
1

Constant-Weight Gray Codes for
Local Rank Modulation

Eyal En Gad, Michael Langberg,Member, IEEE,Moshe Schwartz,Senior Member, IEEEand
Jehoshua Bruck,Fellow, IEEE

Abstract—We consider the local rank-modulation scheme in
which a sliding window going over a sequence of real-valued
variables induces a sequence of permutations. Local rank-
modulation is a generalization of the rank-modulation scheme,
which has been recently suggested as a way of storing information
in flash memory.

We study constant-weight Gray codes for the local rank-
modulation scheme in order to simulate conventional multi-level
flash cells while retaining the benefits of rank modulation. We
provide necessary conditions for the existence of cyclic and cyclic
optimal Gray codes. We then specifically study codes of weight
2 and upper bound their efficiency, thus proving that there
are no such asymptotically-optimal cyclic codes. In contrast, we
study codes of weight3 and efficiently construct codes which
are asymptotically-optimal. We conclude with a construction of
codes with asymptotically-optimal rate and weight asymptotically
half the length, thus having an asymptotically-optimal charge
difference between adjacent cells.

Index Terms—Gray code, rank modulation, local rank modu-
lation, permutations, flash memory

I. I NTRODUCTION

I N a recent series of papers [27], [28], [41], [44], the rank-
modulation scheme was suggested as a way of storing

information in flash-memory devices. Basically, instead ofa
conventional multi-level flash cell in which the charge level of
a single cell is measured and quantized to a symbol from the
input alphabet, in the rank-modulation scheme the permutation
induced by the relative charge levels of several cells comprises
the stored information. The scheme, first described in [27]
in the context of flash memory, works in conjunction with a
simple cell-programming operation called “push-to-the-top”,
which raises the charge level of a single cell above the rest of
the cells. It was suggested in [27] that this scheme eliminates

The material in this paper was presented in part at the IEEE International
Symposium on Information Theory (ISIT 2010), Austin, TX, U.S.A., June
2010, and at the 26-th IEEE Convention of Electrical ans Electronics Engi-
neers in Israel (IEEEI 2010), Eilat, Israel, November 2010.

Eyal En Gad is with the Department of Electrical Engineering, Califor-
nia Institute of Technology, 1200 E. California Blvd., MailCode 136-93,
Pasadena, CA 91125, U.S.A. (e-mail: eengad@caltech.edu).

Michael Langberg is with the Computer Science Division, Open University
of Israel, Raanana 43107, Israel (e-mail: mikel@openu.ac.il).

Moshe Schwartz is with the Department of Electrical and Computer
Engineering, Ben-Gurion University, Beer Sheva 84105, Israel (e-mail:
schwartz@ee.bgu.ac.il).

Jehoshua Bruck is with the Department of Electrical Engineering, Cali-
fornia Institute of Technology, 1200 E. California Blvd., Mail Code 136-93,
Pasadena, CA 91125, U.S.A. (e-mail: bruck@paradise.caltech.edu).

This work was supported in part by ISF grant 134/10, ISF grant480/08, the
Open University of Israel’s research fund (grant no. 46114), the NSF grant
ECCS-0802107, and an NSF-NRI award.

the over-programming problem in flash memories, reduces
corruption due to retention, and speeds up cell programming.

This is certainly not the first time permutations have been
used for modulation purposes. Permutations have been used
as codewords as early as the works of Slepian [39] (later
extended in [2]), in which permutations were used to digitize
vectors from a time-discrete memoryless Gaussian source,
and Chadwick and Kurz [9], in which permutations were
used in the context of signal detection over channels with
non-Gaussian noise (especially impulse noise). Further early
studies include works such as [2]–[4], [8], [12], [13]. More
recently, permutations were used for communicating over pow-
erlines (for example, see [43]), and for modulation schemes
for flash memory [27], [28], [41], [44].

An important application for rank-modulation in the context
of flash memory was described in [27]: A set ofn cells,
over which the rank-modulation scheme is applied, is used
to simulate a single conventional multi-level flash cell with n!
levels corresponding to the alphabet{0, 1, . . . , n!− 1}. The
simulated cell supports an operation which raises its valueby
1 modulo n!. This is the only required operation in many
rewriting schemes for flash memories (see [5], [24]–[26],
[45]), and it is realized in [27] by a Gray code traversing then!
states where, physically, the transition between two adjacent
states in the Gray code is achieved by using a single “push-
to-the-top” operation.

Most generally, a gray code is a sequence of distinct
elements from an ambient space such that adjacent elements
in the sequence are “similar”. Ever since their original pub-
lication by Gray [22], the use of Gray codes has reached a
wide variety of areas, such as storage and retrieval applications
[10], processor allocation [11], statistics [14], hashing[18],
puzzles [20], ordering documents [30], signal encoding [31],
data compression [34], circuit testing [35], and more. For a
survey on Gray codes the reader is referred to [37].

A drawback to the rank-modulation scheme is the need
for a large number of comparisons when reading the induced
permutation from a set ofn cell-charge levels. Instead, in a
recent work [44], then cells are locally viewed through a
sliding window resulting in a sequence of small permutations
which require less comparisons. We call this thelocal rank-
modulation scheme. The aim of this work is to study Gray
codes for the local rank-modulation scheme. The paper is or-
ganized as follows: In Section II the exact setting, notation, and
definitions are presented. We study, in Section III, necessary
conditions for the existence of Gray codes for our setting.
In Section IV we give constructions for Gray codes of low

2

c0 = 5.00 c1 = 2.50 c2 = 4.25 c3 = 6.50 c4 = 4.00 c5 = 1.00 c6 = 1.50 c7 = 5.50 c8 = 6.00

fc = ([4, 1, 3, 5, 2], [1, 5, 2, 4, 3], [3, 2, 4, 5, 1])

Figure 1. Demodulating a(3, 5, 9)-locally rank-modulated signal.

constant weight and study their efficiency. We turn, in Section
V, to construct Gray codes with asymptotically-optimal rates
and weight asymptotically half the length. We conclude in
Section VI with a summary and a set of open problems.

II. D EFINITIONS AND NOTATION

A. Local Rank Modulation

Let us consider a sequence oft real-valued variables,c =
(c0, c1, . . . , ct−1) ∈ Rt, where we further assumeci 6= cj for
all i 6= j. The t variables induce a permutationfc ∈ St, where
St denotes the set of all permutations over[t] = {1, 2, . . . , t}.
The permutationfc is uniquely defined by the constraints
c fc(i)−1 > c fc(j)−1 for all i < j, i.e., if we sortc in descending
order, cj1 > cj2 > · · · > cjt then fc(i) = ji + 1 for all
1 6 i 6 t.

Given a sequence ofn variables,c = (c0, c1, . . . , cn−1), we
define a window of sizet at positionp to be

cp,t = (cp, cp+1, . . . , cp+t−1)

where the indices are taken modulon, and also0 6 p 6 n− 1,
and1 6 t 6 n.

We now define the(s,t,n)-local rank-modulation (LRM)
scheme, which we do by defining thedemodulationprocess.
Let s 6 t 6 n be positive integers, withs|n. Given a sequence
of n distinct real-valued variables,c = (c0, c1, . . . , cn−1), the
demodulation mapsc to the sequence ofn/s permutations
from St as follows:

fc = (fc0,t , fcs,t , fc2s,t , . . . , fcn−s,t). (1)

Loosely speaking, we scan then variables using windows
of size t positioned at multiples ofs and write down the
permutations fromSt induced by thelocal views of the
sequence.

In the context of flash-memory storage devices, we shall
consider then variables,c = (c0, c1, . . . , cn−1), to be the
charge-level readings fromn flash cells. The demodulated

sequence,fc, will stand for the original information which
was stored in then cells. This approach will serve as the
main motivation for this paper, as it was also for [27], [28],
[41], [44]. See Figure 1 for an example.

Though of no consequence to the rest of the paper, we
mention in passing, that the sequence of local permutations
given in (1) may be quite a wasteful method of representation.
A more compact form may be defined using the (mixed-
radix) factoradic notation (see [29] for the earliest-known
definition, and [27] for a related use) in which theith most-
significant digit counts the number of elements to the right
of the ith-from-left element, which are of lower value. We
then represent each of the local permutationsfci·s,t using the
s most-significant digits in its factoradic notation. Thus, for
example, the configuration of Figure 1 would be represented
by ((3, 0, 1), (4, 2, 0), (0, 2, 2)).

We say a sequencef of n/s permutations overSt is (s, t, n)-
LRM realizableif there existsc ∈ R

n such thatf = fc, i.e.,
it is the demodulated sequence ofc under the(s, t, n)-LRM
scheme. Except for the degenerate case ofs = t, not every
sequence is realizable.

When s = t = n, the (n, n, n)-LRM scheme degenerates
into a single permutation fromSn. This was the case in
most of the previous works using permutations for modulation
purposes. A slightly more general case,s = t < n was
discussed by Ferrieraet al. [19] in the context of permutation
trellis codes, where a binary codeword was translated tuple-
wise into a sequence of permutation with no overlap between
the tuples. Finally, the most general case was defined by
Wanget al. [44] (though in a slightly different manner where
indices are not taken modulon, i.e., with no wrap-around).
In [44], the sequence of permutations was studied under a
charge-difference constraint calledbounded rank-modulation,
and mostly with parameterss = t− 1, i.e., an overlap of one
position between adjacent windows.

Finding out the induced permutation from a sequence oft
real-valued readings requires at leastΩ(t log t) comparisons.

3

Thus, to get the simplest hardware implementation we will
consider the case oft = 2 throughout the paper. The only
non-trivial case to consider is therefores = 1, i.e., a(1, 2, n)-
LRM scheme. Demodulated sequences of permutations in
this scheme contain only the permutations[1, 2] and [2, 1],
and a single comparison between the charge levels of two
adjacent flash memory cells is required to find the permutation.
We will conveniently associate the logical value1 with the
permutation[1, 2], and 0 with [2, 1], thus forming a simple
mapping between lengthn binary sequences and permutation
sequences from the(1, 2, n)-LRM scheme. It is easily seen
that the only two binary sequences not mapped to(1, 2, n)-
LRM sequences are the all-ones and all-zeros sequences.

B. Gray Codes for(1, 2, n)-LRM

Generally speaking, aGray code, G, is a sequence of
distinct states (codewords),G = g0, g1, . . . , gN−1, from an
ambient state space,gi ∈ S, such that adjacent states in
the sequence differ by a “small” change. What constitutes a
“small” change usually depends on the code’s application.

Since we are interested in building Gray codes for flash
memory devices with the(1, 2, n)-LRM scheme, our ambient
space, which we denote asS(n), is the set of all realizable
sequences under(1, 2, n)-LRM. This is simply the set of all
the binary sequences of lengthn, excluding the all-ones and
all-zeros sequences, i.e.,

S = S(n) = {0, 1}n − {0n, 1n} .
Each of the codewords,gi ∈ G, is a string ofn bits which
we shall denote asgi = gi,0, gi,1, . . . , gi,n−1. Throughout the
paper we will assume the indexj in gi,j is taken modulon,
and when appropriate, the indexi is taken moduloN.

The transition between adjacent states in the Gray code is
directly motivated by the flash memory application, and was
previously described and used in [27]. This transition is the
“push-to-the-top” operation, which takes a single flash cell and
raises its charge level above all others.

In our case, however, since we are considering alocal rank-
modulation scheme, the “push-to-the-top” operation merely
raises the charge level of the selected cell above those cells
which are comparable with it. As the window size ist = 2,
these cells are the ones directly before and after the se-
lected cell. Thus, we define the set of allowed transitions
as T = {τ0, τ1, . . . , τn−1}, which is a set of functions,
τj : S → S, whereτj represents a “push-to-the-top” operation
performed on thej-th cell. If v = v0v1 . . . vn−1 ∈ S(n), then
v′ = v′0v

′
1 . . . v

′
n−1 = τj(v) if

v′k =











0 k = j

1 k ≡ j + 1 (mod n)

vk otherwise.

Loosely speaking, a transition is made by selecting a window
of size2 in the original codeword, and overwriting it with01.
See Figure 2 for an example.

Definition 1. A Gray code,G, for (1, 2, n)-LRM (denoted
(1, 2, n)-LRMGC) is a sequence of distinct length-n binary

c0 = 5.00 c1 = 2.50 c2 = 4.25 c3 = 6.50 c4 = 4.00 c5 = 1.00

c0 = 5.00 c1 = 5.50 c2 = 4.25 c3 = 6.50 c4 = 4.00 c5 = 1.00

000

000

111

111

VVVVVV

VVVVVV

(a)

(b)

Figure 2. An example of a local “push-to-the-top” operation in a(1, 2, 6)-
LRM scheme. The snapshot (a) presents the system before the change, while
(b) presents the system after the change, which locally pushed c1 abovec0
and c2, thus changing the first two bits of the demodulated sequence.

codewords,G = g0, g1, . . . , gN−1, wheregi ∈ S(n). For all
0 6 i 6 N − 2, we further require thatgi+1 = τj(gi) for
somej. If g0 = τj(gN−1) for somej, then we say the code is
cyclic. We callN the sizeof the code, and sayG is optimal if
N = 2n − 2 = |S(n)|.

When we perform a “push-to-the-top” operation on thej-th
cell, let us denote its initial charge level ascj, and its resulting
charge level asc′j. We setc′j to max

{

cj−1, cj+1

}

+ δ, where
δ > 0. Two important issues of concern are the difference in
charge levels involved in a “push-to-the-top” operation, and
cell saturation. In the former, the higherc′j − cj is, the more
risk of disturbing neighboring cells, while in the latter, the
higher we setc′j, the less number of updates to the cell before
it saturates. Both concerns benefit from a value ofδ as low
as possible. Let us assume that a limited resolution exists and
thus δ is bounded from below by a constant, which w.l.o.g.,
we can assume is1 (after a proper scaling).

Let us now assume an optimal setting in which a
“push-to-the-top” operation on thej-th cell sets c′j =

max
{

cj−1, cj+1

}

+ 1. A general(1, 2, n)-LRMGC may result
in c′j − cj exponential inn, for some transition fromgi to
gi+1. The same motivation in the case of(n, n, n)-LRM was
discussed in [27], where a balanced variant of Gray codes
was constructed to avoid the problem. We present a different
variant of Gray codes to address the same issue.

First, for any binary stringv = v0v1 . . . vn−1, we call the

4

number of1’s in v the weight of v and denote it aswt(v).
We also denote byS(n,w) the set of length-n binary strings
of weightw. We now define our variant of Gray codes:

Definition 2. A constant-weight Gray code for(1, 2, n)-LRM
(denoted(1, 2, n;w)-LRMGC), G = g0, g1, . . . , gN−1, is a
Gray code for(1, 2, n)-LRM for which gi ∈ S(n,w) for all
0 6 i 6 N − 1.

Definition 3. Let G be a(1, 2, n;w)-LRMGC of sizeN. We
define therateof the code asR(G) =

log2 N
n . The efficiency

of G is defined asEff(G) = N/(nw). If Eff(G) = 1 then
we sayG is optimal. If Eff(G) = 1 − o(1), where o(1)
denotes a function that tends to0 asn → ∞, then we sayG
is asymptotically optimal.

The transitions between adjacent states in the constant-
weight variant take on a very simple form: a window of size
2 in gi which contains10 is transformed ingi+1 into 01, i.e.,
“pushing” a logical1 a single place to the right. Since we are
interested in creating cyclic counters, we will be interested in
cyclic Gray codes. An example of a cyclic optimal Gray code
is given in Table I.

TABLE I
A CYCLIC OPTIMAL (1, 2, 5; 2)-LRMGC (THE CHANGED POSITIONS ARE

UNDERLINED.)

1 1 0 0 0
1 0 1 0 0
0 1 1 0 0
0 1 0 1 0
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1
1 0 0 1 0
1 0 0 0 1
0 1 0 0 1

It should be noted that Gray codes with a weaker restriction,
allowing a01 to be changed into10 and also10 to be changed
back into01, i.e., a1 may be pushed either to the right or to
the left, have been studied in the past [6], [7], [16], [23], [36].

We can show that under the constant-weight restriction, for
any “push-to-the-top” operation,

c′j − cj 6

⌈

max {w, n− w}
min {w, n− w}

⌉

.

This is done by first assuming2w 6 n, or else we flip all
the bits and reverse the codewords. We will only use integer
charge levels, and thus for any codeword,gi, wt(gi) = w,
we can find a realization by settingcj+1 − cj = 1 if gi,j = 0,
andcj+1 − cj = −[(n−w)/w] if gi,j = 1, where[·] denotes
either⌊·⌋ or ⌈·⌉.

It is now easily shown by induction that a “push-to-the-top”
operation on thej-th cell preserves charge-level differences
between adjacent cells and only rearranges their order: by the
induction hypothesis, initially we havecj − cj−1 = −[(n −
w)/w] and cj+1 − cj = 1. The “push-to-the-top” operation
sets c′j = max

{

cj−1, cj+1

}

+ 1 = cj−1 + 1 and thenc′j −
cj−1 = 1 and cj+1 − c′j = −[(n−w)/w].

III. N ECESSARYCONDITIONS

We first present a simple necessary condition for the exis-
tence of a cyclic Gray code, and then expand it in the case
of cyclic optimal codes. We use a coloring argument in the
following way: We color the words inS(n,w) usingn colors.
We then show that in a cyclic Gray code all colors appear, and
do so in equal amounts. We then follow with an analysis of the
distribution of colors inS(n,w), showing that in many cases
they are not equally distributed, and hence no cyclic optimal
code exists.

Definition 4. For anyv = v0v1 . . . vn−1 ∈ S(n,w), we define
the first moment ofv as

χ(v) =
n−1

∑
j=0

j · vj (2)

and thecolorof v asχ(v) mod n.

Theorem 5.Let G be a cyclic(1, 2, n;w)-LRMGC of sizeN.
Thenn|N.

Proof: If v, v′ ∈ S(n,w) and v′ = τj(v) for some j,
then it easily follows thatχ(v′) ≡ χ(v) + 1 (mod n). Let us
now denoteG = g0, g1, . . . , gN−1. By the previous argument,
i ≡ i′ (mod n) iff χ(gi) ≡ χ(gi′) (mod n). Since the code
is cyclic, necessarilyN ≡ 0 (mod n).

We can use Theorem 5 to rule out the existence of cyclic
optimal codes in certain cases.

Theorem 6. If w is a prime, then there are no cyclic optimal
(1, 2, n;w)-LRMGC for whichgcd(n,w) 6= 1.

Proof: By the assumptions, necessarilygcd(n,w) = w,
and sow|n. For anya, p ∈ N, p prime, let us denote byap
the exponent ofp in the factorization ofa. We can see that
N = (nw) = n(n−1)...(n−w+1)

w! and thereforeNw = nw − 1.
But thenn ∤ N as required by Theorem 5.

The divisibility condition set in Theorem 5 is not strong
enough. For example, if we taken = 12 and w = 6, then
indeed12|(126), and the possible existence of a cyclic optimal
code with these parameters is not ruled out. However, by the
conditions described in Corollary 7 and Lemma 8 it is ruled
out.

Corollary 7. If a cyclic optimal (1, 2, n;w)-LRMGC exists,
then there are exactly(nw)/n strings of each color inS(n,w).

Proof: By Theorem 5 we haven|(nw). Furthermore, by
the proof of that theorem the code contains an equal number
of codewords of each color. Since the code is optimal, i.e.,
covers all the strings ofS(n,w), the claim follows.

To be able to use the last corollary we count the exact
number of strings of each color inS(n,w). Though a solution
may be deduced from a related theorem due to von Sterneck
(see [15], Ch. II), we describe a cleaner self-contained solu-
tion, which is an extension of Sloane’s method in [40]. In the
following, let

An(j, k) = |{v ∈ S(n,w) | χ(v) ≡ j, k ≡ n− w (modn)}|
for all 0 6 j, k 6 n− 1. Also, let φ stand for Euler’s totient
function, andµ stand for the Möbius function.

5

Lemma 8.The number of strings fromS(n,w), 1 6 w 6 n−
1, of color0 6 a 6 n− 1, is given by

An(a, n− w) =
1

n ∑
d|n
d|w

(−1)
w(d+1)

d φ(d)
µ(d

gcd(d,a)
)

φ(d
gcd(d,a)

)

(

n/d

w/d

)

.

Proof: We define the following generating function:

f (x, y) =
n−1

∑
j=0

n−1

∑
k=0

An(j, k)x
jyk.

An important observation that follows from the definition of
An(j, k) is that

f (x, y) =
n−1

∏
m=0

(xm + y) mod 〈xn − 1, yn − 1〉 .

Let ξ = e
2πi
n ∈ C be ann-th complex root of unity, then

f (ξ j, ξk) =
n−1

∑
j′=0

n−1

∑
k′=0

An(j
′, k′)ξ j′ jξk

′k.

Using the inverse two-dimensional discrete Fourier transform
we get,

An(j, k) =
1

n2

n−1

∑
j′=0

n−1

∑
k′=0

f (ξ j′ , ξk
′
)ξ−j′ jξ−k′k. (3)

Let us denoteg = gcd(n, j′). We can directly calculate

f (ξ j′ , ξk
′
) =

n−1

∏
m=0

(ξk
′
+ ξmj′)

= (−1)n
n
g−1

∏
m=0

(

−ξk
′ − ξmj′

)g

= (−1)n
(

(

−ξk
′)

n
g − 1

)g

=
g

∑
m=0

(

g

m

)

(−1)
(g−m)(n

g+1)
ξ
k′m n

g ,

where the third equality follows from the well-known fact that
∏

n
i=0(z− ξ i) = zn − 1. It now follows that

n−1

∑
k′=0

f (ξ j′ , ξk
′
)ξ−k′k =

=
g

∑
m=0

(

g

m

)

(−1)
(g−m)(n

g +1)
n−1

∑
k′=0

ξ
k′(m n

g−k)
. (4)

Since we are interested only in1 6 k 6 n− 1, it follows that
−(n− 1) 6 k−m n

g 6 n− 1, and therefore

n−1

∑
k′=0

ξ
k′(m n

g−k)
=

{

0 k 6= m n
g

n k = m n
g .

Substituting back into (4), we get for all1 6 k 6 n− 1

n−1

∑
k′=0

f (ξ j′ , ξk
′
)ξ−k′k =







0 n
g ∤ k

(−1)
(g−k

g
n)(n

g +1)
(g
kg/n)n

n
g | k.

We again substitute the result back into (3) and summing by
divisors of bothn andk, we get

An(j, k) =
1

n2 ∑
d|n
d|k

(−1)
(n−k)(d+1)

d

(

n/d

k/d

)

n
d

∑
m=1

gcd(m,d)=1

ξ−jm.

The inner sum is a Ramanujan sum (see [1]) which equals

d

∑
m=1

gcd(m,d)=1

ξ−jm = φ(d)
µ(d

gcd(d,j)
)

φ(d
gcd(d,j)

)
,

thus getting

An(j, k) =
1

n ∑
d|n
d|k

(−1)
(n−k)(d+1)

d φ(d)
µ(d

gcd(d,j)
)

φ(d
gcd(d,j)

)

(

n/d

k/d

)

.

A simple rewriting of the last expression gives the desired
result.

Returning to the previous example ofn = 12 andw = 6 we
can now use Lemma 8 to find that there areA12(0, 12− 6) =
76 words in S(12, 6) colored0, while there areA12(1, 12−
6) = 78 words colored1. Thus, by Corollary 7 no optimal
cyclic code is possible. The following theorem may be thought
of as an extension of Theorem 6 to the case ofw not a prime.

Theorem 9. For anyw ∈ N there existsn0(w) ∈ N such
that for alln > n0(w), there is no cyclic optimal(1, 2, n;w)-
LRMGCs unlessgcd(n,w) = 1.

Proof: Fix a weightw. We will show that there exists
n0(w) such that for alln > n0(w), gcd(n,w) 6= 1, there
is no cyclic optimal(1, 2, n;w)-LRMGC. We will do so by
showing thatAn(0, n−w) 6= An(1, n− w).

Let p > 2 denote the smallest prime number such that
p| gcd(n,w) 6= 1. We shall also need the fact that

(

a

b

)

=
a

b

(

a− 1

b− 1

)

.

Now,

An(0, n− w)− An(1, n−w) =

=
1

n ∑
d|n
d|w

(−1)
w(d+1)

d (φ(d)− µ(d))

(

n/d

w/d

)

= (−1)w(p+1)/p · p
n

(

n/p

w/p

)

+

1

n ∑
d| gcd(n,w)

d>p

(−1)
w(d+1)

d (φ(d)− µ(d))

(

n/d

w/d

)

.

We shall proceed to show that, for large enoughn,

p

(

n/p

w/p

)

>

∣

∣

∣

∣

∣

∣

∣

∣

∑
d| gcd(n,w)

d>p

(−1)
w(d+1)

d (φ(d)− µ(d))

(

n/d

w/d

)

∣

∣

∣

∣

∣

∣

∣

∣

6

which will prove our claim. Indeed, setn0 = w3

2 , and then for
all n > n0
∣

∣

∣

∣

∣

∣

∣

∣

∑
d| gcd(n,w)

d>p

(−1)
w(d+1)

d (φ(d)− µ(d))

(

n/d

w/d

)

∣

∣

∣

∣

∣

∣

∣

∣

6

6 ∑
d| gcd(n,w)

d>p

(φ(d)− µ(d))

(

n/d

w/d

)

6

w

∑
d=1

w

(

n/p− 1

w/p− 1

)

=
w3

n

(

n/p

w/p

)

< 2

(

n/p

w/p

)

6 p

(

n/p

w/p

)

,

as we claimed.
It should be noted that a more careful analysis can reduce

the value ofn0 in the proof of Theorem 9. We also observe that
whengcd(n,w) = 1, all strings of lengthn and weightw have
full cyclic period. If v, v′ ∈ S(n,w) andv′ is a cyclic shift to
the right ofv, thenχ(v′) ≡ χ(v) +w (mod n). The fact that
gcd(n,w) = 1 also implies thatw is a generator ofZn, and so
for every stringv ∈ S(n,w), itsn cyclic shifts are all distinctly
colored. Thus,S(n,w) has an equal number of strings from
each color and the arguments used in the previous theorems
will not rule out the existence of cyclic optimal codes.

IV. L OW-WEIGHT ANALYSIS AND CONSTRUCTIONS

In this section we study(1, 2, n;w)-LRMGCs having low
weight,w 6 3 (and by flipping bits and reversing strings, for
all w > n− 3). In the first trivial case ofw = 1, there exists a
cyclic optimal code for alln. As we show in this section, the
next two cases, namelyw = 2, 3, behave radically different:
We start with the case ofw = 2 in which we show a non-cyclic
optimal code always exists, but when adding the requirement
that the code be cyclic, no cyclic optimal codes exist and the
efficiency of any cyclic code is asymptotically bounded from
above by3

4 + o(1). In contrast, we will show that forw = 3
we can construct cyclic asymptotically-optimal codes.

A. The Case ofw = 2

For the case ofw = 2 a brute-force approach will suffice.
For all n > 2, let us define the graphGn whose vertex set is
S(n, 2) and an edgev → v′ exists iff v′ = τj(v) for some
0 6 j 6 n− 1.

Since by Theorem 6 cyclic optimal codes may only exist
for odd n, let us restrict ourselves to that case only. We will,
however, specify which results are also valid for evenn. For
convenience, we index the vertices in the following way:vk,ℓ,
where1 6 k 6 (n− 1)/2 and 0 6 ℓ 6 n− 1, denotes the
vertex corresponding to the string having1’s in positionsℓ

and ℓ + k, where throughout the section we take the indices
modulo n where appropriate. We shall conveniently refer to
the first index as therow index, and the second index as the
columnindex.

Using this indexing method the graphGn takes on a simple
form for oddn > 5 (the casen = 3 is more degenerate):

• A vertex of the formv1,ℓ has a single outgoing edge to
v2,ℓ.

• A vertex of the formvk,ℓ, 1 < k < (n− 1)/2, has two
outgoing edges tovk+1,ℓ andvk−1,ℓ+1.

• A vertex of the formv(n−1)/2,ℓ has two outgoing edges
to v(n−3)/2,ℓ+1 andv(n−1)/2,ℓ+(n+1)/2.

It is now evident that there is a one-to-one correspondence
between simple paths inGn and Gray codes. A simple con-
struction for an optimal code which is (in general)not cyclic
is the following.

Construction 1. Let n > 3 be an odd integer. We construct the
following codeG = g0, g1, . . . , gN−1. We first setg0 = v1,0,
and then setgi+1 as a function ofgi = vk,ℓ according to the
following rules:

• If k is odd andk < (n− 1)/2, thengi+1 = vk+1,ℓ.
• If k is odd andk = (n− 1)/2, thengi+1 = vk,ℓ+(n+1)/2.
• If k is even andℓ < n− k/2, thengi+1 = vk−1,ℓ+1.
• If k is even andℓ = n− k/2, thengi+1 = vk+1,ℓ.

Theorem 10. The code from Construction1 is an optimal
(1, 2, n; 2)-LRMGC.

Proof: It is readily verifiable that the transitions involved
in the construction are all valid. Furthermore, the construction
is easily seen to first exhaust rows2t− 1 and2t, wheret > 1,
by alternating between them, and then moving to rows2t+ 1
and 2t + 2. If the number of rows is even, this is enough
to cover all the vertices. If the number of rows is odd, then
the last row is covered by transitioning along the row. Since
gcd((n+ 1)/2, n) = 1, (n + 1)/2 is a generator ofZn and
the transitions along row(n− 1)/2 cover all of it.

An example of Construction 1 is shown in Figure 3. When
n = 3, 5, Construction 1 results in a cyclic code (the case
n = 5 was given in Table I).

Row 1

Row 3

Column 0 Column 6

Figure 3. An example of an optimal non-cyclic(1, 2, 7; 2)-LRMGC which
results from Construction 1. Solid arrows represent edges which are part of
the code path, while dotted arrows represent those that are not.

Theorem 11.Let G be a cyclic(1, 2, n; 2)-LRMGC, n > 7.
ThenEff(G) 6 3

4 + o(1).

Proof: We will prove the claim for oddn. The proof
for even n is essentially the same with a slight difference
due to the different structure of the last row ofGn. Let G =
g0, g1, . . . , gN−1 be cyclic Gray code, and letvki,ℓi be the
vertex corresponding togi. We say a vertexv ∈ Gn is covered
if v = vki,ℓi for some0 6 i 6 N− 1. We now denote bykmin

andkmax the smallest and, respectively, largest, row index of
vertices covered by the codeG.

7

The code obviously induces a cyclic path inGn, and there-
fore, there exist two sub-paths going “up” and “down” rows,
gu, gu+1, . . . , gu′ and gd, gd+1, . . . , gd′, with the following
properties: (indices are taken moduloN where appropriate)

• ku = kmin, ku′ = kmax, and for all 0 6 i 6 (u′ −
u) mod N, kmin < ku+i < kmax.

• kd = kmax, kd′ = kmin, and for all0 6 i 6 (d′− d) mod
N, kmin < kd+i < kmax.

The two sub-paths are obviously vertex disjoint, except
perhaps the first and last vertices of the paths. Furthermore,
one can easily be convinced, that the two paths do not
occupy the same columns, except perhaps the columns of the
first and last vertices of the paths. Along the “up” path, let
0 6 tkmin+1, . . . , tkmax−1 6 (u′ − u) mod N be the unique
integers such thatgu+ti is the last vertex along the path at
row i, i.e., ku+ti = i and for all ti < j 6 (u′ − u) mod N,
ku+j > i. It now follows that for eachkmin < i < kmax, the
vertices
{

vku+ti
−1,ℓu+ti

+1, vku+ti
−2,ℓu+ti

+2, . . . , vkmin,ℓu+ti
+ku+ti

−kmin

}

cannot be covered by any of the codewords ofG. See an
illustration in Figure 4. The number of such uncovered vertices
is exactly(kmax − kmin)(kmax − kmin − 1)/2.

Figure 4. An example of a cyclic(1, 2, 11; 2)-LRMGC. Solid arrows
represent edges which are part of the up and down paths, and the shaded
vertices are those which are guaranteed to remain uncoveredin the proof of
Theorem 11.

In addition to the above-mentioned uncovered vertices, all
the vertices of rows belowkmin and abovekmax are left
uncovered by definition. Thus, if we denoteδ = kmax − kmin,
the total number of uncovered vertices is at least

n

(

n− 1

2
− δ − 1

)

+
δ(δ − 1)

2
>

1

8
(n− 3)(n− 5),

since the minimum is achieved atδ = n−3
2 . Therefore, the

efficiency of the codeG is at most

1−
1
8 (n− 3)(n− 5)

(n2)
=

3

4
+ o(1),

as claimed.
While the upper bound on the efficiency presented in

Theorem 11 is34 + o(1), computer search results lead us to
conjecture that it actually iso(1).

B. The Case ofw = 3

In this section we turn to constructing asymptotically-
optimal cyclic (1, 2, n; 3)-LRMGC. The construction will use

a method originally used for constructing single-track Gray
codes in [17] and later in [38]. In fact, the resulting codes
will have the single-track property as well.

If v = v0v1 . . . vn−1 is a lengthn word over some alphabet,
let E denote thecyclic-shift operatordefined by its action on
v:

Ev = vn−1v0v1 . . . vn−2.

The orbits underE are callednecklaces. A necklace is said
to be full period if the smallest positive integeri such that
Eiv = v is i = n. A full-period necklace containsn distinct
strings.

We say a Gray codeG = g0, g1, . . . , gN−1 has thesingle-
track property if in the matrix whosei-th row is gi, all
the columns are cyclic shifts of each other. A variant of
the following method was suggested in [17] for constructing
single-track Gray codes, and it applies equally-well to ourset
of allowed transitions.

Lemma 12. Let G′ = g′0, g
′
1, . . . , g

′
N′−1 be a (1, 2, n;w)-

LRMGC whereg′i+1 = τji(g
′
i) for all 0 6 i 6 N′ − 2.

If the strings inG′ are representatives of distinct full-period
necklaces, andEℓg′0 = τjN′−1

g′N′−1, gcd(ℓ, n) = 1, then the
following is a cyclic single-track Gray code:

G = G′, EℓG′, E2ℓG′, . . . , E(n−1)ℓG′,

whereEjG′ = Ejg′0, . . . , E
jg′N′−1.

Proof: First,EjG′ is certainly also a Gray code. Since the
necklaces inG′ all have full cyclic period and sinceℓ generates
Zn, for k 6≡ k′ (mod n) the codesEkℓG′ and Ek′ℓG′ are
disjoint. Finally, it is easy to see that the transition fromthe
last string ofEkℓG′ to the first string ofE(k+1)ℓG′ is valid.

We define the mappingψ : S(n, 3) → Z3
n as follows: for a

binary stringv of lengthn and weight3 with 1’s in positions
0 6 i0 < i1 < i2 6 n− 1, let

ψ(v) = (i1 − i0, i2 − i1, i0 − i2)

where subtraction is made modulon. The set
{ψ(v) | v ∈ S(n, 3)} is the set of points(d0, d1, d2) ∈ Z3

that are on the hyperplaned0 + d1 + d2 = n restricted to
1 6 d0, d1, d2 6 n− 2. We call ψ(v) the configurationof v.
We note that ifgcd(n, 3) = 1, then S(n, 3) contains only
full-period strings, and otherwise, all strings are full-period
except those with configuration(n/3, n/3, n/3). We denote
by S∗(n, 3) the set of full-period strings fromS(n, 3).

Sinceψ(v), Eψ(v), andE2ψ(v), (corresponding to a cyclic
rotation of the axes ofZ3), represent strings from the same
necklace, for anyv ∈ S∗(n, 3), let ψ′(v) stand for the unique
(d0, d1, d2) ∈

{

ψ(v), Eψ(v), E2ψ(v)
}

for which d1 6 ⌊n/3⌋
andd2 > ⌊n/3⌋. Thus, there is a simple one-to-one mapping
from {ψ′(v) | v ∈ S∗(n, 3)} to the set of full-period neck-
laces. We callψ′(v) the canonical configurationof v.

A simple counting reveals that there are a total of
(n−1)(n−2)

2 configurations, and whengcd(n, 3) = 1 there

are (n−1)(n−2)
6 = 1

n (n3) canonical configurations which is
exactly the number of weight-3 full-period necklaces. When
gcd(n, 3) 6= 1, there are(n−1)(n−2)−2

6 canonical configura-
tions. See Figure 5 for an illustration.

8

d0 d1

d2

(n− 2, 1, 1) (1,n− 2, 1)

(1, 1, n− 2)

Figure 5. The hyperplane of configurations forn = 13. The set of canonical
configurations is shown surrounded by a thick frame.

Lemma 13.Let ∆ = (d0, d1, d2) be a canonical configuration,
and assume

∆′ ∈ {(d0 + 1, d1 − 1, d2),

(d0, d1 + 1, d2 − 1),

(d0 − 1, d1, d2 + 1)}
is also a canonical configuration. Then for anyv ∈ S∗(n, 3)
such thatψ′(v) = ∆ there existsv′ ∈ S∗(n, 3) such that
ψ′(v′) = ∆′ andv′ = τj(v) for some0 6 j 6 n− 1.

Proof: Assume∆′ = (d0 + 1, d1 − 1, d2) is a canonical
configuration (the proof for the two other cases is similar).
Let v ∈ S∗(n, 3) be such thatψ′(v) = ∆, i.e., there exists
some0 6 i 6 n− 1 such that the1’s in v occur in positions
i, i + d0, and i + d0 + d1 (all taken modulon). It is easily
verified thatv′ = τi+d0(v) has canonical configuration∆′.

We now intend to find a long cycle over canonical con-
figurations which, by Lemma 13, will result in a Gray code
of representatives of distinct full-period necklaces. Thelatter
will be used with Lemma 12 to generate a cyclic(1, 2, n; 3)-
LRMGC.

Construction 2. Let n > 9 be an integer. We construct
the following sequence of canonical configurationsΓ =
∆0,∆1, . . . ,∆N′−1. We first set∆0 = (1, 1, n− 2), and then
set ∆i+1 as a function of∆i = (d0, d1, d2) according to the
following rules:

• If d0 = 1 and d1 < 3 ⌊⌊n/3⌋ /3⌋, then set∆i+1 =
(d0, d1 + 1, d2 − 1).

• Else, if d1 ≡ 0 (mod 3), then set∆i+1 = (d0 + 1, d1 −
1, d2).

• Else, if d1 ≡ 2 (mod 3) andd2 > ⌊n/3⌋ + 1, then set
∆i+1 = (d0, d1 + 1, d2 − 1).

• Else, ifd1 ≡ 2 (mod 3) andd2 = ⌊n/3⌋ + 1 andd1 >

1, then set∆i+1 = (d0 + 1, d1 − 1, d2).

• Else, if d1 ≡ 1 (mod 3) andd0 > 2, then set∆i+1 =
(d0 − 1, d1, d2 + 1).

• To complete the cycle, if∆i = (1, 2, n − 3), then set
∆i+1 = (1, 1, n− 2).

An illustration of the path from Construction 2 is shown in
Figure 6.

Figure 6. The path from Construction 2 over the canonical configurations
for n = 22. The unvisited configurations are shown surrounded by a thick
frame.

Lemma 14.The path from Construction2 visits only canonical
configurations, each visited no more than once.

Proof: Going over all the transitions in Construction 2 one
can verify that they visit only canonical configurations. Except
for configurations of the form(1, d1, d2) which are part of
path of increasingd1, the rest of the path is divided according
to d1 mod 3: when d1 ≡ 2, 0 (mod 3) the path zigzags
“downward”, and goes back “up” whend1 ≡ 1 (mod 3) (see
Figure 6). This path structure ensures no vertex is visited more
than once in a cycle.

Lemma 15.The lengthN′ of the path from Construction2 is
given by

N′(n) =







































































n2−5n+18
6 n ≡ 0 (mod 9)

n2−5n+22
6 n ≡ 1 (mod 9)

n2−5n+24
6 n ≡ 2 (mod 9)

n2−7n+30
6 n ≡ 3 (mod 9)

n2−7n+30
6 n ≡ 4 (mod 9)

n2−7n+28
6 n ≡ 5 (mod 9)

n2−9n+36
6 n ≡ 6 (mod 9)

n2−9n+32
6 n ≡ 7 (mod 9)

n2−9n+26
6 n ≡ 8 (mod 9)

(5)

9

Proof: The path length depends on the number of times
it zigzags “downward” which is⌊⌊n/3⌋ /3⌋. The rest is a
careful and tedious counting.

Lemma 16. Let G′ = g′0, g
′
1, . . . , g

′
N′−1 be a list of strings

from S∗(n, 3) (whose existence is guaranteed by Lemma13)
such thatΓ = ψ′(g′0),ψ

′(g′1), . . . ,ψ
′(g′N′−1) is the cyclic path

from Construction2. Let g∗ be the string (whose existence is
guaranteed by Lemma13) such thatψ′(g∗) = ψ′(g′0) and
g∗ = τj(g

′
N′−1). Theng∗ = EN′/3g′0.

Proof: Let us examineg′i for somei and suppose we could
distinguish between the three1’s in g′i by coloring them red,
blue, and green. Ifψ′(g′i) = (d0, d1, d2), assume w.l.o.g., that
d0 is the distance between the red and blue1’s, d1 between
the blue and green1’s, andd2 between the green and red1’s.
If ψ′(g′i+1) = (d′0, d

′
1, d

′
2), then a careful reading of Lemma

13 shows that ing′i+1, d
′
0 is again the distance between the

red and blue1’s, d′1 between the blue and green1’s, andd′2
between the green and red1’s.

Sinceψ′(g∗) = ψ′(g′0) it follows that g∗ is a cyclic shift
of g′0. By the previous argument, to get fromg′0 to g∗, all the
1’s had to be pushed an equal number of times to the right
and sog∗ = EN′/3g′0.

The following is the main theorem of this section:

Theorem 17.For all n > 9 such thatgcd(n,N′(n)/3) = 1,
whereN′(n) is given by (5), there exists a cyclic(1, 2, n; 3)-
LRMGC of sizeN = n · N′(n), which is also single-track.

Proof: By Lemma 13, let G′ = g′0, g
′
1, . . . , g

′
N′−1

be a list of strings from S∗(n, 3) such that Γ =
ψ′(g′0),ψ

′(g′1), . . . ,ψ
′(g′N′−1) is the cyclic path from Con-

struction 2. By Lemma 15,N′ = N′(n) from (5). According
to Lemma 14,Γ contains distinct canonical configurations, and
soG′ contains representatives of distinct full-period necklaces.
Finally, by combining Lemma 16 with the requirement that
gcd(n,N′(n)/3) = 1, we can use Lemma 12 to construct
the desired code.

Lemma 18. There are infinite values ofn ∈ N for which
gcd(n,N′(n)/3) = 1. More specifically, it suffices thatn
satisfies one of the following:

• n ≡ 7, 11 (mod 18)
• n ≡ 13, 31, 49, 67 (mod 90)
• n ≡ 5, 23, 41, 59, 95, 113 (mod 126)
• n ≡ 1, 19, 37, 73, 91, 109, 127, 145, 163, 181 (mod 198)
• n ≡ 17, 35, 53, 71, 89, 107, 125, 161, 179, 197, 215, 233

(mod 234)

Proof: We will prove one of the cases and the rest are
similar. Assumen ≡ 4 (mod 9). By Lemma 15 we need

gcd

(

n,
n2 − 7n + 30

18

)

= 1.

Sincegcd(a, b) divides any integer combination ofa and b,
and since

18 · n
2 − 7n + 30

18
− (n− 7) · n = 30,

it follows that

gcd

(

n,
n2 − 7n + 30

18

)∣

∣

∣

∣

30.

Thus, if we could only make sure thatgcd(n, 30) = 1 the
claim would necessarily follow. Combininggcd(n, 30) =
1 and n ≡ 4 (mod 9), we get thatn ≡ 13, 31, 49, 67
(mod 90) is sufficient to prove the claim.

We note that the conditions described in Lemma 18 are not
the only cases in whichgcd(n,N′(n)/3) = 1, but are just
the ones easy to derive. For instance, whenn = 27, we have
gcd(n,N′(n)/3) = gcd(27, 34) = 1.

Corollary 19. There exists an infinite family{Gi}∞
i=1 of

cyclic (1, 2, ni; 3)-LRMGCs, ni+1 > ni for all i, for which
limi→∞ Eff(Gi) = 1.

Proof: Simply combine Lemma 18 with the fact that

lim
n→∞

n · N′(n)

(n3)
= 1.

On a final note, the codes from Theorem 17 turn out to be
optimal in the cases ofn = 10, 11 with sizesN = 120, 165
respectively.

V. A SYMPTOTICALLY CONSTANT RATE CODES

The main problem with the codes constructed in Section IV
is that their rate is asymptotically0. We now turn to construct-
ing codes with rates asymptotically tending to1, and weight
asymptotically half the length, thus having asymptotically-
optimal charge difference between adjacent cells.

Our construction has the following intuitive flavor. We start
by partitioning then flash cells into about

√
n blocks, each

block of size about
√
n, treating each block of cells as a

single character in a large alphabet, say{0, 1, . . . , t− 1} for
t ≃ 2

√
n. Roughly speaking, by this operation, we have

reduced the problem of finding a Gray code over{0, 1}n
into anouterGray-like code over{0, 1, . . . , t− 1}

√
n. Several

Gray codes of rate 1 exist over large alphabets, however, not
any outer code will suffice in our setting. Primarily, it is
crucial that we may move from state to state in the outer code
using our elementary pairwise “push-to-the-top” operations.
Moreover, in doing so, we must guarantee that flash cell values
obtained between a single representation of the outer codeword
and its successor are unique. We achieve these goals using an
outer Gray code based on de-Bruijn sequences. In such codes,
the location of the character that changes between subsequent
codewords over goes a cyclic shift. This cyclic location change
between subsequent codewords lends itself very naturally to
our cyclic “push-to-the-top” operations. Combining this with
additional ideas, that guarantee distinct cell values (of constant
weight) in transition between outer codewords, we obtain our
construction.

Construction 3.Fix a positive integerk. Let{v0, v1, . . . , vt−1}
be a set oft distinct binary vectors of lengthm + 2 and weight
w + 2 such that the first and last bit of eachvi is 1. We also
denoteL = lcm(k + 2, tk).

10

The next required ingredient in the construction is a de-
Bruijn sequence of orderk over the alphabet{0, 1, . . . , t− 1}.
The sequence is of periodtk and we denote it by
s0, s1, . . . , stk−1. We remind the reader that windows of size
k in the sequence, i.e.,si, si+1, . . . , si+k−1, with indices taken
modulo tk, are all distinct. Such sequences can always be
constructed (for example, see [21]).

We now construct the sequenceg0, g1, . . . , gL−1 of L binary
vectors of length(k + 2)(m+ 2) and weight(k + 1)(w + 2).
Each vector is formed by a concatenation ofk + 2 blocks of
lengthm + 2 in the following way:

g0 = vsk vsk−1
. . . vs1 vs0 0

g1 = vsk vsk−1
. . . vs1 0 vsk+1

g2 = vsk vsk−1
. . . 0 vsk+2

vsk+1

...
gk = vsk 0 . . . vsk+3

vsk+2
vsk+1

gk+1 = 0 vs2k+1
. . . vsk+3

vsk+2
vsk+1

gk+2 = vs2k+2
vs2k+1

. . . vsk+3
vsk+2

0

gk+3 = vs2k+2
vs2k+1

. . . vsk+3
0 vs2k+3

gk+4 = vs2k+2
vs2k+1

. . . 0 vs2k+4
vs2k+3

...
g2k+2 = vs2k+2

0 . . . vs2k+5
vs2k+4

vs2k+3

g2k+3 = 0 vs3k+3
. . . vs2k+5

vs2k+4
vs2k+3

...
gL−k−2 = vsL−2 vsL−3 . . . vsL−k−1

vsL−k−2
0

gL−k−1 = vsL−2 vsL−3 . . . vsL−k−1
0 vsL−1

gL−k = vsL−2 vsL−3 . . . 0 vs0 vsL−1

...
gL−2 = vsL−2 0 . . . vs1 vs0 vsL−1

gL−1 = 0 vsk−1
. . . vs1 vs0 vsL−1

where0 denotes the all-zero vector of lengthm + 2, and the
sub-indices ofs are taken modulotk.

We call g0, g1, . . . , gL−1 the anchor vectors. We note that
between anchorsgi and gi+1 the block vsi movesm + 2
positions to the right (with wrap-around) and is changed to the
blockvsi+k+1

.
Finally, between any two anchors,gi andgi+1, a sequence of

vectors calledauxiliary vectorsand denotedg0i , g
1
i , . . . , g

ℓi
i , is

formed in the following way: The only allowed transition is a10
changed into a01. First the rightmost1 in the blockvsi is moved
to the right, step by step, to the position of the rightmost1 in
vsi+k+1

. The process then repeats with a sequence of transitions
moving the second-from-right1 in vsi to the position of the
second-from-right1 in vsi+k+1

, and so on, untilvsi is moved
one block to the right and changed intovsi+k+1

(see Example
20). The resulting list of anchor vectors and, in between them,
auxiliary vectors, is the constructed code.

Example 20.Let us take a very simple case ofk = 1, m = 3,
w = 2, andt = 3, with s0 = 0, s1 = 1, ands2 = 2, and then
v0 = 11101, v1 = 11011, andv2 = 10111. The list of anchors
is

g0 = 11011 11101 00000
g1 = 11011 00000 10111
g2 = 00000 11101 10111

and, for example, the transition betweeng0 and g1 is (the
changed positions are underlined)

g0 = 11011 11101 00000
g00 = 11011 11100 10000
g10 = 11011 11100 01000
g20 = 11011 11100 00100
g30 = 11011 11100 00010
g40 = 11011 11100 00001
g50 = 11011 11010 00001
g60 = 11011 11001 00001
g70 = 11011 11000 10001
g80 = 11011 11000 01001
g90 = 11011 11000 00101
g100 = 11011 11000 00011
g110 = 11011 10100 00011
g120 = 11011 10010 00011
g130 = 11011 10001 00011
g140 = 11011 10000 10011
g150 = 11011 10000 01011
g160 = 11011 10000 00111
g170 = 11011 01000 00111
g180 = 11011 00100 00111
g190 = 11011 00010 00111
g200 = 11011 00001 00111
g1 = 11011 00000 10111

Theorem 21.The code constructed in Construction3 is a cyclic
(1, 2, (k+ 2)(m+ 2); (k+ 1)(w+ 2))-LRMGC of size

N = L(w + 2)(m+ 2) = lcm(tk, k + 2) · (w+ 2) · (m + 2).

Proof: That the code contains only valid transitions is
evident by the construction method. We need to show that all
the constructed codewords are distinct which we do with the
following reasoning: consider some constructed codewordg of
length (k + 2)(m+ 2) and weight(k + 1)(w + 2). Deciding
whetherg is an anchor is simple, since only anchors have
k+ 1 blocks beginning and ending with a1, and the remaining
block a 0. By our choice ofL, all anchors are distinct since
they contain windows of sizek+ 1 from a de-Bruijn sequence
of orderk, each window appearing in(k+ 2)/ gcd(k+ 2, tk)
distinct cyclic shifts (which are easily distinguishable by the
position of the0 block). It then follows that ifg is indeed an
anchor it appears only once in the code.

Assume we discoverg is an auxiliary vector. Again, by
construction, all auxiliary vectors betweengi and gi+1 have
k fixed blocks. Looking atg, an auxiliary vector, exactlyk
blocks are of weightw + 2 while the other two blocks have
weight strictly beloww + 2. The blocks of weightw + 2,
by construction, form a window of sizek from a de-Bruijn
sequence of orderk starting atsi, and so their content and
position uniquely identify between which two anchorsg lies.

Finally, all the auxiliary vectors between adjacent anchorsgi
andgi+1 are easily seen to be distinct. Thus, given a codeword
g from the constructed code, there is exactly one position in
the sequence of generated codewords which equalsg, and so
all generated codewords are distinct.

11

To complete the proof we need to calculate the sizeN.
There are exactlyL anchors. Given an anchorgi, the number
of steps in the transition togi+1 may be readily verified to
be (w+ 2)(m+ 2) + χ(gi+1)− χ(gi), whereχ(·) is the first
moment function defined in (2). Thus,

N =
L−1

∑
i=0

((w+ 2)(m+ 2) + χ(gi+1) − χ(gi))

= L(w + 2)(m+ 2)

as claimed. As a final note, the choice ofL is easily seen to
ensure the resulting code is cyclic.

We mention in passing that the proof of Theorem 21 hints
at efficient encoding and decoding procedures, provided other
efficient encoding and decoding procedures exist for de-Bruijn
sequences. Examples of such procedures may be found in [33],
[42].

We now turn to show the main claim of the section.

Corollary 22. There exists an infinite family{Gi}∞
i=1 of

cyclic (1, 2, ni;wi)-LRMGCs, ni+1 > ni for all i, for which
limi→∞ R(Gi) = 1, andlimi→∞

wi
ni

= 1
2 .

Proof: For the codeGi, setw = i, andk = m = 2i (i.e.,
ni = (2i+ 2)2 andwi = (2i+ 1)(i+ 2)) and apply Theorem
21 with t = (2ii). The size,Ni, of the codeGi, is bounded by
(

2i

i

)2i

(i + 2)(2i + 2) 6 Ni 6

(

2i

i

)2i

(i + 2)(2i + 2)2

since
(

2i

i

)2i

6 lcm

(

(

2i

i

)2i

, 2i + 2

)

6

(

2i

i

)2i

(2i + 2).

It is well known (see for example [32], p. 309) that for any
0 < λ < 1, assumingλℓ is an integer,

1
√

8ℓλ(1− λ)
2ℓH(λ)

6

(

ℓ

λℓ

)

6
1

√

2ℓλ(1− λ)
2ℓH(λ)

whereH(·) is the binary entropy function. SinceH(1/2) = 1,
it now easily follows that

lim
i→∞

R(Gi) = 1, lim
i→∞

wi

ni
=

1

2
.

If needed, we can achieve lower asymptotic rates by setting
w = λm for some rational0 < λ < 1, λ 6= 1/2.

VI. CONCLUSION

We presented the general framework of(s, t, n)-local rank
modulation and focused on the specific case of(1, 2, n)-LRM
which is both the least-hardware-intensive, and the simplest
one to translate between binary strings and permutations. We
studied constant-weight Gray codes for this scheme, which
guarantee a bounded charge difference in any “push-to-the-
top” operation. The Gray codes are used to simulate a con-
ventional multi-level flash cell.

Using coloring and counting arguments we derived neces-
sary conditions for the existence of cyclic and cyclic optimal
(1, 2, n;w)-LRMGCs.

While cyclic optimal Gray codes exist (trivially) forw = 1,
we showed that forw = 2 their efficiency is upper bounded
by 3

4 + o(1). In contrast, forw = 3 asymptotically-optimal
codes exist with efficiency1− o(1). The codes we constructed
also come with a relatively simple updating algorithm. Finally,
by letting w be approximatelyn/2 we constructed cyclic
(1, 2, n;w)-LRMGCs whose rate approaches1.

Several open questions still remain. For the case of
(1, 2, n;w)-LRMGCs, a general construction is missing for
constant weightsw > 4. We also conjecture, based on
computer search results, that forw = 2 andn large enough,
the size of cyclic codes is at most2n, hence, with efficiency
actually o(1). Of more general interest is the study of codes
for general(s, t, n)-LRM and their parameters.

REFERENCES

[1] T. M. Apostol, Introduction to Analytic Number Theory. Springer-
Verlag, NY, 1976.

[2] T. Berger, F. Jelinek, and J. K. Wolf, “Permutation codesfor sources,”
IEEE Trans. on Inform. Theory, vol. IT-18, no. 1, pp. 160–169, Jan.
1972.

[3] I. F. Blake, “Permutation codes for discrete channels,”IEEE Trans. on
Inform. Theory, vol. 20, pp. 138–140, 1974.

[4] I. F. Blake, G. Cohen, and M. Deza, “Coding with permutations,”
Inform. and Control, vol. 43, pp. 1–19, 1979.

[5] V. Bohossian, A. Jiang, and J. Bruck, “Buffer coding for asymmetric
multi-level memory,” in Proceedings of the 2007 IEEE International
Symposium on Information Theory (ISIT2007), Nice, France, Jun. 2007,
pp. 1186–1190.

[6] M. Buck and D. Wiedemann, “Gray codes with restricted density,”
Discrete Math., vol. 48, pp. 163–181, 1984.

[7] M. Carkeet and P. Eades, “A subset generation algorithm with a very
strong minimal change property,”Congressus Numerantium, vol. 47, pp.
139–143, 1985.

[8] H. Chadwick and I. Reed, “The equivalence of rank permutation codes
to a new class of binary codes,”IEEE Trans. on Inform. Theory, vol. 16,
no. 5, pp. 640–641, 1970.

[9] H. D. Chadwick and L. Kurz, “Rank permutation group codesbased
on Kendall’s correlation statistic,”IEEE Trans. on Inform. Theory, vol.
IT-15, no. 2, pp. 306–315, Mar. 1969.

[10] C. C. Chang, H. Y. Chen, and C. Y. Chen, “Symbolic Gray code as a
data allocation scheme for two-disc systems,”Comput. J., vol. 35, pp.
299–305, 1992.

[11] M. Chen and K. G. Shin, “Subcube allocation and task migration in
hypercube machines,”IEEE Trans. on Comput., vol. 39, pp. 1146–1155,
1990.

[12] G. Cohen and M. Deza, “Decoding of permutation codes,” in Intl. CNRS
Colloquium, July, France, 1977.

[13] M. Deza and P. Frankl, “On maximal numbers of permutations with
given maximal or minimal distance,”J. Combin. Theory Ser. A, vol. 22,
1977.

[14] P. Diaconis and S. Holmes, “Gray codes for randomization procedures,”
Stat. Comput., vol. 4, pp. 287–302, 1994.

[15] L. E. Dickson,History of the Theory of Numbers, vol. 2. New York:
Chelsea, 1952.

[16] P. Eades, M. Hickey, and R. C. Read, “Some Hamiltonian paths and
minimal change algorithms,”J. of the ACM, vol. 31, pp. 19–29, 1984.

[17] T. Etzion and K. G. Paterson, “Near optimal single-track Gray codes,”
IEEE Trans. on Inform. Theory, vol. 42, no. 3, pp. 779–789, May 1996.

[18] C. Faloutsos, “Gray codes for partial match and range queries,” IEEE
Trans. on Software Eng., vol. 14, pp. 1381–1393, 1988.

[19] H. C. Ferriera, A. J. H. Vinck, T. G. Swart, and I. de Beer,“Permutation
trellis codes,”IEEE Trans. on Communications, pp. 1782–1789, Nov.
2005.

[20] M. Gardner, “The curious properties of the Gray code andhow it can
be used to solve puzzles,”Scientif. Amer., vol. 227, pp. 106–109, 1972.

[21] S. W. Golomb,Shift Register Sequences. Holden-Day, San Francisco,
1967.

[22] F. Gray, “Pulse code communication,” March 1953, U.S. Patent 2632058.

12

[23] T. Hough and F. Ruskey, “An efficient implementation of the Eades,
Hickey, Read adjacent interchange combination generationalgorithm,”
J. of Comb. Math. and Comb. Comp., vol. 4, pp. 79–86, 1988.

[24] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint infor-
mation storage in write asymmetric memories,” inProceedings of the
2007 IEEE International Symposium on Information Theory (ISIT2007),
Nice, France, Jun. 2007, pp. 1166–1170.

[25] A. Jiang and J. Bruck, “Joint coding for flash memory storage,” in
Proceedings of the 2008 IEEE International Symposium on Information
Theory (ISIT2008), Toronto, Canada, Jul. 2008, pp. 1741–1745.

[26] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Universal rewriting
in constrained memories,” inProceedings of the 2009 IEEE International
Symposium on Information Theory (ISIT2009), Seoul, Korea, Jun. 2009,
pp. 1219–1223.

[27] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,”IEEE Trans. on Inform. Theory, vol. 55, no. 6, pp.
2659–2673, Jun. 2009.

[28] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,”IEEE Trans. on Inform. Theory,
vol. 56, no. 5, pp. 2112–2120, May 2010.

[29] C. A. Laisant, “Sur la numération factorielle, application aux permu-
tations,” Bulletin de la Société Mathématique de France, vol. 16, pp.
176–183, 1888.

[30] R. M. Losee, “A Gray code based ordering for documents onshelves:
classification for browsing and retrieval,”J. Amer. Soc. Inform. Sci.,
vol. 43, pp. 312–322, 1992.

[31] J. M. Ludman, “Gray codes generation for MPSK signals,”IEEE
Trans. on Communications, vol. COM-29, pp. 1519–1522, 1981.

[32] F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting
Codes. North-Holland, 1978.

[33] C. J. Mitchell, T. Etzion, and K. G. Paterson, “A method for constructing
decodable de Bruijn sequences,”IEEE Trans. on Inform. Theory, vol.
IT-42, pp. 1472–1478, 1996.

[34] D. Richards, “Data compression and Gray-code sorting,” Information
Processing Letters, vol. 22, pp. 201–205, 1986.

[35] J. Robinson and M. Cohn, “Counting seqeuences,”IEEE Trans. on
Comput., vol. C-30, pp. 17–23, May 1981.

[36] F. Ruskey, “Adjacent interchange generation of combinations,” J. of
Algorithms, vol. 9, pp. 162–180, 1988.

[37] C. D. Savage, “A survey of combinatorial Gray codes,”SIAM Rev.,
vol. 39, no. 4, pp. 605–629, Dec. 1997.

[38] M. Schwartz and T. Etzion, “The structure of single-track Gray codes,”
IEEE Trans. on Inform. Theory, vol. 45, no. 7, pp. 2383–2396, Nov.
1999.

[39] D. Slepian, “Permutation modulation,” inProc. of the IEEE, vol. 53,
no. 3, 1965, pp. 228–236.

[40] N. J. A. Sloane, “On single-deletion-correcting codes,” in Codes and
Designs, Ohio State University, May 2000 (Ray-Chaudhuri Festschrift),
K. T. Arasu and A. Seress, Eds. Berlin: Walter de Gruyter, 2002, pp.
273–291.

[41] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the
rank-modulation scheme,”IEEE Trans. on Inform. Theory, vol. 56, no. 6,
pp. 2551–2560, Jun. 2010.

[42] J. Tuliani, “De Bruijn sequences with efficient decoding algorithms,”
Discrete Math., vol. 226, no. 1, pp. 313–336, Jan. 2001.

[43] H. Vinck, J. Haering, and T. Wadayama, “Coded M-FSK for power
line communications,” inProceedings of the 2000 IEEE International
Symposium on Information Theory (ISIT2000), Sorrento, Italy, 2000, p.
137.

[44] Z. Wang, A. Jiang, and J. Bruck, “On the capacity of bounded rank
modulation for flash memories,” inProceedings of the 2009 IEEE
International Symposium on Information Theory (ISIT2009), Seoul,
Korea, Jun. 2009, pp. 1234–1238.

[45] E. Yaakobi, P. H. Siegel, and J. K. Wolf, “Buffer codes for multi-
level flash memory,” inProceedings of the 2008 IEEE International
Symposium on Information Theory (ISIT2008), Toronto, Canada, 2008,
poster.

