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Abstract—We consider the local rank-modulation scheme in the over-programming problem in flash memories, reduces
which a sliding window going over a sequence of real-valued corruption due to retention, and speeds up cell programming

variables induces a sequence of permutations. Local rank-
modulation is a generalization of the rank-modulation schene,
which has been recently suggested as a way of storing inforrian
in flash memory.

We study constant-weight Gray codes for the local rank-
modulation scheme in order to simulate conventional multitevel
flash cells while retaining the benefits of rank modulation. V¢
provide necessary conditions for the existence of cyclic ancyclic
optimal Gray codes. We then specifically study codes of weigh
2 and upper bound their efficiency, thus proving that there
are no such asymptotically-optimal cyclic codes. In contrst, we
study codes of weight3 and efficiently construct codes which
are asymptotically-optimal. We conclude with a constructon of
codes with asymptotically-optimal rate and weight asympttically
half the length, thus having an asymptotically-optimal chage
difference between adjacent cells.

Index Terms—Gray code, rank modulation, local rank modu-
lation, permutations, flash memory

I. INTRODUCTION

N a recent series of papers [27], [28], [41], [44], the ran

modulation scheme was suggested as a way of stori
information in flash-memory devices. Basically, insteadaof

conventional multi-level flash cell in which the charge lesk
a single cell is measured and quantized to a symbol from

input alphabet, in the rank-modulation scheme the pernoutat

induced by the relative charge levels of several cells cisapr

the stored information. The scheme, first described in [2

in the context of flash memory, works in conjunction with
simple cell-programming operation called “push-to-tbp=t
which raises the charge level of a single cell above the rfes

the cells. It was suggested in [27] that this scheme eliremal
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This is certainly not the first time permutations have been
used for modulation purposes. Permutations have been used
as codewords as early as the works of Slepian [39] (later
extended in [2]), in which permutations were used to digitiz
vectors from a time-discrete memoryless Gaussian source,
and Chadwick and Kurz [9], in which permutations were
used in the context of signal detection over channels with
non-Gaussian noise (especially impulse noise). Furthdy ea
studies include works such as [2]-[4], [8], [12], [13]. More
recently, permutations were used for communicating overpo
erlines (for example, see [43]), and for modulation schemes
for flash memory [27], [28], [41], [44].

An important application for rank-modulation in the corttex
of flash memory was described in [27]: A set of cells,
over which the rank-modulation scheme is applied, is used
to simulate a single conventional multi-level flash celltwit
levels corresponding to the alphabgi, 1,...,n! —1}. The
simulated cell supports an operation which raises its vhjue
k1_ modulo n!. This is the only required operation in many
rewriting schemes for flash memories (see [5], [24]-[26],

1), and itis realized in [27] by a Gray code traversing tthe
states where, physically, the transition between two a&ajac
X té:\tes in the Gray code is achieved by using a single “push-
0-the-top” operation.

Most generally, a gray code is a sequence of distinct
rﬂements from an ambient space such that adjacent elements
in the sequence are “similar”. Ever since their original pub
Efllcation by Gray [22], the use of Gray codes has reached a
wide variety of areas, such as storage and retrieval apiolita
[[90], processor allocation [11], statistics [14], hashidg],
puzzles [20], ordering documents [30], signal encodingd,[31
data compression [34], circuit testing [35], and more. For a
survey on Gray codes the reader is referred to [37].

A drawback to the rank-modulation scheme is the need
for a large number of comparisons when reading the induced
permutation from a set of cell-charge levels. Instead, in a
recent work [44], then cells are locally viewed through a
sliding window resulting in a sequence of small permutagion
which require less comparisons. We call this theal rank-
modulation schemeThe aim of this work is to study Gray
codes for the local rank-modulation scheme. The paper is or-
ganized as follows: In Section Il the exact setting, notgtand
definitions are presented. We study, in Section lll, neggssa
conditions for the existence of Gray codes for our setting.
In Section IV we give constructions for Gray codes of low
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Figure 1. Demodulating &3,5,9)-locally rank-modulated signal.

constant weight and study their efficiency. We turn, in Secti sequencef., will stand for the original information which
V, to construct Gray codes with asymptotically-optimaksat was stored in the: cells. This approach will serve as the
and weight asymptotically half the length. We conclude imain motivation for this paper, as it was also for [27], [28],
Section VI with a summary and a set of open problems. [41], [44]. See Figure 1 for an example.
Though of no consequence to the rest of the paper, we
II. DEFINITIONS AND NOTATION mention in passing, that the sequence of local permutations
A Local Rank Modulation given in (1) may be quite a wasteful method qf represent_ation
A more compact form may be defined using the (mixed-
Let us consider a sequence fofeal-valued variable; = radix) factoradic notation (see [29] for the earliest-kmow
(co,c1,- .-, ci-1) € R, where we further assumg # c; for  gefinition, and [27] for a related use) in which tit most-
all i # j. Thet variables induce a permutatida < S;, where  sjgnificant digit counts the number of elements to the right
St denotes the set of all permutations oVdr= {1,2,...,t}. of the ith-from-left element, which are of lower value. We
The permutationfc is uniquely defined by the constraintshen represent each of the local permutatiggs, using the
Cr(i)—1 > ¢ (j)—1 foralli < j,i.e., if we sortc in descending 4 most-significant digits in its factoradic notation. Thusr f

order,cj > c¢j, > --- > ¢j, then fe(i) = ji+1 for all  example, the configuration of Figure 1 would be represented
1<i<t, _ by ((3,0,1), (4,2,0), (0,2,2)).

Given a sequence of variables.c = (Co 1+ -sCnm1), WE e say a sequendeof n/s permutations ove$; is (s, f,n)-
define a window of size¢ at positionp to be LRM realizableif there existsc € R" such thatf = f., i.e.,

it is the demodulated sequence ofinder the(s, t, n)-LRM
scheme. Except for the degenerate case of t, not every
where the indices are taken moduloand alsd < p <n—1, sequence is realizable.
andl <t < n. Whens = t = n, the (n,n,1n)-LRM scheme degenerates
We now define the(s,t,n)-local rank-modulation (LRM) into a single permutation frons,. This was the case in
schemewhich we do by defining thelemodulationprocess. most of the previous works using permutations for modutatio
Lets < t < n be positive integers, with|n. Given a sequence purposes. A slightly more general case,= t < n was
of n distinct real-valued variables,= (co,c1,-..,c4—1), the discussed by Ferrieret al. [19] in the context of permutation
demodulation mapg to the sequence of/s permutations trellis codes, where a binary codeword was translated tuple
from S; as follows: wise into a sequence of permutation with no overlap between
fo = (for) forrs forre s . ). (1) the tuples. Finally, the_most_general case was defined by
07 JCotr JCostr =21 ) Cnmst Wanget al. [44] (though in a slightly different manner where
Loosely speaking, we scan the variables using windows indices are not taken module, i.e., with no wrap-around).
of size t positioned at multiples o6 and write down the In [44], the sequence of permutations was studied under a
permutations fromS; induced by thelocal views of the charge-difference constraint callédunded rank-modulatign
sequence. and mostly with parametess=t — 1, i.e., an overlap of one
In the context of flash-memory storage devices, we sh@psition between adjacent windows.
consider then variables,c = (co,c1,...,¢,-1), t0 be the Finding out the induced permutation from a sequence of
charge-level readings from flash cells. The demodulatedreal-valued readings requires at leé3tt logt) comparisons.

Cp,t ::(Cprcp+1/-~-rcp+t71)



. . N N =5.00 =250 =425 =6.50 =4.00 =1.00
Thus, to get the simplest hardware implementation we will @ “ @ @ “ N

consider the case of = 2 throughout the paper. The only —

non-trivial case to consider is therefare= 1, i.e., a(1,2, n)- L 22

LRM scheme. Demodulated sequences of permutations in 2% _— 2% |

this scheme contain only the permutatioiis2] and [2,1],  (2) 7 IR 7

and a single comparison between the charge levels of two 2% v 255 2% 2%

adjacent flash memory cells is required to find the permutatio 7 2777/ 77
Lz /]

We will conveniently associate the logical valdewith the

Y7 71 v
vs/A ws./\4 tszA4 vs/A ws./\4
permutation[1,2], and 0 with [2,1], thus forming a simple i
mapping between length binary sequences and permutation
sequences from thél, 2, n)-LRM scheme. It is easily seen
1 0 1 1 0

that the only two binary sequences not mapped1t@®, n)- 0

LRM sequences are the all-ones and all-zeros sequences.
o =500 ¢; =550 ¢; =425 ¢; =650 ¢y =4.00 c5=1.00

B. Gray Codes fo(1,2,1)-LRM u 7
Generally speaking, @&ray code G, is a sequence of 7 1 22
distinct states (codewordslf; = go,81,---,8¢n-1. from an (b) Y7, Y 754 Y7, 0777
H . . /7 V77 s /7
ambient state space; € S, such that adjacent states in 7 7 7 7 7
the sequence differ by a “small” change. What constitutes a /Y Lo 257 /Y 727
@ ” ) . - /7 V77 s /7 /7 7774
small” change usually depends on the code’s application. vl L Ll 1 e v
Since we are interested in building Gray codes for flash i
memory devices with th€l,2,n)-LRM scheme, our ambient
space, which we denote @&n), is the set of all realizable
sequences und€i, 2, n)-LRM. This is simply the set of all 0 1 0 1 1 0

the binary sequences of length excluding the all-ones and
all-zeros sequences, 1.e., Figure2. An example of a local “push-to-the-top” operation iNB2,6)-
n noan LRM scheme. The snapshot (a) presents the system befordahge; while
S= S(”) - {O' 1} - {O 1 } . (b) presents the system after the change, which locally gulish abovec
. . . . andc;, thus changing the first two bits of the demodulated sequence
Each of the codewordg; € G, is a string ofn bits which

we shall denote ag; = g;0,8i1,---,8in—1- Throughout the

paper we will assume the indexin g;; is taken modulor,  codewordsG = go,1,...,9n—1, Whereg; € S(n). For all

and when appropriate, the indéxs taken modula\. 0 < i < N -2, we further require tha¢; .1 = Tj(g;) for
The transition between adjacent states in the Gray codesisme;. If g, = T(gn—1) for somej, then we say the code is

directly motivated by the flash memory application, and wagyclic. We callN the size of the code, and sa§ is optimal if

previously described and used in [27]. This transition s thyy — o7 _ 7 — 1S(n)].

“push-to-the-top” operation, which takes a single flashaedl . ]

raises its charge level above all others. When we perform a “push-to-the-top” operation on jké

In our case, however, since we are consideritagal rank- cell, let us denote its initial charge level gs and its resulting
modulation scheme, the “push-to-the-top” operation nyerefharge level aﬁ;- We 53“; to max {¢j_1,¢j41} + 9, where
raises the charge level of the selected cell above thoss célP> 0- Two important issues of concern are the difference in
which are comparable with it. As the window sizetis= 2, charge levels involved in a “push-to-the-top” operationda
these cells are the ones directly before and after the §€!l saturation. In the former, the higher— c; is, the more
lected cell. Thus, we define the set of allowed transitiodtsk of disturbing neighboring cells, while in the lattehet
asT = {7,1,...,T,_1}, which is a set of functions, higher we set;., the less number of updates to the cell before
7j: 5§ — S, wheret; represents a “push-to-the-top” operatiofif saturates. Both concerns benefit from a valuej afs low
performed on thg-th cell. If v = vyv; ...v,_1 € S(n), then as possible. Let us assume that a limited resolution exigts a

o =o)o) ...V = Tj(ZJ) if thusd is boundeq from below by a co_nstant, which w.l.o.g.,
we can assume it (after a proper scaling).
0 k=j Let us now assume an optimal setting in which a
vp=141 k=j+1 (modn) “push-to-the-top” operation on thg-th cell sets c;. =
v, otherwise max {c]-,l, Cj+1} +1. A general(1,2,n)-LRMGC may result

. . . ~inc— Cj exponential inn, for some transition fronyg; to
Loosely speaking, a transition is made by selecting a wmdcggw 1] The same motivation in the case (f, n, 1)-LRM was
. . . - -y - . l+ . 7 7 -
gl;selzlfiéll?etgefgrrlngzlxz?gsl\gord, and overwriting it wibil. discussed in [27], where a balanced variant of Gray codes

was constructed to avoid the problem. We present a different
Definiton1. A Gray code,G, for (1,2,1n)-LRM (denoted variant of Gray codes to address the same issue.
(1,2,1n)-LRMGC) is a sequence of distinct lengthbinary First, for any binary stringg = vgv; ...v,_1, we call the



number of1’s in v the weightof v and denote it asvt(v). [1l. NECESSARYCONDITIONS

We also denote by (1, w) the set of length: binary strings e first present a simple necessary condition for the exis-
of weightw. We now define our variant of Gray codes:  tence of a cyclic Gray code, and then expand it in the case

Definition 2. A constant-weight Gray code fdt, 2, #)-LRM of cyclic optimal codes. We use a coloring argument in the
(denoted (1,2, n;w)-LRMGC), G = g0,81,...,gn_1, is a Tollowing way: We color the words ii§(r, w) usingn colors.

Gray code for(1,2,1)-LRM for which g; € S(n,w) for all We then show that in a cyclic Gray code all colors appear, and
0<i<N-1. do so in equal amounts. We then follow with an analysis of the

distribution of colors inS(n, w), showing that in many cases
Definition 3. Let G be a(1,2,n;w)-LRMGC of sizeN. We  they are not equally distributed, and hence no cyclic ogtima
define therate of the code aR(G) = bgTZN. The efficiency code exists.
of G is defined a£ff(G) = N/(},). If Eff(G) = 1 then
we sayG is optimal If Eff(G) = 1 — o(1), whereo(1)
denotes a function that tendsGaasn — oo, then we sayG
is asymptotically optimal

Definition 4. For anyv = vyvy ...v,_1 € S(n,w), we define
the first moment ob as

n—1

x(©) =Y jv 2
The transitions between adjacent states in the constant- j=0
weight variant take on a very simple form: a window of Siz%nd thecolor of v asy
2 in g; which containslO is transformed irg; 1 into 01, i.e.,
“pushing” a logicall a single place to the right. Since we ardheorem5.Let G be a cyclic(1,2,n;w)-LRMGC of sizeN.
interested in creating cyclic counters, we will be integesin Thenn|N.
cyclic Gray codes. An example of a cyclic optimal Gray code  proof: If v, 0/ S(n,w) and v’ = 7;(v) for somej,

(v) mod n.

is given in Table . then it easily follows thag (v') = x(v) +1 (mod n). Let us
TABLE | now denoteG = go, g1, - - -, ¢N—1. By the previous argument,
A cycLic oPTIMAL (1,2,5;2)-LRMGC (THE cHanGeD posiTionsare | = 1 (mod n) iff x(g;) = x(g#) (mod n). Since the code
UNDERLINED.) is cyclic, necessarilyN =0 (mod n). [ |
We can use Theorem 5 to rule out the existence of cyclic
optimal codes in certain cases.

11 0 0 0

(1) % % 8 8 Theorem 6. If w is a prime, then there are no cyclic optimal
01 01 0 (1,2, n;w)-LRMGC for whichged (n, w) # 1.

8 g % é 2 Proof: By the assumptions, necessargyd(n, w) = w,
00 0 1 1 and sow|n. For anya, p € N, p prime, let us denote by,

% 8 8 (1) % the exponent o in the factorization ofz. We can see that
0100 1 N = () = 2o=Deln=w4l) ang thereforeN,, = g — 1.

But theur)m {N as reu(i'uired by Theorem 5. ]

. . The divisibility condition set in Theorem 5 is not strong
It should be noted that Gray codes with a weaker reStr'Ct'OE'nough For example, if we take — 12 andw — 6, then
allowing a01 to be changed int®0 and alsal0 to be changed indeed12|(162), and the possible existence of a cyclic optimal

back into01, i.e., al may be pushed either to the right or 10-ode with these parameters is not ruled out. However. by the
the left, have been studied in the past [6], [7], [16], 2361 s P o LT o o

i - conditions described in Corollary 7 and Lemma 8 it is ruled
We can show that under the constant-weight restriction, f8ﬁt

any “push-to-the-top” operation, _ _ _
Corollary 7. If a cyclic optimal (1,2, n;w)-LRMGC exists,
o o [max{w,n—w} then there are exactly}) /n strings of each color i (n, w).
GTGS min {w,n — w} |’ ’
’ Proof: By Theorem 5 we have:|(,). Furthermore, by

This is done by first assumingw < n, or else we flip all the proof of that theorem the code contains an equal number
the bits and reverse the codewords. We will only use integéf codewords of each color. Since the code is optimal, i.e.,

charge levels, and thus for any codewogd, wt(g;) = w, covers all the strings a$(n, ), the claim follows. ]

we can find a realization by setting,; —c; =1 if g;; =0, To be able to use the last corollary we count the exact
andcj1 —¢j = —[(n —w)/wl| if g;; =1, where[-] denotes number of strings of each color (1, w). Though a solution
either -] or [-]. may be deduced from a related theorem due to von Sterneck

It is now easily shown by induction that a “push-to-the-top{see [15], Ch. Il), we describe a cleaner self-contained-sol

operation on the-th cell preserves charge-level differencegion, which is an extension of Sloane’s method in [40]. In the
between adjacent cells and only rearranges their ordethey following, let

induction hypothesis, initially we have —c;_1 = —[(n — . .
w)/w] andcj;1 —¢; = 1. The “push-to-the-top” operation Au(j, k) =[{v € S(n,w) | x(v) =j, k=n—w (modn)}|
setsc; = max {¢j_1,¢j41f+1 = ¢ 1 +1 and thenc} — forall 0 <jk<n—1.Also, let¢ stand for Euler’s totient

ci-1=1andcjig —c; = —[(n—w)/wl. function, andu stand for the Mébius function.



Lemma 8. The number of strings frorfi(n,w),1 < w < n— We again substitute the result back into (3) and summing by

1, of color0 < a < n —1, is given by divisors of bothn andk, we get
d
1 w(d+1) l‘( d(d, ) n/d d+1 T’l/d d —i
Aan—w) = YD) SELEL (VYA = )R (U 3
n o( y\w/d n k/d —
dln ged(d,a) dln m=1
dlw d|k ged(m,d)=1

Proof: We define the following generating function:  The inner sum is a Ramanujan sum (see [1]) which equals

—1n— d
f(x y Z Z A" ]’ x]y Xd: g—jm _ (d)‘u(ng(d]))
j=0 k=0 =¢ 47( d )’
: . _— m=J_ ged(d.f)
An important observation that follows from the definition of ged(rm, )—1
An(j, k) is that thus getting
n—1 ( d )
flx,y) = (x™+y) mod (x"—1,y"—1). , 1 (n—K)(d+1) Moa@n) (n/d
1 Anlj k) = 3 1) pta) B ()
27 dln ng(d]
Let{ =en € C be ann-th complex root of unity, then d|k
- n—1n—1 ek A simple rewriting of the last expression gives the desired
f(@,e8 =YY A K)gige" result. =
j'=0k'=0 Returning to the previous examplemf= 12 andw = 6 we
Using the inverse two-dimensional discrete Fourier tramsf Can now use Lemma 8 to find that there arg (0,12 —6) =
we get, 76 words in S(12,6) colored0, while there ared(1,12 —
L 6) = 78 words coloredl. Thus, by Corollary 7 no optimal
_ l Z 2 g/ gk’ )&~ /;g—kk 3) cyclic code is possible. The following theorem may be thdugh
ik n2 == of as an extension of Theorem 6 to the casevafot a prime.
Let us denotg = gcd(n j'). We can directly calculate Theorem 9. For anyw € IN there existsiy(w) € IN such
- that for alln > ny(w), there is no cyclic optima(l, 2, n; w)-
f(gj’lgk’) - 11 (gk’ + gmj’) LRMGCs unlesged(n, w) = 1.
m=0

Proof: Fix a weightw. We will show that there exists
no(w) such that for alln > ng(w), ged(n,w) # 1, there

= (=" H ( ¢ gm]) is no cyclic optimal(1,2,n; w)-LRMGC. We will do so by
m=0 . showing thatA, (0,n — w) # A, (1,n — w).
(( /)3 ) Let p > 2 denote the smallest prime number such that
p|ged(n, w) # 1. We shall also need the fact that

m=0 b/ bv\b-1)

where the third equality follows from the well-known factth

" o(z— ¢ =z" — 1. It now follows that Now,

An(0,n—w) — Ay(1,n —w) =

n-1 o / /
g],(:k g*kk: wd+1 T’l/d
LS. = Ly n® 5 o) - iy (17
g 1 dln w/
_y <g)(_1)<g—m>(§+1> DR R dfw
m=0 \" k'=0 _ (_1)w(p+1)/p P (n/p)
Since we are interested only in< k < n — 1, it follows that . w/p 1
_(n — _mh _ w(d+1) n
(n—1)<k mg <n—1, and therefore - Y (1) (p(d) - <d))<w/d>'
- n d| ged(n,w)
Y K ms k) _ {0 k#mg d>p
— n
k=0 n k=mg. We shall proceed to show that, for large enough

Substituting back into (4), we getforall< k <n-—1

o nre (" P) - <—1>"“2*”<4><d>—u<d>><”/ d)
g,e e Rk = _k&y(n § <W/p 5 w/d
k§0f< ) (_1)(8 kn)(gH)( 8 Vi g | k. d\gdi(p, )



which will prove our claim. Indeed, set) = “’73 and thenfor  « A vertex of the formo; , has a single outgoing edge to
all n > ny (3

« A vertex of the formo,,, 1 < k < (n—1)/2, has two
n/d outgoing edges t@;_ 1, andvg_q 1. .
(¢(d) —u(d)) <w/d) < « A vertex of the formv(n_l)/u has two outgoing edges

10 0,y _3) /2,041 ANAV(, 1) /2 04 (n11)/2-

n/d It is now evident that there is a one-to-one correspondence
(p(d) — y(d))( ) between simple paths i§,, and Gray codes. A simple con-
d| ged(n,w) w/d struction for an optimal code which is (in generabt cyclic
d>p is the following.

w 3

< Z w(nép 11> - (nép) Construction 1. Letn > 3 be an odd integer. We construct the

i=1 \W/P— nAw/p following codeG = go,81,...,§n—1. We first segy = vy g,

<2 (n/ p) < (n/ p) and then seg;.1 as a function of; = v, according to the
w/p w/p)’ following rules:

as we claimed. m o Ifkisoddand < (n—1)/2,theng; .1 = vxy1,

It should be noted that a more careful analysis can reduce If k is odd andc = (n —1)/2, thengi 1 = Vg ¢4 (n+1)/2-
the value ofz in the proof of Theorem 9. We also observe that « Ifkisevenand < n —k/2, theng; 1 = vx_1 11
whenged (1, w) = 1, all strings of length: and weighto have ¢ Ifkisevenand = n —k/2, theng;.1 = vg1.
full cyclic period. If U',U/ € S(n,w) andv" is a cyclic shift to  1haorem 10. The code from Construction is an optimal
the right ofv, thenx_(v ) = x(v) +w (mod n). The fact that (1,2, 1;2)-LRMGC.
ged(n, w) = 1 also implies thatv is a generator dZ,,, and so
for every stringy € S(n, w), its n cyclic shifts are all distinctly Proof: It is readily verifiable that the transitions involved
colored. ThusS(n,w) has an equal number of strings fromin the construction are all valid. Furthermore, the coreton
each color and the arguments used in the previous theordfmeasily seen to first exhaust rods— 1 and2t, wheret > 1,

d| ged(n,w)
d>p

N

will not rule out the existence of cyclic optimal codes. by alternating between them, and then moving to ra@ws- 1
and 2t + 2. If the number of rows is even, this is enough
IV. LOW-WEIGHT ANALYSIS AND CONSTRUCTIONS to cover all the vertices. If the number of rows is odd, then

In this section we study1,2, ; w)-LRMGCs having low the last row is covered by transitioning along the row. Since

weight,w < 3 (and by flipping bits and reversing strings, fOIng((n +.1.)/2’n) =1L (n+1)/2is a generat(_)r OF, and

, . . the transitions along rown — 1) /2 cover all of it. [
all w > n — 3). In the first trivial case ofv = 1, there exists a A le of Construction 1 is sh i Fi 3 Wh
cyclic optimal code for alk. As we show in this section, the N example of Lonstruction -~ IS Snown In igure . en
next two cases, namely = 2,3, behave radically different: n =35 Cc_)nstrL_JCt|on 1 results in a cyclic code (the case
We start with the case of = 2 in which we show a non-cyclic n =5 was given in Table ).
optimal code always exists, but when adding the requirement ColUMN O oo, Column

that the code be cyclic, no cyclic optimal codes exist and the \ \
efficiency of any cyclic code is asymptotically bounded from LN T L
above by% +0(1). In contrast, we will show that fow =3  Row 1" e 3 a

we can construct cyclic asymptotically-optimal codes.

Row 3—~
A. The Case ofv = 2
For the case ofv = 2 a brute-force approach will suffice.
For alln > 2, let us define the grapﬁ” whose vertex set is Figure 3. An example of an optimal non-cyclil, 2, 7;2)-LRMGC which

/ H H /
S(n,2) and an edge — o’ exists iff v’ = T](v) for some  results from Construction 1. Solid arrows represent edgeshware part of
0<j<n—-1L the code path, while dotted arrows represent those thataire n

Since by Theorem 6 cyclic optimal codes may only exist
for odd n, let us restrict ourselves to that case only. We wiILI.heorem 11.Let G be a cyclic(1,2,1;2)-LRMGC, n > 7.
however, specify which results are also valid for everfor 3

. \ o . _ ThenEff(G) < 5 +0(1).

convenience, we index the vertices in the following way;, 4
wherel < k < (n—1)/2 and0 < ¢ < n — 1, denotes the Proof: We will prove the claim for odds. The proof
vertex corresponding to the string havid@ in positions¢ for evenn is essentially the same with a slight difference
and ¢ + k, where throughout the section we take the indicahue to the different structure of the last row @f. Let G =
modulon where appropriate. We shall conveniently refer tgo, g1,...,¢n-1 be cyclic Gray code, and lety, ,, be the
the first index as theow index, and the second index as theertex corresponding tg;. We say a vertex € G, is covered
columnindex. if v = vy, for some0 < i< N —1. We now denote b¥tmin

Using this indexing method the gragh takes on a simple andkny.x the smallest and, respectively, largest, row index of
form for oddn > 5 (the caser = 3 is more degenerate):  vertices covered by the code.



The code obviously induces a cyclic pathgp, and there-

a method originally used for constructing single-track yGra

fore, there exist two sub-paths going “up” and “down” rows;odes in [17] and later in [38]. In fact, the resulting codes

QusQu+1s---, & and g4, 9441, .., 84, With the following
properties: (indices are taken modwbwhere appropriate)

® ku = kmma ku’ - kmax, and fOf a”o < i < (ul —
u) mod N, kmin < ;i < kmax-
o ki = kmax, kgr = kmin, @and for all0 <i < (d’—d) mod

N, kmin < kd+i < kmax-

will have the single-track property as well.

If v =vgv1...0,_1 1S a lengthn word over some alphabet,
let E denote thecyclic-shift operatordefined by its action on
v:

Ev = v,,_10901 ...0y_2.

The orbits undeiE are callednecklacesA necklace is said

The two sub-paths are obviously vertex disjoint, excegy be full period if the smallest positive integer such that
perhaps the first and last vertices of the paths. Furthermopé, = v is i = n. A full-period necklace contains distinct

one can easily be convinced, that the two paths do n&tings.

occupy the same columns, except perhaps the columns of th@ye say a Gray cod& = 20,81, -

..,§n—1 has thesingle-

first and last vertices of the paths. Along the “up” path, latack property if in the matrix whose-th row is g;, all

0 <t 1/ tkpu—1 < (4 —u) mod N be the unique

the columns are cyclic shifts of each other. A variant of

integers such thag, 1, is the last vertex along the path athe following method was suggested in [17] for constructing

row i, i.e., k,4, = i and for allt; < j < (v —u)modN
ky+j > i. It now follows that for eachkmm < i < kmax, the
vertices

{Uku+fi711£ll+ii+1’ Uk“+ti721’€ll+ti+2, Tt vkminréu+ti+kll+ti7kmin}

cannot be covered by any of the codewordsaf See an
illustration in Figure 4. The number of such uncovered cedi
is exactly (kmax — kmin ) (kmax — 1)/2.

mm

Figure4.  An example of a cyclic(1,2,11;2)-LRMGC. Solid arrows
represent edges which are part of the up and down paths, andhtided
vertices are those which are guaranteed to remain uncoveriée proof of
Theorem 11.

In addition to the above-mentioned uncovered vertices,
the vertices of rows belowk,,;, and abovekn.x are left

uncovered by definition. Thus, if we denate= kmax — kmin,
the total number of uncovered vertices is at least
n—1 5(6—-1) _ 1
5 — N s T (p— —
n( 5 ) 1)+ 5 /S(n 3)(n—5),

since the minimum is achieved at= %52. Therefore, the

efficiency of the codes is at most
ln—-3)(n-5) 3

1-3 ) =7 +to(),

as claimed. [ |

single-track Gray codes, and it applies equally-well to sefr
of allowed transitions.

Lemmal2. Let G' = g, 81, .-.,8\_ be a(1,2,mw)-
LRMGC whereg; , = 7j(g;) forall0 < i < N'—2.

If the strings inG’ are representatives of distinct full-period
necklaces, andl'gy = tj,, &, 1, ged(f,n) = 1, then the
following is a cyclic single- _track Gray code:

G =G, E'G, E*c,... EnDig,

whereE/G' = Eig|, ..., Eigh, .

Proof: First, E/G’ is certainly also a Gray code. Since the
necklaces irG’ all have full cyclic period and sincégenerates
Z,, for k # k' (mod n) the codesE*G’ and EX‘G’ are
disjoint. Finally, it is easy to see that the transition froine
last string ofEG’ to the first string ofE kDG’ is valid. m

We define the mapping : S(n,3) — Z3 as follows: for a
binary stringov of lengthn and weight3 with 1's in positions

0<<ig<ii<ip<n—1,let
p(v) =
V\f ere subtraction is made modulon. The set
?!; ) | v € S(n3)} is the set of pointddy,dy,dy) € Z3
that are on the hyperplan® + d; + d, = n restricted to
1 < dy,dy,dy < n—2. We call (v) the configurationof v.
We note that ifged(n,3) = 1, then S(n,3) contains only
full-period strings, and otherwise, all strings are fulirjpd
except those with configuratiofx:/3,1/3,1n/3). We denote
by S*(n,3) the set of full-period strings fror§(#, 3).
Sincey(v), E(v), andE?(v), (corresponding to a cyclic
rotation of the axes o¥3), represent strings from the same
necklace, for any € 5*(n,3), let ¢’(v) stand for the unique
(do,d1,d) € {¢(v), Ep(v ) E*y(v)} for whichd; < |n/3]
andd, > |n/3]. Thus, there is a simple one-to-one mapping
from {y'(v) | v € $*(n,3)} to the set of full-period neck-

(i1 — i, 1p — 11,09 — ip)

While the upper bound on the efficiency presented igces. We cally’ (v) the canonical configuratiorof .
Theorem 11 is + o(1), computer search results lead us to o simple counting reveals that there are a total of

conjecture that it actually is(1).

B. The Case ofv = 3

In this section we turn to constructing asymptoticallyged(n,3) # 1, there are

(n=1)(n=2) configurations, and wheged(n,3) = 1 there

are % = 1(%) canonical configurations which is
exactly the number of weigli-full-period necklaces. When
%’HH canonical configura-

optimal cyclic (1,2, 7;3)-LRMGC. The construction will use tions. See Figure 5 for an illustration.



e Else, ifdy = 1 (mod 3) anddy > 2, then set\; ;1 =
(do—1,dy,d>+1).

» To complete the cycle, if\; = (1,2,n — 3), then set
Ai+1 = (1, 1,n— 2)

An illustration of the path from Construction 2 is shown in
Figure 6.

Figure5. The hyperplane of configurations far= 13. The set of canonical >
configurations is shown surrounded by a thick frame. N g N
< 2 <
Lemma 13.LetA = (dy,d1,ds) be a canonical configuration, <« }
and assume E
A e {(do +1,d1 — 1,d2),
(do,d1+1,dy — 1),

Figure 6. The path from Construction 2 over the canonical configanati
(dO - 1,d1,d2 + 1)} for n = 22. The unvisited configurations are shown surrounded by & thic
is also a canonical configuration. Then for anye S*(n,3) "Mme
such thaty’(v) = A there existss' € S*(n,3) such that
P'(v') = A andv’ = 7j(v) forsomed < j <n—1. Lemma 14. The path from Constructio® visits only canonical

Proof: AssumeA’ = (dy+1,d; — 1,d,) is a canonical configurations, each visited no more than once.
configuration (the proof for the two other cases is similar).
Let v € S*(n,3) be such thaty’(v) = A, i.e., there exists

§qme(()j< t gdg _; Suilh th?lt thlflys in vdorcur in _pOSitio,lnS for configurations of the forn(1,d;,d,) which are part of

b 1.4_' 0, an ,l +do +dy (all taken mo uo”,)' It IS e;’:15|y path of increasing, the rest of the path is divided according

verified thato’ = 7, 4,(v) has canonical configuratioty. m d; mod 3: when d, = 2,0 (mod 3) the path zigzags
We now intend to find a long cycle over canonical CONyownward”. and goes back i‘up” wheh =1 (mod 3) (see

figurations WhFCh’ by L.emma 13, W'_" result in a Gray COOI‘Iafigure 6). This path structure ensures no vertex is visitetem
of representatives of distinct full-period necklaces. Téiter than once in a cycle -

will be used with Lemma 12 to generate a cydi; 2, #; 3)-
LRMGC. Lemma 15. The lengthN’ of the path from Constructio® is

Construction2. Let n > 9 be an integer. We constructgiven by
the following sequence of canonical configurations =
Ao, A1, ..., Ani_1. We first sethy = (1,1,n —2), and then

Proof: Going over all the transitions in Construction 2 one
can verify that they visit only canonical configurationscEgt

n2—5n+18
6
n2—5n+22

setA; 1 as a function of\; = (dg,dy,d) according to the 3 = mod 9
following rules: % n=2 (mod9
e If dy = 1 andd; < 3||n/3] /3], then setA;; = n2776n+30 n=3 (mod9

(dO/dl + ]-/dZ - 1)
e Else, ifdy =0 (mod 3), then set\; 1 = (dg+1,d1 —

1,dy). % n=5 (mod?9
o Else, ifd, = 2 (mod 3) andd, > |n/3| + 1, then set 2936 =6 (mod 9
Aip1 = (do,d1+1,d2 - 1). W n=7 (mod 9

o Else, ifdy =2 (mod 3) andd, = |n/3| +1 andd; >

( )
( )
( )
( )
N'(n) = w n=4 (mod?9) (5)
( )
( )
( )
1, thenset; ;1 = (dg+1,d1 — 1,d3). ( )

2
n 796n+26 n=2~8



Proof: The path length depends on the number of timeésfollows that
it zigzags “downward” which is| |n/3| /3|. The rest is a

n? —7n +30
careful and tedious counting. [ | ged <n, 7) ‘ 30.

18

Lemma 16. Let G' = 8081/ -+ 8\—1 be alist of strings Thys, if we could only make sure thgtd(n,30) = 1 the
from S*(n, 3) (‘//vh?se existence Is gelarant_eed by LembBa  ¢laim would necessarily follow. Combininged (r,30) =
such thal’ = ¢'(g;), ¢'(81), -, ¥'(&y_,) isthe cyclicpath 1 gnd y = 4 (mod 9), we get thatn = 13,31,49,67

from Constructior?. Letg* be the string (whose existence iS(mOd 90) is sufficient to prove the claim. -
guaranteed by Lemma3) such thaty’(g*) = '(gp) and e note that the conditions described in Lemma 18 are not
§* =Ti(ghy_1)- Theng* = EN'/3¢(. the only cases in whiclged(n, N’(n)/3) = 1, but are just

Proof: Let us examing’ for somei and suppose we Couldthzonez\s[/easy3toiier|\ée.2;()3;|nita1nce, when 27, we have
distinguish between the thréés in g/ by coloring them red, ged(n, N'(n)/3) = ged(27,34) = 1.
blue, and green. If’(g) = (do, d1,d>), assume w.l.0.g., that Corollary 19. There exists an infinite familf{G;};>, of
dp is the distance between the red and blls; d, between cyclic (1,2,n;;3)-LRMGCs, n; 1 > n; for all i, for which
the blue and greeir's, andd, between the green and ré. lim; ., Eff(G;) = 1.
It §'(8i0) = (’.16’,’1/1”1/22’ .then a careful_ reading of Lemma Proof: Simply combine Lemma 18 with the fact that
13 shows that irg;  ;, dj is again the distance between the
red and bluel’s, d; between the blue and gredts, andd) lim & N'(n)
between the green and réé. n—eo (%)

Sincey’(g*) = ¢'(g() it follows that g* is a cyclic shift -

of go- By the previous argument, to get frogy to g*, all the On a final note, the codes from Theorem 17 turn out to be

1's had to be Qushed an equal number of times to the rig&Btimal in the cases of — 10,11 with sizesN — 120.165
and sog* = EN'/3¢/. u ’ ’

=1.

o . . . respectively.
The following is the main theorem of this section:
Theorem 17.For alln > 9 such thated(n, N'(n)/3) = 1, V. ASYMPTOTICALLY CONSTANT RATE CODES
whereN'(n) is given by(5), there exists a cycli€1,2,1;3)-  The main problem with the codes constructed in Section IV

LRMGC of sizeN = n - N'(n), which is also single-track. s that their rate is asymptotically We now turn to construct-
ing codes with rates asymptotically tendingttpand weight
asymptotically half the length, thus having asymptoticall
optimal charge difference between adjacent cells.
Our construction has the following intuitive flavor. We star
y partitioning then flash cells into about/n blocks, each
lock of size about,/n, treating each block of cells as a

Proof: By Lemma 13, letG' = g(,81,---,8\_1
be a list of strings from S*(n,3) such thatT' =
¥'(80), ¢ (1), -, ¢'(gh_,) is the cyclic path from Con-
struction 2. By Lemma 15N’ = N’(n) from (5). According
to Lemma 14] contains distinct canonical configurations, an
so G’ contains representatives of distinct full-period neckiac . .
Finally, by combining Lemma 16 with the requirement tha?Ingle (\:/hﬁaracter In a Iarge.alphabet, ,S{‘a)’ll""'_t — 1} for
ged(n,N'(n)/3) = 1, we can use Lemma 12 to construcf = 2'". Roughly speak_lng_, by this operation, we have
the desired code. m 'educed the problem of finding a Gray code o 1}"
into anouter Gray-like code ovef0,1,...,t — 1}‘@ Several
Lemma 18. There are infinite values af € IN for which Gray codes of rate 1 exist over large alphabets, however, not
ged(n,N'(n)/3) = 1. More specifically, it suffices that any outer code will suffice in our setting. Primarily, it is

satisfies one of the following: crucial that we may move from state to state in the outer code
e 1=7,11 (mod 18) using our elementary pairwise “push-to-the-top” opersgio
e n=13,31,49,67 (mod 90) Moreover, in doing so, we must guarantee that flash cell galue
e n=5,23,41,59,95,113 (mod 126) obtained between a single representation of the outer cordew
e n=1,19,37,73,91,109,127,145,163,181 (mod 198) and its successor are unique. We achieve these goals using an
«n = 17,35,53,71,89,107,125,161,179,197,215,233 outer Gray code based on de-Bruijn sequences. In such codes,

(mod 234) the location of the character that changes between subsieque
) codewords over goes a cyclic shift. This cyclic locationraea

~ Proof: We will prove one of the cases and the rest afigatween subsequent codewords lends itself very naturally t
similar. Assumen =4 (mod 9). By Lemma 15 we need 4y cyclic “push-to-the-top” operations. Combining thigttw
additional ideas, that guarantee distinct cell values ¢oftant

2 —7n+30
ged <n, %) =1. weight) in transition between outer codewords, we obtain ou
construction.
Since_gcd(a,b) divides any integer combination afandb, cgonstruction 3. Fix a positive integek. Let{vg, v1, ..., 011}
and since be a set of distinct binary vectors of lengtih + 2 and weight
n2 —7n+30 w + 2 such that the first and last bit of eachis 1. We also

18 13 (n—=7)-n=30, denotel, = lem(k + 2, tF).
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The next required ingredient in the construction is a dend, for example, the transition betwegg and g, is (the
Bruijn sequence of orddrover the alphab€f0,1,...,t —1}. changed positions are underlined)
The sequence is of periodX and we denote it by

50,51,-.-,5k_q1. We remind the reader that windows of size 38 = 11011 11101 00000
k in the sequence, i.€s;,si11,...,Si1k_1, With indices taken 8= 11011 11100 10000
modulo t*, are all distinct. Such sequences can always be go = 11011 11100 01000
constructed (for example, see [21]). g§ = 11011 11100 00100
We now construct the sequengg gy, - - -,g1_1 of L binary 8o = 11011 11100 00010
vectors of length{k + 2) (m + 2) and weight(k + 1) (w + 2). g5 = 11011 11100 00001
Each vector is formed by a concatenatiorkef 2 blocks of gy = 11011 11010 00001
lengthm + 2 in the following way: g§: 11011 11001 00001
gy = 11011 11000 10001
0= Usp  Usey Us1 Uso 0 gg — 11011 11000 01001
817 Osc Use a1 0 Oy g% = 11011 11000 00101
82=  Us Us I gl = 11011 11000 00011
gt = 11011 10100 00011
k= Us, 0 Usiys  Usia  Usi g¢> = 11011 10010 00011
k1= 0 Vs, Ui Uspry  Uspny gg® = 11011 10001 00011
8k+2 = Usyyn sy Uses  Usipn 0 got= 11011 10000 10011
8ki3 = Usyyn  Usyeq Usis 0 Vs g> = 11011 10000 01011
Sktd4 = Usyyr Usyy 0 Usyers  Usyeis g6 = 11011 10000 00111
g/ = 11011 01000 00111
18 _
82k+2 = Usyya 0 Usikrs  Usakya Usapys g?z = 11011 00100 00111
82k+3 = 0 Usskss Usakrs  Uspers Usprus g% = 11011 00010 00111
gy = 11011 00001 00111
g1 = 11011 00000 10111
8L-k-2= Uspp Usp 3 Usp ko1 Usp g 0 . . .
SL-k-1= Us, , Us 4 Vs, 4 4 0 s, Theorem 21.The code constructed in Construct®is a cyclic
QK= Us, Us s 0 v, g, (1,2, (k+2)(m+2);(k+1)(w+2))-LRMGC of size
N =L(w+2)(m+2) =lem(t* k+2) - (w+2) - (m+2).
8L-2= Usy, 0 Usy Usg Usp 4
grL-1= 0 Usp 4 Vs, sy Vs, Proof: That the code contains only valid transitions is

evident by the construction method. We need to show that all

Wher.eoldenotes the all-zero vector of length+ 2, and the o constructed codewords are distinct which we do with the
sub-indices of are taken modult". following reasoning: consider some constructed codewatl

We call 3o, g1, - -.,81—1 the anchor vectorsWe note that length (k +2) (m + 2) and weight(k + 1) (w + 2). Deciding
betvygen anchor_gl- andgiH the block s, movesm + 2 whetherg is an anchor is simple, since only anchors have
positions to the right (with wrap-around) and is changedhéo t . +1 blocks beginning and ending withlaand the remaining
blogkvsi+k+1. block a0. By our choice ofL, all anchors are distinct since

Finally, between any two anchogs,andg;..1, a sequence Of they contain windows of size-+ 1 from a de-Bruijn sequence
vectors callecauxiliary vectorsand denotecg?, gl .. .8+ IS of orderk, each window appearing itk + 2)/ ged(k +2, )
formed in the following way: The only allowed transition i$@ djstinct cyclic shifts (which are easily distinguishable the
changed into &1. First the rightmost in the blockvs; is moved  position of the0 block). It then follows that ifg is indeed an

to the right, step by step, to the position of the rightmiost  anchor it appears only once in the code.

Us; i1+ 1h€ process then repeats with a sequence of transitiongssyme we discoveg is an auxiliary vector. Again, by
moving the second-from-righit in vs, to the position of the construction, all auxiliary vectors betwegn and g;.1 have
second-from-right in vs,_, ,, and so on, untibs, is moved  fixed blocks. Looking afy, an auxiliary vector, exactly
one block to the right and changed intg,, ., (see Example p|ocks are of weighto + 2 while the other two blocks have
20). The resulting list of anchor vectors and, in between theWeight strictly beloww + 2. The blocks of weightw + 2,
auxiliary vectors, is the constructed code. by construction, form a window of sizk from a de-Bruijn

Example 20.Let us take a very simple caselof= 1, m = 3, Sequence of ordet starting ats;, and so their content and

w =2, andt = 3, withsy = 0,s; = 1, ands, = 2, and then Position uniquely identify between which two anchgrdies.

vy = 11101, v; = 11011, ando, = 10111. The list of anchors ~ Finally, all the auxiliary vectors between adjacent ansigpr

is andg;. 1 are easily seen to be distinct. Thus, given a codeword
go = 11011 11101 00000 g from the constructed code, there is exactly one position in
g1 = 11011 00000 10111 the sequence of generated codewords which eqyaisid so
g» = 00000 11101 10111 all generated codewords are distinct.



To complete the proof we need to calculate the dive
There are exactly. anchors. Given an anchgt, the number
of steps in the transition tg;,; may be readily verified to
be (w+2)(m+2)+ x(giv1) — x(gi), wherex(+) is the first

moment function defined in (2). Thus,

L-1
N= ;} ((w+2)(m+2) + x(gi+1) — x(81))

11

While cyclic optimal Gray codes exist (trivially) fap = 1,
we showed that fow = 2 their efficiency is upper bounded
by % +0(1). In contrast, forw = 3 asymptotically-optimal
codes exist with efficiency — o(1). The codes we constructed
also come with a relatively simple updating algorithm. Hina
by letting w be approximatelyn/2 we constructed cyclic
(1,2,n;w)-LRMGCs whose rate approachées

Several open questions still remain. For the case of
(1,2,n;w)-LRMGCs, a general construction is missing for
constant weightsw > 4. We also conjecture, based on

=L(w+2)(m+2)
as claimed. As a final note, the choice Iofis easily seen to
ensure the resulting code is cyclic. ]

. ; . th
We mention in passing that the proof of Theorem 21 hm}fe

at efficient encoding and decoding procedures, provideelrotl']a
efficient encoding and decoding procedures exist for dejBru
sequences. Examples of such procedures may be found in [33],
[42].
We now turn to show the main claim of the section. "
1

(2]

Corollary 22. There exists an infinite famil{G;};-, of
cyclic (1,2,n; w;)-LRMGCs, n; 1 > n; for all i, for which
lim; o R(G;) = 1, andlim; o 3 = 1.

Proof: For the codeG;, setw = i, andk = m = 2i (i.e., 3]
n; = (2i+2)* andw; = (2i+1)(i +2)) and apply Theorem

21 witht = (21.1). The size,N;, of the codeG;, is bounded by -
21\ 21\
(i) (i+2)(2i+2) < N; < (l) (i +2)(2i +2)?
(6]
[7]

since

~N 2i N 2 -~ 2i
(211) <lcm<(2il> ,2i+2> < (21’) (2i +2).

It is well known (see for example [32], p. 309) that for any
0 < A <1, assuming\/ is an integer,

1 HtH(Y) ¢ <5> . 1 tH(M)
8IA(1— 1) S\ T 2001 =)

whereH(-) is the binary entropy function. Sindé(1/2) = 1,
it now easily follows that

(8]
El
[10]

[11]

lim R(G;) =1,

1—00

[12]

B [13]
If needed, we can achieve lower asymptotic rates by setting
w = Am for some rationaD < A <1, A #1/2. [14]

VI. CONCLUSION [15]

We presented the general framework(sft, 7)-local rank [16]
modulation and focused on the specific cas¢lp®, n)-LRM
which is both the least-hardware-intensive, and the siaupléﬂ]
one to translate between binary strings and permutatioes. Yg)
studied constant-weight Gray codes for this scheme, which
guarantee a bounded charge difference in any “push—to-tlﬁ"eqJ
top” operation. The Gray codes are used to simulate a con-
ventional multi-level flash cell. [20]

Using coloring and counting arguments we derived necetgi]
sary conditions for the existence of cyclic and cyclic oim

(1,2, 1;w)-LRMGCs. [22]

ctuallyo
or general(s, t, n)-LRM and their parameters.

computer search results, that for= 2 andn large enough,

size of cyclic codes is at mo3t, hence, with efficiency
(1). Of more general interest is the study of codes
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