
SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
017

CONSTANT TIME GENERATION OF FREE TREES*

ROBERT ALAN WRIGHTS’, BRUCE RICHMONDt, ANDREW ODLYZKO
AND BRENDAN D. MCKAY

Abstract. An algorithm of Beyer and Hedetniemi [SIAM J. Comput., 9 (1980), pp. 706-712] for
generating rooted unlabeled trees is extended to generate unlabeled free trees. All the nonisomorphic trees
of a given size are generated, without repetition, in time proportional to the number of trees.

Key words, free tree, unrooted tree, nonisomorphic trees, constant time generation, constructive enumer-
ation, lexicographic order, loop-free algorithm

1. Introduction. In 1], Beyer and Hedetniemi exhibit an algorithm for generating
all rooted trees of a given size. The method uses a successor function to traverse an
ordered set of integer sequences which represents the objects being generated. This
method is based on one introduced by Ruskey and Hu [7]. In this paper the technique
of Beyer and Hedetniemi is refined to produce only one member of each equivalence
class of rooted trees under isomorphism of the underlying free (unrooted) trees.

Previous algorithms for generating these trees have been given by Read [6], Dinits
and Zaitsev [2] and Kozina [3]. Our algorithm has an advantage over each of these,
in that it only requires O(n) space and constant average time per tree (independently
of n). An algorithm for the corresponding random generation problem has been given
by Wilf 8].

2. Representing trees by level sequences. The notation T, z) is used here to denote
the rooted tree with underlying free tree T and root vertex z. The level of a vertex v
in a rooted tree (T, z) is one more than the distance from the vertex to the root. The
root z is assigned level value 1. A level sequence is defined as a sequence of integers
produced by listing the level of each vertex of a rooted tree in preorder. Since a
preorder traversal may visit the subtrees at a given vertex in various orders, level
sequences for a rooted tree are, in general, not unique. The notation L(T, z)=
[11, 12,’’’, ln] will be used for any level sequence of a rooted tree (T,z) on n
vertices.

In order to have a unique level sequence representation for a given rooted tree,
the rules for the preorder traversal must be refined slightly. For a level sequence to be
canonical, the traversal must visit the roots of adjacent subtrees in nonincreasing
lexicographic order of the canonical level sequences of those subtrees. A simpler (and
equivalent) formulation of this canonicity criterion is the requirement that the canonical
sequence for a given rooted tree be the sequence which is the lexicographically greatest
of all level sequences describing that same tree. A more complete discussion of
canonicity (with proofs and examples) may be found in [1]. The canonical level
sequence of a rooted tree (T, z) will be denoted by L*(T, z).

3. Generating all canonical level sequences of given length. Beyer and Hedetniemi
have described in [1] an algorithm which generates all canonical level sequences of

* Received by the editors March 4, 1983, and in revised form February 6, 1985.

" 1948d Adams Avenue, Costa Mesa, California 92626.
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada

N2L3G1.
AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
Computer Science Department, Australian National University, Canberra ACT 2601, Australia.

540



CONSTANT TIME GENERATION OF FREE TREES 541

given length in lexicographic order. Their method involves an iterative algorithm which
has as its basis a successor function, which when given any canonical level sequence,
will generate the next canonical sequence, with respect to lexicographic order. The
precise definition is this: Let L= L*(T, z) be a canonical level sequence of length n.
Let p be the largest integer such that lp # 2 and let q be the largest integer such that
q < p and lq lp-1. The successor s(L)= [Sl, s2,’", s,] of L then is given by:

i, for l<=i<p,
Si

si_(p_q), for p _<- i-< n.

In 1 ] it is proved that this function transforms any canonical level sequence other
than 1, 2, 2, , 2] into the next canonical level sequence, in decreasing lexicographic
order.

We now will extend these results by deriving an algorithm which generates a
subset of the canonical level sequences corresponding to the set of free trees on a
given number of vertices.

4. Extracting a nonisomorphic subset of rooted trees by root selection. The objective
here is to place requirements on the root vertex, which may only be satisfied by one
rooted tree with a given underlying tree. First we will require that the root be an
element of the center of the tree, which is defined to be the set of vertices whose
maximum distance from the other vertices is least. Since all trees have either one vertex
or two adjacent vertices in the center, we now need only refine this rule for the bicentral
case. Let T be a bicentral tree, and consider the subtrees T1 and T2 remaining when
the edge joining the two candidate roots, z and z2, is deleted. Two rooted trees, T1, z)
and (T2, z2) are formed in this way. Either these two trees are isomorphic, in which
case the rooted trees (T, zl) and (T, z2) are isomorphic, or they can be distinguished
by their size, or by the precedence of their canonical level sequences (when they are
the same size). The root selected for T will be zl if T has fewer vertices than T2 or
if they have the same order and L*(T, zl) is lexicographically less than L*(T2, z2).
Otherwise we select z2.

We will call the root uniquely selected by the above criteria the primary root of
the tree T, and denote it by (T), or just . Then for any given tree T of size n, there
is exactly one member of the set of all rooted trees on n vertices with root meeting
the above criteria, namely (T, ). A level sequence L(T, ) will be called a primary
level sequence of T, and L*(T, ) will be called the primary canonical level sequence
of T.

With the above criteria, a maximal set ofnonisomorphic free trees may be extracted
from the set of all rooted trees of a given size by choosing only trees whose roots are
primary. But we need to apply these criteria not to the trees per se, but to their canonical
level sequences.

5. Refining the canonicity criteria to obtain only primary level sequences. We will
now translate the previously established rules for primary root selection to conditions
sufficient for a canonical level sequence to be primary. Let T, z) be the tree in question,
and let L L*( T, z). The first requirement was that z be in the center of the tree. We
will need to use the fact that z is in the center of T if and only if it is in the center of
every path of maximum length in T. The position of z in such a path can be readily
checked for a canonical level sequence. To do this, consider the structure of L when
viewed as the level number of z (namely 1) concatenated with the level sequences of
each of the components remaining when z is deleted from T. These component level
sequences, which we will call the principal subsequences of L, begin with level 2, instead



542 R. A. WRIGHT, B. RICHMOND, A. ODLYZKO AND B. D. MCKAY

of 1, but otherwise are canonical level sequences themselves, due to the recursive
definition of canonicity. These subsequences are, moreover, ordered in L by height,
so the position of z within one path of maximum length can be determined by looking
at the height of the first two principal subsequences, which we will call S and $2.
This is given precisely by the highest level numbers in those respective subsequences.
We will identify the position of the first occurrence of the highest level number in the
ith principal subsequence by the subscript hi. The height of S then is lh,- 2, and the
height of $2 (if it exists) is lh2--2. We then conclude that the maximum length of a
path in T is lh, + 12- 2, and z is in the center of T if and only if h2 exists and lhl lh
is either 0 or 1. In addition, if lhl- lh 0, then T is unicentral, and hence L is known
to be primary without further checking.

In the bicentral case, we must be able to compare L L( T1, z) and L2 L( T2, z2).
The two central vertices are those which are represented by level numbers l and 12,
so if we let z2 z, and Zl be the vertex corresponding to 12, then L1 is the same as $1
(though level numbers will be greater by 1), and L2 is the same as L with L removed.
Size comparison of L and L2 can be accomplished trivially if we know the position
of the start of the second principal subsequence" if the level number at this position
is denoted l,, then the size of L1 is m-2, and that of L2 is n-m + 2 (where n is the
length of L). Finally, by checking lexicographic precedence of L=
[/2-1, 13-1,..., l,_l- 1] and L2- [/, l,,, l,/, , ln], we have that L is primary for
T if and only if L is identical to L2, or L has lower precedence than L2. This can
be summarized as follows:

Let (T, z) be a rooted tree with n vertices and a canonical level sequence L=
[l, 12,"" ", l,]. Then using the definitions of h, h, m, L and L2 given above, we
have that L is the primary canonical level sequence of T if and only if all of the
following hold for L:

(i) h2 (and hence m) exists,
(ii) lh >- lh 1,
(iii) if equality holds in (ii), then m 2 _-< n m + 2,
(iv) if equality holds in (iii), then either L L2, or L is shorter than L2, or L

has the same length as L2 but precedes L2 lexicographically.
Now we are ready to derive an algorithm for generating all such primary canonical

level sequences for a given value of n.

6. Generating all primary canonical level sequence of a given size. We wish to derive
a successor function which, if given an appropriate starting sequence, will efficiently
generate all primary canonical level sequences of the same size. It is not obvious at
first that such a successor function follows naturally from the one defined by Beyer
and Hedetniemi. However, due to certain choices made in the definition of the primary
canonical level sequences, the previously defined function will usually yield a primary
canonical level sequence when it transforms a sequence which is primary and canonical.
Thus our goal becomes to detect the cases where the s function will fail and to take
alternate action for those cases. As it turns out, the alternate action is trivial, although
it has a significant effect on the length of the algorithm. To determine the "failure
cases" for s, we will examine what the input sequence must look like in order to cause
s to produce a sequence violating one of the conditions for primary sequences.

The first case we will look at is the case where s transforms a primary canonical
sequence L into a sequence s(L) for which the condition (ii) is violated. (Note that
condition (i) can never be violated in this way). In this case, the value of lh is changed
from lh,- 1 to lh,- 2, which means that the p value for L is h2, and li- 2 for p < i-< n.
Hence this type of failure will occur if and only if lh- lh,- 1 and p h, with the one



CONSTANT TIME GENERATION OF FREE TREES 543

exception being L 1, 2, 3, 2, 2, , 2], which is not a problem since in this case s(L)
is the last sequence to be generated.

The second case where s will fail is when s(L) violates rule (iii) but not rule (ii).
This occurs when L1 is larger than L2 in the converted sequence. For this to happen,
lhl must be equal to lh2, and p must be equal to h2 (since lh2 must change). In addition,
we must have m 2> n m + 2 for L1 to end up larger than L2. It should also be clear
that these conditions are sufficient for a failure to occur as well.

The final kind of failure with which we must deal occurs when condition (iv)
alone is violated. But this happens precisely when L1 L2, since the precedence of L2
is always diminished when L remains unchanged (and when L1 does change, this
failure cannot occur). Hence this failure condition can be detected by comparison of
L and L2.

We are left with the question of what to do when we encounter one of these failure
cases. Once again, the definition of the primary canonical sequences has been so chosen
as to make this easy. Very simply, to get the next primary canonical sequence from a
sequence L which satisfies one of the failure conditions described above, we first set
p to m- 1, apply s to get s(L), and if l,,_l > 3 (with the old value of m), we replace
the final h 1 elements of s(L) with 2, 3, , h. The reason for this is straightforward:
l,,-1 must change (i.e. L1 must change), since changes beyond m- 1 will only result
in L2 having lower precedence, which can never result in all of conditions (i)-(iv)
being satisfied again. Now, when L does change, there are two cases to consider.
Either l,,_ was a 3, in which case the action of s on L will result in copies ofL being
made starting at l,, and repeating through ln, or l,_ > 3, in which case no L2 sequence
will occur in s(L). In the former case, s(L) is primary, and so we are done, but in the
latter case, we must correct the fact that L2 has been eliminated. By replacing the last
hi 1 level numbers with 2, 3, , hi, we replace the fewest number of level numbers
that we can (L2 must have the same height as L), and the replacement is the highest
sequence of its length which retains canonicity. Thus we necessarily have the primary
canonical sequence of highest precedence which has lower precedence than the value
of L which we started with.

7. Generating trees in lexicographic order. In order to be able to check the failure
conditions described in the previous section, and to do so without increasing the
complexity ofthe succession algorithm, the values of h, h2, p, etc., are to be maintained.
In addition, an index c to the first element of L2 which is not the same as the
corresponding element of L1 must be kept, so that it will be apparent when L L2
(to facilitate detection of the third kind of failure condition described above). Lastly,
a sequence W w, w2, , w,] will be kept such that wi is the subscript of the level
number in L corresponding to the parent of the vertex corresponding to li in the tree
represented by L.

The procedure below will accept any primary canonical level sequence other than
[1, 2, 2,..., 2] and produce the next primary canonical level sequence in canonical
order. The parameters are as we have defined except for r, which is one less than m.
The value of c is occasionally set to c when it will not be needed at the next
iteration.

The first primary canonical level sequence is that of a path rooted at its center.
To find its parameters (for n >=4), let k= [n/2J + 1. Then L=[1, 2, , k, 2, 3, , n-
k+l], W=[0,1,...,k-l,l,k+l,...,n-1],p=n (except thatp=3whenn=4),
q n- 1, hi k, h2 n and r k. Correct operation is assured if c is initialised to o
for odd n and n + 1 for even n. The last tree has been generated when the procedure
returns with q 0.



544 R. A. WRIGHT, B. RICHMOND, A. ODLYZKO AND B. D. MCKAY

procedure nexttree (L, W, n, p, q, hi, h2, c, r)
fixit false
ifc=n+l orp=hEand(lh=lh2+l and n-hE>r-hior

lhz lh2 and n hE+ 1 < r- hi) then
if lr > 3 then
p r; q wr
if hi r then hi hi 1 endif
fixit true

else
pr; rr-1; q,-2

endif
endif
needr- false; needc - false; needh2- false
if p _-< h then h -p- 1 endif
if p <- r then needr- true
elseif p _-< hE then needh2 - true
elseif lh: lh- 1 and n hE r- h then

if p -< c then needc - true endif
else c -endif
oldp - p q p oldlq - lq oldwq - Wq p -for i-oldp to n do

li <-- li+a
if li 2 then W <-" 1
else
pi
if li oldlq then q - oldwq
else q w+
endif
w-q

endif
if needr and l 2 then

needr- false; needh2 - true; r- 1
endif
if needh2 and l _-< li-1 and i> r+ 1 then

needh2 <-- false; hE- 1
if lh lh- 1 and n hE r- h then needc - true
else c
endif

endif
if needc then

if 1 lhl-h+- 1 then needc false; c -else c - +
endif

endif
endfor
if fixit then
r-n-hl+l
for ir+l to ndo

li-i-r+l; wi-i-1
endfor



CONSTANT TIME GENERATION OF FREE TREES 545

Wr+le- 1; h2-n pn; qp-1; co
else

if p then
if loldp_ 2 then p - oldp 1
else p - oldp 2
endif
q---Wp

endif
if needh2 then
h2-n
if lh2 lh,- 1 and h r then c - n + 1
else c -endif

endif
endif

endprocedure.

8. Proof of the constant time property. Let t, and T, denote the number of free
and rooted unlabeled trees of order n, respectively. A fundamental tool in our analysis
is the following result of P61ya [5] and Otter [4].

THEOREM 1. T, Cn-3/2p and t, C2n-5/2p as n -> o, where C 0.4399,
C2 0.5349 and p 0.3383.

To begin, we must establish that the total number of steps taken to do all simple
successions does not exceed O(t,). (That is, we are not yet counting the steps used in
recovering from any of the three failure conditions which can be encountered.) The
number of steps in each of these conversions is of the order of n p + 1, i.e. the number
of elements of the sequence which change. Hence we must sum all of the n-p + 1
values for arbitrary n. Since the number n-p is just the number of leaves adjacent to
the root, if we denote the number of trees of size n with exactly k root-adjacent leaves

n--1 (k+ 1) t, k Observing that tn,k <: tn-k, we then haveby tn,k, the desired sum is then Ek=O
n-1 (c’h- 1)tn-k <=4t,.that the above sum is no more than Yk=O

We now need only count the steps used in correcting failure conditions. To do
this, we note that the number of steps needed to correct a single instance of a failure
condition is no more than O(n), and show that the number of failure cases becomes
so small compared to t, for large n that they are not significant. We will handle the
three kinds of failure conditions separately.

The third kind of failure can be dispensed with easily, since it occurs only when
L L2, which means that the tree is symmetric about a central edge, and thus there
are at most Tn/2 instances of this failure for given n. By Theorem 1, T,//t,-0
exponentially fast, which finishes this case.

For the first kind of failure condition, the starting sequence must have the form

L= [1,2, 3,..., lhl,’’’,/,, =2, 3,..., lh2 lh l, 2, 2, ,2].

In addition, hi < m < a, where a [(n+ 1)/2J, and so clearly the sum of all such cases
for given n does not exceed Ta, which behaves the same as the sum did for the third
kind of failure condition.

The second kind of failure condition occurs with greatest frequency. For this kind
of failure to occur, the starting sequence must have the form

L= [1, 2, lh, lm 2, 3, lh lh, 2, 2, ",2].

Also, 3 -<_ hi <-- n m 2 for n/2 =< m =< n 3 so if we denote the number of rooted trees



546 R. A. WRIGHT, B. RICHMOND, A. ODLYZKO AND B. D. MCKAY

of height h and size n by The, and the number of rooted trees of height no more than
h and size n by Sh, the number of sequences of the above form is no more than

n--3 n--m--1 n/2

E E r-< E s_.
re=n hi=2 k=l

The latter sum can be divided into two sums

n/2 t3 log nJ n/2

E s_ X S._+ E S.-.
k=l k=l k= [3 log n]+l

The second sum is much less than nT,_13og,], which is o(n-lt,), by Theorem 1. To
handle the remaining sum, we just need the following.

TrEOREM 2. There is a constant > 0 such that uniformly for <-h <-n we have

S’ O( T,n 3/2 exp (-8,/h2)).
The proof of Theorem 2 will follow from several auxiliary results. We first prove

the known fact that T(p)= 1. We define

J(x, y) x exp y+ k-I T(xk) y.
k=2

The functional equation satisfied by T(x) states that J(x, T(x))= O. Since T(x) has
a singularity at x p, and J(x, y) is analytic in both x and y separately in a neighborhood
of (p, T(p)), it follows that we must have

which says that

OJ(x,y)
y x=p

y=T(p)

=0,

( )l=pexp T( p + E k-’ T( pk) T( p ).
k=2

LEMMA 1. Define Xh > 0 by Sh(Xh)= 1. Then there exists a constant C such thatfor
all h >= 1,

S’h(Xh) <- Ch.

Proof. Since x > x2 >" ", we see that Xh <- 3p/2 for all h ->_ 1. Let

C max 4, 0- + 2 (30/2)- T’((30/2))
k=2

Since 3p/2 < 0.55, the series above converges. Since S[(x) 4, the lemma clearly holds
for h 1. Suppose that the lemma holds for h. Then

S,+l(X)= l+x E S’h(xk)xk- exp k-’Sh(Xk)
k=l =1

)+ E s’(x)x-’
k=l

Hence, using Sh+l(Xh+l)--" T(p)= 1, we find

Sth+I(Xh+I)ND-l’ E (3p/2)k-lT’((3p/2)k)+Sh(Xh+l)<=C+Ch= C(h+ l),
k=2

which proves the lemma by induction.



CONSTANT TIME GENERATION OF FREE TREES 547

LEMMA 2. There exists a constant K such that for all h >-_ 1,

1-Sh(p)>-K/h.

Proof. Clearly the lemma is true for 1 =< h =< 2 and some K < 1/2. Suppose the lemma
holds for h _-< H- 1, H-> 3. Now

( )Sn(p)= p exp SH_,(p)+ Y k-’Sn_,(p k)
k=2

( )p exp T(p)+ _, k-lT(pk)+Sl_l_,(p)- T(p)+ Y k-l(Sn_,(pk) T(pk))
k=2 k=2

( )T(p) exp SR-I(p)- T(p)+ E k-’(SH-I(pk) T(pk))
k=2

( )=exp Sn_,(p)-l+ E k-’(SH-I(pk) T(pk))
k=2

Now, since SH_I(p k) T(pk), the induction hypothesis yields

K ) K K 2

_-<1-+
)2

Sn(p) <exp
H-1 H-1 2(H-1

1-+K H-1
4

g 2

2(H- 1)2

=I-+K 2(H_l)
1 ) K

H(H-I)
< 1 --.

Thus the lemma follows by induction for all h.
We can now prove Theorem 2. From Lemma 2,

K
Sth(Xh)(Xh p) Sh(Xh) Sh( p) 1 Sh( p) >:.

Now Lemma 1 gives

K K C
Xh --p

Sh(Xh)h- Ch2-- h2,

or

Finally for any x, 0 < x < 1,

ST,<-_&(x)x -",

SO

S, <- Sh(Xh)X- <--_ pn(1 + C2h-2) O( T,n 3/2 exp (-Sn/ h2)).
9. Concluding remarks. The algorithm described in this paper has been imple-

mented in BLIS10 on a DEC-System-10 (KL) at Vanderblit University. The program
generates trees at the rate of 15-20 thousand trees per second, irrespective of n.



548 R. A. WRIGHT, B. RICHMOND, A. ODLYZKO AND B. D. MCKAY

REFERENCES

[1] T. BEYER AND S. M. HEDETNIEMI, Constant time generation of rooted trees, this Journal, 9 (1980),
pp. 706-712.

[2] E.A. DINITS AND M. A. ZAITSEV, Algorithmfor the generation ofnonisomorphic trees, Avtomat. Telem.,
4 (1977), pp. 121-126; Automatic and Remote Control, 38 (1977), pp. 554-558.

[3] A. V. KOZINA, Coding and generation ofnonisomorphic trees, Kibernetika, 5 (1979), pp. 38-43; Cyber-
netics, 15 (1975), pp. 645-651.

[4] R. OTTER, The number of trees, Ann. Math., 49 (1948), pp. 583-599.
[5] G. P(LYA, Kombinatorische Anzahlbestimmungen fiir Gruppen, Graphen und chemische Verbindungen,

Acta Math., 68 (1937), pp. 145-254.
[6] R. C. READ, How to grow trees, in Combinatorial Structures and their Applications, Gordon and Breach,

New York, 1970.
[7] F. RUSKEY AND T. C. HU, Generating binary trees lexicographically, this Journal, 6 (1977), pp. 745-758.
[8] n. S. WILE, The uniform selection offree trees, J. Algorithms, 2 (1981), pp. 204-207.


