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How the canonical distribution is realized in simulations based on deterministic dynami· 

cal equations is explained in this review. Basic formulations and their recent extensions of 

two constant temperature molecular dynamics methods; the constraint and the extended 

system methods, are discussed. In both methods, the canonical distribution is derived 

analytically as a stationary solution of a generalized Liouville's equation which expresses the 

conservation of probability in a phase space. In the constraint method, the total kinetic 

energy of a system is kept to a constant by imposing a constraint. The extended system 

method replaces a macroscopic heat bath by an additional degree of freedom. The addition 

of only one degree of freedom is enough to derive the canonical distribution. Originally, the 

control of the kinetic energy is aimed, but recent developments reveal that the canonical 

distribution is attained by controlling only a ratio of any pair of quantities to a ratio of their 

canonical enseJ:!lble averages. The method is now applicable even to a system which does not 

have a kinetic energy term. A classical spin system is a typical example. 

§ 1. Introduction 

1.1. The purpose of this review 

1 

The molecular dynamics method is one of typical statistical mechanical computer 

simulation techniques employed in study of a many particle system. When a large 

number of particles gather together and move around, the behavior of this macro­

scopic system is usually too complicated for analytical treatments in statistical 

mechanics. A drastic simplification in modeling and several approximations are 

necessary in most cases in process of solving a problem. The computer simulation 

technique started as a new approach which avoids approximations and obtains 

rigorous results in a complex system. A remarkable development in computer 

performance increases the importance of the simulation significantly. At present, the 

simulation is not confined only in statistical physics, but it is widely applied to 

problems in solid state physics, physical chemistry and material sciences, and 

becomes a major research approach in these fields. Recent developments in simula­

tions are reflected in publication of many books on this subject.1H> 

The purpose of this article is to review how the molecular dynamics method is 

modified to realize simulations at constant temperature. We concentrate on two 

methods based on deterministic time-reversal dynamical equations; the constraint and 

the extended system methods. 

A constant temperature condition in a system of interest is attained via a thermal 
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2 s. Nose 

contact with an external system (a heat bath) in a realistic situation. We have little 

knowledge about thermal interactions and suppose generally that they are compli­

cated. The behavior of a system should not depend on the detail of the heat bath in 

a thermodynamical point of view. Therefore, random behaviors caused by thermal 

agitations are supposed as a characteristic feature of a system at isothermal condi­

tion, and they are usually treated with stochastic approaches. 

In this sense, it was a surprise that deterministic dynamics equations could 

produce the canonical distribution and that it could be proved analytically. The 

basic idea of the methods, the mechanism to realize the canonical distribution, and the 

recent developments in the consttaint and the extended system methods will be 

presented from a theoretical viewpoint. 

The difficulties encoutered in the molecular dynamics simulations, a background 

appearing simulations in ensembles different from the traditional microcanonical 

ensemble, and the development of constant pressure and constant temperature 

methods are outlined in the remaining part of this section. 

It is necessary to review the differences between the microcanonical and the 

canonical ensembles for a detailed analysis of simulation methods. They will be 

discussed in § 2. 

A constraint method is discussed in § 3. The total kinetic energy is kept to a 

constant by imposition of a constraint in this method. The original formulation of 

the extended system method proposed by Nose and the developments along its line are 

discussed in § 4. Section 5 is devoted to the developments of the extended system 

method based on the equations reformulated by Hoover. The dynamical properties 

in the isothermal methods are discussed in § 6. 

1.2. Limitations in simulations in the microcanonical ensemble 

The movement of every particle in a large physical system is studied in molecular 

dynamics simulations. The classical equations of motion of particles (Newton's 

equation) are integrated numerically to reproduce the particle trajectories. The 

macroscopic properties of the system are obtained from the average over the 

configurations thus obtained. In molecular dynamics simulations, we usually con­

sider the movement of a fixed number of particles in a unit cell whose size and shape 

are fixed. In a classical mechanical system free from an external force, the total 

energy is conserved. Therefore, the macroscopic properties we can obtain in molecu­

lar dynamics simulations are those at a constant (E, V, N) condition, E: the total 

energy, V: the volume, and N: the number of the particles. This condition corre­

sponds to the microcanonical ensemble in statistical mechanics. In the mi­

crocanonical ensemble, only the phase space points which fulfill the condition H(p, q) 

=E is allowed in a phase space F=(p, q). 

The particles move obeying the principle of classical mechanics, therefore, we 

can know dynamical properties as well as equilibrium properties .. This is a merit of 

the molecular dynamics method over another simulation method, Monte Carlo 

method. However, the limitation that a simulation is carried out in the mi­

crocanonical ensemble (at constant energy and volume) is sometimes inconvenient. 

1) Ordinary laboratory experiments are usually carried out at constant temper-
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Constant Temperature Molecular Dynamics Methods 3 

ature and pressure. The difference of these conditions makes direct comparison with 

experiments difficult. Simulations in the same condition with experiments are more 

appropriate and advisable. 

2) It is difficult to carry out simulations exactly at specific temperature and 

pressure in the molecular dynamics method. The temperature T is related to the 

average of the kinetic energy of a system with the equipartition theorem, 

I~ p;2 
) =]_NkT 0 

\ i 2m, 2 
(1·1) 

The pressure Pis calculated from the virial theorem, 

( 1 ( p;2 orb )) P= -~--~q···-
3 V , m, ,,; t.J oqij ' 

(1·2) 

where q; is the coordinate of particle i, and qij=q;-qj. <P(q) is a potential energy. 

Generally, we try to control the temperature and pressure to accord with our intended 

values at a preliminary simulation process by scaling the velocity and the size of the 

unit cell. However, only after simulations are carried out, we can know that simula­

tions are done at what temperature and pressure. Therefore, we cannot carry out 

simulations exactly at temperature and pressure we aimed. 

3) The statistical mechanical expression for some thermodynamical quantities 

depends on the statistical mechanical ensembles. An ensemble is specified by the 

external condition describing an equilibrium state. Thermodynamical quantities are 

derived from a thermodynamical potential (the entropy S at constant (E, V, N) 

condition, and the free energy at constant temperature (T, V, N) condition) by 

differentiating with control quantities. For quantities relating to the first derivative, 

the statistical mechanical expression is identical in every ensemble,.but the expression 

for quantities relating to higher derivative and fluctuations depends on the ensemble. 

The statistical mechanical expression in the microcanonical ensemble is often incon­

venient and less known. An investigation was carried out to relate the fluctuation of 

the kinetic energy with the heat capacity in the microcanonical ensemble.6l 

1.3. The molecular dynamics methods at constant pressure 

Constant temperature and constant pressure molecular dynamics methods are 

developed to resolve inconveniences in the microcanonical ensemble. In some of 

early attempts, the values of pressure and temperature are monitored during the 

simulation and the adjustment of the total kinetic energy and the size of the unit cell 

is carried out. 

It is important to take into consideration the external system surrounding a 

physical system to realize a constant pressure and temperature condition. This 

corresponds to a statistical mechanical concept of the canonical and pressure ensem­

bles. A constant temperature condition is attained by thermally contacted with an 

external system. To control the pressure, the change of the volume, or the transfer 

of the work should be allowed. 

A refined version of the constant pressure simulation method was presented by 

Andersen~ 7 J The idea of the extended system method was introduced for the first time 
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4 S. Nose 

in this work. To break a constraint imposed by the use of the classical dynamics, an 

external system is attached into a simulated system. The exchange of work and heat 

between a physical system and an external system enables the extension of the 

molecular dynamics method to a constant temperature and pressure condition. 

Andersen considered the volume of the unit cell as a variable, and introduced an 

external system consisting of kinetic energy and potential energy terms for the 

volume. The equations of motion for the volume is defined so that the deviation of 

the internal pressure calculated by Eq. (1· 2) from its average works as a negative 

feedback and keeps the pressure around a constant. The simulation is carried out in 

a constant enthalpy-constant pressure ensemble. The properties in this new ensem­

ble were studied by Ray et al.8Ho> 

The size and shape of a unit cell and also the symmetry change at a phase 

transition between solid phases. The constant pressure method was immediately 

extended to cope with this problem by Parrinello and Rahman. 11>'12> The change of 

not only the size but also the shape of a simulation unit cell is allowed. This 

extension changes the style of research approach to the structural phase transitions. 

Before that, we usually assumed possible stable structures, compared the stability 

between them, and determined the most stable structure. In Parrinello-Rahman 

approach, a particle system chooses a stable structure by itself and the whole system 

changes into a new structure. The method is further extended to a system under 

anisotropic external stress12>'13> and to a molecular system, 14> and is applied to the 

phase changes in various types of crystaU5>·16> 

A constraint method in which Eq. (1· 2) is kept to a constant value was 

proposed.17> However, the constraint approach has a difficulty in setting the initial 

pressure to an objective value. 

1.4. The constant temperature methods 

The methods for temperature control are full of variety. They are classified into 

several types: 1) the constraint method, 2) the extended system method, and 3) the 

stochastic method. A key factor in distinguishing between these methods is the way 

in which the thermal contact between a physical system and a heat bath is taken into 

consideration. 

1.4.1. The constraint method 

The total kinetic energy is kept to a constant value by imposition of a constraint. 

The average of the kinetic energy is related with the temperature by Eq. (1·1). The 

kinetic energy fluctuates around its average value, but the relative amplitude of the 

fluctuation becomes very small in a large system. Therefore, the suppression of the 

thermal fluctuation of the kinetic energy does not affect seriously on static and 

dynamical quantities. A constant temperature condition is attained by keeping the 

kinetic energy to a constant value. 

The earliest proposal of the simulation at constant temperature is the velocity 

scaling algorithm by Woodcock.18> The temperature control has been carried out 

commonly by a velocity scaling in a preliminary simulation process. After the 

temperature is adjusted near an objective temperature, simulations without the 
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Constant Temperature Molecular Dynamics Methods 5 

scaling are performed to calculate the statistical mechanical averages. Woodcock 

also applied this scaling in the main part of the simulation. The scaling breaks the 

energy conservation in a system, and the trajectory in a phase space becomes discon­

tinuous at the instant of the scaling. For a long time since its proposal, it was not 

clear whether this appproach can really produce the canonical distribution or not. 

A new constraint method is formulated from the study in a nonequilibrium state. 

The transport properties are calculated as a response to an external perturbation 

added to a system in nonequilibrium molecular dynamics approach.19>'20> For exam­

ple, a flow with a linear velocity gradient profile (Couette flow) is employed for 

calculation of the viscosity. The temperature of the system increases inevitably by 

imposition of nonequilibrium boundary conditions. A constraint of a constant 

kinetic energy is imposed on the equations of motion to keep the temperature to a 

constant value.21 >'22> The principle of least constraint by Gauss states that a con­

straint force added to restrict the particle motion on a constraint hypersurface should 

be normal to the surface in a realistic constraint dynamics. From this principle, the 

equations of motion 

(1·3) 

(1·4) 

are derived.23> The method is now called as the Gaussian tliermostat method. A 

coefficient s of the constraint force term is a Lagrangian undetermined multiplier and 

is determined as 

(1·5) 

to satisfy the constant kinetic energy constraint. 

A remarkable feature of this method is that the functional form of the equilibrium 

distribution can be studied analytically. It has the canonical distribution form in the 

coordinate part of the phase space. 

Via the analysis of this method, the velocity scaling algorithm proposed by 

Woodcock is now understood as an approximate algorithm which agrees with the 

Gaussian thermostat method in order of Llt. Llt is a unit time step in simulation. 

1.4.2. The extended system method 

An additional degree of freedom corresponding to a heat bath is introduced in the 

extended system method. The total energy of the physical system is allowed to 

fluctuate by a thermal contact with a heat bath. In the original formulation by Nose 

based on a Hamiltonian,24>'25> two frames of variables; real variables corresponding to 

realistic motion of particles and virtual variables, are introduced. The relations 

between these two kinds of variables are consistently derived from an assumption of 

the scaling of the time dt'=dt/s, t' is a real time, t is a virtual time, and the scaling 

factor s corresponds to a heat bath variable. An assumption is made to derive the 

equations of motion that a Hamiltonian formulation is applicable in terms of the 
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6 S. Nose 

virtual variables. Choosing a potential energy for s appropriately, it is proved that 

the canonical distribution is realized in a physical system. 

This approach attracts considerable attention. The method is combined with 

constant pressure method and many applications are reported.26>-29> The application 

is not limited to molecular simulations. Applications to lattice gauge theories,30>'31> 

reactive dynamics,32> vibrational relaxations,33>'34> and an extension to a quantum 

mechanical problem35> are also reported. A resemblance of the behavior of the 

variable s with a temperature shifting factor is employed to calculate the free energy 

and other quantities in a wide range of temperature from simulations at only several 

temperatures.36>'37> An extension in line of the Hamiltonian formulation is carried out 

by Jellinek,38> and Jellinek and Berry.39> 

The equations in terms of virtual variables have a complicated and unfamiliar 

form. The equations can be transformed into those in real variables.25> A further 

simplification is done by Hoover.40> Then, the equations of motion for particles have 

the same form as Eqs. (1·3) and (1·4). The friction coefficient is a variable in the 

extended system method. An equation for t; is, 

dt; =(~K- gkT)!Q, 
dt , m; 

(1·6) 

where g is the number of degree of freedom, T is the temperature, and Q is a 

parameter which determines the speed of temperature control. The time derivative 

of t; is determined by the difference between the kinetic energy and its average. 

These simple equations (1·3), (1·4) and (1·6) which are now known as the Nose­

Hoover thermostat,41> form a closed system of equations. The time development of 

a system is completely described by them. These equations do not have a canonical 

form, and do not conserve the volume in (p, q, t;) phase space. It changes in propor­

tion to the Boltzmann factor, exp[- H(p, q)/kT], H(p, q) is the total energy of a 

physical system. This is the mechanism that the extended system method produces 

the canonical distribution. 

The original formulation in virtual variables and the Nose-Hoover form are 

completely equivalent when only one heat bath is connected to a system. However, 

the Nose-Hoover form is perhaps more general and can be easily extended to various 

situations. 

An important progress in line of the Nose-Hoover formulation is presented by 

Bulgac and Kusnezov. 42> The essence of the extended system method is now clarified. 

It is only necessary to control a ratio of a pair of quantities to realize the canonical 

distribution. The requirement for the pair is that the ratio of the canonical ensemble 

averages of those two quantities is kT or a function of temperature only. It can also 

apply to a system which does not have a kinetic energy term. 

The Nose-Hoover thermostat equations are tested in relation with the ergodic 

problems. The whole argument is based on the ergodic property in the extended 

system. A harmonic oscillator connected to a heat bath is a model often 

employed.40>'43H 5> General and fundamental behaviors in a thermostated system are 

mainly studied by Hoover and Holian.46>-49> 

A constant temperature method proposed by Berendsen et al.50> has a similar 
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Constant Temperature Molecular Dynamics Methods 7 

structure to the constraint and the extended system methods. With a minor 

modification, the same equations of motion Eqs. (1·3) and (1·4) are derived. An 

additional equation for the coefficient s is 

s= CoK =(~ p;
2 

- gkT)/Q, 
'm, 

(1·7) 

in this case.4> The relation between the deviation of the kinetic energy oK and sis 

differential s=d(oK)/dt in the constraint method, is linear s=oK in Berendsen et al., 

and integral s = f dtoK in the extended system method. In the constraint and the 

extended system methods, the equations have a time-reversal symmetry, and a theo­

retical analysis guarantees the canonical distribution in equilibrium. The method by 

Berendsen et al. is not yet analyzed but it is clear that the method does not allow a 

solution of the canonical distribution form. 41 > 

1.4.3. The stochastic method 

The effect of a thermal contact with a heat bath on a particle is considered to be 

very complicated, but the equilibrium properties should not depend upon the detail of 

the type of a heat bath and thermal interactions. In a macroscopic scale, the thermal 

motion of a particle seems to be driven by a random force. A stochastic treatment 

of a particle is justified in this situation. The Monte Carlo and Brownian dynamics 

methods are typical stochastic simulation techniques. The main idea for the stochas­

tic constant temperature molecular dynamics method is to apply these techniques to 

a microscopic system. 

Schneider and Stoll51> considered equations similar to the Langevin's equation for 

Brownian dynamics, 

(1·8) 

a friction force and a random force R;(t) are added to the equation. The amplitude 

of the random force is related to the temperature T and the friction coefficient r by 

the second fluctuation dissipation theorem, 

(1·9) 

The temperature is kept at a constant value by the balance between the thermal 

agitation due to the random force and the slowihg down due to the friction. 

More direct temperature control mechanism was proposed by Andersen.7> A 

particle collides occasionally with hypothetical particles, loses its memory in colli­

sion, and the velocity of the particle is reset to a new velocity randomly selected from 

a Maxwell distribution at temperature T. A similar method was also proposed by 

Bonomi.52> 

The canonical distribution is realized in both stochastic approaches. A phase 

space trajectory becomes discontinuous when a randomness appears. We must 

choose carefully the frequency of the random force and random collision acting on a 

particle. When the collision rate is very high, a particle lost its memory of the 

movement in a short time and the velocity autocorrelation function damps very 
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8 S. Nose 

quickly at a long time region.53> The collision rate should be chosen considerably 

low. 

The stochastic method has a merit over the deterministic methods such as the 

extended system method and the constraint method. In several situations, a deter­

ministic dynamical system exhibits a nonergodic behavior, and it takes quite a long 

time to reach an equilibrium state. We can avoid this inconvenience by using the 

stochastic method. 

§ 2. The difference between the microcanonical and canonical ensembles 

We compare the differences between a constant energy condition at which 

ordinary molecular dynamics simulations are carried out and a constant temperature 

condition that we aim to realize. Statistical mechanics relates the macroscopic 

properties of a many particle system in equilibrium with the microscopic averages 

over various particle configurations. 

2.1. The microcanonical ensemble 

A constant energy condition corresponds to the microcanonical ensemble. The 

external control parameters for this ensemble are the total energy E, the volume V, 

and the number of particles N. If we fix these parameters to specific values, we can 

get the same equilibrium condition. In an isolated system described by a 

Hamiltonian H(p, q) 

- pl 
H(p, q)-~ 2m; +a>(q)' 

the dynamical equations for particles in a canonical form, 

dp; =F-= _ aa> 
dt • aq; 

or in Newton's equation 

a a>( q) 
aq; 

(2·1) 

(2·2) 

(2·3) 

conserve the total energy (the Hamiltonian) H(p, q). q;, p;, F; and m; are the 

coordinate, momentum, force and mass of particle i. Hereafter, we often use shor­

tened notations q=(ql, Q2, ···, qN) and p=(pl, P2, ···, PN). a>(q) is a potential energy 

of a system. We consider an atomic system here, but the extension to a molecular 

system is straightforward. 

Phase space points (p, q) on a constant energy hypersurface satisfying H(p, q) 

=E are only allowed to appear in the average. It is postulated that every allowed 

phase point contributes to the average in the microcanonical ensemble in equal 

weight. This is the fundamental assumption of statistical mechanics known as the 

principle of equal a priori probability. This principle is closely related to the ergodic 

hypothesis that a trajectory of a phase space vector (p, q) will pass through almost 

all point in the allowed portion of phase space. We are interested mainly in the 
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Constant Temperature Molecular Dynamics Methods 9 

properties of a macroscopic system and we usually assume that the ergodic property 

is satisfied in simulation. However, in some situations we must be careful whether 

the ergodic property is really satisfied or not. 

An equilibrium distribution function f(p, q) expresses the probability that a 

phase space point (p, q) appears in statistical mechanical averages. In the mi­

crocanonical ensemble, it will be 

lmc(P, q)=C o(H(p, q)- E). (2·4) 

The o function form reflects the constraint H(p, q)=E. The ensemble average of a 

quantity A(p, q) is defined as 

f A(p, q) f(p, q) dpdq 
<A> = -'<---------,.-----------! f(p, q) dpdq 

(2·5) 

The macroscopic properties of a system can be derived from the thermodynamical 

relations. The starting point for this calculation is the famous Boltzmann relation, 

S=klnW, (2·6) 

where S is the entropy, k is the Boltzmann constant, and W is the number of 

microscopic states. The entropy in the microcanonical ensemble is a thermo­

dynamical potential from which we can derive all the thermodynamical quantities by 

differentiating with control parameters E, V and N. 

and 

In the microcanonical ensemble, two choices for this basic equation are possible, 

Wi = f fmc(P, q) dpdq 

~=IE dE' f fmc(P, q) dpdq 

=C f B(E-H(p, q)) dpdq. 

(2·7) 

(2·8) 

B(x) is the Heaviside function, 8(x)=1, for x>O, and B(x)=O, for x<O, and o(x) 

=dB(x)/dx. These two definitions are in agreement to order 1/N. We will take 

Eq. (2·8) as our primary definition. The expression is generally simple in this choice 

than in Eq. (2·7). 

The mathematical formulation of the microcanonical ensemble was considered 

not to be convenient for deriving statistical mechanical formulae. The difference and 

the relation of the fluctuations between the canonical and the microcanonical ensem­

bles were discussed by Lebowitz et al.6> Their motivation for this study was that they 

recognized the difference between the Monte Carlo and the molecular dynamics 

simulation results. They got a famous relation Eq. (2 ·16) for the fluctuation of the 

kinetic energy in the microcanonical ensemble, which has been employed in calcula­

tion of the heat capacity in molecular dynamics simulations. 
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10 S. Nose 

A simple and elegant method for deriving the statistical mechanical expressions 

in the microcanonical ensemble is reported by Pearson et al.54> They employ a 

characteristic property of a classical particle system in which the kinetic energy is 

given by a quadratic form of momenta. The integration in 3N dimensional momen­

tum space is easily carried out. The entropy and the average of a quantity A(q) are 

given as 

S=k In Wz=k In[ C f 8(E- H(p, q)) dpdq] 

=kIn[ C' J3~(E- <P(q))<3JZ)Ndq J, 

(A(q))me 
f A(q)(E- <P(q))<312)N-ldq 

J<E- <P(q))<3!2lN-ldq 

(2·9) 

(2·10) 

where C is a constant and < >me indicates the ensemble average in the microcanonical 

ensemble. The inverse of the temperature is defined by the thermodynamical rela­

tion, 

f 3N (E- <P(q))<312lN-ldq 

1 ( as ) J:?.-C---2-:;-----
----y= oE v = f (E- <P(q))<3!2lNdq 

3Nk 
2<K>. 

(2·11) 

We use the kinetic energy K, as a shortened notation for E- <P(q), K(q)=K(p(q)) 

=E- <P(q). Thus, the temperature is related to the average of the kinetic energy by 

the equipartition theorem, 

2 2 f (E- <P(q)) (E- <P(q))<312lN-l dq 

T= 3Nk <K>me= 3Nk j(E-<P(q))<3!2lN-l dq 
(2·12) 

The heat capacity is 

Cv=( ~~ )v =1/( ~I )v 

=k/[ 1-( 1- 3~ )<K>me \ l )mJ · (2·13) 

The average of the inverse of the kinetic energy is approximated in the thermo­

dynamical limit by 

I _1__) =-1-(1 + <(oK)2>) 
\ K me <K> <K> ' 

(2·14) 

where the average and the fluctuation of K are K=<K>+oK, and <(oK)2)=(K2) 

- <K>2, and Eq. (2 ·13) becomes 
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Constant Temperature Molecular Dynamics Methods 11 

Cv=k/[ 3 ~ (2·15) 

This approximate formula is first obtained by Lebowitz et al.6> Inverting this rela­

tion, the fluctuation of the kinetic energy in the microcanonical ensemble is given in 

terms of the heat capacity 

(2·16) 

2.2. The canonical ensemble 

The properties of a system at constant temperature are treated in the canonical 

ensemble. The temperature T is chosen as a control parameter instead of the total 

energy E. A schematical image of this ensemble is shown in Fig. 1. A physical 

system is surrounded by a large external system. The exchange of particles is not 

allowed, but the energy transfer is allowed between these two systems. The external 

system is very large in comparison with a physical system, and is called as a heat 

reservoir or a heat bath. The temperature change in this external system due to the 

heat transfer with a physical system is supposed to be negligibly small and the 

temperature is essentially a constant. The temperature of our physical system in 

thermo<lynamical sense is this temperature T of the external system. If we define an 

internal temperature by the average of the total kinetic energy as in Eq. (2 ·12), the 

temperature is maintained at a constant value by thermal contact with the heat bath. 

Because of the thermal contact between the physical system and the heat bath, the 

total energy of the system fluctuates and its distribution becomes the canonical 

distribution, 

!c(P, q) = C exp[- H(p, q) /kT] . (2·17) 

The relation between the distribution functions Eqs. (2·4) and (2·17) is given by the 

Laplace transformation with the energy E, and the resulted distribution is a function 

of the inverse temperature 1/kT. 

!c(P, q; T)= jdE exp[- E/kT] fmc(P, q; E). (2·18) 

(a) 

heat reservoir T 

Fig. 1. Schema tical images for a system (a) in the 

microcanonical and (b) in the canonical ensem· 

bles. The shaded area is a heat insulating 

wall. 

The thermodynamical potential in the 

canonical ensemble is the free energy 

F(T, V,N), 

F(T, V,N) 

=- kTln[J!c(P, q)dpdq J 

=-kTln[ C jexp[- H(p, q) 

/kT]dpdq]. (2·19) 
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12 S. Nose 

The heat capacity is expressed as a fluctuation of the total energy in the canonical 

ensemble, 

(2·20) 

The average and the fluctuation of the kinetic energy are easily obtained as 

3N 
<K>c=-2-kT, 

<(oK)z>c= 3~ <K>z= 3f (k'I)z. 

(2·21) 

(2·22) 

The expressions for the quantities which are the first order derivative of the 

thermodynamical potential (e.g., the total energy E, or the pressure P), agree in any 

ensemble, but the expressions for the quantities relating to second or higher order 

derivatives or to fluctuations are different in each ensemble. The heat capacity is a 

typical example. We must use Eq. (2 ·13) or (2 ·15) in ordinary molecular dynamics 

simulations, but in Monte Carlo simulations at constant temperature, Eq. (2·20) is an 

appropriate expression. 

The fluctuation of the kinetic energy at constant temperature Eq. (2 · 22) is larger 

than that at constant energy Eq. (2 ·16), 

(2·23) 

This inequality relation will be employed to determine whether the canonical distribu­

tion is realized in simulations at constant temperature. 

§ 3. The constraint method 

3.1. The Gaussian constraint method 

The average of the kinetic energy is usually used as a measure of the temperature 

in molecular dynamics simulations. The kinetic energy should fluctuate both in the 

microcanonical and the canonical ensembles as shown in Eqs. (2 ·16) and (2 · 22), but 

the relative amplitude of the fluctuations becomes very small in a large system. 

Therefore, a constant temperature condition is attained by suppressing thermal 

fluctuations of the kinetic energy and keeping it to a constant value. 

A constant kinetic energy condition can be attained by imposing a constraint 

2 

R(p q)="i:._l!__i_ _ _ff_kT=O 
' ; 2m; 2 ' 

(3·1) 

to the equations of motion.21l'22' g is the number of degrees of freedom, but we do not 

specify its value at this stage. This constraint depends on the velocities. This type 

of problem is classified as the non-holonomic case in classical dynamics. The 

molecular dynamics method with non-holonomic constraint is discussed by Haile and 

Gupta.55' There is some ambiguity how the constraint is imposed to a mechanical 

system. 
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Constant Temperature Molecular Dynamics Methods 13 

A method proposed by Evans et al.23> is based on the principle of least constraint 

by Gauss which states that the actual constrained motion should occur along a 

trajectory obtained by normal projection of a force onto a constraint hypersurface. 

A constraint force which is necessary to restrict the trajectory on a constraint 

hypersurface is the least in this choice. 

A non-holonomic constraint is generally expressed as 

R(q, q, t)=O. (3·2) 

Differentiation of Eq. (3·2) with respect to time gives a relation which the acceleration 

ij should satisfy, 

n(q, q, t)· ii+w(q, q, t)=O, (3·3) 

where n( q, q, t) = oR/oq and w( q, q, t) = q · oR/oq + oR/ot. An unconstrained 

motion described by 

(3·4) 

gives a trajectory which leaves the constraint hypersurface defined by Eq. (3·2). A 

constraint force Fe is added to the equation of motion to prevent the deviation from 

the constraint hypersurface, 

miie=Fu+ Fe. (3·5) 

The constraint force Fe is minimum when Fe is chosen perpendicular to the constraint 

surface or parallel to the gradient n(q, q, t). (See Fig. 2.) 

A constraint force from the constant temperature constraint is proportional to the 

velocity, n;(q, q, t)=oR/oq;=m;q;=p;. The equations of motion are modified as 

dq;_ p; 
~-m;' 

(3·6) 

(3·7) 

A coefficient s of the constraint force term is a Lagrangian undetermined multiplier, 

and is determined to satisfy the time derivative of the constraint equation (3·1), 

Fig. 2. Normal projection of a force onto a con­

straint hypersurface. 

~Pi .. p;=~ p; ·(- iJ([J.- sP;)=o. 
J m, , m; oq, 

(3·8) 

Therefore, we obtain 

s-= -("'2._1!_j_·1!P.__);(~ Pl) (3·9) 
' m; oq; ' m, 

=- "'2.( dq; · ()([) )fgkT 
i dt oq; 

d([J 
=- dt /gkT. 
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14 S. Nose 

When the value of the total kinetic energy is set equal to (g/2)kT at an initial step, 

Eqs. (3·6) and (3·7) keep its value. 

3.2. The equilibrium distribution function in the Gaussian constraint method 

Carrying out simulations with this constraint equations, we can obtain the 

canonical distribution in the coordinate part of a phase space r=(p, q). This can be 

proved analytically.56> The distribution function f(p, q) expresses a probability that 

a phase space point (p, q) will appear. A generalized Liouville equation expresses 

the conservation of the probability in the phase space r, 

(3·10) 

The first and second terms express a change inside a volume element and a change 

passing through the surface of a volume element. We define a total time derivative 

of I along a phase space trajectory by 

(3·11) 

then, Eq. (3 ·17) is reexpressed as 

(3·12) 

In ordinary mechanics, the right-hand side of the above equation is zero, and the 

famous Liouville's theorem d//dt=O holds. It means that the equilibrium distribution 

function does not change by the time evolution. 

The (a;ar)·r term does not vanish in our case and is calculated as 

_l_·r=:E(-a_. p;+_l_· q;) 
ar , ap; aq; 

=- :E~·(sp;)=- :E(3s+ p;·K) 
i ap; i ap; 

=-3Nt-:Ep;·.l.r._=-(3N-1)s. 
i ap; 

(3·13) 

The last part in the above equation becomes 

at a [( p· atP )/( P·z )] :Ep··-=-:Ep··- :E-J ·- :E-J 
, ' ap; ; ' ap; 1 m1 aqj 1 m1 

= _ (~__E_z-_. a<P_ )/(~ p/) + z(~~· a<P_ )(:E p;z )/(~ P< )2 
, m, aq, J mJ J mJ aqJ , m, J mJ 

=t-n=-t. (3·14) 

If we take into consideration of the momentum conservation explicitly, Eq. (3 ·13) 

results in -(3N-4)s. The time derivative of the potential energy is equal to 
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Constant Temperature Molecular Dynamics Methods 15 

(3·15) 

Therefore, if we choose g=3N-1 or 3N-4, Eq. (3·12) is expressed as 

(3·16) 

The solution of this equation is 

f(p, q)=o( ~ {~,- ~ kT )exp[- tP(q)/kT]. (3·17) 

The distribution in the coordinate part has the canonical form, whereas that in the 

momentum space is a 8 function form because of imposition of a constraint. 

The probability in a volume element along a phase space trajectory is not 

conserved in the Gaussian constraint method. A conserved quantity is exp[ tP(q)/kT] 

xj(p, q). Therefore, the probability in a phase space along the trajectory changes in 

proportion to exp[- tP(q)/kT]. Equation (3 ·17) only states that the relative probabil­

ity of two phase points along a trajectory is expressed in a canonical distribution 

form. To identify f(p, q) with the equilibrium distribution function in statistical 

mechanics, we must assume that a trajectory determined by Eqs. (3·6), (3·7) and (3·9) 

passes through almost all point in an accessible part of a phase space (ergodicity). 

This assumption is essential for the proof. We are not certain whether this is true or 

not in a particular case. However, we usually assume that the ergodic property is 

satisfied in a many particle system. In this situation, the exact canonical ensemble 

average is obtained in simulations with the Gaussian constraint method for quantities 

which are functions of coordinates only. 

3.3. The velocity scaling algorithm 

A simple algorithm to maintain the total kinetic energy to a constant value was 

proposed by Woodcock in 1971.18> This was the first attempt to carry out a simula­

tion in a controlled condition. The velocities of all the particles in a system are 

multiplied by a common factor to scale the kinetic energy to an intended value. This 

procedure is carried out in every time step of simulation. 

We explain Woodcock's constant temperature method in terms of a leap frog 

algorithm which is equivalent to V erlet's algorithm. These are a closed system of 

difference equations in which the coordinate at tirhe t +Lit, q;(t +Lit), and the velocity 

at t+Llt/2, V;(t+Llt/2), are obtained from the knowledge of the coordinate at t, q;(t), 

and the velocity at t-Llt/2, V;(t-Llt/2). The force F;(t) is calculated from coordi­

nates at time t. New velocities and coordinates are obtained as 

(3·18) 

(3 ·19) 

These are the difference version of the equations of motion, 
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16 S. Nose 

dv; F; 
dt m;' 

(3·20) 

(3·21) 

In Woodcock's method, an estimate of the velocity at t+Llt/2, v;(t+Llt/2), is correct­

ed to satisfy a constraint of the constant kinetic energy, 

*( Llt)- ( Llt) V; t+z -S V; t+z . (3·22) 

The scaling factor s is determined from the relation, 

(3·23) 

Thus, 

(3·24) 

The coordinate at t + Llt is now obtained as 

(3·25) 

This velocity scaling procedure is very simple and convenient. However, it was 

not clear for long years since its ·proposal whether this approach can really produce 

the canonical distribution or not. There was also not a consensus how often the 

scaling procedure should be employed. Some were optimistic and scaled in every 

time step. Some were skeptical and recommended applying scaling as few times as 

possible because the trajectory in a phase space becomes discontinuous at the instant 

of the scaling. 

Now, we know Woodcock's method is an approximate algorithm to solve the 

Gaussian constraint method described in § 3.1, which gives the correct canonical 

distribution in the coordinate space with accuracy of order Llt if the scaling is carried 

out in every time step.57> Llt is a unit time step used in solving difference equations. 

3.4. Relation between the Gaussian constraint method and velocity scaling algorithm 

We will analyze by what differential equation the velocity scaling algorithm 

can be approximated. This analysis was first given by Andersen.57> The velocity 

scaling algorithm consists of two difference equations (in a leap frog form) Eqs. (3 ·18) 

and (3·25), a scaling Eq. (3·22), and Eq. (3·24) for the scaling factors. 

An acceleration is expressed by a difference of the velocity, 

d~t~; = c;z; =( v;*(t+~t)-v;(t-~t))/ Llt 

=(s v;(t+~t)-v;(t-~t))/ Llt 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.1

0
3
.1

/1
8
9
4
2
8
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Constant Temperature Molecular Dynamics Methods 17 

=F;(t)+s-1 ·(t+Llt) 
m; Llt v, 2 · (3·26) 

In the final line of the above equation, the force terms are separated into an ordinary 

force and an additional part which is proportional to s -1 and the velocity. The 

scaling factors defined in Eq. (3·24) is calculated as 

s=[ ~ m;{ V;(t+ 1t) }2/ gkT rlt2 

=[ ~ m;{ v;(t- ~t )+ F~~) Llt r; gkT r112 

=[{ ~ m;{ v;(t- ~t) r +2~v;(t- ~t )·F;(t)Llt+ O((L1t)2)} I gkT r112
• 

(3·27) 

The third term in the brace is only indicated as a quantity of order (L1t) 2• The kinetic 

energy at t-Llt/2 is assumed to be (g/2)kT. 

[ 2 ( Llt) J-1/2 
s = 1 + gkT ~ V; t ----z . F;( t )Llt + O((L1t)2) 

(3·28) 

Exactly speaking, the error in the second line of Eq. (3·28) is of order (L1t)3. A 

cancellation among terms of order (L1t)2 occurs. Finally, we get an approximate 

expression for s, 

s=[1 +2SL1t + O((L1t)2)]- 112 

=1- tLJt+ o((LJt)2). (3·29) 

s in the above equation is the same as that in Eq. (3·9). Therefore, we get a 

differential equation and an expression for an undetermined multiplier, 

(3·30) 

s=2Jv;(t)·F;(t)/gkT. (3·31) 
' 

The leading term in Eq. (3·30) is equivalent to that in the Gaussian constraint method, 

Eqs. (3·6), (3·7) and (3·9). If the scaling is carried out in every time step, and if the 

unit time step Llt is chosen to a reasonably small value, the simulation with the 

velocity scaling algorithm gives equal results with those in the Gaussian constraint 

method, and the distribution in the coordinate space is the canonical distribution. 

The error in this approximation is of order Llt. It should be noted that the accuracy 

is one order less than that of the ordinary Verlet's algorithm, O((L1t)2). 
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18 S. Nose 

§ 4. The extended system method 1: The formulation based on a Hamiltonian 

4.1. The basic idea of the extended system method 

We consider an isolated system in a fixed simulation unit cell in ordinary 

molecular dynamics simulations. The total energy and the volume of a physical 

system are constant under this situation. To break the conservation law which 

restricts the behavior of a physical system, and to realize a constant temperature or 

a constant pressure condition, a physical system is extended to a composite system 

consisting of a physical system and an external system. The conservation law still 

holds in an extended system, but the total energy or the volume of a physical system 

is allowed to fluctuate. 

This idea accords well with a schematical image of the canonical or the pressure 

ensemble in statistical mechanics. We usually imagine a system surrounded by a 

heat reservoir at constant temperature. The major difference between the extended 

system method and a real situation is that we consider a very small system for an 

external system instead of a macroscopic reservoir. 

The idea of the extended system method was first presented by Andersen in his 

work on the constant pressure method.7> He also considered the volume V of a 

simulation unit cell as a variable, and that a constant pressure condition is attained 

by changing the volume to balance an internal pressure determined by the particle 

movement and the interatomic interactions with an external pressure. We assume 

that a unit cell is a cube of edge length L, L= V 113• The coordinate, velocity and 

momentum are scaled by L as 

qi=Lq;, 

vi=Lq;=Lv;, 

p';=p;/L. 

(4·1) 

(4·2) 

(4·3) 

The variables with a prime are the real variables corresponding to real physical 

quantities. The variables without a prime are the scaled variables introduced to 

derive a constant pressure method. The transformation from real to scaled variables 

is a canonical transformation in constant pressure case. 

A Hamiltonian of an extended system consisting of a physical system and a piston 

which determines the size of the volume is postulated in terms of scaled variables as 

(4·4) 

W is a parameter corresponding to a piston mass, Pv is a conjugate momentum of the 

volume, and Pex is an external pressure. Pex V is a potential energy for the volume 

change. The work necessary to it is PexLlV. 

Applying the Hamiltonian formalism to Eq. (4 ·4), the equation of motion for the 

volume is derived as 
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Constant Temperature Molecular Dynamics Methods 19 

_ [ 1 ( p'l , o(/) )] _ 
- 3V ~ mi -~qi· oqi -Pex-P-Pex. (4·5) 

The quantity in a square bracket in Eq. (4 · 5) is equal to a term appearing in the virial 

theorem (Eq. (1·2)). The pressure is obtained as an average of this term. If we call 

this term as an instantaneous pressure, Eq. (4·5) states that the change of the volume 

is governed by the balance between an internal pressure P and an external pressure 

Pex. The internal pressure P is determined microscopically from the movement of 

the particle and the interatomic interactions. 

A temperature version of the extended system method was proposed by Nose.24J,zs> 

A schematical image of the canonical ensemble is a system surrounded by and 

thermally contacted with a large external system (a heat bath). (See Fig. 1(b).) In 

a constant temperature method by Nose, a degree of freedom s is introduced instead 

of a large external system. A physical system exchanges energy with this additional 

degree of freedom. The total energy of the physical system can fluctuate under this 

condition. 

The thermal interactions between a system and a heat bath are expressed as a 

scaling of particle's velocity by a variable s. A real velocity v/ of particle i is 

obtained by multiplying a scaling factor s to a virtual velocity Vi, 

vi=svi. (4·6) 

Two kinds of variables are also introduced for momentum and time. We will 

express virtual variables without a prime as Pi, t or Vi. The primed ones as pi, t' 

and vi are real variables. The coordinate is the same in both frames, but we also 

define a virtual coordinate qi and a real coordinate qi to complete a formulation. 

The real variables describe the real motion of a particle. The virtual variables are 

artificially introduced for control of the temperature. The relation between two 

frames of variables is given by a noncanonical transformation, 

qi=qi' 

pi=p;fs, 

t'= jdt/s. 

(4·7) 

(4·8) 

(4·9) 

This transformation can be explained in a unified fashion from a basic assumption of 

the scaling of the infinitesimal time, 

dt'=dt/s. (4 ·10) 

This relation was extracted from the following speculation. Consider the motion 

of a particle during one simulation time step. The velocity vis defined as a ratio of 

the difference of the coordinate iJq and the time LJt, 

v=iJq 
iJt 

(4·11) 
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20 S. Nose 

The temperature of a system is related to the average of the kinetic energy. A 

temperature control will be achieved via control of the velocity. Assume that the 

speed of a particle is larger than an objective value. If we lengthen the time Llt 

required for the movement of Llq, the velocity is reduced. On the other hand, the 

motion is accelerated by shortening the time period Llt. Therefore, the control of the 

temperature could be achieved by introduction of a flexible time. The change of the 

time length is expressed as scaling by the variable s. 

With Eq. (4·10), the velocity scaling in Eq. (4·6) is interpreted as 

'- dq'; - dq'; - dqi - ' 
Vi- dt' -Sdt-Sdt-SVi. (4·12) 

This type of transformations from virtual to real variables and vice versa is employed 

later to transform the equations of motion in a virtual variable formulation to those 

with real variables. 

4.2. The equations of motion 

A Hamiltonian is postulated to describe an extended system consisting of a 

physical system and a heat bath, 

2 p 2 

H*='2. ~+ (l)(q)+-8-+gkT ln s. 
, 2mis 2Q 

(4·13) 

The first two terms are the kinetic energy and the potential energy of a physical 

system we are interested in. Every where we expect a momentum Pi to appear, it is 

replaced by a real momentum pi= p;fs. The last two terms correspond to an added 

degree of freedom, where Psis a conjugate momentum of s, Q is a parameter which 

behaves as a mass for the motion of s and T is the temperature for the heat bath. 

The parameter g is essentially equal to the number of degree of freedom of the 

physical system. Its exact value will be chosen to satisfy the canonical distribution 

exactly in equilibrium. 

An additional degree of freedoms is introduced to break the conservation of the 

total energy which is inevitably imposed on the molecular dynamics simulations as a 

result of the use of classical mechanics. The total Hamiltonian Eq. (4·13) is still 

conserved in the whole extended system, but the total energy of a physical system, 

t2 

Ho(p', q')= "it {~i + (l)(q') (4·14) 

can fluctuate and the distribution of the energy will follow the canonical distribution. 

A potential energy for s, gkT Ins is chosen to guarantee the canonical distribution. 

We assume that the Hamiltonian formalism can be applied to Eq. (4·13) with the 

virtual variables. The equations of motion are obtained via canonical equations as24> 

dqi _ oH* _ Pi 
dt- op; - miS2 ' 

dpi _ aH* iJ(l) 
Tt - dq; - oq; • 

(4 ·15) 

(4·16) 
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Constant Temperature Molecular Dynamics Methods 21 

(4 ·17) 

(4 ·18) 

These equations exhibit a negative feedback mechanism to control the temperature at 

a fixed value. The acceleration of s is proportional to the deviation of the total 

kinetic energy from its average value gkT/2. This mechanism keeps the kinetic 

energy around gkT/2. This will be shown later more clearly in the real variable 

equations. 

We transform the equations of motion Eqs. (4·15)~(4·18) to equations with real 

variables.25> This form is more convenient in application of simulations. The trans­

formations are carried out in stepwise fashion via basic relations Eqs. (4·7)~(4·9) 

between the virtual and real variables. An additional relation 

P~=Ps/s, (4·19) 

is also introduced. 

dq'; - dq'; - dq; - p; - p'; ---s---s--------
dt' dt dt m;s m; ' 

(4 ·20) 

(4·21) 

(4·22) 

c:J:~=s ft(P;)= 1/- ~ ~Ps=(~~: -gkT)js- ~ ~:,p~. (4·23) 

Hoover pointed out that if a new variable s=(1/s)ds/dt'=s p~JQ is chosen, the 

equations can be simplified as40> 

Fig. 3. A schematical time evolution of (d~/dt) or 

the kinetic energy, ~. and the heat bath vari­

able s. A negative feedback mechanism 

works to keep the kinetic energy around its 

averaged value. 

dpi _ a(J) ~- , 
dt' - - aqi - .,p; ' 

dcln s' 
dt' 

(4·24) 

(4·25) 

(4·26) 

(4·27) 

This form is now known as the Nose­

Hoover thermostat.41l We will discuss 

about this form in detail in§ 5. A nega­

tive feedback mechanism is more appar­

ent in the Nose-Hoover thermostat form 

(see Fig. 3). Equations (4·24) and (4·25) 
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22 S. Nose 

have the same form as those describing the motion of a body with a frictional force. 

However, the friction coefficient s is npt a constant and can be positive or negative 

in our case. The time development of s is driven by the imbalance between the 

kinetic energy and its average value (g/2)kT. If the kinetic energy is larger than 

(g/2)kT, the time derivative of sis positive, d?;"/dt >0, and then s increases and will 

become positive. The equation with positive s is equivalent with that of a system 

with a friction force. The velocity of the particle decreases and the kinetic energy 

also decreases. If the kinetic energy becomes lower than (g/2)kT, the feedback 

mechanism works in the opposite direction. s decreases, and in the negative s 

region, the system is heated up. Ih this way, the kinetic energy fluctuates around its 

average value (g/2)kT. The time average of a time derivative of a variable will 

vanish. This guarantees the average of the kinetic energy coincides with the result 

of the equipartition theorem (g/2)kT. 

4.3. The equilibrium distribution function 24>·25> 

The total Hamiltonian H* Eq. (4·13) is conserved. On the assumption of the 

ergodic property in the extended system, the time average along the trajectory 

described by the equations of motion Eqs. (4·15)~(4·18) agrees with the mi­

crocanonical ensemble average in the extended system. The equilibrium distribution 

function is expressed in a (J function form as 8(H*- E). E is a value of the 

Hamiltonian H*, and is a control parameter in this ensemble. We carry out a 

projection of the distribution 8(H*- E) in a phase space (p, q, Ps, s) onto a subspace 

(p, q, Ps) in which the canonical distribution will be attained. 

The partition function Z of the extended system is 

Z= jdPs jds jdp jdq (}[ Ho(p/s, q)+ g~ +gkT Ins- E J, (4·28) 

where we ignore a constant factor 1/(N!h3N). 

Before the integration with respect to the variable s, we transform the virtual 

momentum p; and coordinate q; to the real variables p;'=p;fs, q;'=q;. The volume 

element changes as 

dpdq =s3N dp' dq' . (4·29) 

The volume of the phase space is not conserved because this transformation is not 

canonical. Since there is no upper limit for momentum in nonrelativistic classical 

mechanics, we can exchange the order of the integration. Hence, 

(4 ·30) 

Now the argument of the (J function in the above equation has only one zero as a 

function of the variable s. We employ an equivalence relation 8(/(s)) 

=8(s-so)/!'(so); so is the zero of /(s), !(so)=O and f'(s)=d!/ds, 

so=exp[ -{Ho(p', q')+ g~ -E}/ gkT J, (4·31) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.1

0
3
.1

/1
8
9
4
2
8
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Constant Temperature Molecular Dynamics Methods 23 

and /'(s)= gkT/s in this case. The behavior of a logarithmic function which increases 

monotonically from the negative to the positive infinities is a key factor for this 

simplification. 

The partition function Eq. (4·28) is now transformed to 

Z= g~T jdPs jdp' jdq' J ds s3N+l o( s-exp[ -{ Ho(p', q')+ g~- E} / gkT ]) . 

(4·32) 

The integration with respect to s is easily carried out in this form, and we get 

(4 ·33) 

The integrations in Ps and (p', q') part are separated, and they can be integrated 

independently. The Ps part gives a constant dependent on the parameters E, T, Q 

and g. 

If we choose g=3N + 1, the partition function Z of the extended system is 

equivalent to that of the physical system in the canonical ensemble Zc except for a 

constant factor, Z = C Zc, where 

Zc= jdp'jdq'exp[ -Ho(p', q')/kT]. (4·34) 

This means that the equilibrium distribution function is 

f(p', q')=exp[- Ho(p', q')/kT]. (4 ·35) 

We can also apply the projection from the extended system onto a physical phase 

space in a similar fashion in calculation of the ensemble average of a quantity A(p/s, 

q) in the extended system. It agrees with the canonical ensemble average of A(p', q') 

in a physical system, 

<A(p/s, q))Es 

J A(p/s, q) /ES(p, q, Ps, s) dpdqdPsds 

f /ES(p, q, Ps, s) dpdqdPsds 

J A(p', q') fc(p', q') dp' dq' 

f fc(P', q') dp' dq' 
<A(p', q'))c. (4·36) 

Suffixes ES and c indicate the extended system and the canonical ensemble, respec­

tively. Thus, we can get the canonical ensemble average from the time average 

obtained in simulations in the extended system, 

1ft 
V~t A(p/s, q)dt=<A(p/s, q))ES=<A(p', q')>c. (4 ·37) 

The first equality is satisfied if an extended system is ergodic. The second equality 
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24 S. Nose 

is proved in this subsection. 

The time average in Eq. (4·37) is calculated in terms of a virtual time. The 

length of a time step is flexible and is different in each time step in a virtual variable 

formulation. The total time period to in a virtual time is related to that in a real time 

tl by 

f h !to dt 
tl= dt'= -. 

s 
(4·38) 

If one carries out simulations with real variable equations, the time average in terms 

of a real time is different from that in Eq. (4·37) and corresponds to a weighted 

average in the extended system,Z5> 

1 ft' ( 1 !to dt )/( 1 !to dt ) lim-t A(p', q')dt'= lim-t A(p/s, q)- lim-t " -
t1-oo 1 to-oo 0 S to-oo 0 S 

(4·39) 

Comparing Eqs. (4·32) and (4·36), we see the weighted average in the extended system 

Eq. (4·39) is identical to <A(p', q')>c if we choose gas g=3N. 

1ft' lim- A(p', q')dt'=<A(p', q')>c. 
t•-"" tl 

(4·40) 

The canonical ensemble average is obtained with g=3N + 1 in virtual variable 

equations (4·15)~(4·18), and with g=3N in real variable equations (4·24)~(4·27). 

We consider the differences in these two frames. If an equal g value is chosen in both 

frames, the trajectories in the phase space r are completely identical, but they pass 

through with different speed. An equal distribution in a virtual phase space is 

realized from the principle of a priori equal probability because we assumed the 

Hamiltonian formalism in this frame. Then, the distribution in a real phase space is 

not an equal distribution. This reflects that the equations of motion in real frame 

cannot be directly derived from a Hamiltonian. 

The relation between the virtual real frames is generally discussed by 

Jellinek.38>'39> His conclusions are (1) the scaling relations of phase space variables like 

Eqs. (4·7), (4·8), and (4·19) should be distinguished from the scaling of time, 

Eq. (4·10). (2) When the scaling of the time is not employed, a trajectory in a real space 

(p', q', p~, s) is exactly the same that in (p/s, q, Psis, s) which can be. obtained from the 

trajectory in a virtual space (p, q, Ps, s). (3) The microcanonical distribution is 

guaranteed by the quasi-ergodic property known as the von Neumann-Birkoff theo­

rem at least in subregions of an energy shell in a virtual (p, q, Ps, s) space, in which 

the coordinates and momenta are canonically conjugated. (4) The time scaling 

results in a weighted distribution in the phase space. (5) There are infinitely many 

choices for the scaling relations and the potential term for s to realize the canonical 

distribution. 

As a special case of this biased distribution, the time scaling by the power of the 

variables s, sm, gives a distribution corresponding to a shifted temperature. The 

shifted temperature in Eq. (4·39) is 
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Constant Temperature Molecular Dynamics Methods 25 

(4 ·41) 

The parameter g is reduced to 3N to correct this deviation. 

4.4. The temperature shift method 

The shifting of the temperature in a weighted average with sis pointed out in the 

previous subsection. This effect is applied to calculation of the thermodynamical 

quantities at temperatures different from the simulated point by Branka and Parrinel­

lo,36> and by Otsuka.37> A weighted average <sm A(p/s, q))T in the extended system at 

temperature T is obtained in a fashion similar to calculation of the partition function 
z,24) 

fdp~ jdp' jdq' fds s3N+l+m o(s-so) A(p', q') 

jdp~fdp'fdq'fds S3N+l o(s-so) 

[ mE ]( 3N+1 ) 1
'
2 

=exp (3N+1)kT 3N+1+m 

jdp' jdq' A(p', q') exp[- 3 ~t ~im Ho(p', q')/kT J 
x~--~--~--~--~~~~~~----------~ 

J dp' J dq' exp[- Ho(p', q') /kT] 

(4·42) 

with g=3N + 1, so is the same as in Eq. (4 ·31). A fluctuation formula for sis obtained 

as a special case of Eq. (4·42), 

-( (3N +2)2 )(3N+ll/2 
- (3N + 1)(3N +3) X 

3J + 1 Ho(p', q')/KT ]) c 

and this formula is approximated in a large system as 

where the heat capacity Cv is given in Eq. (2·20). 

A shifted temperature Tm is defined by36> 

3N+1 
Tm= 3N+1+m T. 

Cv 
(3N)2k' 

1 (4 ·43) 

(4·44) 

(4·45) 

Then, a ratio of a weighted average of sm A and sm at T is equivalent with the 

canonical ensemble average at Tm, <A(p', q')>cTm· 
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26 S. Nose 

jdp' jdq' A(p', q') exp[- Ho(p', q')/kTm] 

jdp' jdq' exp[- Ho(p', q')/kTm] 

=<A(p', q'))cTm. (4 ·46) 

The power m is a continuous real number, which can take the value of both, positive 

and negative, signs. From the simulation at T, we can get quantities in the neighbor­

hood of T.37J The reliability for the calculation decreases as the shift increases. 

The temperature shift in the exterded system method resembles the Monte Carlo 

technique for calculation of the free energy.58> From the definition of the free energy 

F(T), 

F(T)= -kT ln Zc=- kT ln{fdp' jdq' exp[- Ho(p', q')/kT]}, 

the average of the power of s is expressed as 

Tm112exp[ -{F(Tm)- E}/kTm] 
T 112exp[ -{F(T)-E}/kT] . 

(4·47) 

(4·48) 

Equation (4·48) is employed to relate the free energy at T with that at Tm. 36> 

The temperature shift method is useful for study of a small system. The method 

was applied to simulations of a 13 Lennard-lones atom cluster.36>'37> By this method 

we can obtain quantities in a wide range of temperature from simulations only at 

several temperatures. However, the temperature shift Eq. (4·45) becomes very small 

in a large system. The difficulty at the accurate calculation of the weighted averages 

increases with the power of s. Therefore, this will not be so convenient in a large 

system as in a small system. 

4.5. The extension of the Hamiltonian formulation 

A generalization of the extended system method along the line of the Hamiltonian 

formulation is discussed by Jellinek,38> and Jellinek and Berry.39> They distinguish 

the scaling of phase space variables and the scaling of time. We first consider the 

problem of the phase space scaling. Generalized relations between the virtual and 

real variables are given as 

p';•=P;A/h(s), 

P~= Ps/u(s). 

(4 ·49) 

(4·50) 

(4·51) 

The suffix,.\ indicates the x, y or z components. Not only the momenta but coordi­

nates and a conjugate momentum of s are scaled. The Hamiltonian in an extended 

system is defined as 

H*(p', q', p~, s)= 2f {~; + fP(q')+ f~ + kTv(s). (4·52) 

The potential energy for s is also generalized to kTv(s). A similar procedure is 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.1

0
3
.1

/1
8
9
4
2
8
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Constant Temperature Molecular Dynamics Methods 27 

employed to derive the canonical distribution in a physical system. A key factor is 

the Jacobian corresponding to Eq. (4·29) appearing in the transformation from virtual 

to real variables, 

dpdqdps= u(s)(II ho.(s) )dp' dq' dp~. 
i,A /;.(s) 

(4 ·53) 

After this transformation, the only s dependent part in the argument of a 8 function, 

8(H*- E), is the potential kTv(s). v(s) should be a continuous monotonically 

increasing function of s with a range -oo~v(s)~ +oo, to satisfy a requirement 

mentioned before. Then, a unique solution for H*(s)- E=O is 

(4·54) 

where Hr=Ho(p', q')+P~ 2 /2Q-E. v- 1(x) is an inverse function of v(x). A canoni­

cal distribution at temperature T is realized if v(s) is chosen to satisfy 

u,(so) (rr h;/so) )=exp[- Hr/kT]' 
v (so) i,A fo.(so) 

(4 ·55) 

v'(s)=dv/ds. One of the conclusion obtained from Jellinek's extension is that there 

are infinitely many choices for the functional form of the potential v(s) to realize the 

canonical distribution. As pointed out in§ 4.3, a scaling of time changes the distribu­

tion. A new scaling relation for time is introduced, 

dt'=dt/w(s). (4·56) 

The canonical distribution in the real time average will also be obtained. The 

requirement in this case is 

u(so) (rr h;/so) )- [ H /kT] 
( ) '( ) ., ( ) -exp - r . 

W So V So i,A J iA So 
(4·57) 

By the addition of a factor w(s) the variety of the method seems to increase further. 

The argument for static thermodynamical quantities is carried out in the same fashion 

as before. We can obtain the canonical ensemble averages from any of the exten­

sions given in Eqs. (4·49)~(4·51) and (4·56). 

A careful examination is required for dynamical quantities. A merit of the 

molecular dynamics simulation over another simulation method, the Monte Carlo 

method, is that the dynamical properties are also- obtained. As we will discuss later 

in § 6, the dynamical properties in the extended system method are reliable if the 

application is limited to those in equlibrium in a large system. However, a require­

ment should be satisfied. The discussion in § 6 is based on the analysis of the relative 

amplitude of the additional force term to the force derived from a potential. The 

ordinary force term must be identical with that in Newton's equation. The modified 

equations will be reexpressed in a quasi-Newtonian form, 

(4 ·58) 

An additional factor A changes directly the speed of the particle. This factor should 
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28 S. Nose 

be always kept to the unity, 

A=1, (4·59) 

to obtain a realistic dynamical behavior. Real variable equations (4·24) and (4·25) 

satisfy this requirement, but virtual variable equations (4 ·15) and (4 ·16) do not. 

From latter equations, 

(4·15) 

(4·16) 

a quasi-Newtonian equation is derived as follows: 

(J(p 1 2 ds 
=- oq; 7 - 7 (JFPi. (4·60) 

A=1/s2 for a virtual variable formulation is not the unity. This shows clearly that 

the time evolution in a virtual frame does not correspond to a realistic dynamics of 

particles. 

The extended system method is sometimes interpreted via a scaling of a mass/6> 

(4·61) 

which is apparent in Eq. (4 · 60). mi and m; are a real and a virtual masses. The kinetic 

energy K = L!;p? /2m,' is controlled to a constant value by changing a mass. It is well 

known in classical statistical mechanics that the equilibrium properties do not depend 

upon the mass of the particle. Therefore, the changing of the mass does not affect on 

the static properties of a system. This type of reasoning is enough to explain how a 

constant temperature condition is attained in the extended system method. However, 

the author recommends the interpretation based on the scaling of the' infinitesimal 

time as explained in § 4.1. The dynamical properties cannot be interpreted consis­

tently by a mass scaling. 

A quasi-Newtonian form for the generalization by Jellinek is obtained in the 

following way. A starting virtual Hamiltonian is obtained from Eq. (4·52) express­

ing with virtual variables, 

H*(p;./h;.(s), q;;./;.(s), Ps/u(s), s) 

= tt 2m;{~7;isW + (b(q;;./;.{s)) + 2Qf~~s)}2 + kTv(s). (4·62) 

The equations of motion for the coordinate and the momentum are obtained via 

canonical equations, 
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Constant Temperature Molecular Dynamics Methods 29 

(4 ·63) 

dP;• _ aH* .:._ aqi. afl) _ .. a(j) 
-------------- j(,! --

dt aq i< aq i). aqi,~ • aqi. · 
(4·64) 

The equations are transformed to real variable equations by Eqs. (4·49), (4·50) and 

(4 ·56) in the fashion similar to § 4.2, 

dqi,~- d ( + )- ,+ dq;,~ dj;,~ 
dt' - w dt q w ;,~ - w, i<-rJt+ wq i<-rJt 

- f;,~ P'+C -w--h- ;;. , 
m; i< 

dp';,~ = w_!]_ ( p;,~) =_!!}_ dp;,~ _ ~ p ·;. dh;,~ 
dt' dt h;;. h;,~ dt h;,! ' dt 

=-wf;,~ a~ +D. 
h;,~ aq;,~ 

(4·65) 

(4·66) 

C and D are terms irrelevant to extract a Newtonian force term. Finally, a quasi­

Newtonian form is obtained as 

= f;,~ dp';,~ + C' 
w h;,~ dt' 

= - a~ ( w /;,~ )2 + C" . 
aq;,~ h;,~ 

The additional factor in this case is 

A=(w/;;. )2
• 

h;,! 

The requirement Eq. (4·59) gives a relation between the scaling factors, 

h;A(s)= w(s)/;A{s). 

(4 ·67) 

(4 ·68) 

(4·69) 

A periodic boundary condition is employed in most simulations. The separate 

scaling in each coordinate as in Eq. (4 ·49) is not consistent with the periodic boundary 

condition. In this case, different scalings for x, y and z components are only allowed. 

Equation (4·69) is further reduced to 

h;A(s)=w(s)/A(s). (4·70) 

The scaling of the unit cell size is employed in the constant pressure method as shown 

in Eqs. (4·1)~(4·3). The appearance of a similar term lis) suggests a temperature 

control via pressure. This possibility is also pointed out in the Nose-Hoover thermo­

stat form. 

A canonical transformation of this type, 
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30 S. Nose 

pi=p;fs, qi=sq; (4·71) 

is employed in the work by Grilli and Tosatti35> which gives a possibility to calculate 

the canonical ensemble averages in a quantum system. The canonical transforma­

tion Eq. (4·71) is necessary to conserve the canonical exchange relation between a 

coordinate and a momentum. 

Other significant extensions in Jellinek's work are the replacement of the time 

scaling factor s to a general function w(s). 

§ 5. The extended system methpd II: The Nose-Hoover thermostat formulation 

5.1. The Nose-Hoover thermostat24>·40>·41> 

In § 4, the equations of motion in terms of real variables are derived from the 

virtual variable equations via the scaling relations Eqs. (4·7), (4·8) and (4·10). The 

basic equations are 

dq;_ p; 
----clt- m; 

dp; ()(/J 
----ctt= - oq; -t;p; 

dl; =(L: Pl -gkT)/Q 
dt ; m, 

dIns= l; 
dt 

(Eq. (4·24)), (5·1) 

(Eq. (4·25)), (5·2) 

(Eq. (4·27)), (5·3) 

(Eq. (4 · 26)). (5·4) 

We do not use the primed notations because all the variables appearing in this section 

are real variables. We can easily and clearly recognize a negative feedback mecha­

nism in this form (see Fig. 4). Equations (5 ·1) and (5 · 2) are effectively the equations 

of motion with a frictional force. However, the friction coefficient l; is not a constant 

but a variable. It can have the values in both signs. When l; is positive, the 

movement of the particles is slowed 

oK down, but the motion is accelerated in 

the negative l; region. The change of l; 

/ is governed by the deviation of the 

Fig. 4. The movement in a phase space (s, IJK). 

Arrows indicate velocity vectors. 

kinetic energy from its average value. 

Consider a motion in a phase space 

A=(l;, oK), (5·5) 

where the deviation of the Kinetic 

energy K, oK = K- <K> is proportional 

to dl;/dt, dl;/dtrxoK=K-<K>. The 

velocity in this space 

. -( dt; doK) 
A- dt' ---;It ' (5·6) 
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Constant Temperature Molecular Dynamics Methods 31 

is depicted in F'ig. 4. From Eq. (5 · 3), os/dt > 0 when oK > 0, and ds/dt < 0 when oK 

<0. From Eq. (5·2), d oK/dt<O when s>O and d oK/dt>O when s<O. The trajec­

tory in this phase space circles around the origin clockwise. The kinetic energy 

fluctuates and is kept around a constant. 

This reformulation of the extended system method given by Hoover,40 > is based on 

the above mentioned equations and is now known as the Nose-Hoover thermostat.41> 

The first three of them Eqs. (5 ·1) ~ (5 · 3) form a closed system of equations. The time 

evolution of the system within a phase space (p, q, s) is uniquely determined from 

these equations. In this sense, Eq. (5 ·4) is redundant. However, if we also solve this 

equation, a quantity 

(5·7) 

is conserved. This corresponds to the total Hamiltonian Eq. (4 ·13) of the extended 

system in a virtual variable formulation. This conservation law can be used as a 

measure that the simulation is carried out correctly. The transformations (4·7) and 

(4·8) are not canonical, Eq. (5·7) is no longer a Hamiltonian, and we cannot derive 

Eqs. (5·1)~(5·4) from this. 

The real variable formulation in § 4 and the Nose-Hoover thermostat equations 

are completely equivalent when a physical system is connected to only one heat bath 

and the interaction between a particle and a heat bath is identical for every particle. 

However, in the Nose-Hoover thermostat form, we can extend the method to various 

situations in which there is no counterpart in the Hamiltonian formulation. A 

separate control for several groups of degrees of freedom is a typical example (see 
§ 5.3).59) 

5.2. Another proof of the canonical distribution40> 

A proof that the extended system method guarantees the canonical distribution is 

also demonstrated in the fashion similar to that employed in the constraint method. 

Consider an extended phase space F=(p, q, s) in this case. A distribution function 

f(p, q, s) is defined in this phase space. The conservation of the probability is 

expressed by a generalized Liouville equation similar to Eq. (3 ·10), 

Oft+ a~ ·(i't)=o. (5·8) 

We are interested in the change of f along a phase space trajectory. Therefore, we 

consider a total time derivative of /, 

Then, Eq. ( 5 · 8) is reexpressed as 

(5·10) 

In our case, (a;ar)·F is not equal to zero, and the Liouville's theorem, d!/dt=O, does 
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32 S. Nose 

not hold in constant temperature simulations. 

(5·11) 

We define a function 

(5·12) 

Its time derivative is 

dHr =~( ... oHr + ... oHr)+ ~ oHr =- kT~ 
dt "T p, op; q, oq; " a~; g " · (5·13) 

Comparing Eqs. (5·11) and (5·13), the generalized Liouville equation (5·10) is reduced 

to 

(5·14) 

and a solution of this equation is easily obtained 

f(p, q, !;)= C exp[- Hr/kT], (5·15) 

which has a canonical distribution form. 

The probability in a volume element along a phase space trajectory is not con­

served in the Nose-Hoover equation. A conserved quantity is exp[Hr/kT] f(p, q, !;). 

Therefore, the probability along the trajectory in a phase space changes in 

proportion to exp[- Hr/kT]. If the ergodic property is satisfied in the extended 

system, a trajectory covers almost all allowed points in a phase space. The distribu­

tion I can be identified with the equilibrium distribution function and the canonical 

distribution in a physical system is realized in this situation. 

We comment on the conserved quantities in the Nose-Hoover thermostat equa­

tions. A pseudo-Hamiltonian Eq. (5·7) is conserved, 

(5·16) 

This shows clearly that an additional equation (5·4) is introduced to compensate the 

energy dissipation of Hr. 

The sum of the force or torque vanishes with central forces. The equations for 

the total linear momentum P=~; p; and the total angular momentum L=~; q;Xp; 

are obtained as 

d (JfP 
-dt ~p;=~- ::lq -l;~p;=-l;~p;, 

t z u i t t 

(5·17) 
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Constant Temperature Molecular Dynamics Methods 33 

(5 ·18) 

These equations are integrated comparing with Eq. (5 ·13), 

P=~ p;=exp[- jtt; dt']Po=C exp[Hr/gkT]Po, (5 ·19) 

L= ~ q; Xp;=exp[- Jt t; dt']Lo= C exp[Hr/gkT]Lo. (5·20) 

Po and Lo are constant vectors. The momentum P and the angular momentum L are 

not the conserved quantities in the Nose-Hoover thermostat method. Modified 

quantities Po=exp[- Ho/gkT]P and Lo=exp[- Ho/gkT]L are conserved. In most 

simulations, the total linear momentum is set equal to zero. In this situation, the 

total momentum is always kept to zero. The angular momentum is generally not 

conserved in simulations which employ the periodic boundary conditions. 

5.3. Multiple temperature control variables59> 

The Nose-Hoover thermostat equations can be easily extended to various situa­

tions which the original Hamiltonian formulation cannot apply to. The separate 

temperature control for different degrees of freedom is a typical example. The 

coupling between different kinds of molecular motions (e.g., translations, rotations or 

vibrations) is often not so strong to assure a quick equilibration among them. This 

situation occurs especially when the typical times of each motion are very different. 

The change in the molecular rotations and the intramolecular vibrations are usually 

quicker than that in the translation of the molecule as a whole for a simple molecule. 

The total kinetic energy reaches an objective value rapidly, but the temperatures of 

the translational motion and the rotation may still disagree. It will take quite a long 

time to equilibrate in a whole system. 

The introduction of several temperature control variables for different degrees of 

freedom is useful in such a situation. This extension is intractable in the virtual 

variable formulation based on a Hamiltonian. More than one different virtual times 

will appear. Also, there is an ambiguity how to determine appropriate values for g's. 

In the Nose-Hoover form, the method is naturally extended to multiple tempera­

ture controls.59> The degrees of freedom are classified into n groups. We denote the 

momentum Piland the coordinate qij (1~i~gh 1~j~n), of the particle ij which 

contacts with j-th bath, gi is the number of degrees of freedom connected to j-th bath. 

Masses Qi are also different in each bath. 

Equations (5·1)~(5·3) are generalized to 

dqil = Pil 
dt mij ' 

(5. 21) 

(5·22) 

(5·23) 
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34 S. Nose 

Equation (5 ·12) is extended to 

_ P't Qi 2 
Hr(P, q, ')-~~2m··+ Cl>(q)+ ~-2 ?;j . 

J z t..J J 

(5·24) 

The canonical distribution in (p, q, si, · · ·, !;n) space 

f(p, q, ')= Cexp[- Hr(P, q, ')/kT]. (5·25) 

is realized. A mechanism realizing the canonical distribution is clarified if we set 

different temperatures Tj for each bath. Then, Eq. (5·10) becomes 

On the other hand, Eq. (5·13) is 

d:f/ =- k(~ gj(;j Tj) . 

(5·26) 

(5·27) 

A proportional relation between the flux (o/or)r in the phase space and the dissipa­

tion of the pseudo total energy Hr is a key factor connecting Eqs. (5·26) and (5·27). 

The replacement of the flux term by dHr/dt is only possible when all temperatures Ti 

are equal. This relation is broken when TJ are different. This is a natural conclu­

sion. When a physical system is connected to heat baths with different temperatures, 

the heat flow from high to low baths occurs and the system is not in equilibrium. 

This type of nonequilibrium situations was studied by Holian et al.,60> in relation with 

the origin of the irreversibility. 

We must pay attention to the momentum conservation law in multiple tempera­

ture controls. Equation (5 ·17) changes to 

(5·28) 

This cannot be integrated because the weight (;j is different in each bath. The total 

momentum is not conserved in this case. Therefore, separate temperature controls 

for each species of particles are not recommended. A similar problem is also known 

in the velocity scaling algorithm. 

Separate controls for the translational and rotational temperatures of rigid 

molecules and separate controls of x, y, z components of kinetic energy do not 

produce such problems. 

A generalization to limit the temperature control in a certain region of a system 

is also possible.61> Consider a function of the coordinate G(q;). The friction 

coefficient {; in Eq. (5 · 2) is replaced by ?;G(q;). The restriction of the temperature 

control in a certain region is expressed as a special case of this generalization: G(q;) 

=1, when q; is included in the region, and G(q;)=O, when q; is not. The gradual 

cutoff of the coupling with a heat bath is also possible. Choose a continuous function 

for G(q;). 
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Constant Temperature Molecular Dynamics Methods 

The equations in this case are modified as 

dq;_ p; 

-----cit m; ' 

dl; ( { pl }) dt= ~G(q;) m; ~gkT /Q. 

35 

(5·29) 

(5·30) 

(5·31) 

The right·hand side of Eq. (5·31) is an average of the kinetic energy weighted by a 

coordinate dependent function G( q;). 

5.4. The extension by Bulgac and Kusnezov 

The most general extension of the extended system method is presented in a 

recent paper by Bulgac and Kusnezov,42> and Bulgac et al.45 > This extension clarifies 

an essence of the Nose-Hoover thermostat method which generates the canonical 

distribution. 

Consider an extended phase space F=(p, q, ~. l;) in which two additional vari­

ables ~ and l; behaving as frictional coefficients are included. The generalization 

will be expressed as four requirements. 

(1) A distribution function I in the extended phase spacer should satisfy a general­

ized Liouville's equation, 

(5·32) 

It is reexpressed in terms of a total time derivative as 

dl ( a · )' Tt=- ar·r I 

(5·33) 

(2) The solution of Eq. (5·33) is the canonical distribution in terms of a pseudo total 

energy Hr, 

Hr=H(p, q)+g2(~)/(3+gl(l;)/a, 

l(p, q, ~. l;)=exp[- Hr/kT]. 

(5·34) 

(5·35) 

g2(~) and g1(t;) correspond to the kinetic energy term of the heat bath in the original 

formulation, and their functional form must be chosen so that the integration of Eq. 

(5·35) with respect to ~ or l; converges. a and (3 are the inverse of the heat bath 

mass. 

(3) In the equations of motion for particles, supplemental terms are added to the 

original canonical equation. It is important that the modification is chosen in an 

additional form but not a multiplicative form as in the virtual variable equations, 
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36 S. Nose 

(5·36) 

dp; _ aH ( ) ( ) Tt-- oq; -h1 s G; P, q . (5·37) 

F, and G; are some arbitrary function of p and q, and ht( s) and hz(~) is related to 

gt(s) and gz(~) by 

d g1( s) 

ds 

d gz(~) 

d~ 

(4) Supplemental equations for ~ and s are 

(5·38) 

(5·39) 

(5·40) 

(5·41) 

The functional forms for ds/dt and d~/dt are chosen not to depend on s and ~' 

(5·42) 

The equations of motion for frictional coefficients are proportional to the difference 

of two quantities whose ratio of the canonical ensemble averages is kT. The 

quantities on the right-hand side of Eqs. (5·40) and (5·41) satisfy this relation. It is 

shown by the partial integration, 

kT ( ~;:) c = C jkT ~;: exp[- H/kT]dpdq 

=-C jkTG;· a!; exp[ -H/kT]dpdq 

f oH ( oH) = C G;· op; exp[- H/kT]dpdq= G;· op; c. (5·43) 

An essence in this generalization is that a constant temperature condition and the 

canonical disrtibution could be realized by merely controlling the ratio of two 

quantities. We can choose any pair of quantities, the ratio of whose canonical 

ensemble averages is kT. The control of the kinetic energy in the original formula­

tion is only a special case of them. In the Nose-Hoover thermostat equations, F, 

=~=gz=O, G;=p;, gt=s2 /2 and a=1/Q. The kinetic energy and a constant are a 

pair of quantities used for temperature control. 

These four requirements are consistent. From three requirements (1), (3) and (4), 

the canonical distribution Eq. (5·35) (requirement (2)) is derived in the same way as 

in § 5.2. 
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Constant Temperature Molecular Dynamics Methods 37 

d:f/='ft(iJ;· ~~ +q;· ~~)+ ~~ ~t+ ~t ~ t 

=- kT[h~~ aG; + hz~ aF, J 
• ap; i aq; • 

(5·44) 

a~ ·F='ft( a!i iJ;+ a;i iJ,)+ k t + !t t 

= _ h 1 ~ aG; _ hz~ aF; =-1- dHr 
i ap; i aq; kT dt · 

(5·45) 

Equation (5·44) is proportional to Eq. (5·45). This is a sufficient condition to derive 

the canonical distribution. 

On the other hand, if we assume the canonical distribution (requirement (2)) and 

Eqs. (5·36) and (5·37), the equations for ~and s are determined to Eqs. (5·40) and 

(5·41). The time derivative of Hr is 

dHr=~(p;· aH +q;· aH)+h~_l_t+hzlt 
dt i ap; aq; a /3 

aH aH 1 · 1 · 
=- h1'2f ap1 • G;- hz'if aq; · F; +he;; s + hz7f ~ . (5·46) 

Equation (5·33) becomes 

= [ h1'2f ~;; + hz'if ~~; + J~ t + !t t ]t . (5·47) 

Comparing Eqs. (5·46) and (5·47)_, and employing Eq. (5·42), we obtain 

(5·48) 

The terms in square brackets are independent of s and ~. From this identity, the 

requirement (4), Eqs. (5·40) and (5·41) are derived. 

5.5. The extension to classical spin systems42> 

The generalization in § 5.4 clarifies how a constant temperature condition and the 

canonical distribution are attained. The canonical equations are supplemented by a 

term or terms similar to frictional force. The time derivative of the temperature 

control variables is postulated to be proportional to the difference of two quantities. 

The ratio of their canonical ensemble averages is kT. It is no longer necessary to 

stick to the kinetic energy for temperature control. 

This paves a way to the application of the constant temperature molecular 

dynamics method to a system which does not have terms corresponding to the kinetic 

energy. A classical spin system is a typical example. The equations of motion for 
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38 S. Nose 

a spin S=(Sx, Sy, Sz) is derived from a Hamiltonian H(S) as 

(5·49) 

in a vector form, or in expression for each component, it will be 

(5·50) 

cjkl is the Levi-Civita tensor. Consider a simple example of the Larmor precession. 

A classical spin in a magnetic field h=(O, 0, h) rotates around the magnetic field. In 

this motion, the Hamiltonian of the system H(S)=- hSz is kept to a constant value. 

This does not seem to have a term allowing a temperature control. 

Equation (5·49) is modified to a constant temperature form as 

_!Ls= aH x s- Y[A -s<A·S)J 
dt as \:, S 2 • 

(5·51) 

A is an arbitrary vector function of S. The length of a classical spinS is conserved. 

(5·52) 

Therefore, a partial derivative is modified to a form compatible with the constraint 

Eq. (5·52). 

(5·53) 

The generalized Liouville equation in (S, s) space is 

(5·54) 

The total time derivative is defined as before, 

df a! · gy 1 · a! 
Tt=Tt+ ~sJ gysj + sar · (5·55) 

Equation (5·54) becomes 

(5·56) 

If we require that the canonical distribution /(S, s) 

!(S, s)=exp[ -{H(S)+ s2 /2a}/kT], (5·57) 

is a stationary solution of Eq. (5·56), an additional equation for sis obtained as 

(5·58) 
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Constant Temperature Molecular Dynamics Methods 39 

() ¢ /os = 0 is assumed in deriving process. We can also derive the canonical distribu­

tion Eq. (5·57) from Eqs. (5·56), (5·51) and (5·58). The ratio of two quantities in 

braces in Eq. (5·58) is controlled by s. 
A general extension to a system described by higher Lie algebra is also presented 

in Ref. 42). 

As an illustration of the extension in this subsection, consider a simple example; 

a classical spin in a magnetic field h=(O, 0, h). The Hamiltonian is H =- h· S 

=- hSz. A vector A=(O, 0, 1) is chosen. Then, the equations of motion are 

Sx= hSY + S Sx Sz/S2 , 

Sy=- hSx + s sy Sz/S2 ' 

Sz= -s(l-Sz2 /S2), 

(=a[ -h(1-S//S2)+kT(2Sz/S2)]. 

(5·59) 

(5·60) 

(5·61) 

(5·62) 

The canonical ensemble averages of two terms on the right-hand side of Eq. (5 · 62) are 

(5·63) 

where L(x)=coth x-1/x is the Langevin function, and 

(5·64) 

and they satisfy the relation, 

(5·65) 

Without additional terms, Eqs. (5·59)~(5·61) describe the Larmor precession of S 

around the magnetic field. The friction term for Sz works so that Sz fluctuates 

around 

- [{ ( kT ) 2
}

1
/
2 kT J Sz=S 1 + hS - hS ' 

which is the solution of Eq. (5·62) when ¢ =0. 

The canonical distribution /(S) = C exp[hSz/kT] 

~(5·62). 

(5·66) 

is realized by Eqs. (5·59) 

§ 6. The dynamical properties 

The correct canonical ensemble averages for thermodynamical quantities are 

obtained in the constant temperature method. Because the equations of motion are 

solved numerically, the dynamical properties of the system can be studied in the 

molecular dynamics simulations. This is a feature of. the molecular dynamics 

method. Therefore, it is a natural question whether the correct dynamical behaviors 

are also obtainable or not at constant temperature. If the simulations are carried out 

in an appropriate condition, the answer is affirmative in most cases. 
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40 S. Nose 

The relaxation from a nonequilibrium state to equilibrium in constant tempera­

ture simulations does not correspond to any realistic process in the experiments. The 

relaxation process is introduced artificially to control the temperature. The speed of 

the relaxation is determined by the value of mass Q in the extended system method. 

The response is quick with a small mass, and a system relaxes slowly with a large 

mass. Also a large amplitude slowly decaying continuous oscillation of the heat bath 

variable s is often observed. In a certain condition, the coupling between the variable 

s and a physical system is not so strong. It takes quite a long time for the damping 

of this oscillation. All behaviors mentioned above are artifacts introduced by the 

extended system method. The ra'te of collision with hypothetical particles or the 

random forces acting on a particle in the stochastic constant temperature method also 

affect the relaxation. The correct dynamical behavior in nonequilibrium state can­

not be obtained by modified simulation methods. 

In this section, we consider several problems relating to dynamical behaviors in 

the constant temperature methods. In § 6.1, the response speed of a heat bath in 

equilibrium is studied. This is necessary for determining an appropriate mass value 

for the heat bath variable. A good choice is important to realize a thermal equili­

brium between a physical system and a heat bath. The general dynamical behavior 

in equilibrium is discussed in § 6.2. 

6.1. Choice of values for mass parameters 

An artificial kinetic energy term for the external system is introduced to derive 

an equation for the heat bath variable in the extended system formulation. The mass 

parameter appearing in this term controls the speed of response of a heat bath. How 

can we choose an appropriate value for this parameter? 

It should not be too small. In the study of the lattice vibration in a system 

containing impurities, it is known that a localized isolated mode appears when the 

mass of the impurities is smaller than that of host atoms. A similar situation occurs 

in our system when Q is small. The heat bath variable becomes an isolated mode and 

it continues an oscillation independently. The behavior resembles that of a harmonic 

oscillator. The distribution of the total kinetic energy driven by this oscillation 

deviates significantly from the Gaussian distribution in this situation as shown sche­

matically in Fig. 5(a). The distribution of a harmonic oscillator has two peaks at 

turning points. These correspond to two peaks at high and low temperature in the 

kinetic energy distribution. The variable s oscillates independently from other 

degrees of freedom. The system does not reach an equilibrium state during the 

(01 

<K> K <K> K <K> K 

Fig. 5. Change of the distribution of the total kinetic energy with different Q values; (a) very small 

Q, (b) small Q, (c) large Q. Thin lines indicate the distribution during a short period. 
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Fig. 6. Comparison of the temperature fluctuations with different Q values. A 108 Lennard-Jones 

system at T=lOO K. Above: Q=l.O (kJ/mol)(ps)2, below: Q=lOO.O (kJ/mol)(ps)2• 

simulation, and the ergodic hypothesis is not satisfied. 

41 

With a larger mass, the behavior changes. Typical examples of the time evolu­

tion of the temperature (kinetic energy) are depicted in Fig. 6. The results are 

obtained in a 108 particle Lennard-lones system with parameters; the energy depth c 

=125 K, the radius a=3.446 A, the mass m=39.9 g/mol at 100 K. With a smaller mass 

(Q=l.O in Fig. 6), the change of the kinetic energy is still mostly driven by the fast 

oscillation due to the heat bath variable s. The amplitude of the oscillation beats by 

a coupling between a bath and a physical system. In this case, the accumulation of 

the distribution of harmonic oscillators with various amplitudes forms a Gaussian 

type distribution with a single peak at an average value (Fig. 5(b)). At larger mass 

(see Fig. 6 (below)), we observe the fast thermal fluctuations of the kinetic energy 

around a slow systematic change due to the heat bath variable oscillation. A 

distribution of Gaussian type but narrower than the Maxwell distribution at tempera­

ture T is expected in a short period. The situation is similar to that in the mi­

crocanonical ensemble because the exchange of the heat is slow. The centers of mass 

of the distribution oscillate synchronizing the oscillation of the variable s. An 

envelope of these distribution becomes the Maxwell distribution (Fig. 5(c)). A large 

number of time steps are necessary to get a reliable average value with large Q. 

We must choose an intermediate value for the mass Q. To obtain a criterion for 

it, we analyze the period of oscillation of s by linearizing Eq. (4·27).24> We express 

the equation explicitly with the heat bath variable s. A virtual frame expression for 

momentum, p~= p;fs, is used. 
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d(1 ds)-"'0 pl Q-dt - dt - £..,--z - gkT . s ; m;s 
(6·1) 

We consider a fluctuation 8s of the variable s around an average <s>, 

s=<s>+8s. (6·2) 

At a smal mass limit, the change of sis much faster than that of the particles, and we 

can ignore the change of the momentum in a virtual frame. The constant tempera­

ture condition is mainly maintained by the motion of s, 

(6·3) 

Linearizing Eq. (6·1), an equation for 8s is obtained, 

Q_1_ d 28s =~ p/ (1_28s)- kT 
<s> dt 2 i m;<s>2 <s> g 

(6·4) 

This is equivalent to the equation of a harmonic oscillator. Its frequency is, 

-[ 2gkT ] 1
'
2 

(/)1- -Q- ' 

and the period T1 is 

(6·5) 

(6·6) 

The period is proportional to the square root of the mass Q, and inversely propor­

tional to the square roots of the number of degree of freedom g and the temperature 

T. 

On the other hand, at a large mass, if we average thermal fluctuations during a 

short period and define a time dependent temperature T( t ), Eq. ( 6 ·1) is reduced to 

1 d 28s [ Q-(i)(Jt2=gk(T(t)- T)=-gk T(t)-T]~ 
8s us. (6·7) 

The change of the fluctuation 8T= T(t)- T is proportional to the fluctuation of s. 

The ratio A=- 8T/8s can be estimated by the ratio of the standard deviation of two 

fluctuations, 

A=[ <(8T)2>/<(8s)2> ]112 • (6·8) 

The whole fluctuation of the kinetic energy should be that in the canonical ensemble. 

The fluctuation around T(t) will be that in the microcanonical ensemble. Therefore, 

the fluctuation of 8T is the difference between that in the canonical and mi­

crocanonical ensembles. The fluctuations in both ensembles are given in Eq. (2·23). 
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Constant Temperature Molecular Dynamics Methods 

Table I. The oscillation period of the variable s. 256 particle 

Lennard-Jones system at T=60 K. e=125 K, 0"=3.446 A, 

m=39.9g/mol. 

Q ((kJ/mol)(ps)2) T, (ps) r.a> (ps) Tobs (ps) 

1.0 0.227 0.321 0.22 

4.0 0.455 0.643 0.45 

16.0 0.909 1.286 1.24 

64.0 1.819 2.572 2.23 

256.0 3.637 5.143 5.26 

•> The heat capacity is assumed to be 3Nk. 

<(oT)2> = <(oT)2>c- <(oT?>mc 

= 2 T 2 _ 2 T 2 ( 1 _ __fl_.k___)= kT2 

g g 2Cv Cv · 

43 

(6·9) 

Cv is the heat capacity. The fluctuation of the heat bath variables is also related to 

the heat capacity Eq. (4 ·44),24> 

<(os?> 

The ratio A is 

<s>2Cv 
g2k 

gkT 

<s>Cv · 

Therefore, we get the frequency and the period at large mass, 

_ [ 2gkT __ff_.k__] 112 

([)2- Q 2Cv ' 

(6·10) 

(6·11) 

(6·12) 

(6·13) 

The comparison of the oscillation period of the :variable s with various mass Q 

is given in Table I. The simulations are carried out in a 256 atom Lennard-lones 

system in a supercooled liquid state at T=60 K. The heat capacity in T2 is assumed 

as Cv=3Nk, the Dulong-Petit law. T2=JiT1 in this case. T1 agrees very well with 

Tobs at Q=l.O and 4.0. At large Q, T2 exhibits a better agreement. We can estimate 

the oscillation period over a wide range of Q by"Eqs. (6·6) and (6·13). 

We will give a criterion for an appropriate value of the heat bath mass Q. It 

should be an intermediate value. A small Q does not guarantee the equilibration in 

a whole system. A large Q is inefficient. The most economical choice is to agree the 

oscillation of s with a typical oscillation period of a physical system. A maximum 

coupling is generally expected at a resonant condition. The characteristic time To of 

a system does not depend much on a system size. An appropriate choice for Q will 

be calculated from the dependence of Q on the system size and the temperature. The 

mass Q is proportional to the number of particle (g=3N) and the temperature T. 

Qcx(gkT)( T0) 2 • (6·14) 
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6.2. A general discussion on dynamical properties in equilibrium 

The modified equations must have a quasi-Newtonian form as mentioned in§ 4.5. 

Otherwise, a reasonable dynamical behavior is not expected. The modification in an 

additional form as in Eqs. (5·36) and (5·37) always guarantees a quasi-Newtonian 

form. The effect of introduction of a heat bath is negligibly small in equilibrium in 

a large system limit in the extended and constraint methods with a quasi-Newtonian 

form. 

We will estimate the intensity of the extra force term in Eqs. (3·7), (4·25) and 

(5·2). The coefficient of these v~locity dependent term becomes small in a large 

system. For example, we consider the extended system method for temperature. 

The average of the kinetic energy for the heat bath variable (Q/2)s2 is equal to kT/2 

from the equipartition theorem. The amplitude of s fluctuation decreases with the 

dependence of Q-112• Q increases linearly with the number of particles N in an 

appropriate choice given in Eq. (6·14). Therefore, the s is proportional to N- 112• 

The inverse-square-root dependence on N is a general behavior for quantities relating 

to fluctuations. The driving force for sis the fluctuation of the temperature. In the 

constraint method, the numerator part~; v;(t)·F;(t) of the undetermined multiplier 

s (Eq. (3·9)) is a fluctuating term. The inner product of the velocity and the force 

increases with only N 112 dependence, where the denominator increases linearly with 

N. Thus A ex: N- 112• The effect on a single particle dynamics is very small in a large 

system. 

The same system size dependence has been obtained by Evans and Morriss from 

the perturbational expansions of the response function. 62> They also investigated the 

response of a thermostated system to external perturbations in the Gaussian thermo­

stat case.63> The result is simple. The expression of the response function does not 

change formally from that in the ordinary Newtonian dynamics when the time 

propagator of the Gaussian thermostat is used instead of that of the Newtonian 

dynamics. Similar results are also obtained in the Nose-Hoover thermostat case.41> 

Therefore, not only the static quantities but the dynamical response are correctly 

calculated in the constant temperature methods. 

Summing up the discussion in this subsection, the coupling with a heat bath 

prevents the shift of the temperature as a whole and keeps the kinetic energy around 

a certain value. But the effect on each particle is very mild in a large system. 

Therefore, any significant difference will not be recognized for ordinary dynamical 

properties, especially for single particle dynamics. 

However, we should be careful for collective dynamical quantities such as sound 

waves. We assumed that the effect for each particle is random. This assumption 

does not hold for collective quantities. A typical example is the total kinetic energy. 

We control this by an additional variable or by imposition of a constraint. The 

dynamical behavior of the kinetic energy depends on the mass Q explicitly. 

§ 7. Conclusions 

The developments of two deterministic constant temperature dynamical simula-
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tion methods are reviewed. They are the constraint method (or the Gaussian thermo­

stat) and the extended system method (or the Nose-Hoover thermostat). Time 

reversal dynamical equations of motion can produce the canonical distribution in the 

coordinate part (Gaussian thermostat) or in the extended phase space of (p, q, S') 

(Nose-Hoover thermostat). We can obtain correct thermodynamical quantities and 

dynamical responses in simulations at constant temperature. 

The behaviors of the equations of motion in both methods are essentially non­

canonical. They do not conserve the volume of the phase space. Rather, the break­

ing of the conservation relates directly the canonical distribution. In fact, the volume 

along a phase space trajectory changes in proportion to the Boltzmann factor 

exp[- H(p, q)/kT]. A state in the phase space passes through a phase space point 

with a weight of the canonical distribution. The constraint force in the Gaussian 

thermostat and the feedback term in the Nose-Hoover thermostat changes the dynam­

ical behaviors from the adiabatic Newtonian type to the isothermal dynamics. 

An essence of the feedback mechanism in the Nose-Hoover thermostat is clarified 

in a recent paper by Bulgac and Kusnezov.42> The canonical distribution can be 

derived only controlling a pair of quantities to the ratio in the canonical ensemble 

averages by an appropriate feedback mechanism. This is a surprising simple conclu­

sion to the problem which was once considered almost intractable. 
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