume w.l.o.g. that we already know the 4-tuple (w; r; p; q).

Denote by Leftmost Mismatch(W) the procedure that �nds the �rst (from the left)mismatch position in a given window W . If there is no such a mismatch position thena special value nil is returned.Lemma 2(1). If Leftmost Mismatch(W) = nil , no position of P in T is in W ,(2). Otherwise, no position of P in T is in W � fLeftmost Mismatch(W)g.Proof:The mismatch is used as a constant-size deterministic sample. 2Denote by Naive Check(i) the procedure that tests a possible occurrence of Pstarting at a given position i in T and that tests the equality of corresponding symbolsfrom left to right.In the worst case, m comparisons are done, but for random binary texts T theaverage time is really small. We assume that symbols of the text are uniformlydistributed.Lemma 3On random texts each of the procedures Naive Check and Leftmost Mismatch makeson the average less than 2 comparisons.Proof: The sum � i2i is bounded by 2. 2Lemma 4Assume that pattern P is nonperiodic. Then, for a random text T , we can �nd all theoccurrences of P in T in O(nrep size(P)), which is O(nlogm), average time using constantadditional memory. The worst-case running time of the algorithm is O(n).Proof:There are O(n=r) iterations in the algorithm Nonperiodic Pattern Searching below.Each iteration uses at most 4 comparisons on the average both for execution ofNaive Check and Leftmost Mismatch, due to Lemma 3.The comparisons done during di�erent iterations can be dependent on each other,but the independence is not needed according to the fact that the average value of asum of random variables is the sum of their average value.Therefore the algorithmmakes altogether at mostO(n=r) comparisons on the average.

ALGORITHM Nonperiodic Pattern Searching;f nonperiodic pattern g;i:= 1;r:= rep size(P);while i � n�m dobeginW := [i::i+ r � 1];i0 := Leftmost Mismatch(W)if i0 6= nil thenif Naive Check(i0) thenreport match at i0;i:= i+ r;endSimilarly to the algorithm presented in [10] we can guarantee the linear worst-casetime of the algorithm Nonperiodic Pattern Searching since the shifts are based on alongest repeated subword of the pattern. This completes the proof. 23 Periodic one-dimensional patternsAssume now that P is periodic, so obviously its repetition size is large.Lemma 5If P is periodic then rep size(P) � m2 .In this situation we cannot use the approach based on 4-tuples (w; r; p; q). Thuswe derive a slightly di�erent algorithm, which is even more e�cient than the one usedin nonperiodic case.Lemma 6Assume P is periodic. Then for a random text T we can �nd all occurrences of P inT in O(nm) average time using constant additional memory. The worst-case time ofthe algorithm is linear.Proof:Assume p is the period of P , where p � jP j=2. We can partition the positions in

T into disjoint consecutive large windows; each window consists of m=2 consecutivepositions of T (the last one can be smaller). The �rst large window is [1::m=2].The algorithm makes nm=2 iterations. We process each large window as follows. As-sume that the current window is [i+ 1::i+m=2].Phase 1. �nd the rightmost mismatch in T according to the period p in the segment[i+1::i+m]. If a mismatch is found then switch to the next window [i+m=2+1::i+m]and execute Phase 1 again, otherwisePhase 2. search naively for an occurrence of P starting in the current windowThe probability that we do not have a mismatch in Phase 1 is exponentiallysmall, so the expected cost of the second phase is very small even if we search forthe occurence naively. The expected time to �nd a mismatch in the �rst phase isO(1). There are O(n=m) iterations, so the total cost is as required. This completesthe proof. 2The algorithm for the nonperiodic case when repetition is placed on borders ishandled in the same way but with windows of size O(r).Lemma 4 and Lemma 6 imply the following result.Theorem 7For a random text T we can �nd all occurrences of P in T in O(nrep size(P)) averagetime (which is O(nlogm)) using constant additional memory. The worst-case time ofthe algorithm is linear.4 Two-dimensional pattern-matchingIn this section we show that also for the 2d-pattern matching problem the e�ciencyof a search depends on the repetition size.Assume the pattern P and the text T are m � m and n � n symbol arrays,respectively.Denote N = n2; M = m2.We say that the pattern occurs in T at position (i; j) i� P [x; y] = T [i+x�1; j+y � 1] for all integers 1 � x; y � m.A 2-dimensional pattern P has a period [a; b] if P [i; j] = P [i + a; j + b], for all1 � i � m� a and 1 � j � m� b.

If pattern P has a period [a; b] such that maxfa; bg � m2 then it is called periodic.Denote by 1rep size(P) the maximum repetition size of a row of P .Theorem 8Assume P and T are two-dimensional texts. For a random two-dimensional text Tthere is an algorithm that �nds all the occurrences of P in T time O(N1rep size(P),which is O(NlogM)), average time using constant additional memory. If P contains aperiodic row then the algorithm performs only O(Nm) comparisons.Proof:Similarly as in 1-dimensional case we consider periodic and nonperiodic case sepa-rately. The algorithm is almost the same as for one dimension. We can construct a2-dimensional version of the algorithm Nonperiodic Pattern Searching.In the case where all rows of the pattern are nonperiodic, the algorithm takes the�rst row of the pattern and looks for it scanning each row of T partitioned intowindows of size 1rep size(P). For each window at least one position involves a testfor an occurrence of the whole pattern. Instead of Naive Check(i0), a version for 2dimensions 2d-Naive Check(i0; j0) is used. According to lemma 1 we have altogetherN=1rep size(P) windows, and in each of them the average number of comparisonsis constant. Hence the total number of comparisons is O(N=1rep size(P)), which isO(NlogM) since 1rep size(P) =
(logM).In the case where pattern P has at least one periodic row, the algorithm chooses onesuch row and then proceeds in a similar way as in 1-dimensional case. Each row ofT is partitioned into large windows. There are O(Nm) such windows, and in each ofthem the algorithm makes a constant number of comparisons on the average. Hencethe total number of comparisons is O(Nm). This completes the proof. 2In the case of a periodic pattern P the text search can be done faster.Theorem 9If the pattern P is periodic the search for it in T can be done in time O(NM).Proof:Since the pattern P is periodic it has two repeated subrectangles of size at leastm2 � m2 (see �g. 1, and the shaded areas named A), which de�nes a set of pairs ofequal symbols of size
(M). We consider right bottom quadrants D and E of theserectangles. The 2-dimensional sampling is using this set as follows. Assume that there

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

����
����
����
����
����

����
����
����
����
����

����
����
����

����
����
����

����
����
����
����
����
����

����
����
����
����
����
���� P

short period

m

> m/2

> m/2

x

y

pattern P
text T

A

A

C > m/4

> m/4

mismatch

the window

subsquare D

subsquare E

subsquare D

subsquare Elarge repeated squaresFigure 1: Sampling in 2-dimensions, if there is mismatch between position x and ythen there is no occurrence of P starting in the indicated window.is a pair of di�erent symbols (x; y) in the text T whose positions di�er exactly by avector that is a short period in P . Let symbol x belong to square D and let y belongto E. Then there is no any occurrence of pattern P in the window B. Using thelatter observation the text T is divided into windows of size at least m4 � m4 =
(M)(corresponding to �rst quadrant of A). The search in every window starts from thetest of equality of symbols in pairs between windows E and D. Since the text israndom the algorithm makes only a constant number of tests on the average in everywindow, and this �nally gives the O(NM) desired bound. 2We can de�ne 2-dimensional repetition size of 2d-pattern P (2drep size(P), in short)as the largest repeated subsquare area of P . Similarly to 1-dimensional case we canprove that.Theorem 10For a random two-dimensional text T there is an algorithm that �nds all the occur-rences of P in T in O(N2drep size(P)) average time using constant additional memory.5 SummaryThe main result of the paper is a constant space algorithm that performsO(n= log(m))comparisons on the average for one-dimensional as well as for two-dimensional texts.

In the case of periodic patterns the average behavior of the algorithm is even better,reaching the asymptotic bound of O(nm).Our paper initiates a discussion about pattern matching algorithms using smallspace and that are fast on the average. In this paper we have done some steps towardsthe goal but we think that the most interesting problem is still open: what is theexact average complexity of constant-space string matching? Or respectively: whatis the space bound needed by any algorithm making O(nm � log(m)) comparisons onthe average.References[1] R. Baeza-Yates and M. R�egnier, Fast Algorithms for two-dimensional and Mul-tiple Pattern Matching, In Proc. of 2nd Scandinavian Workshop on AlgorithmTheory, SWAT'90, LNCS 447, pp. 332-347.[2] D. Breslauer, Saving Comparisons in the Crochemore{Perrin String MatchingAlgorithm. In Proc. of 1st European Symp. on Algorithms, p. 61{72, 1993.[3] M. Crochemore, A. Czumaj, L. G�asieniec, S. Jarominek, T. Lecroq,W. Plandowski, and W. Rytter. Speeding up two string matching algorithms,Algorithmica (1994) 12, pp.247{267.[4] M. Crochemore and D. Perrin, Two-way string-matching. J. Assoc. Comput.Mach., 38(3), p. 651{675, 1991.[5] M. Crochemore and W. Rytter, Periodic Pre�xes in Texts. In Proc. of Se-quences'91 Workshop Sequences II: Methods in Communication, Security andComputer Science, p. 153{165, Springer{Verlag, 1993.[6] M. Crochemore and W. Rytter, Text algorithms. Oxford University Press[7] Z. Galil, On improving the worst case running time of the Boyer-Moore stringsearching algorithm. CACM 22, (1979) 505-508[8] Z. Galil and J. Seiferas, Time-space-optimal string matching. J. Comput. SystemSci., 26, p. 280{294, 1983.[9] L. G�asieniec, W. Plandowski and W. Rytter, The zooming method: a recursiveapproach to time-space e�cient string-matching. Theoret. Comput. Sci. 1996

[10] L. G�asieniec, W. Plandowski and W. Rytter, Sequential sampling: a new ap-proach to constant space pattern-matching. CPM 1995[11] D.E. Knuth, J.H. Morris and V.R. Pratt, Fast pattern matching in strings. SIAMJ. Comput., 6, p. 322{350, 1977.[12] A.C. Yao, The Complexity of Pattern Matching for a Random String, SIAMJournal on Computing, 8(3), pp. 368{387, August 1979.

