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Abstract— We propose two new distributed scheduling poli-
cies for ad hoc wireless networks that can achieve provable
capacity regions. Known scheduling policies that guarantee
comparable capacity regions are either centralized or need
computation time that increases with the size of the network.
In contrast, the unique feature of the proposed distributed
scheduling policies is that they are constant-time policies, i.e.,
the time needed for computing a schedule is independent of
the network size. Hence, they can be easily deployed in large
networks.

I. INTRODUCTION

In this paper, we study the link scheduling problem in
ad hoc wireless networks. In wireless networks, the radio
transmissions at different links can interfere with each other.
Hence, in order to achieve the optimal capacity, it is usually
more efficient to only use a subset of the radio links at each
time [1]. Determining which subset of links should be active
at each time becomes the link scheduling problem, which is
mainly at the MAC layer in the OSI reference model.

Good scheduling policies are those that can achieve large
capacity regions and can be easily computed. Consider a
wireless network with L links, and let λl be the data rate
offered to link l. Let ~λ = [λ1, ..., λL]. The capacity region
under a particular scheduling policy is the set of data-
rate vectors ~λ that the scheduling policy can support while
keeping the queues at all links finite. A scheduling policy
is said to be throughput-optimal if it can achieve the largest
possible capacity region. Known throughput-optimal policies
require solving a global optimization problem at each time
[2]–[5]. Such scheduling policies are inappropriate for ad hoc
networks because the distributive nature of these networks
requires simple and decentralized scheduling solutions. Re-
cently, a number of distributed scheduling policies have
been proposed in the literature [6]–[10]. Since the capacity
region under a distributed policy is typically smaller than the
optimal one achieved by the throughput-optimal policy, we
define the efficiency ratio of such a sub-optimal scheduling
policy as the largest number γ such that, given any network
topology, for any ~λ that can be supported by the throughput-
optimal policy, this policy can support γ~λ. In other words,
the scheduling policy with efficiency ratio γ can achieve at
least γ fraction of the optimal capacity region. Related works
have studied a number of distributed scheduling policies that
are shown to achieve provable efficiency ratios. For example,

the maximal matching policy has been shown to achieve an
efficiency ratio of no less than 1/2 under the node-exclusive
interference mode [6]. Similar maximal scheduling policies
are also studied under the bidirectional-equal-power model
and the two-hop interference model [7]–[10], where different
bounds on the efficiency ratio are derived.

The problem with these existing distributed scheduling
policies, however, is that the time needed to compute a
schedule still increases with the size of the network. For
example, one of the best known distributed algorithms in
graph theory can compute maximal matching on a graph
in O(log4 N) rounds, where N is the total number of
vertices in the graph [11]. Note that we need to be extra
careful in interpreting this type of results under the context
of ad hoc networks, because these distributed algorithms
assume reliable message passing among neighboring nodes
in each round of the computation. In ad hoc networks, these
messages themselves can interfere with each other. Hence, it
is likely that the actual amount of time needed for computing
maximal matching in ad hoc networks can be much larger
than O(log4 N).

In this paper, we propose two new distributed scheduling
policies. A unique feature of these new policies is that they
are constant-time policies, i.e., the time needed to compute
a schedule is independent of the size of the network. In fact,
our proposed policies only require one round of computation.
Hence, they are more scalable and easier to implement in
large networks. We will provide constant-time distributed
scheduling policies for two types of interference models,
i.e., the node-exclusive interference model and the two-
hop interference model. We will show that our proposed
scheduling policies can achieve comparable efficiency ratios
as some of the non-constant-time policies in the literature.

II. THE SYSTEM MODEL

Consider a wireless network with N nodes and L links.
Each link corresponds to a pair of transmitter node and
receiver node. Let b(l) and e(l) denote the transmitter node
and the receiver node, respectively, of link l. Two nodes are
one-hop neighbors of each other if they are the end-points
of a common link. For each node i, let E(i) denote the
set of links that connect to the one-hop neighbors of node
i, i.e., E(i) is the set of links that node i either acts as a
transmitter or as a receiver. Two links are one-hop neighbors



of each other if they share a common node. Two links are
two-hop neighbors of each other if they have a common one-
hop neighboring link. For each link l, let N 1(l) denote the
set of one-hop neighbors of link l (including link l itself),
i.e., N1(l) = E(b(l)) ∪ E(e(l)). Further, let N 2(l) denote
the set of two-hop neighbors, i.e., N 2(l) =

⋃
k∈N1(l) N1(k).

We assume a single-hop traffic model, i.e., each packet
only needs to traverse one of the L links and then leave the
system. We assume that time is divided into slots of unit
length. Let Al(t) denote the number of packets that arrive
at link l at time slot t. We assume that packets are of unit
length, and the packet arrival process Al(t) is stationary and
ergodic.

We will study two types of interference models that govern
the radio transmission. In both models, we say that two
links interfere with each other if they cannot transmit data
together. Under the node-exclusive interference model, each
link l interferes with all of its one-hop neighboring links.
Under the two-hop interference model, each link l interferes
with all of its two-hop neighboring links. In both models,
if the above interference constraints are satisfied, an active
link l can transfer cl packets within the time slot. We further
assume that the system has carrier-sensing capabilities. In
particular, under the one-hop interference model, we assume
that all the one-hop neighboring links of link l can sense the
transmission at link l. Under the two-hop interference model,
we assume that all one-hop neighboring nodes of node i can
sense the transmission from node i.

Remark: The node-exclusive interference model can be
viewed as a generalization of the bipartite graph model for
modeling high-speed packet switches [12], [13]. It has been
used in [6], [14], [15] to model wireless networks. While this
is a somewhat simplified model, the main results can often
be readily generalized to other more complex interference
models, e.g., the two-hop interference model. Note also that
the latter model is very close to the interference model that
IEEE 802.11 DCF (Distributed Coordination Function) deals
with [10].

At time slot t, let M(t) denote the outcome of the schedul-
ing policy, which is defined as the set of non-interfering
links that are chosen to be active at time t. Let Dl(t) denote
the number of packets that link l can serve at time slot t.
Then Dl(t) = cl if l ∈ M(t), and Dl(t) = 0 otherwise.
Let Ql(t) denote the number of packets queued at link l at
the beginning of time slot t, then the evolution of Ql(t) is
governed by

Ql(t + 1) = [Ql(t) + Al(t) − Dl(t)]
+, (1)

where [·]+ denote the projection to [0,+∞).
We say that the system is stable if the queue lengths at

all links remain finite [3], i.e.

lim
T→∞

1

T

T∑

t=1

1
{

L∑
l=1

Ql(t)>η}
→ 0, almost surely as η → ∞.

(2)
Let λl be the mean packet arrival rate at link l, i.e., λl =
E[Al(t)]. Let ~λ = [λ1, ...λL]. As we defined in the Intro-

duction, the capacity region under a particular scheduling
policy is the set of ~λ such that the system remains stable. The
optimal capacity region Ω is the supremum of the capacity
regions of all scheduling policies. A scheduling policy is
throughput-optimal if it can achieve the optimal capacity
region Ω. The efficiency ratio of a (possibly sub-optimal)
scheduling policy is the largest number γ such that the
scheduling policy can stablize the system under any load
~λ ∈ γΩ. By definition, a throughput-optimal scheduling
policy has an efficiency ratio of 1.

III. A CONSTANT-TIME DISTRIBUTED SCHEDULING
POLICY FOR THE NODE-EXCLUSIVE INTERFERENCE

MODEL

Two known distributed scheduling policies for the node-
exclusive interference mode, i.e., the Maximal Matching
Policy [6] and the distributed implementation of the Greedy
Maximal Matching Policy [6], [13], have been shown to
achieve an efficiency ratio of 1/2. However, neither of them
can compute a schedule in constant time [11], [16]. In this
section, we propose a new distributed scheduling policy for
the node-exclusive interference model that only needs O(1)
time to compute a schedule, and we will show that it achieves
an efficiency ratio at least close to 1/3. The new policy
operates as follows:

Constant-Time Distributed Scheduling Policy P :
At each time slot t:
• Each link l computes a probability pl(t) based on its

own queue-length and that of its one-hop neighboring
links as follows: pl(t) = 0 if Ql(t) = 0. Otherwise,

pl(t) =

Ql(t)
cl

max[
∑

k∈E(b(l))

Qk(t)
ck

,
∑

k∈E(e(l))

Qk(t)
ck

]
. (3)

• Each link l attempts transmission with probability pl(t),
and does not attempt transmission with probability
1−pl(t). For those links that attempt transmission, each
of them randomly and independently chooses a backoff
time uniformly from {0, 1, ...,M − 1}, where M is a
system-wide positive integer constant. We assume that
all backoff timers start at the beginning of the time slot.
When a link’s backoff timer expires, the transmission at
the link starts, provided that it has not overheard (i.e.,
through carrier-sensing) any other transmission from its
one-hop neighboring links. Hence, the link l whose
backoff timer expires ahead of all of its interfering
links will win, and will be able to successfully transfer
packets in the time-slot. It is possible that two or more
links’ backoff timers expire at the same time, in which
case collision occurs and none of the interfering links
can transfer packets in time-slot t.

The random backoff procedure in the second step of the
policy is typical in random access protocols (e.g., IEEE
802.11 and Ethernet) to reduce excessive contention. In
practical implementations, the actual backoff time depends
both on the constant M and on how long each unit of backoff



time lasts. In practice, due to propagation and processing
delays, the length of each unit of backoff time cannot be
arbitrarily small. For example, in IEEE 802.11, each unit
of backoff time lasts 20µs. Therefore, in order to compute
the schedule in constant time, we need to provide an upper
bound on M . In Section III-A, we will see how the efficiency
ratio of Policy P depends on M .

We also note that Policy P can be viewed as an extension
of the Longest-Queue-Driven (LQD) scheduling algorithm
from the switching literature [13]. However, there are two
key differences: (a) in the switching literature, the network
topology is a bipartite graph, while ad hoc network topology
is non-bipartite; (b) in the switching literature, the transmit-
ting nodes (i.e., input ports) and receiving node (i.e., output
ports) are determined a priori, while in ad hoc networks a
node can alternate its role as transmitter or receiver from
time-slot to time-slot. The proposed policy P has carefully
accounted for these differences through the random backoff
phase in the second part of the policy.

A. The Efficiency Ratio of Policy P

We next show that the efficiency ratio of the above policy
P is at least close to 1/3. We start with some definitions.

Definition 1: Let ~x be a component-wise positive vector
in R

L and let Θ be a convex, closed and bounded subset
in the positive quadrant of R

L. Assume that Θ contains
the intersection of some neighborhood of the origin and
the positive quadrant. The length of ~x with respect to Θ
is defined as

||~x||Θ =
1

sup{k|k ≥ 0, k~x ∈ Θ}
.

When ~x 6= 0, the normalized vector x̃ of ~x with respect to
Θ is defined as

x̃ =
~x

||~x||Θ
, (4)

i.e., x̃ is the longest vector in Θ that is in the same direction
as ~x.

The following lemma shows that the above-defined length
has many properties of a norm (except that it is only defined
for component-wise positive vectors ~x). Its proof is available
in our online technical report [17]. Denote ~y � ~x if ~y is
component-wise greater than or equal to ~x.

Lemma 1: 1) ||~x|| ≥ 0. Further, ||~x|| > 0 if ~x 6= 0.
2) ||x̃|| = 1.
3) If ~y = α~x, where α > 0, then ||~y|| = α||~x||.
4) If ~y � ~x, then ||~y|| ≥ ||~x||.
5) ||~x + ~y|| ≤ ||~x|| + ||~y||.
It is well-known that the optimal capacity region Ω under

the node-exclusive interference model is upper bounded by
[18]:

Ψ0 =





~λ

∣∣∣∣∣∣
∑

l∈E(i)

λl

cl

≤ 1, for all nodes i



 . (5)

Let ~Q(t) = [Q1(t), ..., QL(t)], where Ql(t) denote the queue
length of link l at the beginning of time slot t. Let d0

l (t) =

pl(t)cl, and let ~d0 = [d0
1, ..., d

0
L].

Lemma 2: If ~Q(t) 6= 0, then ~d0(t) � Q̃(t), where the
normalization is with respect to Ψ0.

Proof: From (4) and (5), we have Q̃(t) = k0
~Q(t), where

k0 is the largest positive number k that satisfies,

∑

l∈E(i)

kQl(t)

cl

≤ 1 for all i.

Hence,

k0 =
1

maxi

∑
l∈E(i)

Ql(t)
cl

.

Using (3), we have pl(t) ≥
k0Ql(t)

cl
. The result then follows.

Lemma 2 shows that, if links that attempt transmission
were to win every time, then the expected amount of service
provided by link l at time-slot t is component-wise no less
than Q̃(t). However, due to the random-backoff procedure
in the second part of Policy P , only a few links that attempt
transmission will win. We next show that, if a link attempts
transmission, the conditional probability that it wins is no
less than 1

3 − 1
M

. In fact, we will prove a more general
result as follows. Fix a particular link 0. Label its interfering
links as 1, 2, ...,K. Let xk denote the probability that the
k-th interfering link attempts transmission. Assume that all
links follow the random backoff procedure in the second part
of Policy P .

Lemma 3: If
∑K

k=1xk ≤ H , where H ≥ 0, then the
conditional probability that link 0 wins, conditioned on it
attempts transmission, is no less than 1

H+1 − 1
M

.
Proof: Condition the following derivation on the event

that link 0 attempts transmission. Let Y be the random
variable that denote the backoff time of link 0, Conditioned
on Y = y, the probability that link 0 wins is no less than
the probability that all K interfering links either do not
attempting transmission, or have backoff time greater than
y. Note that each interfering link attempts transmission and
chooses its backoff time independently. Let S denote the
event that link 0 wins. We thus have,

P[S|Y = y] ≥
K∏

k=1

[
(M − 1 − y)xk

M
+ (1 − xk)

]

=
K∏

k=1

[
1 −

y + 1

M
xk

]
.

Since Y is uniformly distributed among {0, ...,M − 1}, we
have

P[S] =

M−1∑

y=0

P[S|Y = y]

M

≥

M−1∑

y=0

1

M

K∏

k=1

[
1 −

y + 1

M
xk

]
.



Since
∏K

k=1(1 − uxk) is decreasing in u, we have,

P[S] ≥

∫ 1

1
M

K∏

k=1

(1 − uxk) du

≥

∫ 1

0

K∏

k=1

(1 − uxk) du −
1

M
. (6)

By comparing the derivatives, we can show that

K∏

k=1

(1 − uxk) ≥ (1 − u)H .

Hence,

P[S] ≥

∫ 1

0

(1 − u)H du −
1

M
=

1

H + 1
−

1

M
.

Remark: A special case of Lemma 3 that corresponds to
H = 1 and M = ∞ was shown in Theorem 5 of [13].
Here we have provided a more general result using a much
different proof technique.

Under Policy P , we infer from (3) that, for any link l, the
attempt probabilities of its one-hop neighboring links must
satisfy

∑
k∈E(b(l))

pk(t) ≤ 1 and
∑

k∈E(e(l))

pk(t) ≤ 1. Hence,

the sum of the attempt probabilities over its interfering links
is no greater than 2. We thus obtain the following corollary
to Lemma 3.

Corollary 4: Under Policy P , the conditional probability
that link l wins, conditioned on it attempts transmission, is
no less than 1

3 − 1
M

.
Using Lemma 2 and Corollary 4, we thus conclude that

the average service provided by link l at time-slot t is no
less than the l-th component of Q̃(t)( 1

3 − 1
M

). We can now
prove our main result.

Proposition 5: Under Policy P , the network is stable
when ~λ lies strictly inside the set ( 1

3 − 1
M

)Ψ0.
Proof: We will prove stability by finding a Lyapunov

function with negative drift for the fluid model of the
system. The fluid model is defined as follows [12], [19]. We
first interpolate the values of Ql(t) to all non-negative real
number t by linear interpolation between btc and btc + 1
(where btc denote the largest integer no greater than t).
We also define the values of Al(t) and Dl(t) for all real
number t by letting Al(t) = Al(btc), and Dl(t) = Dl(btc).
Then, using the techniques of Theorem 4.1 of [19], we can
show that, for almost all sample paths and for any positive
sequence xn → ∞, there exists a subsequence xnj

with
xnj

→ ∞ such that

1

xnj

Ql(xnj
t) → ql(t) for all l,

1

xnj

∫ xnj
t

0

Al(s) ds → λlt for all l,

1

xnj

∫ xnj
t

0

Dl(s) ds →

∫ t

0

dl(s) ds for all l, (7)

uniformly over compact intervals. Further, let ~q(t) =
[q1(t), q2(t), ...qL(t)] and ~d(t) = [d1(t), d2(t), ..., dL(t)].
Using Lemmas 2 and 3, and the techniques of Theorem 4.1
of [19] again, we can show that the limits ~q(t) and ~d(t)
satisfy the following set of equations: for all l,

d

dt
ql(t) =





λl − dl(t), if λl − dl(t) ≥ 0,
or ql(t) > 0

0, otherwise

ql(t) ≥ 0, and ~d(t) � q̃(t)(
1

3
−

1

M
) if ~q(t) 6= 0, (8)

where q̃(t) is the normalized vector of ~q(t) with respect to
Ψ0. Any such limit [~q(t), ~d(t)] is called a fluid limit of the
system. We say that a fluid limit model of the system is stable
if there exists a constant T that depends only on the network
topology, the arrival rates λl and the active link capacities
cl, such that for any fluid limit with ||~q(0)|| = 1, we have
||~q(t)|| = 0 for all t ≥ T [12], [19].

We now use the following Lyapunov function

V (~q(t)) = ||~q(t)||

to show that the fluid limit model of the system is stable,
where || · || is defined with respect to Ψ0. Note that for any
~q(t) 6= 0, there exists a positive number δt0, such that for
any positive number δt < δt0, we have ~q(t) − ~d(t)δt � 0.
For such ~q(t) 6= 0 and small δt, we have,

V (~q(t + δt))

≤ ||~q(t) + ~λδt − ~d(t)δt|| + o(δt)

≤ ||~q(t) − ~d(t)δt|| + ||~λ||δt + o(δt)

(by Part 5 of Lemma 1)

≤ ||~q(t) − q̃(t)(
1

3
−

1

M
)δt|| + ||~λ||δt + o(δt)

(by (8) and Part 4 of Lemma 1)

= ||~q(t)|| − (
1

3
−

1

M
)δt + ||~λ||δt + o(δt)

(by Parts 2 and 3 of Lemma 1).

When ~λ lies strictly inside the set ( 1
3 − 1

M
)Ψ0, we have

||~λ|| ≤ (
1

3
−

1

M
) − β,

for some constant β > 0. Hence, we have,

D+V (~q(t))

dt+
≤ −β if ~q(t) 6= 0,

where for any function f(t), D+

dt+
f(t) is defined as

lim supu↓0
f(t+u)−f(t)

u
. This then shows that the fluid limit

model of the system is stable. By Theorem 4.2 of [19], the
original system is also stable (i.e., positive Harris recurrent).

Remark: For any given ε > 0, we can choose the
maximum backoff time M = 1/ε, which then ensures that
the efficiency ratio of Policy P is no less than 1/3 − ε.
Note that for each ε, the value of M is independent of
the network topology. Hence, we have shown that Policy
P only takes constant time and can guarantee an efficiency



ratio close to 1/3 for arbitrary network topologies. As M →
∞, the guaranteed efficiency ratio goes to 1/3. Hence, the
difference ε is the loss in efficiency due to the constant-
time requirement. We also note that the same technique for
proving Proposition 5 can be used to establish the result of
Theorems 6 and 7 in [13]. Compared with the proofs there,
our construction of the Lyapunov function is new and much
easier to understand. Alternatively, the result of Proposition 5
may be shown using the Lyapunov function in [20].

IV. A CONSTANT-TIME DISTRIBUTED SCHEDULING
POLICY FOR THE TWO-HOP INTERFERENCE MODEL

We next extend the constant-time distributed policy in
the previous section to the two-hop interference model.
Under the two-hop interference model, the known distributed
scheduling policies, i.e., the Maximal Scheduling Policy
[7]–[10] and the distributed implementation of the Greedy
Scheduling Policy [21], can both guarantee an efficiency ratio
of 1/N̂1, where N̂1 , maxl |N

1(l)| is the maximum number
of one-hop neighboring links for any link. However, they are
again not constant-time policies. We now propose a constant-
time distributed scheduling policy Q that can guarantee a
comparable efficiency ratio.

Constant-Time Distributed Scheduling Policy Q:
Let W be a positive number between 1 and N̂1. At each

time slot t:
• Each link l computes a probability pl(t) based on its

own queue-length and that of the interfering links as
follows: pl(t) = 0 if Ql(t) = 0. Otherwise,

pl(t) =

Ql(t)
cl

max
k∈N1(l)

∑
h∈N1(k)

Qh(t)
ch

×min


1,

W

max
k∈N1(l)

|N1(k)|


 .

• Each link l attempts transmission with probability pl(t),
and does not attempt transmission with probability
1−pl(t). For those links that attempt transmission, each
of them randomly chooses a backoff time uniformly
from {0, 1, ...,M − 1}. We assume that all backoff
timers start at the beginning of the time slot. When
the backoff time of a link l expires, the transmitter
node b(l) of link l will broadcast an RTS to all of its
one-hop neighboring nodes, provided that node b(l) has
not overheard any RTS from these one-hop neighboring
nodes. Once the receiver node e(l) correctly receive the
RTS, it will then respond with a CTS broadcasted to
all of its neighboring nodes. Through this RTS-CTS
procedure, the link l that sends out an RTS before any
of its two-hop neighboring links will win. This link L
can then transfer packets at the rate of cl during the rest
of the time slot. It is possible that two or more links
in a two-hop neighborhood send out RTS together, in
which case collision occurs and none of the interfering
links can transfer data in time-slot t.

Fig. 1. Network topology

We can use similar technique as in Section III to show
the following main result. Readers can refer to [17] for more
details.

Proposition 6: Under Policy Q, the network is stable
when ~λ lies strictly inside the set W

N̂1
( 1
1+W

− 1
M

)Ψ′
0.

Remark: For any fixed W , by choosing M ≥
1

(1+W )(2+W ) , the efficiency ratio of Policy Q is at least
W

(2+W )N̂1
. For each W , the value of M is independent of

the network topology. Hence, we have shown that Policy
Q only takes constant time. As W → N̂1 and M → ∞,
the guaranteed efficiency ratio goes to 1/(1 + N̂1). The
difference

(
1

1+N̂1
− W

(2+W )N̂1

)
is the loss of capacity due

to the constant-time requirement.

V. SIMULATION RESULTS

We have simulated the proposed scheduling policies using
the network topology in Fig. 1. There are 16 nodes (repre-
sented by circles) and 24 links (represented by dashed lines).
The capacity is labeled next to each link. The flows are
represented by arrows. We simulate single-hop flows, and
we let the rate of each flow be λ. Note that although the
rates of the flows are the same, the link capacities and the
flows have been chosen to avoid uniform patterns.

We first simulate Policy P for the node-exclusive inter-
ference model. In Fig. 2, we plot the mean total queue
backlog summed over all links of the network, as the offered
load λ increases. When λ approaches a certain limit, the
average total backlog will increase to infinity. This limit
can then be viewed as the boundary of the capacity region.
We have plotted the curves for Policy P with maximum
backoff window M = 1, M = 10, and M = 20. We can
see that the performance of the scheduling policy is much
worse when M = 1. Hence, the random backoff procedure
is essential. However, once M is above a reasonable number,
the performance will be virtually the same (as we can see
for M = 10 and M = 20). We have also plotted the
performance of the Maximal Matching (MM) policy and
the Greedy Maximal Matching (GMM) policy [6]. Although
the efficiency ratio that can be guaranteed in Proposition 5
is slightly worse than that of MM, the simulation results
indicate that their actual performance are roughly the same.



0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

 Offered load

 M
ea

n 
To

ta
l B

ac
kl

og

 Policy P (M=10)
 Policy P (M=20)
 Policy P (M=1)
 Maximal Matching
 Greedy Maximal Matching

Fig. 2. Performance comparison under the node-exclusive interference
model
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Fig. 3. Performance comparison under the two-hop interference model

We next simulate Policy Q for the two-hop interference
mode and plot the results in Fig. 3. Again, we observe that
the performance of policy Q changes little when the maxi-
mum backoff window changes from M = 10 to M = 20.
Further, the performance is also comparable to the maximal
scheduling policy [7], [10].

VI. CONCLUSION

In this paper, we have proposed two new distributed
scheduling policies for ad hoc wireless networks. The unique
feature of these new distributed scheduling policies is that
they are constant-time policies, i.e., the time needed for com-
puting a schedule is independent of the network size. Hence,
they can be easily deployed in large networks. We have
shown that both scheduling policies can guarantee efficiency
ratios comparable to other known distributed scheduling
policies in the literature.

The analysis in the paper could be extended to multi-hop
networks and to take into account the delay in exchanging
local queue-length information (see the discussions in [17]).
We believe that these results offer new insights for the
design of simple and efficient scheduling policies for ad hoc
networks. We also observe in both Fig. 2 and Fig. 3 that
the performance of Greedy Maximal Scheduling policies is
typically better than that of Policies P and Q, even though
their provable efficiency ratios are comparable. For future
work, it would be interesting to study whether one can
develop constant-time distributed scheduling policies that

achieve comparable performance as these Greedy Maximal
Scheduling policies.
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