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Abstract. The global maps of homomorphisms of directed graphs are very closely
related to homomorphisms of a class of symbolic dynamical systems called subshifts
of finite type. In this paper, we introduce the concepts of 'induced regular
homomorphism' and 'induced backward regular homomorphism' which are associ-
ated with every homomorphism between strongly connected graphs whose global
map is finite-to-one and onto, and using them we study the structure of constant-to-
one and onto global maps of homorphisms between strongly connected graphs and
that of constant-to-one and onto homomorphisms of irreducible subshifts of finite
type. We determine constructively, up to topological conjugacy, the subshifts of
finite type which are constant-to-one extensions of a given irreducible subshift of
finite type. We give an invariant for constant-to-one and onto homomorphisms of
irreducible subshifts of finite type.

0. Introduction

A homomorphism between graphs (the word 'graph' means 'directed graph'
throughout this paper), naturally induces a mapping between the bisequence spaces
over the graphs, which is called the global map of the homomorphism. The
bisequence spaces fl(G) over graphs G with the shift homeomorphisms a on them
constitute a class of symbolic dynamical systems (d(G), <T) called subshifts of finite
type (or topological Markov chains) and hence the global map of a homomorphism
of graphs is a homomorphism of subshifts of finite type. The converse of this is
almost valid by the theorem of Curtis, Hedlund and Lyndon [8]. Therefore, many
properties of the global maps of homomorphisms of graphs can straightforwardly
be interpreted as those of homomorphisms of subshifts of finite type, so that the
study of the global maps of homomorphisms of graphs provides useful combinatorial
approaches to that of homomorphisms of subshifts of finite type (cf. [17]). In fact,
in [1] and others, a notion similar to that of a homomorphism of graphs was used
as a one-block map together with other graph theoretical notions for the study of
homomorphisms of subshifts of finite type.

On the other hand, the global maps of homomorphisms of graphs and homomorph-
isms of subshifts of finite type can be considered as a new area of graph theory
which investigates relations between graphs, especially in connection with the
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spectral properties of the adjacency matrices of graphs. In fact, [17] treated this,
and moreover the results in the classification theories for subshifts of finite type of
[21], [18], and [1] and the results on homomorphisms of subshifts of finite type of
[13] and [10] can be interpreted as results in graph theory concerning the above area.

In this paper, we introduce the concepts of 'induced regular homomorphism' and
'induced backward regular homomorphism' which are associated with every
homomorphism between strongly connected graphs whose global map is finite-to-
one and onto. Using them we study constant-to-one and onto global maps of
homomorphisms between strongly connected graphs and constant-to-one and onto
homomorphisms of irreducible subshifts of finite type. (The term 'constant-to-one'
means 'fc-to-one for some k\) We give some necessary and sufficient conditions for
the global map of a homomorphism between strongly connected graphs to be
constant-to-one and onto, one of which immediately gives a structure result for
constant-to-one and onto homomorphisms of irreducible subshifts of finite type
(corollary 6.4). Using this we obtain our main theorem (theorem 7.3) which
determines constructively, up to topological conjugacy, the subshifts of finite type
which are constant-to-one extensions of a given irreducible subshift of finite type
(that is, the subshifts of finite type such that there are constant-to-one and onto
homomorphisms from them to a given irreducible subshift of finite type). It is also
shown that if there exists a constant-to-one and onto homomorphism from a subshift
of finite type (d(Gi), crx) to an irreducible subshift of finite type (O(G2), o-2), then
the elementary divisors not divisible by A (the indeterminate) of the adjacency
matrix of G2 are contained in the elementary divisors of the adjacency matrix of Gx.

Many extended notions, techniques and results of those in [8] appear in this
paper; the reader is assumed to be familiar with [8].

Many statements of the theorems, propositions, and lemmas after § 2 contain
second versions. But proofs will be given only for the first versions because the
proofs of the second versions are similar.

This work was done when the author was at the Research Institute of Electrical
Communication, Tohoku University.

1. Background

A graph (directed graph with labelled points and labelled arcs) G is defined to be
a triple (P, A, £) where P is a finite set of elements called points, A is a finite set
of elements called arcs and £ is a mapping of A into P~xP.lt ((a) = (u, v) for a e A

and u, veP, then u and v are the initial endpoint of a and the terminal endpoint

of a, respectively, which are denoted by i(a) and t(a), respectively.
A sequence x = ax • • • ap (p s 1) with at e A, i = 1 , . . . , p, is a path of length p in

G i f

t(a ,) = i(a ,+ 1) for / = 1 , . . . , p — 1 .

We call i(aj) and t(ap) the initial endpoint of x and the terminal endpoint of x,

respectively. Every point u of G is a path of length 0 in G whose initial and terminal
endpoint is u. For any path x in G, we denote by i(x) and t(x) the initial endpoint
of x and the terminal endpoint of x, respectively, and if i{x) = u and t(x) = v, then
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we often say that x goes from u to v. The set of all paths in G is denoted by U(G).

The set of all paths of length p > 0 in G is denoted by II(p)(G).

Standing hypothesis. Throughout the remainder of this paper, we assume that a
graph has at least one point and for each point u, there exists at least one arc going
to u and at least one arc going from u.

Let Z be the set of integers. Let G = (P, A, £) be a graph. A mapping a: Z -*• A is
a bisequence over G if

t(a(/))=i(a(i+l)) forallieZ.

Let O(G) denote the set of all bisequences over G. If a e O(G) and i e Z, then a(i)

will often be denoted by a,. For aefl(G) and i,jeZ with i</, let

or[i ,;] = atai+1 • • • af.

Clearly a[i,j]eUUi+l\G). We define a metric d on H(G) as follows: let a,/3e

d(a, j8)=0

d(a,y3) = (l

where

With this metric, fi(G) is compact.
Let Gx = (P, A, d) and G2 = (Q, B, £2) be graphs. A homomorphism of G[ into

G2 is a pair (ft, <£) of mappings h.A^B and 4>:P^Q such that for any aeA, if
fi(a) = («, u) with u,veP, then

By our standing hypothesis for graphs, the homomorphisms (ft, <f>) of GY into G2

is uniquely determined by ft. Therefore, we say that ft is a homomorphism of Gx

into G2 and we denote by <f>h the unique mapping <f> such that (ft, </>) is a homomorph-
ism of G] into G2.

A homomorphism h.A -> B of a graph G] = (F, A, £1) into a graph G2 = (Q, B, ^2)
is naturally extended to a mapping

That is, we define ft*:Il(G1)^n(G2) as follows: for each xelKG!), if the length
of x is 0, i.e. x is a point of G1; then h*(x) = <f>h(x), and if x = ay • • • ap (p> 1)
with a,r e A, i = 1 , . . . , p, then h*(x) = h{ax) • • • h(ap). The mapping ft* is called the
extension of ft. Another mapping is naturally induced by ft. We define

as follows: for o 6 f^GO, ftoo(a) = j8, where 0, = ft(a,) for all ie Z. We call hx the
global map of ft. A graph G = (P, A, f) is strongly connected if for any u, veP,

there exists a path going from u to v.

For a positive integer k, a mapping f:X-> Y is k-to-one if |/~1(y)| = fc for all
y e /(X). A mapping/: X -» Y is constant-to-one if there exists a positive integer k such
that / is k-to-one; uniformly finite-to-one if there exists a positive integer fc such that

\ \ It loi all y e Y; and Jmrte-to-one if i n
https://doi.org/10.1017/S0143385700002042 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002042


390 M. Nasu

Let h be a homomorphism of a graph Gx into a graph G2. Two paths JC and y

in Gj are indistinguishable by h if

i(x) = i(y), t(x) = t(y), and h*(x) = h*{y).

The following results are found in [17]. Similar results also appear in [1].

PROPOSITION 1.1. Let h be a homomorphism of a strongly connected graph Gt into
a graph G2. Then the following statements are equivalent.

(1) No two distinct paths in Gt are indistinguishable by h.
(2) h* is uniformly finite-to-one.

(3) hx, is uniformly finite-to-one.

(4) hvo is finite-to-one.

PROPOSITION 1.2. For any homomorphism h of a graph Gx into a graph G2, h* is

onto iff haz is onto.

For a graph G, we denote by M(G) the adjacency matrix of G (i.e. if G has n
points « ! , . . . , un, then M(G) is the square matrix (mjy) of order n such that mi7 is
the number of arcs going from M, to My). Since M(G) is a non-negative matrix, by
the Perron-Frobenius Theorem, M(G) has the non-negative characteristic value
that the moduli of all the other characteristic values do not exceed (cf. [6, Vol.
II]). We denote by r(G) that 'maximal' characteristic value of M{G).

The following result is found in [17]. In view of the above propositions and the
facts stated later in this section, it is essentially the same as the well-known result
on symbolic flows (see, e.g., [1]) that a finite-to-one and onto homomorphism (of
symbolic flows) between subshifts of finite type preserves topological entropy.

PROPOSITION 1.3. If there is a homomorphism h of a graph Gj into a graph G2 with

h* uniformly finite-to-one and onto, then riGi)^ r(G2).

In [17], a stronger result has been given. That is, it has been proved there that with
the same condition as in proposition 1.3, not only r{Gl) = r(G2) but also the
characteristic polynomial of M(G2) divides that of M{GX). Furthermore, Kitchens
([10]) has given a still stronger result. He has proved that if Gx and G2 are strongly
connected graphs and MiGi) and M(G2) are 0-1 matrices and if there is a
homomorphism h of Gx into G2 with hx finite-to-one and onto, then the block of
the Jordan form of M(G2) is a principal submatrix of the Jordan form of M(GX).

The condition that M{GX) and M{G2) are 0-1 matrices can be eliminated.
The following result has been proved in [17] using a graph-theoretical method.

In view of propositions 1.1 and 1.2, it can also follow from a result in [4].

THEOREM 1.4. Let Gx and G2 be two strongly connected graphs with r(G\) — r(G2).
Then for any homomorphism h of Gt into G2, h* is uniformly finite-to-one iff h* is
onto.

Let <jj and G2 be strongly connected graphs and Jet h be a homomorphism of Gx

into G2. Then, by the above propositions and theorem 1.4, we have many equivalent

https://doi.org/10.1017/S0143385700002042 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002042


Global maps of homomorphisms of graphs 391

statements; the following are several of them.
(1) r(Gt) = r(G2) and h* is onto.
(2) h* is uniformly finite-to-one and onto.
(3) hx is finite-to-one and onto.
(4) h* is onto and there exist no two distinct paths which are indistinguishable

by h.

(5) r{Gx) = r(G2) and there exist no two distinct paths which are indistinguish-
able by h.

We will use (1) as a representative of these and the other equivalent statements in
most statements of conditions in our results. Moreover the equivalence of them will
be used frequently without reference.

Let G = (P, A, C) be a graph. For any non-negative integer p, we define a graph
L(P\G) as follows: L(0)(G) = G. For p > l , L(p)(G) = (II(p)(G), n<p+1>(G), £<p)),
where £(p\ax • • • ap+l) = (al • • • a,, a2 • • • ap+l) for a , • • • ap + 1 e I I < p + 1 ) ( G ) with

a, e A, i = 1, . . . , /?+1. We call Lip)(G) the path graph of length p of G. (LW(G)

is usually known as the line digraph of G (cf. [7]) or the adjoint of G (cf. [2]).)
Essentially the same notion as L(P){G) was also used for 'higher block system' of
[1].) Clearly, if G is strongly connected, then L(p)(G) is strongly connected for all
/7>0. For any integers p and q with p > ^ > l , w e define a mapping

as follows. For any a^ • • • apeI1<P>(G) with a, e A,

Then clearly hGiPq is a homomorphism of L(p~1)(G) into G and (hG^q )* is uniformly
finite-to-one and onto. Hence by proposition 1.3,

Furthermore {ho^x, is a homeomorphism of fl(L(p~1)(G)) onto fl(G).
Let A be a finite non-empty set (of symbols). Let G0(A) be the graph defined by

where £A(a) = (A, A) for all aeA. Then G0(A) is a strongly connected graph having
only one point A and each element of A is an arc (loop) going from A to itself.
Clearly n(G0(A)) is the set of all finite sequences of elements of A and

Let ilA = Az. Each element of ilA is a bisequence over A. Of course, ftA is a
compact metric space with the metric defined before. The homeomorphism cr: ClA -»
fiA defined by

(a-(a))i = ai+l, aeClA, ieZ,

is called the shift. The dynamical system (ilA, a-) is called the full shift system over
A. Let X be a closed non-empty subset of ilA such that cr~l(X) = X. The dynamical
system (X, a-) is called a subdynamical system of (ftA, <r) or a symbolic flow over
A. (For simplicity, we denote cr\X by <7.)

https://doi.org/10.1017/S0143385700002042 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002042


392 M. Nasu

Let G = (P, A, £) be a graph. Then (£1(G), <r) is a subdynamical system of (fiA, o-).

A symbolic flow of this type is called a subshift of finite type, (cf. [21] and [19]). If

G is strongly connected, then (il(G), a) is an irreducible subshift of finite type. (Cf.

[3]. Note that G is strongly connected iff the adjacency matrix M{G) of G is

irreducible.)

Let (X, o-{) and (Y,o-2) be two symbolic flows. A homomorphism ir:(X, o^)-*

(Y, o-2) is a continuous mapping of X into Y such that TTO-X = O T̂T. We say that

(X, aY) and (Y, <r2) are topologically conjugate if there exists an isomorphism of

(X, crj onto (y, o-2).

Clearly global maps of homomorphisms of graphs are homomorphisms of symbolic

flows. The converse is almost valid.

Let G1 = (P, A, £i) and G2 = (Q, B, £2) be two graphs and let p be a positive

integer. A mapping /:II (p>(Gi)-»B is an admissible p-block map if for any

a1 • • • ap+l e n ( p + 1 ) ( G i ) w i t h au..., ap+l e A ,

Corresponding to any admissible p-block map / : n (p )(Gi) -» B, we define a mapping

U(a) = p where pi=f(ar--ai+p-1)

for all i eZ. Clearly an admissible 1-block map / is a homomorphism of G1 into

G2 and /„ is its global map. The well-known theorem of Curtis, Hedlund & Lyndon

[8] for homomorphisms of symbolic flows (as pointed out by Klein [12]) implies

the following.

THEOREM 1.5. (Curtis, Hedlund & Lyndon) Let Gx and G2 be graphs. Then a

mapping 7r:fl(G1)-»ft(G2) is a homomorphism of {Cl(Gx), o-J into (fl(G2),p2) iff

there exist integers p > l and k and an admissible p-block map

such that

The following, which appears in [17], is a graph-theoretical interpretation of the

above theorem.

COROLLARY 1.6. Let Gx and G2 be graphs. Then a mapping TT:VI(GI)-^Q.(G2) is

a homomorphism of (O(Gj), o-j) into (il(G2), o-2) iff there exist integers p and q with

p > ^ > 1 and a homomorphism h of L(p~l){Gl) into G2 such that

We remark that for a graph G and integers p and q with p>q>\, (hG,P,q)oo is an

isomorphism of (n(L ( p - 1 )(G)), a') onto (Q.(G), a).

2. Regular homomorphisms and biregular homomorphisms

A homomorphism h of a graph Gl into a graph G2 is regular [backward-regular

(abbreviated to b-regular)] if for each point u of Gx and for each arc b going from
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[to] <t>h{u), there exists exactly one arc a going from [to] u with h(a) = b. The same
notions appear in [1] as 'right-resolving' ['left-resolving'] together with the following.

PROPOSITION 2.1. If h is a regular [b-regular] homomorphism of a graph Gy into a

strongly connected graph G2, then h* and hoc are uniformly finite-to-one and onto

and r(Gx) = r(G2).

A homomorphism h is biregular if h is both regular and b-regular.

PROPOSITION 2.2. Let h be a biregular homomorphism of a graph Gx = (P, A, C\)

into a strongly connected graph G2~(Q, B, £2). Then h* and hx are \P\/\Q\-to-one

and onto.

Proof. By proposition 2.1, h* and hx are onto. Since h is regular, it follows that

\{h*)~\y)\ = l ^ 1 (i(y))| for all y eU(G2).

Since h is b-regular, it also follows that

\(h*)~\y)\ = \4>ll (t(y))| for all y e II(G2).

Let Vi, v2e Q. Since G2 is strongly connected, there exists a path y in G2 going
from Vi to v2. Hence, by the above,

Thus, for all u e Q, Ifa1 (v)\ = \P\/\Q\, and hence for all y e U(G2),

\(h*rl(y)\ = \

Thus h* is |f>|/|Q|-to-one.
For each ^

for some sufficiently large integer isO. Hence |/ii1(^)]<|/J |/ |O|. Thus it suffices
to show that for each /? e ft(G2), there exist at least |P|/|O| bisequences a such that
h<x>(a) = /3. This is proved in a similar way to that used in the proof of theorem 6.7
of Hedlund [8]. •

For a graph G, we call a graph Gx such that there exists a biregular homomorphism
A of Gl into G a biregular extension of G. Given a strongly connected graph G, it
is easy to determine all biregular extensions Gj and biregular homomorphisms h
of Gx into G.

Let ft be a biregular homomorphism of a graph Gj = (P, A, £,) into a strongly
connected graph G2 = (Q, B, £2). Since h is regular, for each b e B, we can define
a mapping

as follows. For each u e ^ ' ^ i ) ) , define //.(,(«) = t(a), where a is the unique arc
of Gi such that i(a) = u and ft(a) = b. Since h is b-regular, it follows that /xfc is a
bijection. Since G2 is strongly connected, by proposition 2.2 there exists a positive
integer k such that \(f>^1 (v)\ — k for all veQ. Thus for each b € B, fib is a bijection
of a fc-point set onto a ifc-point set.
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Let the adjacency matrix M(G2) of G2 be (miy). Then it is easy to see that the
adjacency matrix of Gt can be written in the form

IMU ••• Mlq

Mql • • • Mqq

where q = \Q\ and My is the square matrix of order k obtained by summing the my

permutation matrices corresponding to the nbs such that fc's are the arcs of G2

going from point ie Q to point ye Q. (If my = 0, then Mtj is the zero-matrix of
order k.)

Conversely, if we are given an assignment of some permutation fib on { 1 , . . . , k}
to each arc beB of a strongly connected graph G2 = (Q, B, £2), then we can
straightforwardly obtain a biregular extension of G2 and a biregular homomorphism
h of Gi into G2. (Let the set of points of G^ be {(/, j) \ i e Q, 1 < y'< k} and for each
k B , make k arcs abj, j = 1 , . . . , k, of Gx such that

),fb(j)) and

Thus we have the following proposition.

PROPOSITION 2.3. Let G = (Q, B, g) be a strongly connected graph with \Q\ = q and
= {mij). Then Gx is a biregular extension of G iff for some positive integer

k, M(Gr) is written as a square matrix of order qk of the form

M{Gl) =

Mlq

Mqq

where My is the sum of some miy permutation matrices of order k.

A rectangular 0-1 matrix with non-zero columns and with exactly one 1 in each
row, is called an amalgamation matrix.

Let h be a homomorphism of a graph Gx with m points, u t , . . . , um, into a graph
G2 with n points vu...,vn, and let c/>h be onto. Let R be the m x n matrix with
R = (rtj) where rti = \ if <j>h(Ui) = Vj and otherwise ^ = 0 for i = l,... ,m and y =

1 , . . . , n. Clearly R is an amalgamation matrix. We call R the amalgamation matrix

associated with (f>h.

A similar result to the following appears in [18].

PROPOSITION 2.4. Let Gx and G2 be graphs. Ifh is a regular [b-regular] homomorph-

ism of d into G2, then M(G1)R = RM(G2) [JR'M(G1) = M(G2)i?1], where R is

the amalgamation matrix associated with (j>h. [R' denotes the transpose of R.] Con-

versely if R is an amalgamation matrix satisfying M(Gi)R = RM(G2) [R'M(Gi) =
M(G2)R'], then there exists a regular [b-regular] homomorphism h of Gx into G2

such that R is the amalgamation matrix associated with 4>h.

Proof. Let G1 = (P,A, A) and G2 = (O, B, £2) with P = {uu... ,um) and 0 =
{vi,..., vn}. For any 1 s i,y< m, let A;/ be the set of arcs of G\ going from H, to
My. For any 1 s k, I < n, let Bkl be the set of arcs of G2 going from vk to vt.
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Let h be a regular homomorphism of Gi into G2 and let R be the amalgamation
matrix associated with <j>h. Since h is a regular homomorphism, for any i,j with
1 < i < m and 1 < / < n, we have

where fc, is the index such that <t>h(iij) = vk. Since the left-hand-side of the above
equation equals the (i, j) entry of M(Gt)R and the right-hand-side equals the (i, j)
entry of RM(G2), we have M(G1)R = RM(G2).

Conversely, assume that R = (ri;-) is an amalgamation matrix such that M(Gx)R =

RM(G2). Let <j>:P^>Q be the mapping such that r01 = 1 iff </>(".) = u;, (i =

l , . . . , m , ; = l , . . . , n ) . Then since MCGOi? = i?M(G2), for any i , /with l < j < m

and 1 < / < n, we have

Z, KHBfcJ

where fe, is the index such that $(«;) = vk. For any i,/' with 1 < i< m and 1 < / < n,
let

>V U Au^Bkii

be any bijection. Let h: A -* B be defined as follows: h(a) = hjj(a) if a e U„,£*-'(«) -^a
for i = 1 , . . . , m and y = 1 , . . . , n. It is easy to see that h is a regular homomorphism
of Gi into G2 with <f>h = <f>. •

PROPOSITION 2.5. Lef G! and G2 fte graphs such that Gx is a biregular extension of

G2. Then the elementary divisors of M(G2) is contained in the elementary divisors

ofM(Gx).

Proof. By proposition 2.4, there is an amalgamation matrix R such that

M(G1)R=RM{G2) and R'M(G1)=M(G2)R'.

Since R is an amalgamation matrix, the columns of R are non-zero and any distinct
two of them are orthogonal. Hence if R is a p x q matrix, we can choose apx(p-q)

matrix S with non-zero columns such that any two distinct columns of the pxp

matrix T of the form (R S) are orthogonal. That is, R'S = 0, and T'T and S'S

together with R'R are diagonal matrices. Therefore, since MiGJR - RM(G2) and
R'M{Gl) = M{G2)R\ it follows that

^ S)

= jR'MiGJR
( XS'MiGJR

((R'R)-1 0 \/R'RM(G2) M(G2)R'S\

\ 0 (S'S)-7\S'i?M(G2) S'MiGJSj

JM(G2) 0\
\ 0 Mj
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where M^iS'S) ^'MiGJS. Thus the result follows. (See [6, Vol. I, Chap. VI,
theorem 5.) •

3. A maximal compatible set is a minimal complete set

Let Gj = (P, A, Ci) and G2 — (Q, B, £2) be two graphs and let n be a homomorphism
of Gx into G2. Let [ J c P and let yeII(G2). Define

and

Ch(y,U) = {i(x)\xeU(G1), t(x)eU, h*(x) = y}.

For u e P and yeII(G2), we denote Ch({u}, y) [Ch(y,{«})] by Ch(u, y) [Ch(y, «)].
A subset C/ of P is called a compatible set [a backward-compatible (abbreviated to
b-compatible) set] forhif U = Ch(u,y)[U = Ch(y, u)] for some ueP and y 6 n(G2).
A subset U of P is called a complete set [a backward-complete (abbreviated to
b-complete) set] for h, if t h e r e exis ts veQ such t h a t U<= <j>~^(v) a n d C h ( U , y) # 0

[C,,(y, LO * 0 ] for all y € II(G2) with i(y) = v [t(y) = »].

LEMMA 3.1. Let Gx and G2 be graphs and let h be a homomorphism of Gx into G2.
Ifh* is onto, then there exists a compatible [b-compatible] set for h which is a complete

[b-complete] set for h.

Proof. Assume that n* is onto but that any compatible set for h is not a complete
set for n. Let v be a point of G2. Since n* is onto, <f>~^1 (v) is a complete set for h.

Let (f>h1(v)={i4i,..., up}. Since a compatible set {uj is not a complete set, there
exists yi e n(G2) such that i(yx) = u and C(uu yt) = 0 . (If h is understood, we shall
often omit 'for h' and the suffix n of Ch(u, y).) Since a compatible set C(u2, y^ is
not a complete set, there exists y2eII(G2) such that i(y2) = t(yi) and

C(M2, yiy2) = C(C(M2, y,), y2) = 0 .

Proceeding in this way, we have yi,...,yp in n(G2) such that yt • • • yp e II(G2) and

C(«,, yi • • • y,) = 0 for J = 1 , . . . , p.

Hence we have

which is a contradiction. •

THEOREM 3.2. Let G1 = (P,A,d) and G2 = (Q,B,(2) be two strongly connected

graphs with r(Gx) = r(G2). Let h be a homomorphism of G, into G2 with h* onto.

Then every maximal compatible [b-compatible] set for h is a minimal complete

[b-complete] set for h.

Proof. Let U be a maximal compatible set for n. Then there exists ueP and
y e II(G2) such that U = C(u, y). By lemma 3.1, there exists a complete set written
as C(v, z) with veP and z e II(G2). Let v' e C{v, z). Since Gx is strongly connected,
there exists a path x going from «' to H. Clearly

C{v,zh*(x)y)^U.
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Since U is a maximal compatible set, U = C(v, zh*(x)y). Since C(v, z) is a complete
set,

U = C(C(v,z),h*(x)y).

is a complete set.
Assume that there exists seU such that U' = U-{s} is a complete set for h. Let

C(f, w) be a maximal compatible set with t e P and w € II(G2). Since G] is strongly
connected, there exists a path x' in Gi going from s to t. Clearly we have

C(t, w) <= C(s, h*(x')w) <= C(I/, ft*(x')w).

Since C/ is a compatible set, C(U, h*(x')w) is a compatible set. Since C(t, w) is a
maximal compatible set, it follows that C(f, w) = C(U, h*(x')w), so that

C(s, h*(x') w) = C( U, h*(x') w).

Since U' is a complete set, C(C/',/t*(;t')»v)5*0. Hence there exist s'e U' and
peC{U', h*(x')w) and a path x^ going from s' to p with

Since C ( ( / ' , I I * ( I » C C ( 1 / , / I * ( X » = C ( S , / I * ( J » , peC(s,h*(x')w). Hence
there exists a path x2 going from s to p with

fc*(x2) = &*(*') w.

Since U is a compatible set and s, s' e [/, there exist two paths x3 and x4 in Gj such
that

i(x3) = i(x4), t(x3) = s', t{x4) = s and h*(x3) = h*(x4).

Hence x3xt and J:4JC2 are two distinct paths in Gj which are indistinguishable by h.
This is a contradiction (see § 1). Thus we conclude that U is a minimal complete
set. •

As a corollary of the above theorem, we have the following basic result, which can
be viewed as a generalization of a result of L. R. Welch, [8, theorem 14.4]. (Cf.
[14, lemma 2].)

COROLLARY 3.3. Let d and G2 be two strongly connected graphs with r(Gi) = r( G2).
Let h be a homomorphism of Gx into G2 with h* onto. If U is a maximal compatible

[b-compatible] set for h, then for any path y in G2 with i(y) e<j>h(U) [t(y) e <f>h( [/)],
Ch(U, y) [Ch(y, [/)] is a maximal compatible [b-compatible] set for h.

Proof. Let U be a maximal compatible set for h. Let y be a path in G2 with
i(y)G <}>h(U). From theorem 3.2, U is a complete set. Hence C(U, y) is a complete
set. Since U is a compatible set, C( U, y) is a compatible set. Let V be a maximal
compatible set such that V=>C(C/, y). Then from theorem 3.2, V is a minimal
complete set. Therefore since C(U, y) is a complete set, we have V = C(U, y). Thus
C( U, y) is a maximal compatible set. •

4. Induced regular and b-regular homomorphisms

By virtue of corollary 3.3, we can introduce the notions of 'induced regular
homomorphism' and 'induced b-regular homomorphism' which are associated with
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every homomorphism h between two strongly connected graphs such that h* is 

uniformly finite-to-one and onto. (These are a generalization of 'right A-bundle-

graph' and 'left A-bundle-graph' of [14].) 

Throughout this section, we assume that G, = (P, A, C\) and G 2 = {O, B, £2) are 

two strongly connected graphs with r(G1) = r{G2) and h is a homomorphism of Gx 

into G2 such that h* is onto. 

Denote by ^>hV^>h\ the set of all maximal compatible [b-compatible] sets for h. 

For any U<= P and y e Yl(G2), we define 

B , (U, y)={xe n(G.) | i (x ) e U, h*(x) = y} 

and 

B „ ( y, U)={xen(Gj)|t(x)e U, h*(x) = y}. 

W e define the bundlegraph induced by h as the graph 

where % h is the set of all pairs of the form (U, Bh(U, b)) where Ue
c

€h and be B 

with i(b) e <f>h(U), and Ch- -> x is defined as follows: 

£h((U,Bh(U,b))) = (U,Ch(U,b)) 

for all t / € <€h and with i(ft)e <j>h(U). By corollary 3.3, C h(L7, b)e <€h for any 

Ue^h and k B with i ( f c ) e ^ ( [ / ) . Hence Ch is well-defined. Furthermore, we 

define a mapping h:%h>B as follows: 

£ ( ( [ / , B„(£ /,Z>))) = fc 

for all t / e <€h and k B with i ( 6 ) e 0 h ( C / ) . 

Similarly, the backward bundlegraph (abbreviated to bbundlegraph) induced 

by h is defined to be the graph 

^h =

 C#h> %h, Ch) 

where % h is the set of all pairs of the form (Bh(b, U), U) where Ue % h and beB 

with t(b)e<f>h{U) and Ch- %h -» ^h x <?h is defined as follows: 

C~h((Bh(b,U),U)) = (Ch(b,U),U) 

for all Ue^h and k B with t(b) e_<ph(U). A l so , by virtue of corollary 3.3, Ch is 

well-defined. W e define a mapping h:%h>B as follows: 

£ ((B„(ft , t / ) , lO) = & 

for all Ue <fh and k B with t(fe)e ^ h ( f / ) . 

PROPOSITION 4 .1 . 77te bundlegraph <8h [bbundlegraph is strongly connected 

and the mapping h[h] is a regular [bregular] homomorphism of
 (

&h['&h] into G2. 

Proof. Let U, Ve<€h. If C(U, z) = V for z = bx • • • b„eU(G2) with bu...,bpeB, 

then there exists a path Et • • • Ep in <@h such that 

£ , = ( t / „B h (C / , , f t , ) ) for i = l p 

where Ui = U, Ui+i = C( Uh bt) for i = 1 , . . . , p and Up+1 = V. Hence to prove that 

is strongly connected, it suffices to show that there exists a path z in G2 such 

that C(U, z) = V. Since V is a compatible set, there exists veP and y e n(G 2) such 
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that V = C(v,y). Since G, is strongly connected, there exists a path x such that
i(x) e U and t(x) = v. Clearly,

C(U,h*(x)y)=>V.

Since C(U, h*(x)y) is a compatible set and V is a maximal compatible set, we have

C(U,h*(x)y)=V.

The remainder is clear from the construction. •

Remark 4.2. Each of (h)* and (h)* is uniformly finite-to-one and onto, and
r(%) = r(%) = r(Gz). This follows from propositions 4.1 and 2.1.

We call h[h] the induced regular [b-regular] homomorphism of h.

It follows from corollary 3.3 that each subset of paths in Gx of the form Bh( U, y)

[Bh(y, U)] where I/e «„ [ l / e «„] and yeII(G2) with i(y)e *h( l / ) [t(y)e </>„([/)],
is non-empty. To each path Z of length p 2 0 in %[%] corresponds the non-empty
subset of paths Bh(U, y) [Bh(y, U)] of length p in d where i(Z) = (7 [t(Z) = U]

and y = h{Z) [y = £(Z)]. It is called the bundle of Z and is denoted by B(Z).
Clearly each subset of paths in Gj of the form Bh(U, y)[Bh(y, U)] where Ue

^[Ue <%h] and y e n(p)(G2) with i(y) e<f>h(U) [t(y) e >̂h( 17)], is the bundle of some
path of length p in %[^h], and is also called a bundle [backward bundle, abbreviated
to b-bundle] of length p for h.

For refi(^h)(Teft(§h)] and aeniGJ, we say that T contains a if
for all i e Z.

LEMMA 4.3. For each TeHCS,,) [re(!(#,,)], ^ere exists a e n ( G , ) iuch that T
contains a, and for each aefi(G,), there exists T&O,(<Sh) [TGH(%)] such that Y

contains a.

Proof. Let Fe f l ( ^ ) . For each non-negative integer k, there exists an element xk

of B(r[-)t, k]), and there exists a^'eOCGj) such that

a(k\-k,k] = xk

(because any point of Gx has an arc going from it and an arc going to it by our
standing hypothesis for graphs). Since O(Gj) is a compact metric space, there exists
a sequence 0 ^ fe0- kx < • • • of integers and a € Vt{Gx) such that

lim a^ = a.

It is easy to see that F contains a.

Conversely, let a e il(Gi). Let k be any non-negative integer. Let Uk be a maximal
compatible set for h such that Uk si(a[-k, k]). Since h is regular, there exists
ZkeIl(2k+1)(<Sh) going from Uk with h*(Zk) = h*(a[-k,k]). Clearly B(Zk)s

a[-k, k]. There exists T(k)G ft(^h) such that T{k\~k, k] = Zk (because, by proposi-
tion 4.1, any point of % has an arc going from it and an arc going to it). Since
il(%) is a compact metric space, there exists a sequence 0^ko<ki<- • • oi integers
and r e f l ( ^ ) such that

It is also easy to see that F contains a. •
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5. Mergible homomorphisms

For paths x and y in a graph G, y is an initial subpath [a terminal subpath] of JC, if
there exists a path w in G such that x = yw [x = wy]. (Here we assume that
i(x)x = xt(x) = x for each path x in G.)

Let /i be a homomorphism of a graph Gj into a graph G2. Let p be a non-negative
integer. We say that h is p bundle-mergible [p backward-bundle-mergible (abbrevi-
ated to p b-bundle-mergible)] if for any two paths x1 and x2 of length / > p in G1;

if i(*i) = i(x2) [t(*i) = t(x2)] and JI*(XJ) = h*{x2), then Â  and *2 have the same initial
[terminal] subpath of length / - p. We say that h is mergible, if for some non-negative
integers p and q, h is both p bundle-mergible and q b-bundle-mergible. (The notion
of 'p bundle-[b-bundle]-mergible' corresponds to 'nonexistence of a right [left]
/-branch of length p' in [8].)

Remark 5.1. Let Gi and G2 be strongly connected graphs with r(Gi) = r(G2), and
let / ibea homomorphism of Gi into G2. Then h is p bundle-mergible [p b-bundle-
mergible] iff h* is onto and each bundle [b-bundle] X of length / > p for It, all paths
in X have the same initial [terminal] subpath of length I —p.

Proof. If h is p bundle-mergible, then /i* is onto because no two distinct paths in
Gx are indistinguishable by h. Hence h* is onto (see § 1). The proof of the remainder
is straightforward. •

Remark 5.2. Let G, and G2 be two strongly connected graphs with r(Gi) = r{G2)

and let h be a homomorphism of Gt into G2. Then h is 0 bundle-mergible [0
b-bundle-mergible] iff h is regular [b-regular].

Proof. Assume that h is 0 bundle-mergible. Then h* is onto by remark 5.1. Since
h is 0 bundle-mergible, it follows that for each point u of G2, {u} is a maximal
compatible set for h, and for each arc b with i(b) = <f>h(u), the arc a such that
i(a) = w and fr(a) = b, is unique; such an arc a always exists because {u} is a complete
set for h by theorem 3.2. Thus h is regular. The converse is clear. •

The terminology of p bundle-mergible [p b-bundle-mergible] is based on remark
5.1. Another restatement of the property of being p bundle-mergible [p b-bundle-
mergible], is given as the following lemma. (This can be considered as a generalization
of [8, theorem 16.9].)

LEMMA 5.3. Let Gj and G2 be two strongly connected graphs with r(Gi) = r(G2)
and let h be a homomorphism of Gx into G2. Let p be a non-negative integer. Then
h is p bundle-mergible [p b-bundle-mergible] iff h* is onto and for each point u of
Gi and each path y of length at least p in G2 with \{y) = <)>h{u) [t(y) = <f>h(u)],
Ch(u, y) [Ch(y, «)] is either empty or a maximal compatible [b-compatible] set.

Proof. Assume that h is p bundle-mergible. By remark 5.1, h* is onto. Let u be a
point of Gj and let y be a path of length / > p in G2 with i(y) = <l>h(u). Suppose
that C(M, y ) ^ 0 . Let U be a maximal compatible set which contains u. Then by
corollary 3.3, C(U, y) is a maximal compatible set. Therefore it suffices to show
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Clearly C(M, y) <= C( U, y). Let v be an arbitrary element of C( U, y). Then there

exists Xi e II(Gi) such that

i (x , )e [ / , t(xi) = «, and h*(xi) = y.

Since C(u, y) ^ 0 , there exists x2e II(Gi) such that i(x2) = w and h*(x2) = y. Clearly

Xj, x2 e Bh( I/, y). Since /i is p bundle-mergible, all paths in Bh( U, y) have the same

initial subpath of length l—p (remark 5.1). Hence

so that veC(u,y). Hence we have C(u, y) =>C(l/, y). Thus C(K, y) = C(U, y).

proof of the converse is omitted (because this will not be used in this paper). •

LEMMA 5.4. Let Gx and G2 be two strongly connected graphs with r(G1) = r(G2),

and let h be a homomorphism of Gx into G2. If h is p bundle-mergible and q

b-bundle-mergible, then the induced regular homomorphism hofh is 0 bundle-mergible

and p + q b-bundle-mergible.

Proof. Since h is regular, h is 0 bundle-mergible (remark 5.2). Let Zx and Z 2 be

paths in <Sh such that X(ZX) = t(Z2), h*(Zx) = h*(Z2), and Zx and Z 2 are of length

/ with l^p + q. To show that h is p + q b-bundle mergible, we shall show that Z1

and Z 2 have the same terminal subpath of length / — (p + q). To show this, it suffices

to prove that the initial subpaths of length p + q of Zx and Z2 , say Z[p+q) and Z2
p+q)

respectively, have the same terminal endpoint, because h is regular.

Let Ui = i(Z,) and let U2 = i(Z2). Let y = h*(Zx) = h*(Z2) and write y = b1--- b,

where bi,...,bi are arcs of G2. Then

Ch(U2,b1---bp+q)=t(Z2
p+i)),

and

Let veChiU), y) = Ch{U2, y). Then there are paths xx and x2 in Gj such that

iix^eUu i(x2)eU2, t(x,) = t(x2) = v, and h*(x1) = h*(x2) = y.

Let x[q) and x2
q) be the initial subpaths of length q of *, and x2, respectively. Since

h is q b-bundle-mergible, xx and x2 have the same terminal subpath of length l-q

so that

Let s = t(x[q)) = t(x2
q)). Then C,,(5, bq+l • • • bp+q) is not empty because it contains

the terminal endpoint of the initial subpath of length p + q of xx. Since h is p

bundle-mergible, it follows from lemma 5.3 that Ch(s, bq+1 • • • bp+q) is a maximal

compatible set. Since Ux and U2 are compatible sets for h, so are Ch(Ux, bx • • • bp+q)

andC(C/ 2 , bx • • • bp+q). MoreoverCh(Uu bx • • • bp+q)andCh(U2, bx • • • bp+q) con-

tain the maximal compatible set Ch(s, bq+x • • • bp+q). Therefore

Ch(Uu bi • • • bp+q) = Ch(s, bq+l • • • bp+q) = Ch(U2, bx • • • bp+q).

Thus we have t(Z\p+q)) = t(Z2
p+<?)). D
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LEMMA 5.5. Let Gt and G2 be two strongly connected graphs with r(Gi) = r(G2)
and let h be a homomorphism of Gj into G2. / / h is p bundle-mergible [p b-bundle-
mergible] for a non-negative integerp, then there exists an admissible (p +1) -block map

such that

[̂ oo= ftco/ooO" p] andfx is one-to-one and onto [where o-:Q.(\)^il(%) is the shift].

Proof. Since h is p bundle-mergible, it follows from remark 5.1 that for each
ZeHip+l)(<§h), all paths in B(Z) have the same initial subpath of length 1. (Recall
that B(Z) is the bundle of Z (cf. § 4).) Hence we can define a block map

/:n
(p+1>

(«h)^n
(1>

(G,)

as follows. For each ZeUlp+1\'Sh), f(Z) is the initial subpath of length 1 of the
paths in B(Z). It is straightforward to see that / is an admissible (p +1)-block map
and for each F e fl(^h), /oo(F) is a unique bisequence which is contained in F. Hence
we have hx{r) = /IOOC/XJCF)) for each F e f l ( ^ ) and it suffices to show that for any
a ediG^, there exists a unique element F of ilC&h) which contains a.

Let aeClid). By lemma 4.3, there exists r e f l ( ^ ) such that F contains a.

Suppose that F' in ft(^) contains a. Let ieZ. If p = 0, then h is regular. Hence
each maximal compatible set for h consists of a single point of G,. Hence

Assume that p a l . Since i(F;_p) 3i(a^p),

t(ri_l) = Ch(i(ri-p),h*(a[i-p,i-l]

Since h is p bundle-mergible, it follows from lemma 5.3 that

is a maximal compatible set. Since t(Fj_!) is a compatible set for h, we have

t(Ti.l) = Ch(i(ai.p),h*(a[i-p, i-l])).

For the same reason,

Hence we have

Since h(ri) = h(ai) = h(r'i) and h is a regular homomorphism, we have r, = F-.
Since i was arbitrary, we have F = F'. Ill

Recently, the author learned that in [11], Kitchens has a similar result to lemma 5.5.
Let G be a graph and let n be a non-negative integer. We consider the path graph

Lln)(G) = (n(n)(G), II("+1)(G), £<n))

of length n of G (cf. § 1). For each path x of length at least n in G, we define (*)„
as follows. If x is of length n, then (*)„ = x, and if x = a1 • • • a, where / > n +1 and
au . . . , a, are arcs of G, then

(x)n = (ax • • • an+l)(a2 • • • an+2) • • • (a ( - n • • • a,).
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Then if x is a path of length / > n in G, then (*)„ is a path of length / - n in L(n)(G).

Obviously, each path in Lin)(G) is written as (x)n for some path x of length at least

n in G.

Let /t be a homomorphism of a graph Gx into a graph G2. Let n be a non-negative

integer. We define a mapping

by

/i<n)(x) = &*(*) xen ("+ 1 )(G,) .

Clearly h(n) is a homomorphism of L(n)(Gi) into L(n)(G2) and for each path x of

length at least n in G,

One readily gets the following.

LEMMA 5.6. Let h be a homomorphism of a graph Gx into a graph G2, and let n

and p be non-negative integers. If h is p bundle-mergible [p b-bundle-mergible], then

hM is a p bundle-mergible [p b-bundle-mergible] homomorphism o/L (n)(Gi) into

L(n\G2).

LEMMA 5.7. Let Gx and G2 be two strongly connected graphs with r{Gl) = r{G2)

and let h be a homomorphism of Gi into G2. Assume that h is p bundle-mergible [p

b-bundle-mergible] for a non-negative integer p. Then any two distinct maximal

compatible [b-compatible] sets for h{p) are disjoint.

Proof. First we note that Lip)(G1) and L(p)(G2) are strongly connected and

J = r(G2) = r(L(p\G2)).

From lemma 5.6, h(p) is p bundle-mergible. Let W b e a maximal compatible set

for h{p). Then since h(p) is p bundle-mergible, it follows from lemma 5.3 that there

exists a point w e U.(p)(G1) of L(p){Gi) and a path s of length p in L(p)(G2) such that

W = Cfc<p>(w,s).

(There exists z e n a " " ^ ) ) such that

We may assume that the length of z is not less than p. Let z be the terminal subpath

of length p of z. Then since hip) is p bundle-mergible, it follows from lemma 5.3 that

Put w = i(z) and put s = (h(p))*(z).)

There exists y en (2p )(G2) such that (y)p = s. It is straightforward to see that

Ch<P>(w, s) = {xe n ( p )(G,) | wx e n (2p )(G,), h*(wx) = y}.

This implies that if x e W, then we can write W = Bh({i(x)}, h*(x)). Thus we conclude

that if Wx and W2 are maximal compatible sets for h(p) and Wtn W2?
i0, then

Wx = W2. Hence any two distinct maximal compatible sets for h(p) are disjoint. •
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LEMMA 5.8. Let Gi and G2 be two strongly connected graphs and let h be a regular
homomorphism of Gx into G2- If every two distinct maximal b-compatible sets for h
are disjoint, then the induced b-regular homomorphism h is biregular.

Proof. By proposition 4.1, it suffices to show that h is regular. Let U be any point
of % (i.e. any maximal b-compatible set for h). Let v = <p/;(U) and let b be any
arc of G2 going from v. Let ueU. Then, <j>h(u) = v. Since h is regular, there exists
an arc a of Gl such that i(a) = u and h(a) = b. Let V be a maximal b-compatible
set for h which contains t(a). Let U' = Ch(b, V) and let E_=(Bh(b, V), V). Then
by definition, E is an arc of % going from U' to V with h(E) = b. Since Vst(a)
and h(a) = b,

Hence U nU' 3u. Since U and t/' are maximal b-compatible sets and U n I/' # 0 ,
it follows from the assumption of the lemma that U=U'. Thus £ is an arc of ^,
going from (7 and h(E) = b.

_ Assume that there exists an arc E' of % with E' ^ E such that i(£") = U, and
/i(£") = b. Then there exists a maximal b-compatible set V with V ^ V such that
E' = (Bh(*. V) , V) . Since Ch(b, V') = i(E') = U, there exists an arc a' of Gx such
that

i(a') = u, h(a') = b, and t(a')eK'.

Since V and V are distinct maximal b-compatible sets for h, V n V = 0 so that
a' r^ a. But this is impossible because h is regular. Thus £ is a unique arc of ^Sh

with i(£) = £/ and h(E) = b. We have proved that h is regular. •

THEOREM 5.9. Let Gx and G2 be strongly connected graphs with r(Gx) = r{G2), and

let hbea mergible homomorphism ofGl into G2. Then there exist a strongly connected

graph H, an integer p>0 , a biregular homomorphism g of H into Lip\G2) and an

isomorphism p: (f^GO, cr,) -* (il(H), cr) such that

Proof. Let G3= ^ and let gi = h. Then from proposition 4.1 and remark 4.2, G3

is a strongly connected graph with r(G3) = r(G2), and h1 is a regular homomorphism
of G3 into G2. Since h is mergible, it follows from lemma 5.4 that ht is 0 bundle-
mergible and there exists a non-negative integer p such that hx is p b-bundle-
mergible. Moreover, it follows from lemma 5.5 and theorem 1.5 that there exists
an isomorphism p of (fl(G3), o-3) onto (Cl(Gi), o )̂ such that

(h1)a0 = hxp'.

Let G4 = Lip)(G3), let G5 = L(p)(G2), and let h2 = h\p). Then G4 and G5 are strongly
connected graphs with

and h2 is a homomorphism of G4 into G5. Since hx is 0 bundle-mergible and p
b-bundle-mergible, it follows from lemma 5.6 that h2 is 0 bundle-mergible and p
b-bundle-mergible. Moreover, from lemma 5.7, any two distinct maximal b-compat-
ible sets for h2 are disjoint. Let py = {hGiP+lA)x and let p2 = (hG2tP+ll)oo (cf. § 1).
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Then pi is an isomorphism of (ft(G4), cr4) onto (fl(G3), o-3) (and p2 is an isomorphism
of (fl(G5), o-5) onto (ft(G2), tr2)) and we have

Let H = ^ 2 and let g = h2. Then, by proposition 4.1, H is a strongly connected
graph and g is a homomorphism of H into G5. Since h2 is regular (because h2 is 0
bundle-mergible (remark 5.2)) and any two distinct maximal b-compatible sets for
h2 are disjoint, it follows from lemma 5.8 that g is biregular. Since h2 is p b-bundle-
mergible, it follows from lemma 5.5 and theorem 1.5 that there exists an isomorphism
p" of (tl(H), a) onto (O(G4), o-4) such that

gco=(fc2)ccP".
Thus we have

JiooP'PiP" = p2goo.

Put p = (p'pip") \ Then p is an isomorphism of (Cl(Gi), o-Y) onto (il(H), a) and
we have

hoo = (ho2,P+1,1) <x, gx p- d

6. Characterizations of constant-to-one and onto global maps

In [8, § 9-§ 12] Hedlund describes the properties of inverses of onto endomorphisms
of full shift dynamical systems. With minor modifications in the statements and the
proofs, many of them are extended to onto global maps of homomorphisms between
strongly connected graphs whose adjacency matrices have the same characteristic
value. (Extensions of them to onto endomorphisms of irreducible subshifts of finite
type were pointed out by Coven and Paul [3], and extensions of them to finite-to-one
and onto homomorphisms between TPPD sofic systems were mentioned in [4].)
Many of Hedlund's discussions on a block map / : A" -» A, where A is a non-empty
finite set of symbols and n is a positive integer, and the mapping fx: ilA -» ClA defined
by

(fco(<*))i=f(<Xi<*i+i • • • <*i+n-i) aea(A), i e Z ,

can be interpreted naturally as discussions on the homomorphism hf of
L("-1)(G0(A)) into G0(A) defined by hf(x) =f(x), x e A", and its global map (hf)*,.

(Cf. § 1. Note that L(""1)(G0(A)) has point set A"'1 and arc set A". Hence, for
example, 'totally (« —1) -separated' in [8] for bisequences in ClA corresponds to
'point-separated' defined below for bisequences in fl(L<""1)(G0(A))).) These dis-
cussions on hf and (/i/)oo can straightforwardly be extended to any homomorphism
h of a strongly connected graph Gx into a strongly connected graph G2 with
r(G1) = r(G2), and hx.

Let G be a graph. Two bisequences a,j3e fl(G) are point-separated if i(a;) # i(/3,-)
for all i € Z.

The following lemma is proved in the same way as [8, lemma 16.7].

LEMMA 6.1. Let Gt and G2 be graphs and let h be a homomorphism of Gi into G2.
If for each p e hx(£l(Gi)), any two distinct members of h^1 ()8) are point-separated,

then h is mergible.
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Let G be a strongly connected graph. A bisequence aeil(G) is positively transitive

[negatively transitive] if for each positive integer / and each x e n ( / )(G), there exists

ieZ with j > 0 [ / e Z with / < - / +1] such that

a[i,i + l-l] = x.

A bisequence a efl(G) is bilaterally transitive if a is both positively transitive and

negatively transitive.

The result of L. R. Welch and A. M. Gleason given as theorems 11.1 and 11.2

of [8], can straightforwardly be extended to the following theorem; a similar

extension in a more general setting was stated in [5].

THEOREM 6.2. Let Gx and G2 be strongly connected graphs with r(G1) = r(G2), and

let h be a homomorphism of Gx into G2 with h* onto. Then there exists a positive

integer m(h) such that if /3 efl(G2) is bilaterally transitive, then

\h~J{fi)\ = m{h).

Furthermore, for each /3 e ft(G2),

and the set h^ ((5) contains m(h) members which are mutually point-separated.

Now we reach our first goal.

THEOREM 6.3. Let Gx and G2 be strongly connected graphs and let hbea homomorph-

ism of Gr into G2. Then the following statements are equivalent.

(1) hx is constant-to-one and onto.

(2) r(Gl) = r(G2) and for each fS e fl(G2), any two distinct members in hZ,1 (/3)

are point-separated.

(3) r(d) = r(G2) and h is mergible.

(4) h* is onto and h is mergible.

(5) There is a strongly connected graph H, an integer p > 0 , a biregular

homomorphismgofHintoLip)(G2), andanisomorphismp: (fl(G,), o^)-»(ft(H), cr)

such that /ico = (/iG2,p+i,i)cogooP-

Proof. By proposition 1.3 and theorem 6.2, (1) implies (2). By lemma 6.1, (2)

implies (3). By theorem 5.9, (3) implies (5). By proposition 2.2, (5) implies (1). If

h is mergible, then no two distinct paths in Gi are indistinguishable by h. Hence

(3) and (4) are equivalent. •

Thus we have a structure result for constant-to-one and onto homomorphisms of

irreducible subshifts of finite type.

COROLLARY 6.4. Let Gx and G2 be strongly connected graphs and let

IT: {Ct(Gi), o-1)-»(fl(G2, o-2) be a homomorphism. Then n is constant-to-one and

onto iff there exists a strongly connected graph H, an integer p > 0 , a biregular

homomorphismg of HintoL(p)(G2), andan isomorphismp: ($\{G^), a^) -»(il(H), a-)

such that

1* = ( ' lG2 ,p+l,l )<x>gocP-

Proof. This follows from theorem 6.3 and corollary 1.6 •
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We remark that there exists a finite procedure to determine whether (4) of theorem
6.3 holds or not for a given homomorphism between strongly connected graphs.
We also remark that we can obtain completely analogous results to theorems 16.1
(a theorem of O. S. Rothaus) and 16.11 in [8] for homomorphisms of irreducible
subshifts of finite type, a part of which was stated in [5] without proof.

Let G be a graph and let a, /8 e O(G). We say that a and /3 are totally ^-separated

if a and /? are point-separated. For a positive integer p, a and )6 are totally p-separated

if

a[i, i + p-l]*/3[i, i + p-l] for all iel.

For other terminology see [8].

THEOREM 6.5. Let Gt and G2 be strongly connected graphs with riGJ = r{G2). Let

p be a positive integer. Let f:U(p)(G1)^Uw(G2) be an admissible p-block map.

Then the following statements are equivalent.

(1) /a, is constant-to-one.

(2) /a, is open and onto.

(3) /co has a cross-section.

(4) For each fleQ.(G2), any two distinct members of fZ^iP) are totally

(p — 1)-separated.

Proof. Using the equivalence of (1) and (2) of theorem 6.3 and straightforwardly
modifying a part of the discussions in § 16 of [8] (see lemmas and theorems from
16.2 to 16.6 and their proofs together with a theorem of E. A. Michael), we first
have the theorem for p = 1. The general case can obviously be reduced to this. •

COROLLARY 6.6. Let Gx and G2 be two strongly connected graphs with r(Gi) = r(G2)
and let TT: (fl(G,), o-x) -* (fi(G2), o-2) be a homomorphism. The following statements
are equivalent.

(1) 77 is constant-to-one.

(2) TT is open and onto.

(3) n has a cross-section.

(4) For each /3 e ft(G2), any two distinct members of TT~x(fi) are separated.

Proof. This is proved using theorems 6.5 and 1.5 in the same way as [8, theorem

16.11]. •

Furthermore, we remark that the following generalization of [15, theorem 2] is
obtained in the same way as in [15].

THEOREM 6.7. Let Gt, G2, and G3 be strongly connected graphs with r(Gi) = r(G2) =
r(G3). Let Wl:(n(G,), <r,)-»(n(G2), tr2) and TT2:{£1{G2), <r2)-*(n(G3), tr3) be
homomorphisms. Thenifn2Tr1 is constant-to-one, each of'tt\ andir2 is constant-to-one.

1. Constant-to-one extensions of irreducible subshifts of finite type

In this section, we determine, up to topological conjugacy, the subshifts of finite
type which are constant-to-one extensions of a given irreducible subshift of finite
type. We say that (ll(Gi), o-,) is a constant-to-one extension of (fl(G2), cr2) if there
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exists a constant-to-one homomorphism of (ft(Gi), cr,) onto (fl(G2), <x2). If

(ft(Gi), o-j) is a constant-to-one extension of (fi(G2), cr2) and (O(G2), <r2) is irreduc-

ible (i.e. G2 is strongly connected), (n tG^o-j ) is not necessarily irreducible (i.e.

Gl is not necessarily strongly connected). But we do have proposition 7.1 below.

A graph G' = (/>', A', £') is a subgraph of a graph G = (P, A, £) if P' c P, A'a A,

and £ '(a) = £(a) for all a e A'. A maximal strongly connected subgraph of a graph

G is called a component of G.

PROPOSITION 7.1. Let Gx be a graph whose components are Gu, • • •, Glm, and let

G2 be a strongly connected graph. Let there exist a constant-to-one homomorphism

IT of (O(Gi), (Ti) onto (Cl(G2), cr2). Then Gx is the union of G u , . . . , G lm, that is,

there exists no path in Gl going from a point of Guto a point of G1; for any distinct

i,j with 1< i , /<m. Moreover, TT, = 7r|n(Gi,) is constant-to-one and onto for i =

l,...,m.

To prove proposition 7.1, we shall use the following lemma.

LEMMA 7.2. Let Ga be a graph, let G2 be a strongly connected graph and let h be a

homomorphism of Gx into G2 with hx finite-to-one and onto. Let /3e£l(G2) be

bilaterally transitive and let a e h^ (/3). Then a e £l(Gu) for some component Gu of

G,.

Proof. Assume that a is not contained in il(Gu) for any component Gu of Gu

Then there exist components Glk and Gu of G2 and s, f eZ such that

nw(Glk)3aj for all j<s,

n (1)(G1()3a ; for all j>t,

but neither Il(Gifc) nor II(G,,) contains a[s, t]. Let

and h, = h\nw(Gu).

Then hk and ht are homomorphisms of Glk into G2 and of Gu into G2, respectively.

Since /3 is negatively transitive, (hk)* is onto, and also since /? is positively transitive,

(h,)* is onto. Since hoo is finite-to-one, so are both of (hk)x and (h,)^. Hence both

of (ftfc)oo and (/i/)oo are uniformly finite-to-one and onto.

It is known [4, p. 175]) that the inverses of a negatively [positively] transitive

point (bisequence) through a finite-to-one and onto homomorphism between

irreducible subshifts of finite type are also negatively [positively] transitive. Therefore

since /? is negatively transitive, a is negatively transitive in Gik. (Consider a

bisequence a'efl(Glk) such that a'j = a ; for all j<s and apply the above fact to

(hk)oo(a').) Similarly, since j8 is positively transitive, a is positively transitive in Gu-

There exists JCj 6 II(G lk) such that Chk(h*(xi), t(xx)) is a maximal b-compatible

set for hk. Since a is negatively transitive in Gxk, there exist su s2 e Z with s, < s2 =s s

such that a[si, s2] = Xi. (By corollary 3.3, we may assume that the length of xt is

greater than 0.) Also, there exists Jt2en(G1() such that Chl(i(x2), h*(x2)) is a

maximal compatible set for h,. Since a is positively transitive in Gu, there exist
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tu t2 6 Z with /< rj < t2 such that af^, f2] = x2. Let

l/ = Cht(/3[51>s2],t(a%)) and V = Ch,(i(a(,), p[tu t2]).

By the above, U is a maximal b-compatible set for hk and V is a maximal compatible
set for hh Since /3 is positively transitive, there exists t3eZ with t3> t2 such that

t(ph)=i(pSi).

Let y = /3|>i, r3]. Then i(y) = t(y). For each ; > 0 , let

C/; = Cht(y', I/) and V, = Ch,( V,/3[r2+l, f3]y0-

Then by corollary 3.3, C/y is a maximal b-compatible set for hk and V, is a maximal
compatible set for ht. Hence, Uj ^ 0 and V, # 0 for all 7 > 0. Therefore, there exists

such that

\), s2]eBhk(y
ip[sl, s2l{t{aS2)}) for all j>0,

and

atti.^+yX^-Si + lWeBfc.aKo,,)},^,,^]/) foraliy>0.,

Let p = hoc,(d). Then clearly ;8 is a periodic bisequence of period t3 — Sj + 1 with

/8[*i> '3] = y- Clearly a is not periodic. But

Mo-'<<3~Sl+1)(«)) = £ for all / e Z

where cr is the shift on fi(G!). Hence h^iP) is infinite, which is a contradiction.

Thus a efl(Gu) for some component Gu of Gx. D

Proof of proposition 7.1. By corollary 1.6, there exist positive integers p,q,p>q,

and a homomorphism /i of l / ^ ^ G i ) into G2 such that

If ~ hao(hG1,p,q)'X> •

Clearly hx is constant-to-one and onto. Put H = L^'^iG^) and put Hi = l}p~l\Gu)
for i = 1 , . . . , m. Then it is easy to see that Hu .,., Hm are all the components of
H. Let

hi = h\nw(Hi) for i = l , . . . , m .

Then clearly, ft, is a homomorphism of H; into G2 with (/i,)oo finite-to-one.
Let )3 be a bilaterally transitive bisequence in ft(G2). Then, by lemma 7.2, each

a e fl(//) such that /ta>(«) = P, is contained in some ft(Hj), 1 < i < m. Let

{ i j , . . . , i,} = {i| 1 < /< m, n(//j) n ^i"1 (p) * 0} .

Assume that there exists a'eil{H) such that a' ^il{Hh)Kj • • • uft(H;/). Let
y = ^ ( a ' ) - Since f5 is bilaterally transitive, ft* is onto and so is (ft̂ co for
/ = 1, ••• , / . Hence (fyjco is finite-to-one and onto for 7 = 1 , . . . , /. By theorem 6.2,

i(/ti/)

for 7 = 1 , . . . , /. Hence

which is a contradiction because toco is constant- to-one and onto . Therefore

n ( H f l ) u - • • u f t ( H i , ) = fl(H). This implies that {iu... ,i,} = {l,..., m),
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Q,{H) = ft(H1) u • • -uCl(Hm) and (/i,-)oo is finite-to-one and onto for i = 1 , . . . , m.
Hence for each /3' e O(G2),

and by theorem 6.2,

j = 1 , . . . , m. Therefore, since h^ is constant-to-one, each (/i,-)oo must be constant-to-
one.

Since fl(H) = fl(iJ1)u'--ufl(HM),n(G1) = n ( G 1 1 ) u - - - u n ( G 1 J . Hence
there is no path in Gt going from a point of G,, to a point of Giy for any distinct
i, j with 1 < i, j s m. Since

•""i
 =

 (hi)<x>(hau,P,q)<x, ,

TTi is constant-to-one and onto. •

The following is the main theorem of this paper. In view of proposition 2.3, it
determines constructively, up to topolological conjugacy, the subshifts of finite type
which are constant-to-one extensions of a given irreducible subshift of finite type.

THEOREM 7.3. Let G^ be a graph and G2 a strongly connected graph. Then
(iliG^^i) is a constant-to-one extension of (ft(G2),o-2) iff there is a biregular
extension H o/L(p)(G2) for some integerp>0 such that (D.{Gi), cr,) is topologically
conjugate to (fl(H), cr).

Proof. Assume that there is a constant-to-one homomorphism TT of ((KG,), cr,)
onto (n(G2),o-2). Then from proposition 7.1, G1 is the union of its components
G n , . . . , G lm and ir\Cl(Gu) is constant-to-one and onto for i = 1 , . . . , m. Put

7T; = ir\il(Gu) for i = 1 , . . . , m.

It follows from corollary 6.4 that for each i = 1 , . . . , m, there exists a strongly
connected graph Ht, an integer pt > 0, and a biregular homomorphism g, of //, into
L<Pi>(G2) such that (n(Hi), a-) and (n(Gu) , o-w) are topologically conjugate. Let
p = max{pi,... ,pm}. Consider the homomorphism gjP~Pi> of Lip~Pi){Hi) into
L(p~p'\L{p'\G2)), (see the paragraph before lemma 5.6). It is easy to see that g\p~Pi)

is biregular. Therefore, since L(P)(G2) is isomorphic to L<p~p')(^(P/)(G2)),L(p"p')(//r)
is a biregular extension of L(p)(G2). It follows that (n(L(p"p')(H,)), o-'l) is topologi-
cally conjugate to (il(Gu), o-u) for i = 1 , . . . , m. Let H be the union of the graphs
L(p~p'\Hi), i = \,...,m. Then, by the above, (O(H), a) is topologically conjugate
to {Vi(Gi), <Ti). Moreover, since H is the union of its components each of which is
a biregular extension of L(p)(G2), H is a biregular extension of L<p)(G2).

The converse is clear from proposition 2.2. •

There is a remarkable spectral property of matrices concerning topological conjugacy
of subshifts of finite type. It follows directly from the well-known theorem of
Williams, [21], (characterizing topological conjugacy of subshifts of finite type by
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'strong shift equivalence' of matrices defining the subshifts), and a result of Flanders
(see [9, p. 106]) that \i two subshtfts of finite type (Q(G^, a^ and (Cl(G2, <J^ are
topologically conjugate, then the elementary divisors not divisible by A of M{Gx)

and those of M{G2) are the same, where A is the indeterminate. (See also [19].)
But the converse of this does not hold by example 3 of [21].

As stated in § 1, there are also remarkable spectral properties of matrices concern-
ing finite-to-one extensions of subshifts of finite type. In [17], the author showed
that for two subshifts of finite type (ftCGi),^) and (n(G2),o-2), if there is a
finite-to-one homomorphism of (iliGi), o )̂ onto (il(G2), cr2), then the characteris-
tic polynomial of M(G2) divides the characteristic polynomial of MiGJ, mod
powers of A. Furthermore, Kitchens, [10], showed that if (ft(Gi), o^) and (il(G2), cr2)

are irredicible subshifts of finite type and there is a finite-to-one homomorphism
of (fl(G,), o-,) onto (O(G2), cr2), then the block of the Jordan form of M{G2) with
non-zero eigenvalues is a principal submatrix of the Jordan form of MiG^. In [10],
Kitchens also showed that the converse does not hold. The following theorem is a
result along the above lines.

THEOREM 7.4. Let G, and G2 be strongly connected graphs. If there exists a constant-

to-one homomorphism of (fl(G,), cr{) onto (ft(G2), cr2), then the elementary divisors

not divisible by A of M(G2) is contained in the elementary divisors of M(Gr).

Proof. The result follows from theorem 7.3, proposition 2.5, the spectral property
of matrices concerning topological conjugacy stated above, and the fact that
(a(G2), cr2) and (O(L(P)(G2)), a'2) are topologically conjugate. •

Marcus [13] proved that for any strongly connected graph G with r(G) = n, where n

is a positive integer, there is a strongly connected graph G' such that each row sum
of M(G') is n, each column sum of M(G') is n, and {il(G'), cr') is topologically
conjugate to (ft(G), cr). It is easy to see that G' is a biregular extension of G0(A)

where A is the set of n symbols. (See [16, lemma 1]. As for G0(A), see § 1.)
Therefore, by proposition 2.2, every irreducible subshift of finite type (Cl(G),o-)

with r(G) = n is a constant-to-one extension of the full shift system on n symbols.
Since r(G) = n for every subshift of finite type (ft(G), cr) which is a finite-to-one
extension of the full shift system on n symbols, we conclude that every irreducible
subshift of finite type which is a finite-to-one extension of a full shift system, is also
a constant-to-one extension of the full shift system. The question arises of whether
every irreducible subshift of finite type which is a finite-to-one extension of an
irreducible subshift of finite type, is also a constant-to-one extension of the irreduc-
ible subshift of finite type. The following example shows that the answer is negative.

Let Gj and G2 be graphs with

M(G1) =

/0 1 0 l\

1 0 0 1

0 0 1 1

\1 0 1 0/

and M(G2) ~\2 o)-
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Clearly Gi and G2 are strongly connected. Since M(Gi)R = RM(G2) where

R =

it follows from proposition 2.4 that there is a regular homomorphism of Gj into
G2. Hence (Q.(G{), ax) is a finite-to-one extension of (O(G2), cr2). But the elemen-
tary divisors of M(G,) are A - 2, A - 1 , and (A +1)2, whereas the elementary divisors
of M(G2) are A —2 and A + l. Therefore, by theorem 7.4, {CL{Gi),o-i) is not a
constant-to-one extension of (fl(G2), cr2). (Note also that both (iliGi),^) and
(n(G2), <72) are constant-to-one extensions of the full shift system on 2 symbols.)

The converse of theorem 7.4 does not hold. An example of Kitchens [10] shows
that if G] and G2 are strongly connected graphs such that the elementary divisors
of M(Gi) contains the elementary divisors of M(G2), ((^Gj), o )̂ is not necessarily
even an extension of (O(G2), cr2).

Question. Does the converse of theorem 7.4 hold under the condition that
) , o-j) is a finite-to-one extension of (fl(G2), o-2)?

8. Concluding remarks

Finally, to show that there are other applications of induced regular homomorphisms
and induced b-regular homomorphisms, we state some results omitting proofs.

Let Gx and G2 be strongly connected graphs with r(G1) = r(G2) and let / ibea
homomorphism of Gl into G2 with h* onto. Let m(h) be as in theorem 6.2. One
can prove that

m(h) = m(fi) = m(h)

and if v is any point of G2, m(h) equals the maximum number of mutually disjoint
maximal b-compatible [compatible] sets for h" [for h] contained in <f> ~k\ v) [in 4> Z\ v)].
One can also prove that m(h) = \ iff Un V # 0 (\Un V| = l) for any maximal
compatible set U for h and any maximal b-compatible set V for h with <f>h(U) =
<t>h(V).

Let h be a regular [b-regular] homomorphism of a graph G1 into a graph G2.
Let p be a non-negative integer. Then h is said to be p definite if for any xx,
x2en ( p )(G1), h*(xi) = h*(x2) implies t(xl) = t(x2) [i(x,) = i(jc2)], and h is said to be
definite if h is p definite for some non-negative integer p.

A definite regular homomorphism is considered to be a generalization of the state
transition diagram of a finite automaton having a definite table, which was introduced
in [20]. The properties of definite tables and a practical decision procedure for
definiteness of tables presented in [20], can straightforwardly be extended to definite
regular [b-regular] homomorphisms of graphs.

Let Gi and G2 be strongly connected graphs with r{Gx) = r(G2), and let l ibea
homomorphism of Gx into G2 with h* onto. Then one can show that the induced
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regular [b-regular] homomorphism h [h] of h is p definite iff h is p b-bundle-mergible
[p bundle-mergible] and m(h) = 1. (Cf. [14, theorem 5].) Therefore a criterion for
bijectivity of h^ can be obtained, that is, /too is one-to-one and onto iff both h and
h are definite.
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